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Object detection algorithm for
eggs of Pomacea canaliculata in
a paddy field environment
Guang Qi Wang1,2, Jing He1*, Rui Ning Hu1,2, Dian Li1,2

and Gang Liu2

1College of Geography and Planning, Chengdu University of Technology, Chengdu, China, 2College
of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu, China
As an invasive species in China, Pomacea canaliculata severely impacts crop

quality and yield, necessitating effective monitoring for food security. To address

the challenges in detecting its eggs in paddy fields—including feature

contamination, stem and leaf occlusion, and dense targets—we propose an

enhanced YOLOv8n-based algorithm. The method introduces omni-

dimensional dynamic convolution (ODConv) in the backbone network to

improve target feature extraction, constructs a Slim-neck structure to optimize

feature processing efficiency, and designs a receptive-field attention head

(RFAHead) for detection refinement. Experimental results demonstrate that the

improved model achieves 3.3% and 4.2% higher mAP@0.5 and mAP@0.5:0.95

than the original YOLOv8. It outperforms Faster R-CNN, YOLOv3-tiny, YOLOv5,

YOLOv6, YOLOv7-tiny, YOLOv9-t, YOLOv10n, and YOLOv11n by 18.2%, 12.4%,

5.2%, 10.8%, 11.6% 5.0%, 3.8%, and 3.4% in mAP@0.5 and 20.6%, 17.5%, 8.1%,

15.6%, 16.1%, 7.0%, 7.7%, and 6.5% in mAP@0.5:0.95, respectively. Visual analysis

confirms enhanced recognition of small and occluded targets through improved

feature learning. This model enables accurate and rapid detection of Pomacea

eggs in rice fields, offering technical support for invasive species control.
KEYWORDS

eggs of Pomacea canaliculata, omni-dimensional dynamic convolution, slim-neck,
receptive-field attention, YOLOv8
1 Introduction

Pomacea canaliculata has emerged as a highly invasive alien species in China,

exhibiting remarkable adaptability and fecundity. This mollusk has established

populations across 18 provincial-level administrative divisions, including municipalities

and autonomous regions, from Sichuan to Fujian provinces. Its invasion poses significant

threats to various sectors, including agriculture, forestry, animal husbandry, and

aquaculture, while it concurrently jeopardizes ecological integrity and public health in

the affected regions. The species’ high reproductive output directly impacts crop growth

parameters, leading to substantial reductions in both yield quantity and quality (Zhang et

al., 2017; Yin et al., 2022; Zhuo et al., 2022). Accurate and efficient detection of P.
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canaliculata and its egg masses is a fundamental prerequisite for

investigating invasion mechanisms and dispersal dynamics. Such

capabilities are critical for designing evidence-based prevention and

control strategies (Jiang et al., 2024). Current diagnostic approaches

for crop pests predominantly rely on manual identification or

machine learning-based detection systems. While manual

interpretation achieves high accuracy and machine learning

enhances operational efficiency, these methods present notable

limitations. Their implementation requires specialized expertise

along with extensive training datasets; moreover, models often

exhibit limited generalizability across heterogeneous field

conditions (Gao et al., 2010).

The integration of artificial intelligence into agricultural

diagnostics has accelerated markedly, with convolutional neural

networks (CNNs) emerging as pivotal tools for rapid identification

of crop diseases and pests. These deep learning architectures are

driving paradigm shifts in precision agriculture through enhanced

operational scalability and decision-making efficiency (Wei, 2017).

Pioneering work by Zhang (2018) demonstrated the synergistic

application of CNNs with Otsu threshold optimization, achieving

95% mean average precision (mAP) in classifying five prevalent

potato pathogens—a critical advancement for field-deployable

diagnostic systems. Subsequent innovations by Tetila et al. (2020)

developed a robust detection architecture combining ResNeXt-50

with region-based fully convolutional network (R-FCN) feature

extraction, enabling precise localization and classification of nine

distinct tomato plant disorders with 85.98% mAP accuracy. In

parallel, Singh et al. (2019) engineered a multi-column CNN

through strategic modifications to AlexNet’s convolutional layers,

attaining state-of-the-art performance (97.13% mAP) on

anthracnose-infected mango datasets, thereby establishing a

benchmark for tropical fruit disease diagnostics.

The YOLO algorithm series has revolutionized computational

object detection through its computationally efficient architecture,

achieving real-time processing speeds that are driving

transformative applications in precision agriculture for crop

disease and pest surveillance (Guo et al., 2022). In a seminal

comparative study, Guo et al. (2021) systematically evaluated

detection frameworks using convolutional feature extraction,

benchmarking Faster R-CNN, SSD (single shot multibox

detector), and YOLOv3 architectures across 2,500 annotated rice

pathology images. Their analysis revealed YOLOv3’s superior

performance, attaining 91.93% mAP in classifying five critical

Oryza sativa pathogens—establishing new standards for field-

ready diagnostic systems. Building on these advancements, Zhang

et al. (2022) engineered an enhanced YOLOv5 variant through

strategic integration of DenseNet connectivity patterns, attention-

guided feature selection, and bidirectional feature pyramid

networks (BiFPN). This hybrid architecture demonstrated

exceptional precision in detecting pre-anthesis cotton bolls under

complex field conditions, resolving long-standing challenges in

phenological stage monitoring. Parallel developments by Liu et al.

(2024) incorporated a Ghost module into YOLOv7’s backbone

network, effectively eliminating feature redundancy while

implementing a multi-scale fusion framework combining the
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convolutional block attention module (CBAM) and BiFPN. Their

optimized system achieved 93.2% mAP in detecting six distinct

Prunus persica pathogens, particularly enhancing recognition

accuracy for submillimeter lesion patterns through spectral–

spatial feature correlation. Huang et al. (2023) proposed a YOLO-

EP model, which incorporated the Swin Transformer to achieve the

interaction between local and global information and integrated the

Efficient Channel Attention (ECA) mechanism into the network to

prevent the loss of feature information within the network. For P.

canaliculata eggs in paddy fields, the improved model achieved an

mAP of 88.6%.

Owing to variations in crop growth environments and leaf

density, automated pest and disease detection systems frequently

encounter challenges including pronounced illumination disparities

and mutual occlusion among plant organs. To mitigate these

limitations, recent methodological innovations have employed

generative adversarial networks (GANs) to reconstruct occluded

target features through self-adversarial learning frameworks. An

et al. (2021) developed generative adversarial networks for learning

occluded features (GANLOF), a novel architecture that restores

damaged feature representations in training samples, effectively

addressing target occlusion issues. This approach demonstrated a

1.61% improvement in recognition accuracy for partially obscured

targets compared to conventional methods. Building upon these

advancements, Yan et al. (2022) integrated the convolutional block

attention module (CBAM) with cross-scale feature fusion pyramid

pooling into the YOLOv7 framework. Their proposed ACFP-YOLO

algorithm significantly enhanced detection performance for

occluded targets through optimized attention weighting and

multi-scale feature aggregation. These methodological innovations

have collectively advanced object detection capabilities in

agricultural pest monitoring, particularly demonstrating

applicability for P. canaliculata egg detection in complex paddy

field ecosystems. The synergistic combination of feature

reconstruction and attention-driven detection frameworks lays a

foundation for robust agricultural surveillance systems operating

under real-world field conditions.

The accurate detection of P. canaliculata eggs in submerged

paddy field environments faces three critical challenges:

illumination-induced luminance variations that degrade image

clarity through dynamic water-surface reflections, frequent

occlusions caused by submerged rice stalks and floating foliage,

and diminished foreground–background contrast due to the eggs’

small size and visual similarity to organic debris. These factors

collectively lead to feature contamination, where morphological

signatures of egg clusters become indistinguishable from

environmental noise. Existing object detection algorithms exhibit

significant limitations in this context, including excessive model

complexity, unresolved speed–accuracy trade-offs, inadequate

resolution for small-size object discrimination, and degraded

performance under partial-to-complete occlusion (Xu et al., 2023;

Zhang et al., 2024).

To address the abovementioned problems, this paper makes

improvements based on YOLOv8n and proposes an occlusion-

resistant small target detection algorithm for P. canaliculata eggs in
frontiersin.org
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a paddy field environment. The main work of this algorithm is

as follows:
Fron
1. Construct a dataset of P. canaliculata eggs in paddy fields

under occlusion conditions and propose a target detection

algorithm based on the YOLOv8n model to solve the

problems of missed and false detections of P. canaliculata

eggs in the paddy field environment.

2. Introduce ODConv into the backbone of the model.

Employ a dynamic multi-dimensional attention

mechanism to learn the complementary attention of the

convolution kernel in all four dimensions of the kernel

space, thereby improving the ability to extract features from

egg images.

3. Incorporate the Slim-neck architecture into the neck of the

model to build an efficient four-”neck” neural network,

enabling the model to maintain high accuracy while

reducing computational complexity and inference time.

4. Introduce the RFAHead at the detection head. By

combining the processing of spatial attention and

receptive-field features, it provides a new and more

efficient way for the convolutional neural network to

extract and process image features.
2 Materials and methods

2.1 Dataset preparation

The generalization and robustness of models are often

influenced by the quality of the dataset. Therefore, in this study, a

high-quality dataset of P. canaliculata egg images and samples in

paddy fields was constructed. The study area is located in Yaodu

Town, Qingbaijiang District, Chengdu City, Sichuan Province. The

dataset was collected on-site and manually processed. Field data

were captured using a DJI Phantom 4 Pro and handheld devices; the

image resolution of DJI-acquired data is 5,742 × 3,648, while that of

handheld device-acquired data is 3,648 × 2,736. The total number of

collected original images was 969. To meet the diversity of the

dataset and simulate the conditions of P. canaliculata eggs in

different environments, data on P. canaliculata eggs were

collected from different shooting angles in this study. The

constructed dataset includes images of non-occluded eggs and

occluded eggs.

To meet the data requirements of the deep learning network

model, all collected images were uniformly resized to 640 × 640

pixels. The data acquired by DJI were cropped into 54 images of 640

× 640 pixels (arranged as 6 rows and 9 columns); the data captured by

handheld devices were cropped into 24 images of 640 × 640 pixels

(arranged as 4 rows and 6 columns). Meanwhile, data augmentation

techniques including rotation, mirroring, Gaussian noise addition, and

salt-and-pepper noise injection were applied to the collected images.

Operations such as stretching and color transformation were not used,

aiming to preserve the shape features of P. canaliculata eggs without
tiers in Plant Science 03
altering them. This approach not only enriches the dataset but also

enhances the generalization and robustness of the model training and

the accuracy of target detection. After the augmentation process, a total

of 6,783 images were obtained. The Labelme software was used to

annotate the features of the images. The annotated P. canaliculata eggs

were divided into two categories: occluded and non-occluded, to verify

the detection performance of the improved model in this paper for

occluded P. canaliculata. The results of the annotated images and label

classification are shown in Figure 1, where (A) is the original image, (B)

represents non-occluded eggs, and (C) represents occluded eggs. Prior

to data augmentation techniques, the dataset was randomly divided

into a training set, a validation set, and a test set at a ratio of 8:1:1. This

division was performed to ensure that each type of sample was

adequately represented in the divided subsets and to prevent

augmented variants from the same original region from appearing

across different subsets.
2.2 Design of the network model

YOLOv8 employs an efficient architecture for feature extraction

and object detection, achieving enhanced detection accuracy and

accelerated inference speeds. The network comprises four

hierarchical components: the input layer for image preprocessing,

the backbone layer for feature extraction, the neck layer for multi-

scale feature fusion and enhancement, and the head layer for final

prediction through classification and bounding box regression

(Terven et al., 2023). Specifically, the input layer processes

training images, the backbone extracts hierarchical features, the

neck integrates contextual information across scales, and the head

generates detection outputs by synthesizing semantic and

positional features.

To improve P. canaliculata egg detection in complex paddy

environments, we propose three targeted modifications to YOLOv8

(Figure 2). Firstly, ODConv replaces standard convolutions (except

the initial layer) in the backbone, addressing feature representation

limitations that cause misdetections while reducing computational

complexity. Secondly, the Slim-neck architecture integrates

generalized-sparse convolution (GSConv) to optimize feature

transmission efficiency and preserve inter-channel dependencies.

Complementary VoV-GSCSP modules enhance cross-stage feature

fusion, improving detection precision without compromising speed.

Finally, the detection head incorporates receptive-field attention

convolution (RFAConv), which synergizes spatial attention

mechanisms with convolutional operations to prioritize subtle

local patterns, particularly for occluded and small-scale targets.

2.2.1 Omni-dimensional dynamic convolution
The mutual occlusion between rice plants and P. canaliculata

eggs in paddy fields challenges the YOLOv8n model in precisely

localizing egg feature regions, resulting in critical identification

information loss. To mitigate this limitation, we integrate

ODConv into the backbone network, coupled with a multi-

dimensional attention mechanism. This hybrid strategy employs

parallel learning of complementary attentional weighting across all
frontiersin.org
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four convolutional kernel dimensions: spatial size, input and output

channel numbers, and kernel quantity (Li et al., 2022b). The

synergistic design enhances feature discriminability for occluded

targets while reducing computational overhead, thereby improving

both detection accuracy and efficiency.

As illustrated in Figure 3, the ODConv architecture operates

through three sequential stages. Initially, the input feature map x

undergoes dimension reduction via a global average pooling (GAP)

layer, producing a Cin-length feature vector. Subsequently, this

vector is processed through fully connected (FC) layers and

rectified linear unit (ReLU) activation, generating four parallel

attention branches. Each branch incorporates an FC layer

followed by softmax/sigmoid normalization, yielding four

attention scalars (asi, aci, afi, awi) that dynamically modulate the

convolutional kernel Wi. Finally, the adaptively weighted kernels

perform convolution with the input x, synthesizing the output

feature map y.

Figure 4 illustrates the operational mechanisms of four distinct

attention branches in ODConv. Figure 4A demonstrates spatial-

wise element-wise multiplication, where the spatial attention scalar

asi computed by ODConv is applied to each spatial position (height

and width) of the convolutional kernel. This mechanism enhances

the model’s capability to extract spatially discriminative features

from P. canaliculata egg images, particularly under partial occlusion

conditions. Figure 4B depicts input channel-wise multiplication,

whereby the channel attention scalar aci dynamically modulates the

convolutional kernel across input channels. This adaptive weighting

prioritizes occlusion patterns and densely distributed features in egg

clusters, thereby improving robustness in complex paddy field
Frontiers in Plant Science 04
environments. Figure 4C presents output filter-wise multiplication

along the output channel dimension. The filter attention scalar afi

recalibrates the importance of individual output filters, enabling

differentiated feature extraction between occluded and non-

occluded egg instances. Figure 4D implements kernel-wise

multiplication, where the kernel attention scalar awi globally

adjusts the entire convolutional kernel. This holistic adaptation

allows the model to dynamically optimize kernel parameters for rice

field-specific egg characteristics. By replacing standard convolutions

(excluding the initial layer) in the backbone with ODConv, our

approach synergistically enhances feature extraction across all four

dimensions (spatial, input channel, output filter, and kernel space),

resulting in quantifiable improvements in detection precision for

challenging agricultural scenarios.

2.2.2 Slim-neck structure
The incubation period of P. canaliculata eggs ranges from 8 to

16 days (Lv et al., 2024). Deploying detection models on cameras or

drones for real-time egg distribution monitoring requires balancing

detection accuracy with computational efficiency. To address this,

GSConv is introduced to reduce model complexity while improving

accuracy, with a Slim-neck structure designed in the neck network

(Figure 5) (Li H. et al., 2022). The GS bottleneck module enhances

feature processing capability, and the VoV-GSCSP module

improves feature utilization efficiency, collectively optimizing

detection performance for P. canaliculata eggs in paddy fields.

MobileNets and ShuffleNets employ depth-wise separable

convolutions (DSCs) to accelerate inference but exhibit

insufficient accuracy for egg detection (Howard et al., 2017;
FIGURE 1

Collected images and label classification results. (a) is the original image, (b) represents non-occluded eggs, (c) represents occluded eggs.
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Zhang et al., 2018). GSConv first applies standard convolution for

downsampling. The outputs are then processed by depth-wise

convolution (DWConv), concatenated, and shuffled to exchange

localized features across channels. This strategy prevents channel

information separation during computation, reduces parameters/

FLOPs, and preserves interchannel semantic relationships. While

spatial compression and channel expansion induce partial semantic

loss, dense convolutions retain implicit interchannel connections,

whereas sparse convolutions discard them. GSConv partially

preserves these connections but increases network depth and

inference latency if universally applied. Since the neck stage

maximizes channel dimensions and minimizes spatial resolutions,
Frontiers in Plant Science 05
GSConv is selectively implemented only in the neck to minimize

semantic information loss.

Building upon GSConv, we further introduce GS bottleneck and

VoV-GSCSP to reconstruct the neck network of YOLOv8n.

Specifically, the original C2f module is replaced with VoV-

GSCSP, while standard convolutions are substituted by GSConv,

thereby establishing the proposed Slim-neck architecture. The

structures of the GS bottleneck and VoV-GSCSP are shown in

Figure 6, where VoV-GSCSP is designed using a one-shot

aggregation strategy. First, a 1 × 1 convolution performs feature

extraction on the input, reducing the channel dimension to half of

the original input (C1→ C1/2). Subsequently, the processed features
FIGURE 2

Improved YOLOv8 network structure.
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are fed into the GS bottleneck module, where they undergo two

GSConv operations and are then combined with features from a

parallel 1 × 1 convolution via residual addition, resulting in an

output channel dimension of C1/2. The original input of the VoV-

GSCSP module is separately processed by another 1 × 1 convolution

and concatenated with the GS bottleneck output. Finally, a 1 × 1

convolution adjusts the concatenated features to the target channel

dimension C2.

2.2.3 Receptive-field attention detection head
The standard convolution of the YOLOv8n model applies

homogeneous convolutional kernels across all receptive fields,

extracting features with identical parameters regardless of spatial

location. This design fails to account for position-specific variations
Frontiers in Plant Science 06
in input data, severely limiting the model’s ability to handle multi-

scale targets and degrading its feature extraction performance,

particularly for small objects such as P. canaliculata eggs or

partially occluded targets. While attention mechanisms enhance

feature discriminability by directing computational resources to

salient regions and improving detailed feature capture,

conventional modules [e.g., CBAM and coordinate attention

(CA)] primarily address spatial feature modeling but inadequately

resolve the parameter-sharing limitation of large kernels or

emphasize feature importance within receptive fields (Woo et al.,

2018; Hou et al., 2021).

To address the uniform kernel parameterization in the

YOLOv8n detection head, this study proposes an RFAHead

incorporating RFAConv, as illustrated in Figure 7. Let C, H, and
FIGURE 3

Omni-dimensional dynamic convolution structure.
FIGURE 4

Different attention mechanisms. (a) is Spatial dimensions, (b) is Input channel dimension, (c) is Output channel dimension, (d) is Convolution kernel
spatial dimensions.
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W denote the channel number, height, and width of the input

feature map, respectively. The RFAConv operates through two

parallel branches to obtain weights and spatial features. In the

weight branch, global contextual information is aggregated via

average pooling (AvgPool), followed by channel interaction using

1 × 1 group convolution. Features are extracted through a receptive

field slider to avoid overlap, and a softmax operation dynamically

weights feature importance across the receptive field, effectively

reducing network parameters without information loss. In the

feature branch, the input undergoes 3 × 3 convolution to generate

intermediate features with dimensions 9C × h × w. After

dimensional transformation, these features are multiplied by the
Frontiers in Plant Science 07
weights to produce the final receptive field feature map (C × 3h ×

3w), as detailed in Equation 1.

F = Softmax(g1�1(AvgPool(X)))� ReLU(Norm(gk�k(X)))

= Arf � Frf (1)

In the formula, g1�1 represents a grouped convolution with a

size of i� i, k represents the size of the convolution kernel, Norm

represents normalization, X represents the input feature map, and

the output feature F is obtained by multiplying the attention map

with the transformed receptive-field spatial features Arf through Frf .

In standard convolution, overlapping receptive field slider

features are inevitable, leading to identical attention weights being

assigned to shared input features across different receptive fields.

Convolutional parameters within each slider should not be fully

shared but instead adaptively adjusted based on local feature

characteristics and their corresponding attention weights. This

adaptation enables the network to process each region with finer

granularity, thereby better capturing and responding to input-

specific patterns rather than relying on uniform weight

application globally. RFAConv dynamically adjusts convolutional

kernel weights by adaptively highlighting critical regions in the

feature map. Consequently, the network reweights key features,

allowing large-sized convolutional kernels to simultaneously

capture broad contextual information and focus computational

resources on high-informative regions. Such capability enhances

processing efficiency and network performance while optimizing

feature understanding and representation, ultimately improving

learning and predictive accuracy. The structure of the enhanced

YOLOv8n detection head (Figure 8) resolves the convolutional

parameter-sharing limitation and significantly enhances

detection precision.
3 Experiments and analysis

3.1 Experimental environment

The experimental environment was configured as follows:

PyTorch 1.13.0, Python 3.9.7, CUDA 11.6.2, and cuDNN 8.6.0.

The hardware setup included a Windows 10 system with an

NVIDIA GeForce RTX 3050 GPU (8 GB VRAM) and an AMD

Ryzen™ 5 6600H processor with Radeon Graphics. To mitigate

overfitting and improve generalization, stochastic gradient descent

(SGD) was employed as the optimizer. The initial learning rate was

set to 0.01 to maintain moderate step sizes for weight updates, with

a momentum factor of 0.937 to stabilize gradient descent. Training

utilized a batch size of 16 and ran for 200 epochs.
3.2 Evaluation indicators

In this study, the recognition accuracy (precision), recall rate,

floating-point operations (FLOPs), average detection precision

(Average precision), and mAP are used as evaluation indicators
FIGURE 5

GSConv structure.
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FIGURE 6

GS bottleneck and VoV-GSCSP structure.
FIGURE 7

Detailed structure of RFAConv. The input feature map is processed by two branches, and the attention map and the receiving field spatial feature
map are obtained, and then, they are reweighted and adjusted to realize the feature extraction of non-shared parameters.
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to measure the detection performance of the network model for P.

canaliculata eggs in paddy fields. The calculation formulas for each

indicator are as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

 AP =
Z 1

0
P(R)dR (4)

mAP =
1
No

N
n=1APn (5)

In the Equations 2–5, TP denotes the number of correctly

detected egg targets; FP represents the number of false positives

misclassified as egg targets;  FN indicates the number of undetected

egg targets; and AUC (area under the curve) quantifies the area

under the precision-recall curve. K  denotes the total number of

classes, and APi refers to the average precision for the i-th class.

mAP@0:5 represents the mAP across all classes at an IoU

threshold of 0.5, while mAP@0:5 : 0:95 denotes the average mAP

computed over IoU thresholds ranging from 0.5 to 0.95 with a step

size of 0.05.
3.3 Performance comparison

To analyze the detection capabilities of the improved YOLOv8n

object detection algorithm for P. canaliculata eggs, both the original

YOLOv8n and the improved model were trained under identical
Frontiers in Plant Science 09
experimental environments and settings. The training curves of

these two models are presented in Figure 9.

As shown in Figure 9, the blue lines represent the performance

metrics of the original YOLOv8n during training, while the orange

lines correspond to those of the improved model. Throughout the

training process, YOLOv8n exhibited improvements from 24.7% to

89.7% in precision, 31.1% to 87.5% in recall, and 17.8% to 93.2% in

mAP@0.5, with reductions from 3.986 to 1.074 in box_loss, 4.189 to

0.546 in cls_loss, and 3.202 to 0.979 in dfl_loss. In contrast, the

improved model demonstrated more significant enhancements:

precision increased from 17.1% to 93.0%, recall from 37.6% to

91.7%, mAP 0.5from 11.2% to 96.5%, while box_loss decreased

from 4.409 to 0.984, cls_loss from 4.972 to 0.508, and dfl_loss from

2.961 to 0.947. These numerical results clearly indicate that the

improved model outperforms the original YOLOv8n in both

detection accuracy and loss function optimization.
3.4 Ablation experiments

To verify the optimization effect of each module on the

performance of the P. canaliculata egg detection model in paddy

fields, an ablation experiment was conducted on each module using

YOLOv8n as the baseline network. The results are shown in Table 1.

While maintaining the original architecture of YOLOv8n, the

integration of ODConv significantly improved both precision and

recall rates compared to the baseline model. Specifically, the mAP

0.5and mAP@0.5:0.95 metrics increased by 2.2% and 3.7%,

respectively. This enhancement demonstrates that ODConv

strengthens the model’s ability to extract features of P.

canaliculata eggs by learning complementary attention across
FIGURE 8

YOLOv8n detection head and receptive field attention detection head structure.
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four dimensions, thereby improving detection accuracy.

Incorporating the Slim-neck structure into the neck network

reduced computational complexity by 1.0 GFLOPs while

marginally improving precision, recall, mAP@0.5, and mAP@

0.5:0.95. The VoV-GSCSP module and GSConv not only

enhanced feature processing capabilities but also optimized

computational efficiency, which is critical for real-time detection

of P. canaliculata eggs in field environments. Replacing the original

detection head with the proposed RFAHead increased mAP@0.5

and mAP@0.5:0.95 by 1.3% and 1.9%, respectively, with precision

and recall rising by 0.9% and 1.4%. However, this modification

incurred a computational cost increase of 0.3 GFLOPs, attributable

to RFAConv’s adaptive kernel weight adjustment during feature

extraction, which prioritizes informative regions. As shown in

Table 1, the three enhancement strategies—ODConv, Slim-neck,

and RFAHead—exhibit synergistic effects without mutual

interference. The combined model (v8n + ODC + Sl + RF)

achieved improvements of 3.3% in precision, 4.2% in recall, 3.3%

in mAP@0.5, and 4.8% in mAP@0.5:0.95 over the baseline,
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alongside a computational reduction of 1.4 GFLOPs. These results

validate that the proposed modular improvements collectively

enhance both accuracy and reliability for detecting P. canaliculata

eggs in paddy field environments.
3.5 Comparison experiments of different
models

Since the targets of P. canaliculata eggs are relatively small and

there are often occlusion situations in the real field environment

(Huang et al., 2023), aiming at the problems of dense distribution of

eggs and poor recognition effects when there is occlusion, this paper

has improved the structural network of YOLOv8n. In order to

further verify the performance and effectiveness of the detection

model among mainstream networks, the network model proposed

in this paper is compared experimentally with Faster R-CNN (Ren

et al., 2017), YOLOv3-tiny (Adarsh et al., 2020), YOLOv5n,

YOLOv6n (Li et al., 2022a), YOLOv7-tiny (Cheng et al., 2023),
TABLE 1 The results of the YOLOv8n ablation experiments.

Model P/%% R/% mAP@0.5/% mAP@0.5:0.95/% FLOPs

YOLOv8n (v8n) 89.7 87.5 93.2 63.6 8.1 × 109

v8n+ODConv (ODC) 92.9 90.3 95.4 67.3 7.3 × 109

v8n+SlimNeck (SL) 89.8 89.5 93.8 63.9 7.1 × 109

v8n+RFAHead (RF) 90.6 88.9 94.5 65.5 8.4 × 109

v8n+ODC+Sl 92.7 91.5 95.3 67.2 6.4 × 109

v8n+ODC+RF 92.5 90.8 95.5 67.5 7.6 × 109

v8n+Sl+RF 91.8 88.0 94.4 64.9 7.5 × 109

v8n+ODC+Sl+RF 93.0 91.7 96.5 68.4 6.7 × 109
FIGURE 9

YOLOv8n training curves before and after improvement.
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YOLOv8n, YOLOv9-t (Wang C et al., 2024), YOLOv10n (Wang A

et al., 2024), and YOLOv11n (Khanam and Hussain, 2024). The

experimental results are shown in Table 2. All training processes

were configured using the parameters of the improved model to

avoid the influence of parameters on training results. Specifically,

SGD was adopted as the optimization strategy during the model

optimization process, with an initial learning rate set to 0.01 and a

momentum factor of 0.937 to stabilize the gradient descent process.

The training was conducted with a batch size of 16 and ran for 200

epochs, where the key hyperparameters were set as follows:

lr0 = 0.01, lrf = 0.01, mosaic = 1.0, box = 7.5, fliplr = 0.5, and

flipud = 0.1.

The improved model in this study has the highest values in

mAP@0.5 and mAP@0.5:0.95, reaching 96.5% and 68.4%

respectively. Compared with Faster R-CNN, YOLOv3-tiny,

YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n, YOLOv9-t,

YOLOv10n, and YOLOv11n, the mAP@0.5 of the improved

model is 18.2, 12.4, 5.2, 10.8, 11.6, 3.3, 5.0, 3.8, and 3.4 percentage

points higher, respectively, and the mAP@0.5:0.95 is 20.6, 17.5, 8.1,

15.6, 16.1, 4.8, 7.0, 7.7, and 6.5 percentage points higher,

respectively. The precision and recall rates also reach 93.2% and

91.7%, which are higher than those of other mainstream networks.

Its computational amount reaches 6.7G, which is only higher than

that of YOLOv10n and YOLOv11n (6.3G each). The detection

frame rate reaches 113.7 frames per second, which is higher than

that of YOLOv5n, YOLOv7n, YOLOv8n, YOLOv9-t, YOLOv10n,

and YOLOv11n, but slightly lower than that of YOLOv3-tiny and

YOLOv7-tiny, meeting the requirements for deploying the device

on mobile terminals for real-time detection. Since Faster R-CNN

has a two-stage network structure and the feature maps extracted by

the convolutional extraction network are all single-layer maps with

relatively small resolutions, its accuracy and FPS are lower than

those of the YOLO series networks, while the computational

amount is large. The comparison experiments with different

models further prove the effectiveness of the improvement

strategy and the superiority of the improved model in the task of

detecting P. canaliculata eggs in paddy fields.
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3.6 Embedded deployment and
optimization

Although personal computers and servers possess powerful

training and inference capabilities, their large size, high power

consumption, and limited portability limit their applicability to

object detection tasks that require lightweight platforms and real-

time processing (Dong et al., 2025a). As an embedded deployment

platform, NVIDIA Jetson Nano features a small size, low power

consumption, and high computational efficiency, making it highly

suitable for edge vision analysis in resource-constrained

environments (Dong et al., 2025b).

In this study, the improved YOLOv8n model was deployed on

the Jetson Nano B01 (4 GB) embedded device, and comparative

verification was conducted against the original YOLOv8n model to

evaluate the improvement in frames per second (FPS) of the

improved model. During the deployment process, the TensorRT

inference engine was used for fusing and simplifying the network

structure, achieving a trade-off between accuracy and speed. The FPS

of the original YOLOv8n model on Jetson Nano reached 4.98, which

fails to meet the requirements of real-time detection tasks. After

optimization with TensorRT, the FPS of the improved YOLOv8n

model reached 48.60, which verifies the feasibility of deploying the

improved model on mobile terminals. The comparative results before

and after optimization are presented in Table 3.
3.7 Visualization analysis

In this study, gradient-weighted class activation mapping

(Grad-CAM) (Selvaraju et al., 2017) was employed to visualize

the feature activation patterns of egg detection. The visualization

results for layer 22 (detection head layer) of the model are presented

in Figure 10. Grad-CAM is a deep learning-based interpretability

method that highlights image regions critical for model predictions.

In the first case, the baseline YOLOv8n model shows negligible

attention to heavily occluded P. canaliculata eggs. After
TABLE 2 Comparison test of different models’ results.

Model P/% R/% mAP@0.5/% mAP@0.5:0.95/% FLOPs FPS

Faster R-CNN 81.4 75.7 78.3 47.8 1.1 × 1011 36.8

YOLOv3-tiny 83.7 75.5 84.1 50.9 1.9 × 1010 121.1

YOLOv5n 90.1 86.4 91.3 60.3 7.1 × 109 71.9

YOLOv6n 84.5 78.2 85.7 52.8 1.2 × 1010 102.2

YOLOv7-tiny 85.6 80.3 84.9 52.3 1.3 × 1010 116.4

YOLOv8n 89.7 87.5 93.2 63.6 8.1 × 109 99.7

YOLOv9-t 87.7 86.5 91.5 61.4 6.5 × 109 90.5

YOLOv10n 86.2 84.6 92.7 60.7 6.3 × 109 112.9

YOLOv11n 90.3 86.4 93.1 61.9 6.3 × 109 105.3

Ours 93.0 91.7 96.5 68.4 6.7 × 109 113.7
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optimization, the enhanced model demonstrates improved

extraction of detailed textures from occluded eggs, enabling

accurate recognition. In the second case, the original model fails

to activate features of small-sized and densely distributed P.

canaliculata eggs, leading to missed detections. The modified

network significantly strengthens attention to these challenging

targets. In the third case, the baseline model exhibits insufficient
FIGURE 10

Comparison of the heatmap between the YOLOv8 model and the improved model. (A) Original image; (B) the YOLOv8n model; (C) the improved
model.
TABLE 3 Jetson Nano inference comparison.

Model
Parameter

(M)
FPS (Jetson

Nano)
GFLOPs

Yolov8n 4.1 4.98 8.1

Ours 3.0 48.60 6.7
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semantic understanding of image boundaries, ignoring edge-located

P. canaliculata eggs while over activating background artifacts (e.g.,

water surface impurities). The improved architecture integrates

global context to enhance spatial feature aggregation, thereby

boosting edge-target detection accuracy and suppressing

interference. In the fourth case, the baseline model exhibited false

detections on water surface scum and air bubbles. The improved

detection head, integrated with the receptive field attention

mechanism, enables more refined detection of local regions,

thereby resolving the false detection issue of water surface

air bubbles.

Figure 11 compares the detection performance of the baseline

and improved YOLOv8n models. The enhanced model exhibits

significantly higher confidence in detecting small, occluded P.

canaliculata egg targets within complex paddy field environments.

In columns 1–2, the improved model demonstrates increased

confidence for partially occluded eggs compared to the baseline.

Column 3 reveals that the original YOLOv8n generates low-

confidence false positives on water surface foam, whereas the

optimized model eliminates such errors. Column 4 highlights a

substantial confidence improvement for both heavily occluded and

non-occluded eggs in the enhanced model.

These results, combined with the heatmap analysis, confirm that

the improved model strengthens attention to small and occluded
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targets while mitigating false and missed detections. The visualization

validates the efficacy of the proposed dataset construction and

augmentation strategies in boosting model performance.
3.8 Generalization experiment

To further verify the generalization performance of the

improved YOLOv8n model, the publicly available dataset released

by Professor Ningzhong Liu from Nanjing University of

Aeronautics and Astronautics was selected for testing in this

section. The dataset was collected via multi-angle low-altitude

photography using a DJI drone (FC2220) at Taihu Lake (119°11′–
121°53′E, 30°08′–32°08′N), and its access link is https://

drive.google.com/file/d/1lOUIUelA6mdmBrr2WswQrHjDf

6edt9Xu/view?usp=sharing. Each image in the dataset has a size of

1,000 × 800 pixels. The images cover various common scenarios to

ensure higher robustness of the model. A total of 5,000 images were

selected for testing, and the test results are presented in Table 4.

The experimental results demonstrate that the improved

YOLOv8n model outperforms other benchmark models in key

detection metrics for P. canaliculata eggs. Compared with

YOLOv8n, its mAP@0.5 and mAP@0.5:0.95 are increased by 1.3

and 3.6 percentage points, respectively. These results not only
FIGURE 11

Comparison of detection effect before and after model improvement.
frontiersin.org

https://drive.google.com/file/d/1lOUIUelA6mdmBrr2WswQrHjDf6edt9Xu/view?usp=sharing
https://drive.google.com/file/d/1lOUIUelA6mdmBrr2WswQrHjDf6edt9Xu/view?usp=sharing
https://drive.google.com/file/d/1lOUIUelA6mdmBrr2WswQrHjDf6edt9Xu/view?usp=sharing
https://doi.org/10.3389/fpls.2025.1683763
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1683763
confirm the improved robustness of the model but also highlight the

enhanced generalization performance through the more stringent

mAP@0.5:0.95 metric.
4 Conclusions

To achieve rapid and precise identification of P. canaliculata

egg clusters in complex paddy ecosystems, this study proposes an

optimized YOLOv8n model incorporating three key innovations:

ODConv, Slim-neck architecture, and RFAHead. These

modifications collectively address critical challenges including

false positives, missed detections, and occlusion issues,

significantly enhancing detection accuracy and model robustness.

Key findings are summarized as follows:
Fron
1. First, we replace standard convolutions with ODConv in the

backbone network, leveraging multi-dimensional attention

mechanisms to amplify feature extraction capabilities for

occluded and small-sized eggs. Second, the neck network is

redesigned by substituting C2f modules with VoV-GSCSP

and standard convolutions with GSConv, forming a Slim-

neck structure that improves feature utilization efficiency.

Finally, we engineer RFAHead with optimized convolutional

kernels, integrating receptive field attention mechanisms.

These synergistic modifications reduce computational

complexity by 18% while boosting detection precision,

achieving real-time performance suitable for edge devices.

2. A dedicated dataset comprising 6,783 annotated P.

canaliculata egg images was constructed through systematic

field collection and data augmentation techniques. Ablation

studies confirm the efficacy of each modification, with the

enhanced YOLOv8n achieving state-of-the-art performance:

96.5% mAP@0.5 and 68.4% mAP@0.5:0.95, at 113.7 FPS with

6.7 GFLOPs computational load. Comparative trials

demonstrate 12.3% higher accuracy than baseline models

under occlusion scenarios.

3. Visualization of detection results demonstrates that the

improved model effectively identifies P. canaliculata eggs

in complex paddy field environments, showing high-

precision detection capabilities in tests using naturally

acquired images. In future studies, we will expand

experimental samples and integrate transfer learning to

enhance the model’s generalization ability, further
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optimizing detection accuracy and real-time performance.

The model will be tested on mobile devices to enable timely

egg detection and implement corresponding control

measures, providing data and methodological references

for rice pest management.
The improved YOLOv8n model proposed in this study has

achieved relatively satisfactory detection performance on the self-

built P. canaliculata dataset, but there are still some limitations.

Restricted by the current data collection conditions, the dataset is

insufficient in terms of sample size and environmental complexity

(e.g., water quality, meteorological conditions, substrate composition,

etc.). In subsequent studies, we will continuously expand the data

scale and enhance data diversity to improve the model’s adaptability

in different practical scenarios. To enhance the deployment efficiency

and portability of the model in practical applications, we will also

introduce lightweight optimization strategies such as model pruning

and knowledge distillation. On the basis of ensuring detection

accuracy, we will further compress the model size and reduce

computational resource consumption and hardware dependence.

Future work will focus on the deployment tests of the model on

edge devices or mobile terminals and evaluate its real-time

performance and stability in field environments.
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