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Haoming Liu, Zhenhe Zhan, Hai Zhang, Guogiang Huang
and Jingsheng Xu*

National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and
Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture
and Forestry University, Fuzhou, Fujian, China

Introduction: Sugarcane mosaic virus (SCMV, Potyvirus) causes mosaic diseases
and seriously threatens sugarcane production. Potyviral 6K2 protein plays a key role
in viral infections. We previously screened a tetraspanin (TET)-like protein that
interacts with SCMV-6K2 from a sugarcane cDNA yeast library. Although TETs have
been extensively studied in response to viral infections in animals, the TET gene
family in sugarcane and its role in SCMV infections remain largely unknown. This
study aimed to identify the TET genes in sugarcane and determine their response to
SCMV infection.

Methods: We employed genome-wide identification, phylogenetic analysis, real-
time quantitative PCR (RT-gPCR), subcellular localization, and multiple protein—
protein interaction assays to characterize TETs and their interactions with viral
6K2 proteins.

Results: We identified 35, 113, 73, and 17 TETs in the genomes of Saccharum
spontaneum, sugarcane cultivar R570, sugarcane cultivar Xintaitang 22 (XTT22), and
Nicotiana benthamiana, respectively. Phylogenetic tree analysis classified the TETs
into nine distinct groups. Nine TET genes were cloned from XTT22 and designated
SCTET2, SCTET8, SCTET13, SCTET23, SCTET34, SCTET55, SCTET67, SCTET/8, and
ScTET96. RT-gPCR demonstrated the differential expression of these genes
following SCMV infection. Furthermore, subcellular localization assays revealed
that they were mainly localized to the plasma membrane (PM), except for SCTET2
and ScTET8, which were localized in the cytoplasm and formed irregular spherical
structures of different sizes. Yeast two-hybrid (Y2H), bimolecular fluorescent
complementation, and luciferase complementation assays revealed extensive
interactions between the ScTETs and SCMV-6K2, primarily in the PM. Y2H assays
also showed that TETs of Arabidopsis and N. benthamiana extensively interacted
with the 6K2 protein of turnip mosaic virus.
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Discussion: This study reveals a potential mechanism by which potyviruses
employ 6K2 to interact with TETs to establish infection in host plants, thus
highlighting potential molecular targets for engineering sugarcane resistance

against SCMV.
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1 Introduction

Potyviruses represent the largest group of plant viruses and
cause heavy yield losses in many crops worldwide (Urcuqui-
Inchima et al., 2001; Revers and Garcia, 2015; Yang et al., 2024).
Potyviruses are flexuous rod-shaped particles at 680-900 nm long
and 11-20 nm wide, and they contain approximately 10 kb of
single-stranded positive-sense RNA that encodes two polyproteins
(Urcuqui-Inchima et al,, 2001; Yang et al., 2021; Pollari et al., 2024).
These two polyproteins hydrolyze into 11 mature proteins: P1, HC-
Pro, P3, P3N-PIPO, 6K1, CI, 6K2, Vpg, NIa-Pro, NIb, and CP (Valli
et al,, 2007; Chung et al., 2008; Cheng et al., 2017, 2020; Xiao et al.,
2022; Hyskova et al,, 2024). Among these, the 6K2 single-
transmembrane protein localized in the endoplasmic reticulum
(ER) participates in multiple biological processes during potyvirus
infection (Xue et al, 2023; Zhang et al., 2024a; 2024). The 6K2
protein can induce the rearrangement of ER at ER exit sites (ERESs)
to form virus replication complexes (Grangeon et al., 2013; Jiang
etal, 2015; Cabanillas et al., 2018; Zhang et al., 2019; Xie et al,, 2021;
Solovyev et al., 2022) and fuse with other endomembrane systems,
such as the outer membrane of chloroplasts, to facilitate efficient
replication. Notably, it plays a role in the intra- or intercellular
movement as well as long-distance transport of the virus (Wan
et al., 2015; Movahed et al., 2019; Chai et al., 2020; He et al., 2023b)
and immune responses, including reactive oxygen species (ROS)
burst and autophagy (Wang, 2015; Hafren et al., 2018; Li et al., 2020;
Lin et al., 2024; Zhang et al., 2024; He et al., 2025; Rui et al., 2025).
Interestingly, overexpressing of turnip mosaic virus (TuMV) 6K2 in
Arabidopsis and Nicotiana benthamiana promotes salicylic acid
accumulation and resistance to drought stress (Prakash et al., 2023).
Given the significant role of 6K2 in potyvirus infection, we
previously screened a sugarcane cDNA yeast library using the
6K2 protein of SCMV as bait and identified the tetraspanin
(TET)-like protein ScTSPAN18 (Zhang H. et al., 2019).

TETs are evolutionarily conserved integral membrane proteins
in cellular organisms (Hemler, 2003; Wang et al., 2012a; Green
et al,, 2019; Zhang et al, 2025a). TETs are composed of four
transmembrane domains, one small extracellular loop, and one
highly variable large extracellular loop (LEL) (Boucheix and
Rubinstein, 2001; Hemler, 2003; Kovalenko et al., 2005; Reimann
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et al, 2017). In animals, LEL contains a conserved CCG motif,
whereas in plants, it contains a GCCK/RP motif (Seigneuret et al.,
2001; Huang et al., 2005; Wang et al., 2012a; Boavida et al., 2013).
TETs can interact with themselves, other TETSs, or other ligand
proteins on the plasma membrane (PM) to form TET-enriched
microdomains (TEMs), which are involved in signaling, cell
adhesion, migration, proliferation, differentiation, fundamental
immune response, and PM repair (Le Naour et al., 2000; Miyado
et al., 2000; Boucheix and Rubinstein, 2001; Hemler, 2001; Charrin
et al,, 2009; Umeda et al., 2020; Huang et al., 2022; Zhang et al,,
2025b). In mammals, TETs such as CD9, CD81, CD63, CD82, and
CD151 are extensively involved in viral infections (Fast et al., 2017;
Florin and Lang, 2018; Zhang et al., 2025b). CD9, CD63, and CD81
are components of extracellular vesicles (EVs) and respond to
infection with the human immunodeficiency virus, Lujo virus,
hepatitis B virus, or herpes simplex virus 1 (Florin and Lang,
2018; Ghossoub et al., 2020; Mathieu et al., 2021; Ninomiya et al.,
2021; Poveda et al., 2022; Zhang et al., 2025b).

Plant TETs are involved in plant development and growth,
including cell fate determination, hormonal regulation,
plasmodesmata gating, and signaling (Cnops et al., 2006; Wang
et al., 2015; Reimann et al., 2017). For instance, TET mutants have
abnormal leaves or roots (Cnops et al, 2006; Qin et al, 2024;
Zimmerman et al., 2024). Plant TETSs are also involved in response
to biotic and abiotic stresses and mutualistic interactions (Parra-
Aguilar et al., 2023; Chen et al., 2025). In rice (Oryza sativa),
OsTETS5 regulates drought resistance by controlling ROS burst and
ionic homeostasis (Mani et al., 2025), whereas in potato (Solanum
tuberosum), StTET8 act as a positive immune regulator that inhibits
Phytophthora infestans infection (Guo et al.,, 2022). Interestingly,
PsTET1 and PsTET3 of soybean (Glycine max) root rot pathogen
Phytophthora sojae are recognized by N. benthamiana, where they
elicit immune responses (Zhu et al., 2023). In Capsicum, expression
of the TET8-like gene is strongly correlated with the accumulation
of capsicum chlorosis virus (CaCV) (Cnops et al., 2006; Wang et al.,
2015; Reimann et al., 2017). In Arabidopsis, AtTET3 plays a key role
in the cell-to-cell movement of cucumber mosaic virus (CMV) (Zhu
et al., 2022). Plant TETs are also involved in the formation and
signaling of EVs (Cui et al., 2020; He et al., 2021; Chen et al., 2022;
Ruf et al., 2022; He et al., 2023a; Gao et al., 2024; Chen et al., 2025).
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AtTET8 and AtTETY in Arabidopsis mediate the transport of EVs
carrying RNA, including host-derived small RNAs (sRNAs), to
fungal cells, thereby reducing fungal infection (Cai et al., 2018).
Conversely, pathogenic fungi can also use EVs to deliver sSRNAs
into plant cells (He et al., 2023a). Moreover, TuMV-induced EV's
are enriched in AtTET3, suggesting that TETs are involved in
potyvirus infections (Movahed et al., 2019).

To date, the TET gene family has only been reported in
Arabidopsis and rice (Wang et al, 2012a; Mani et al,, 2015).
Therefore, this study aimed to identify the TET gene family in
sugarcane and determine its response to SCMV infection. This
study provides valuable insights for the further exploration of TET
functions and highlights the role of these proteins in the response to
potyvirus infections.

2 Materials and methods
2.1 Plant materials and treatments

Tissue-cultured Xintaitang 22 (XTT22) plantlets were grown
under a 14 h light/10 h dark cycle until reaching 15-25 cm in height
with 4-5 fully expanded leaves and were individually inoculated
with SCMV as previously described (Zhang H. et al., 2019; Yang
et al,, 2021). The plants were then inoculated with SCMV. XTT22
plantlets mock-inoculated with 0.01 M phosphate buffer (pH 7.0)
served as negative controls. Sampling was conducted at 0 h, 12 h,
1d,3d,7d, and 14 d, with three plantlets sampled at each time
point. Roots, leaf rolls, +1 leaves, +7 leaves, +3 internodes, and +8
internodes were sampled from nine healthy 10-month-old XTT22
plants, which were divided into three groups of three plants each. N.
benthamiana plants were cultured under a 16 h light/8 h dark cycle
at 22°C and 60% humidity. All sampled plant materials were
immediately frozen in liquid nitrogen and stored at —80°C.

2.2 Identification of putative sugarcane
TETs

Genomic data of sugarcane cultivars XTT22 and R570 and
Saccharum spontaneum AP85-441 were obtained from the
Sugarcane Genome Database (https://sugarcane.gxu.edu.cn/scdb/
download) (Zhang et al., 2018; Healey et al., 2024; Zhang et al.,
2025¢). Genomic data of N. benthamiana were obtained from an
online website (http://lifenglab.hzau.edu.cn/Nicomics/Download/
index.php) (Wang et al., 2024). Genomic data were obtained
from an online website (https://phytozome-next.jgi.doe.gov/)
(Goodstein et al., 2012). The Hidden Markov Model of TET
(PF00335) was downloaded from an online database (http://
pfam.xfam.org/) (Krogh et al, 2001) and used to query the
genomes of S. spontaneum AP85-441, sugarcane cultivars XTT22
and R570, and N. benthamiana. The transmembrane domains of
these TETs were analyzed on an online website (https://
services.healthtech.dtu.dk/servicess TMHMM-2.0/). The identified
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TETs were then verified using the CDD tool (https://

www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

2.3 Phylogenetic tree, physicochemical
properties, and subcellular localization of
sugarcane TETs

The BLASTp tool was used to screen the Phytozome v13
database (https://phytozome-next.jgi.doe.gov/) for TET proteins
of maize (Z. mays), sorghum (Sorghum bicolor), millet (Setaria
italica), wheat (Triticum aestivum), soybean (G. max), and potato
(S. tuberosum), as well as the identified TETs in rice (Mani et al.,
2015) or Arabidopsis (Wang et al,, 2012a). The above TET
sequences and identified TET sequences in N. benthamiana
(NDTETs) or XTT22 (XTT22TETs) were subjected to multiple
sequence alignment using MUSCLE v3.7, and a phylogenetic
tree was constructed using the maximum likelihood method
(bootstrap = 1,000) of MEGA X (Kumar et al., 2018). Then, the
online software EvolView (https://evolgenius.info//evolview-v2)
(https://evolgenius.info//evolview-v2) (He et al., 2016) was
employed to refine the phylogenetic tree. The online website
ExPASy (https://web.expasy.org/compute_pi/) was used to predict
the physicochemical properties of sugarcane TET proteins. The
subcellular localization of the identified TETs was predicted using
the online website WoLF PSORT (https://wolfpsort.hgc.jp/)
(Horton et al.,, 2007). Additionally, AlphaFold3 software (https://
alphafoldserver.com/) was used to simulate the protein structure.

2.4 Conserved motifs and gene structure
analysis

The conserved TET motifs in S. spontaneum AP85-441 (SsTET)
and sugarcane cultivars R570 (R570TET) and XTT22 were obtained
using MEME (https://web.mit.edu/meme/current/share/doc/
overview.html) (Bailey et al, 2009). The parameters were set to
search for 10 conserved motifs, with the remaining parameters set
to default values. The gene-finding format 3 (gft3) files of the above
species were downloaded from the Sugarcane Genome Database
(https://sugarcane.gxu.edu.cn/scdb/download) (Zhang et al,, 2018;
Healey et al., 2024; Zhang et al., 2025¢). The conserved motifs and
gene structures of SsTETs, R570TETs, and XTT22TETs were
visualized using TBtools 2.0.

2.5 Cis-acting elements analysis

The 2,000 bp sequences upstream of the coding sequence (CDS)
region of SSTETs, R570TETs, and XTT22TETs were acquired from
their corresponding genomic data. The cis-acting elements were
predicted using PlantCARE software (https://bioinformatics.psb.
ugent.be/webtools/plantcare/html/) and visualized using TBtools
2.0 (Chen et al., 2023).
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2.6 Collinearity analysis

The collinearity and replication patterns of TETs were analyzed
using MCScanX software (Wang et al., 2012b; Chen et al., 2023).
Collinearity analysis of the genomes of sugarcane cultivars R570
and XTT22, sorghum (S. bicolor), maize (Z. mays), Arabidopsis,
potato (S. tuberosum), millet (S. italica), and rice (O. sativa) was
performed using TBtools 2.0 software. Genomic information of
sorghum, maize, wheat, rice, Arabidopsis, and potato was
downloaded from an online website (https://phytozome-
next.jgi.doe.gov/) (Goodstein et al., 2012). In addition, the (Ka)/
(Ks) value between homologous gene pairs was calculated based on
the correlation of homology using TBtools 2.0.

2.7 Transcriptomic data analysis

The transcriptome data of AP85-441 and XTT22 are available
in an online repository (https://sugarcane.gxu.edu.cn/scdb/
download) (Hu et al,, 2018; Zhang et al., 2025¢). These data were
collected at the seedling stage (35 d), early maturity stage (270 d),
and mature stage (360 d). RNA-seq data from the leaves at four
different developmental stages were collected to investigate the
expression profiles of the TET family. The transcription
fragments per million bases (FPKMs) of SsTETs or XTT22TET
were used to generate heat maps and conduct cluster analysis using
TBtools 2.0 (Chen et al., 2023).

2.8 RNA isolation, cDNA synthesis, and RT-
qPCR

Total RNA was extracted from SCMV-infected sugarcane
plants and healthy sugarcane plants using the TRIzol method.
The PrimeScript® RT-PCR kit (TaKaRa Biotechnology Co., Ltd.,
Dalian, China) was used to synthesize the first-strand ¢cDNA.
Special primers (Supplementary Table S1) were designed to
quantify the TET genes by RT-qPCR with eEF-1a and Actin used
as internal references (Iskandar et al., 2004; Ling et al., 2014; Xue
et al, 2014). The relative expression levels of TET genes were
analyzed using the 274 method. All primers used for RT-qPCR
are listed in Supplementary Table S1.

2.9 Plasmid construction

Special primers (Supplementary Table S1) were designed to
construct the plasmids. For the yeast two-hybrid (Y2H)
experiments, DNA fragments and Y2H vectors were ligated
individually at the Ecor I and Sam I sites. The bait vectors of
TuMV-6K2 and SCMV-6K2 are from our previous work (Zhang H.
et al,, 2019; Zhang et al,, 2024), and the target genes were cloned
into the prey vector pPR3-N. In addition, three TET genes cloned
from XTT22 (ScTETs) were inserted into the pBT-STE vector to
investigate the interactions among ScTETs. Gateway technology

Frontiers in Plant Science

10.3389/fpls.2025.1684431

was employed to construct the plasmids for the bimolecular
fluorescence complementation (BiFC) assays. The 6K2-YN vector
was generated in a previous research study (Zhang et al., 2024). For
the subcellular localization experiments, all DNA fragments were
inserted into the vectors via the Kpn I and Sal I sites. For the
luciferase complementation assays (LCAs), DNA fragments and
LCA vectors were ligated at the Kpn I and Sal I sites. All plasmids
constructed in this study were verified through sequencing.

2.10 Y2H, BiFC, LCA, and subcellular
localization assays

For the Y2H assays, paired prey and bait vectors were co-
transformed into the yeast strain NMY51. Then the transformed
yeast cells were spread onto the double dropout medium (DDO)
SD/-Trp/-Leu solid medium and cultured at 30°C for 48-72 h. Yeast
single colony grown on DDO solid medium were suspended in
DDO liquid medium to ODgyy = 0.6. Ten-fold serial dilutions of
yeast were spotted onto DDO or quadruple dropout medium
(QDO) SD/-Trp/-Leu/-His/-Ade solid medium and cultured at
30°C for 48-72 h. The yeast cells co-transformed with pNubG-
Fe65 and pTSU2-APP served as positive controls, while those co-
transformed with pNubG-Fe65 and pPR3-N served as negative
controls, as previous report (Zhang H. et al,, 2019).

For the BiFC experiments, complementary vectors containing
the target genes for the identification of interactions were co-
transformed into Agrobacterium tumefaciens GV3101 and
cultured to an ODgg of 0.2. Equal volumes of each culture were
mixed and infiltrated into N. benthamiana leaves using a needleless
syringe. Agrobacterium-infiltrated plants were grown under normal
conditions for 48-72 h (Yang et al., 2021).

For the LCA assays, the target genes were cloned into the
pCAMBIA1300-nLUC and pCAMBIA1300-cLUC vectors.
Subsequently, these recombinant plasmids were introduced into
different regions of the same N. benthamiana leaf via A. tumefaciens
infiltration, with the final concentration of A. tumefaciens set at an
ODgoo of 0.4. Thereafter, a 0.2 mM luciferase substrate was
infiltrated into the same regions, and imaging was performed 2 d
post-infiltration (dpi) using a low-light-cooled CCD imaging
system (Amersham Imager 680, GE, USA).

For the subcellular localization experiments, complementary
vectors containing the target genes for the identification of
interactions were transformed into A. tumefaciens GV3101 and
cultured to an ODgg of 0.2. Equal volumes of each culture were
mixed and agroinfiltrated into N. benthamiana leaves using a
needleless syringe. AtCDPK9-mCherry was used as a PM marker
(Cheng et al., 2017). Agrobacterium-infiltrated plants were grown
under normal conditions for 48-72 h.

2.11 Confocal microscopy
Images were digitally acquired using a Leica SP8X confocal

microscope (Leica, Wetzlar, Germany). Yellow fluorescent protein
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(YFP) was excited at 514 nm, and the emitted light was captured at
530-590 nm. The excitation wavelength of mCherry was 587 nm,
and the collection wavelength was 610 nm. The excitation and
emission wavelengths of green fluorescent protein (GFP) were 514
and 530-590 nm, respectively. Images were analyzed using
Leica Microsystems.

3 Results

3.1 Identification and phylogenetic analysis
of the TET gene family

We identified 35, 73, 113, and 17 members of the TET gene
family in S. spontaneum AP85-441, sugarcane cultivar R570,
sugarcane cultivar XTT22, and N. benthamiana, respectively
(Supplementary Table S2). Phylogenetic analysis indicated that
the TETs from sugarcane cultivars XTT22 and R570 were
clustered into nine evolutionary groups, whereas none of SSTETs
from S. spontaneum were distributed in Groups 5 and 9. Groups 7
and 8 contained only the TETs from monocotyledonous plants
(Figure 1). The TETs of monocotyledonous and dicotyledonous
plants were further clustered into different subgroups within the
same group. AtTETs were clustered into seven groups, that is,
Groups 1, 2, 3, 4, 5, 6, and 9, which is consistent with a previous
report (Wang et al., 2012a). Surprisingly, SCTSPANI18, previously
identified as a protein interacting with SCMV-6K2, was not
included in the TET gene family (Zhang H. et al, 2019). To
investigate the differences between ScTSPANI18 and the typical
TETs AtTET1 and OsTET1, AlphaFold3 was used to simulate the
protein structures. Notably, the LEL of SCTSPAN18 was small, and
the conserved motifs were absent compared with typical TETs
(Supplementary Figure S1).

3.2 Conserved motifs, gene structure, and
physicochemical properties of TETs

Ten conserved motifs, distributed among Groups 1-8 in the
same distribution order, were identified in the SSTETs, R570TETs,
and XTT22TETs. For the TETs in Group 9, only motifs 1, 2, 5, 7,
and 8 were detected (Supplementary Figure S2A). Gene structure
analysis revealed that the ETs in Groups 1-4 and 6-9 contained 2-4
exons (Supplementary Figure S2B), whereas those in Group 5
contained more than 10 exons (Supplementary Figure S2B).

Physicochemical analysis of the sugarcane TET proteins
revealed amino acid lengths ranging from 205 to 853, theoretical
isoelectric points between 7.75 and 9.91, and instability coefficients
between 29.53 and 58.03. Subcellular localization of the above
proteins was predicted using a protein subcellular localization
website (Supplementary Table S3). Most of the TETs in sugarcane
were localized in the PM, although some were localized in the Golgi
apparatus and ER (Supplementary Table S3).
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3.3 Collinearity and chromosomal
localization of the TET gene

To understand the evolution of the TET gene family, the intra-
and inter-species collinearity of TET genes in XTT22, R570, and S.
spontanerum AP85-441 was investigated. Intraspecies collinearity
analysis revealed 266, 20, and 260 pairs of collinear TETs in XTT22
(Figure 2A), S. spontanerum AP85-441 (Figure 2B), and R570
(Supplementary Figure S3), respectively. Interspecies collinearity
analysis revealed 96 and 86 pairs of collinear TETs between AP85-
441 and R570 and XTT22, respectively (Figure 2C). To gain more
evolutionary information of the TET gene family, we analyzed the
synteny of TET genes from S. spontaneum with those from Setaria
italica, sorghum, maize, rice, Arabidopsis, and Solanum
lycopersicumt. The results showed that there are 19 pairs between
Setaria italica and S. spontaneum, 19 pairs of homologous genes
between sorghum and S. spontaneum, 15 pairs between maize and S.
spontaneum, 18 pairs between rice and S. spontaneum, 3 pairs
between Solanum lycopersicumt and S. spontaneum and no pairs
between Arabidopsis and S. spontaneum (Figure 3). MCScanX
analysis showed that whole-genome or segmental duplication was
the primary origin of TETs in AP85-441 (45.7%), XTT22 (61.0%),
and R570 (84.9%) (Supplementary Table S4). The Ka/Ks ratios of all
the TET gene pairs were <1 (Supplementary Table S5), suggesting
that homologous genes among rice, sorghum, S. italica, maize, and
S. spontaneum, have undergone strong purifying selection.

Chromosomal mapping demonstrated uneven distribution of
the TET genes in XTT22, with most chromosomes containing 1-2
and a few containing 3-5 genes (Supplementary Figure S4;
Supplementary Table S6). The chromosomal distribution of TETs
in AP85-441 (Supplementary Figure S5) and R570 (Supplementary
Figure S6) was similar to that in XTT22 (Supplementary Table S6).

3.4 Cis-acting elements in TET genes

In total, 20 cis-acting elements were predicted in the promoter
regions of the TETs (Supplementary Figure S7; Supplementary Table
7). ARE (94.6%), G-box (93.7%), ABRE (91.4%), TGACG-motif
(90.0%), and CGTCA-motif (89.4%) were distributed in the promoter
regions of more than 80% of the TETs, indicating their extensive
involvement in responses to stress, light, and hormones. GATA box
was only predicted in Group 3. In Group 6, the upstream region of
the TET gene did not contain a CCAAT box, GC motif, or GA motif.
In Group 8, the upstream region of the TET gene did not contain the
GCN4 motif or GC motif (Supplementary Figure S7).

3.5 Expression patterns of TETs based on
the transcriptomic data

Transcriptomic analysis of the continuous developmental
gradient of leaves of XTT22 and S. spontaneum AP85-441 was
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FIGURE 1

Phylogenetic tree analysis of Tetraspanins (TETs) of Saccharum species and other plant species. The phylogenetic tree was constructed using the
maximum likelihood method with 1,000 bootstrap replicates. The TETs sequences are from the databases of 8 monocotyledons (sugarcane cultivar
R570, sugarcane cultivar XTT22, Oryza sativa, Zea mays, Setaria italic, S. spontaneum, Triticum aestivum and Sorghum bicolor) and 4 dicotyledons
(Arabidopsis thaliana. Nicotiana benthamiana, Glycine max, Solanum tuberosum). These TETs were grouped into 9 distinct groups and annotated

with different colors.

performed to investigate the potential functions of TET genes in
photosynthesis. Group 4 XTT22TETs were highly expressed in the
mature zone, whereas Group 1 XTT22TETs were highly expressed
in the transitional zone, with other XTT22TET genes exhibiting low
or no expression (Figure 4A; Supplementary Table S8). For the
SsTETs in the leaves of S. spontaneum AP85-441, Group 4 SsTETs
were highly expressed in the transition and maturation zones.
Groups 1, 2, and 8 SsTETs were expressed in the basal zone,
whereas Group 3 SsTETs exhibited low expression in the leaves
(Supplementary Figure S8A; Supplementary Table S8).

The transcriptomic analysis of different tissues across different
developmental stages of XTT22 revealed that Group 4 TETs were
highly expressed in mature leaves and internodes (Figure 4B).
Members of Groups 2 and 8 were expressed in different tissues in
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the seedling and premature stages, whereas members of Groups 3, 5,
and 7 exhibited consistently low expression across all developmental
stages, and members of Groups 6 and 9 were not expressed
(Figure 4B; Supplementary Table S9). For S. spontaneum AP85-
441, Group 4 SsTETs were highly expressed in the stems and leaves in
the premature and mature stages, and four SsTETs in Group 1
showed relatively high expression in premature and mature stems
(Supplementary Figure S8B; Supplementary Table S9).

3.6 Cloning and characterization of SCTETs

The results of bioinformatics and transcriptome data analyses
were used to clone the following nine genes from Groups 1, 2, 3, 4,
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Interchromosomal and intrachromosomal collinearity relationship analysis of the TET gene families in Saccharum species. (A) Intrachromosomal
collinearity analysis of the TET gene family in sugarcane cultivar XTT22. Red lines indicate duplicated TET gene pairs. (B) Intrachromosomal
collinearity analysis of the TET gene family in S. spontaneum. Red lines indicate duplicated TET gene pairs. (C) Interchromosomal collinearity analysis
of the TET gene families among in S. spontaneum, sugarcane cultivar R570, XTT22. The lines represent the TET homologous gene pairs.

7, and 8 of XTT22: XTT22TET2, XTT22TETS8, XTT22TET13,
XTT22TET23, XTT22TET34, XTT22TET55, XTT22TET67,
XTT22TET78, and XTT22TET96, which were named ScTET2,
ScTETS, ScTETI13, ScTET23, ScTET34, ScTET55, ScTET67,
ScTET78, and ScTET96, respectively (Supplementary Table S2).
Sequence alignment and phylogenetic tree analysis revealed
98.53% similarity between SCTET8 and XTT22TET8 and 98.94%
similarity between ScTET55 and XTT22TET55. The similarity
between the other seven ScTETs was identical to the
corresponding identified XTT22TETs. Subcellular localization
assays showed that the fluorescence signals of ScTET13-GFP,
ScTET23-GFP, ScTET34-GFP, ScTET55-GFP, ScTET67-GFP,
ScTET78-GFP, and ScTET96-GFP overlapped with the
fluorescence signal of AtCDPK9-mCherry (Figure 5), indicating
that they were mainly located on the PM, aligning with the
subcellular localization prediction results (Supplementary Table
S3). The ScTET78-GFP and ScTET96-GFP exhibited punctate
structures on the PM (Figure 5), whereas the ScTET2-GFP and
ScTET8-GFP formed spherical structures of varying sizes ranging
from 0.5 to 20 um in diameter within the cells (Figure 5;
Supplementary Figure S9).

The expression patterns of ScTETs in different tissues of the
sugarcane cultivar XTT22 were analyzed via RT-qPCR. ScTET2,
ScTETS, ScTET34, ScTET78, and ScTET96 exhibited significantly
higher expression than the other genes (Figure 6A). SCTET2 and
ScTET8 were highly expressed in the +7 leaf and +8 internode,
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ScTET34 was highly expressed in the +1 leaf and +3 internode, and
ScTET78 and ScTET96 were highly expressed in the +8
internode (Figure 6A).

All ScTETs except ScTET23 were differentially expressed upon
SCMV infection (Figure 6B). Expressions of ScTET2, ScTETS,
ScTET13, ScTET34, ScTET7S8, and ScTET96 increased significantly
at 3 dpi and peaked 7 dpi (Figure 6B). All genes except ScTET96
were downregulated at day 14 (Figure 6B).

3.7 Interaction between ScTETs and SCMV-
6K2

The interactions of the nine ScTETs with SCMV-6K2 were
analyzed using Y2H, BiFC, and LCA assays. For the Y2H assays,
pTUS2-APP- and pNUbG-Fe65-co-transformed NYM51 served as
the positive controls, and pTUS2-APP- and pPR3-N-co-
transformed NYM51 served as the negative controls. pPPR3-
ScTET2, pPPR3-ScTET8, pPPR3-ScTET13, pPPR3-ScTET23,
pPPR3-ScTET34, pPPR3-ScTET55, pPPR3-ScTET67, pPPR3-
ScTET78, and pPPR3-ScTET96 were co-transferred with pBT-
STE-SCMV-6K2 into the yeast NYM51. In DDO and QDO
media containing X-gal, the yeast cells harboring pPPR3-ScTET2,
pPPR3-ScTETS, pPPR3-ScTET13, pPPR3-ScTET23, pPPR3-
ScTET34, pPPR3-ScTET78, or pPPR3-ScTET96 with pBT-STE-
SCMV-6K2 grew normally as the positive controls (Figure 7A). In
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Synteny analysis of TET genes between S. spontaneum and other plant species (O. sativa, Z. may, S. italic, S. bicolor, A. thaliana, and S. Lycopersicum).

The lines represent the TET homologous gene pairs.

contrast, the yeast cells harboring pPPR3-ScTET55 or pPPR3-
ScTET67 with pBT-STE-SCMV-6K2 grew only on DDO medium
but not QDO (Figure 7A). These results demonstrated that all nine
ScTETs, except SCTET55 and ScTET67, interacted with
SCMV-6K2.

LCA (Figure 7B) and BiFC assays (Figure 7C) yielded results
similar to those of the Y2H assays. Interestingly, the BiFC assays
showed that all interactions occurred at the PM. These interactions
resulted in the loss of intracellular localization and spherical
structures of SCTET2 and ScTETS, as well as the disappearance of
the punctate PM-associated structures formed by ScTET78 and
ScTET96 (Figure 7C).
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3.8 Interactions and self-interactions
among ScTETs

Interactions and self-interactions among the TET members
contribute to TEM formation (Charrin et al., 2002; Jimenez-
Jimenez et al, 2019; Huang et al, 2022). We conducted Y2H
assays to investigate the possible interactions and self-interactions
among the nine SCTET's and observed extensive interactions among
the ScTETs (Figure 8). SCTET2, ScTET13, ScTET23 and ScTET34
interacted with other ScTET's and could also self-interact. SCTET96
also interacted with other ScTETs but could not self-
interact (Figure 8).
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The expression patterns of TET genes in different tissues and across leaf gradients in sugarcane cultivar XTT22. (A) The expression patterns of
XTT22TET genes based on FPKM across leaf gradients in sugarcane cultivar XTT22. (B) The expression patterns of XTT22TET gene family based on

FPKM in different tissues of different stages in sugarcane cultivar XTT22.

3.9 Interaction of AtTETs or NbTETs with
TuMV-6K2 assessed using Y2H

The intercellular movement of viruses is a key step in
establishing systemic infection. AtTET3 is localized in the
plasmodesmata and required for CMV to establish systemic
infection (Fernandez-Calvino et al., 2011; Zhu et al.,, 2022). To
investigate whether TET is widely involved in the interaction with
potyvirus-6K2, we cloned four AtTET genes, AtTETI, AtTET3,
AtTET7, and AtTETS, which are localized in the plasmodesmata
of Arabidopsis (Fernandez-Calvino et al., 2011; Boavida et al., 2013).
In addition, we cloned the 17 NbTET genes identified in this study
(Supplementary Table S2). These genes were individually inserted
into the pPR3-N vector and then individually co-transformed with
pBT-STE-TuMV-6K2 into yeast NMY51. Notably, all these TETs
interacted with TuMV-6K2 (Supplementary Figures S10, S11).
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4 Discussion

Genome-wide identification of the TET gene family has only
been previously performed in Arabidopsis and rice, which identified
17 and 15 TETs, respectively (Wang et al., 2012a; Mani et al,, 2015).
In the present study, we identified 35, 113, 73, and 17 TETs in S.
spontaneum AP85-441, sugarcane cultivars XTT22 and R570, and
N. benthamiana, respectively. We achieved the Phytozome database
and screened 11, 10, 12, 14, 9, and 20 TETs for millet, sorghum,
maize, wheat, potato, and soybean, respectively. The number of
TETs in Saccharum species was much higher than that in other
plant species, likely because of the highly polyploid characteristics
of sugarcane (Zhang et al.,, 2022; Healey et al., 2024; Zhang et al,,
2025c¢). XTT22TET and R570TET were clustered in nine
phylogenetic groups, whereas SsTETs were absent in Groups 5
and 9 (Figure 1). Additionally, the TET genes in Group 5 contained
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Subcellular localization of SCTETs. Agrobacteria harboring GFP fusion proteins were individually agroinfiltrated into N. benthamiana leaves. The
images were captured at 48 h post infiltration. The plasma membrane was indicated using AtCDPK9-mCherry, Bar=20 um.

a significantly higher number of exons at up to 10 or more
compared with the other eight groups (Figure 1B). This feature is
considered characteristic of the original TET genes (Garcia-Espaina
et al., 2008), as demonstrated by AtTETI0 and OsTET14 (Mani
2015). S. spontanerum and S. officinarum are recognized
S.

et al.,

as the main progenitors of modern sugarcane cultivars, and
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officinarum is derived from S. robustum (Zhang J. et al.,, 2019
Zhang et al., 2022). We speculated that sugarcane TET genes in
Groups 5 and 9 may have originated from S. robustum.
Additionally, as only monocotyledonous plant TETs were present
in Groups 7 and 8, we speculated that these groups are unique to
monocotyledons (Figure 1), which is consistent with a previous
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FIGURE 6

The expression profiles of nine ScTETs in different tissues of sugarcane cultivar XTT22, or under the challenge of sugarcane mosaic virus (SCMV).

(A) The expression profiles of nine ScTETs in different tissues of sugarcane cultivar XTT22. LR: leaf roll; +1 L: the 1st leaf; +7 L: the 7st leaf; +3 I:

the 3rd internode; +8 I: the 8th internode and R: root. (B) The expression profiles of nine SCTETs in the leaves of sugarcane cultivar XTT22 under the
challenge of SCMV. Plants mock inoculated with 0.01 mM phosphate buffer (pH 7.0) were used as the negative controls. The Y axes indicates the
relative expression levels of SCTETs. The X axes indicates the time point of materials collection. Error bars indicate SD (n = 3), a, b, c and e indicate
significance at the corresponding time points, Student’s t-test, P < 0.05. Results were representative of three independent experiments.

report (Wang et al, 2012a). Interestingly, GATA-box is only
present in the promoter region of Group 3 TETs (Supplementary
Figure S7). As GATA-box usually responds to light signaling, we
speculate that Group 3 TETs are involved in photosynthesis
(Gangappa and Chattopadhyay, 2013). Expansion of the TET
gene family in Saccharum species appears to have primarily
occurred through WGD/fragmentation and dispersed replication
(Supplementary Table S4), which is in line with previous reports
(Zhang et al., 2018; Li et al., 2021; Wang et al., 2023). SCTSPAN18,
which was identified in our previous study (Zhang H. et al., 2019),
did not belong to the TET family (Supplementary Figure S1). In
early studies on animal TETs, the L6D protein was mistakenly
classified into the TET family (Wright et al., 2000; Boucheix and
Rubinstein, 2001). Structural simulation using AlphaFold3 showed
that the LEL of L6D lacked conserved motifs (Supplementary Figure
S1). Homologous proteins with similar structural features were
identified in Arabidopsis (four), rice (one), sorghum (two), and
maize (three) using the Phytozome database. However, the
biological functions of these proteins require further investigation.

Transcriptomic data analysis revealed that the 119 XTT22TET
genes identified in this study were differentially expressed across
various tissues and developmental stages (Figure 4; Supplementary
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Figure S8), indicating that they are extensively involved in
sugarcane growth and development, which is consistent with the
findings in Arabidopsis (Boavida et al., 2013). Plant viruses have
undergone long-term co-evolution with their hosts and cannot
establish systemic infections without interacting with host factors
(Benitez-Alfonso et al., 2010; Niehl and Heinlein, 2011). Nine
ScTET genes were cloned from the sugarcane cultivar XTT22, and
RT-qPCR revealed their differential expression following SCMV
infection (Figure 6), indicating that they all responded to the SCMV
infection. Protein—protein interaction assays revealed interactions
between all ScTETs and SCMV-6K2, except for SCcTET55 and
ScTET67 in Group 3 (Figure 7). Plasmodesmata are important
channels for the intercellular movement of plant viruses (Valli et al.,
2007; Chung et al., 2008; Wei et al., 2010; Cheng et al., 2017; Chai
et al, 2020; Cheng et al., 2020; Xiao et al., 2022; Hyskova et al.,
2024). Four plasmodesmata-localized AtTETs—AtTET1 (Group 1),
AtTET3 (Group 2), AtTET7, and AtTET8 (Group 4) (Fernandez-
Calvino et al., 2011; Boavida et al., 2013; Johnston et al., 2023)—
interacted with TuMV-6K2 (Supplementary Figure S10). AtTET3 is
essential for the intercellular movement of the CMV (Zhu et al,
2022). Based on this, we hypothesized that TETs may also play a
role in the intercellular movement of potyviruses. Specifically,
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harboring YC/YN fusion proteins were individually pairwise co-infiltrated into N. benthamiana leaves. The images were captured at 48 h post
infiltration. YC and SCMV-6K2-YN were used as negative controls. Bar=20 um.

SCTET78 and ScTET96 (Group 1), SCTET34 (Group 2), and
ScTET2 and ScTET8 (Group 4), which belong to the same
phylogenetic groups as the AtTETs, may be involved in the
intercellular movement of SCMV. Notably, ScTET78 and
ScTET96 were localized in the PM and showed a punctate
structure (Figure 5), resembling plasmodesmata. However, upon
interaction with SCMV-6K2, the punctate structure disappeared
(Figure 7C). Hence, further verification using plasmodesmata
markers, such as aniline blue, is warranted. In addition, except for
ScTET96, the other eight TETs exhibited both self-interaction and
interaction with one another (Figure 8), indicating that they can
form TEMs and perform various biological functions (Charrin
et al, 2002; Boavida et al, 2013; Huang et al.,, 2022). ScTET13,
ScTET23, ScTET34, ScTET55, and SCTET67 were localized in the
PM, similar to some TETs in Arabidopsis and rice (Zhu et al., 2022).
Interestingly, SCTET2 and ScTET8 form vesicular structures
with diameters ranging from 0.5 to 20 um in the cytoplasm, and
both are associated with the PM (Figure 5). Under stressful
conditions, plants produce stress granules (SGs) and P-bodies
(Kearly et al, 2024). SGs are biphasic assemblies consisting of
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dense cores (~0.2 um in diameter) embedded within a less
concentrated dynamic shell of variable size (Youn et al.,, 2019). P-
bodies range from 0.8 to 1.0 m and are located proximal to the PM
(Xu and Chua, 2009), whereas MVBs range from 0.4 to 0.5 pm
(Movahed et al., 2019). TET is involved in the formation of
secretory vesicles and MVBs, which are employed by TuMV to
move to neighboring cells (Movahed et al., 2019; Ghossoub et al.,
2020; Jankovicova et al., 2020). Based on the vesicle size, we
speculated that ScTET2 and ScTET8 are involved in the
formation of secretory vesicles and MVBs and subsequently in
cell-to-cell movement. As SG and P-bodies are membrane-less
organelles, SCTET2 and ScTET8 may not be involved with them;
however, further experiments are needed to verify this. AtTETS8 in
Arabidopsis serves as a marker for EVs (Zhang et al., 2020; He et al.,
2021). Although ScTET2 and ScTETS belong to Group 4 along with
AtTETS, EVs range from 0.05 to 0.15 um in diameter (Nolte-’t
Hoen et al., 2016; Jeppesen et al., 2019), making them too small to
be accurately distinguished by confocal microscopy due to the low
resolution. Therefore, further studies using transmission electron
microscopy or other techniques are necessary. SCTET2 and ScTETS8
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pBT-ScTET34 + pPR3-ScTET34
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pBT-ScTET96 + pPR3-ScTET34

FIGURE 8

Self-interaction of SCTETs by Y2H assays. Combinations of pBT-STE-ScTET2 plus pPR3-ScTET2, pBT-STE-ScTET13 plus pPR3-ScTET13 and pBT-
STE-ScTET96 plus pPR3-ScTET96 were individually transformed into the yeast NYM51. Yeast cells co-transformed with pTUS2-APP and pNubG-
Fe65 were used as a positive control, while yeast cells co-transformed with pTUS2-APP and pPR3-N were used as negative controls.

are highly expressed in sugarcane and show differential expression
patterns upon SCMV infection. However, upon interaction with
SCMV-6K2 on the PM, the vesicles induced by SCTET2 or SCTETS8
disappeared. Plants can transport sSRNAs through their vesicles (Li
et al., 2024; Zhao et al,, 2024). Therefore, we speculated that viral
infection interferes with the secretory system, thereby influencing
the growth and development of sugarcane plants.
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Additionally, the Y2H assays showed that 17 NbTETs and 4
AtTETs interacted with TuMV-6K2 (Supplementary Figures S10,
S11), indicating that the interaction of TET with 6K2 may represent
a general mechanism employed by potyviruses to establish
infection. Notably, SCTET55 and ScTET67 from sugarcane Group
3 did not interact with SCMV-6K2, indicating that TETs may be
selectively utilized by different viruses.
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5 Conclusion

In this study, 35, 113, 73, and 17 TETs were identified in S.
spontaneum AP85-441, sugarcane cultivars XTT22 and R570, and
N. benthamiana, respectively. These TETs clustered into nine
phylogenetic groups, with Groups 7 and 8 being specific to
monocotyledonous plants. The TET structure in Group 5 was
significantly different from that of the other groups.
Transcriptomic analysis revealed that Group 4 TETs were highly
expressed in XTT22 and S. spontanerum. The nine cloned ScTETs
from XTT22 showed different expression patterns upon SCMV
infection. Subcellular localization analysis indicated that seven
ScTETs were localized to the PM, with ScTET78 and ScTET96
forming punctate structures and ScTET2 and ScTET8 forming
spherical structures of varying sizes. Interactions and self-
interactions occurred extensively among the nine ScTETSs. Seven
of the nine ScTETs interacted with SCMV-6K2, and 17 N.
benthamiana NbTETs and 4 Arabidopsis AtTETs interacted with
the 6K2 protein of TuMV.
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SUPPLEMENTARY FIGURE 1

Simulation of the structures of TETs from different species. AtTET1
(Arabidopsis thaliana, NP_199482.1), OsTET1 (Oryza sativa,
LOC_0s01g74570), CD63 (Homo sapiens, AHI51903.1), as well as L6D
(Homo sapiens, NP_004608.1) and ScTSPAN18 (Saccharum spp.
Hybrid, QHD26891).

SUPPLEMENTARY FIGURE 2

Gene structure and conserved motif analysis of TETs genes in Saccharum
species. (A) Conserved motifs of TET genes (labeled 1-10) are indicated by
differently colored boxes. (B) Structure analysis of TET genes. Green boxes
represent CDS, yellow boxes represent UTR, and black lines represent intron.

SUPPLEMENTARY FIGURE 3
Interchromosomal collinearity relationship analysis of TETs in sugarcane
cultivar R570. Red lines represent the TET homologous gene pairs.

SUPPLEMENTARY FIGURE 4

Chromosomal mapping analysis of TETs in sugarcane cultivar XTT22. Blue
represents chromosomes and red represents the localization of TET genes on
chromosomes of XTT22.

SUPPLEMENTARY FIGURE 5

Chromosomal mapping analysis of TETs in S. spontaneum. Blue color
represents chromosomes and red color represents the location of SSTET
genes on chromosomes.
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SUPPLEMENTARY FIGURE 6

Chromosomal mapping analysis of TETs in sugarcane cultivar R570. Blue
color represents chromosomes and red represents the localization of TET
genes on chromosomes of R570.

SUPPLEMENTARY FIGURE 7

Cis-acting analysis of the TETs in sugarcane cultivar XTT22, R570, and S.
spontanerum. (A) Distribution of different cis-acting. (B) Statistic analysis of
different cis-acting. Differently colored boxes represent different cis-acting.

SUPPLEMENTARY FIGURE 8

The expression patterns of SsTETs in different tissues or across leaf gradients of S.
spontanerum. (A) The expression patterns of SSTET genes based on FPKM across leaf
gradients in S. spontaneum. (B) The expression patterns of SSTET gene family based
on FPKM in different tissues of different developmental stages in S. spontaneum.

SUPPLEMENTARY FIGURE 9

Size of vesicle like structures of localized by SCTET2-GFP in Figure 5. Image J
was used to measure the diameter of the vesicle like structures as indicated
by white arrows. Bar=20 um.
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