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Object detection algorithm for
eggs of Pomacea canaliculata in
a paddy field environment
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!College of Geography and Planning, Chengdu University of Technology, Chengdu, China, ?College
of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu, China

As an invasive species in China, Pomacea canaliculata severely impacts crop
quality and yield, necessitating effective monitoring for food security. To address
the challenges in detecting its eggs in paddy fields—including feature
contamination, stem and leaf occlusion, and dense targets—we propose an
enhanced YOLOv8n-based algorithm. The method introduces omni-
dimensional dynamic convolution (ODConv) in the backbone network to
improve target feature extraction, constructs a Slim-neck structure to optimize
feature processing efficiency, and designs a receptive-field attention head
(RFAHead) for detection refinement. Experimental results demonstrate that the
improved model achieves 3.3% and 4.2% higher mAP@0.5 and mAP@0.5:0.95
than the original YOLOVS. It outperforms Faster R-CNN, YOLOv3-tiny, YOLOVS5,
YOLOvV6, YOLOv7-tiny, YOLOV9-t, YOLOV10n, and YOLOv1ln by 18.2%, 12.4%,
5.2%, 10.8%, 11.6% 5.0%, 3.8%, and 3.4% in mAP@O0.5 and 20.6%, 17.5%, 8.1%,
15.6%, 16.1%, 7.0%, 7.7%, and 6.5% in mAP@0.5:0.95, respectively. Visual analysis
confirms enhanced recognition of small and occluded targets through improved
feature learning. This model enables accurate and rapid detection of Pomacea
eggs in rice fields, offering technical support for invasive species control.

KEYWORDS

eggs of Pomacea canaliculata, omni-dimensional dynamic convolution, slim-neck,
receptive-field attention, YOLOv8

1 Introduction

Pomacea canaliculata has emerged as a highly invasive alien species in China,
exhibiting remarkable adaptability and fecundity. This mollusk has established
populations across 18 provincial-level administrative divisions, including municipalities
and autonomous regions, from Sichuan to Fujian provinces. Its invasion poses significant
threats to various sectors, including agriculture, forestry, animal husbandry, and
aquaculture, while it concurrently jeopardizes ecological integrity and public health in
the affected regions. The species” high reproductive output directly impacts crop growth
parameters, leading to substantial reductions in both yield quantity and quality (Zhang et
al,, 2017; Yin et al, 2022; Zhuo et al,, 2022). Accurate and efficient detection of P.
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canaliculata and its egg masses is a fundamental prerequisite for
investigating invasion mechanisms and dispersal dynamics. Such
capabilities are critical for designing evidence-based prevention and
control strategies (Jiang et al., 2024). Current diagnostic approaches
for crop pests predominantly rely on manual identification or
machine learning-based detection systems. While manual
interpretation achieves high accuracy and machine learning
enhances operational efficiency, these methods present notable
limitations. Their implementation requires specialized expertise
along with extensive training datasets; moreover, models often
exhibit limited generalizability across heterogeneous field
conditions (Gao et al., 2010).

The integration of artificial intelligence into agricultural
diagnostics has accelerated markedly, with convolutional neural
networks (CNNs) emerging as pivotal tools for rapid identification
of crop diseases and pests. These deep learning architectures are
driving paradigm shifts in precision agriculture through enhanced
operational scalability and decision-making efficiency (Wei, 2017).
Pioneering work by Zhang (2018) demonstrated the synergistic
application of CNNs with Otsu threshold optimization, achieving
95% mean average precision (mAP) in classifying five prevalent
potato pathogens—a critical advancement for field-deployable
diagnostic systems. Subsequent innovations by Tetila et al. (2020)
developed a robust detection architecture combining ResNeXt-50
with region-based fully convolutional network (R-FCN) feature
extraction, enabling precise localization and classification of nine
distinct tomato plant disorders with 85.98% mAP accuracy. In
parallel, Singh et al. (2019) engineered a multi-column CNN
through strategic modifications to AlexNet’s convolutional layers,
attaining state-of-the-art performance (97.13% mAP) on
anthracnose-infected mango datasets, thereby establishing a
benchmark for tropical fruit disease diagnostics.

The YOLO algorithm series has revolutionized computational
object detection through its computationally efficient architecture,
achieving real-time processing speeds that are driving
transformative applications in precision agriculture for crop
disease and pest surveillance (Guo et al, 2022). In a seminal
comparative study, Guo et al. (2021) systematically evaluated
detection frameworks using convolutional feature extraction,
benchmarking Faster R-CNN, SSD (single shot multibox
detector), and YOLOV3 architectures across 2,500 annotated rice
pathology images. Their analysis revealed YOLOV3’s superior
performance, attaining 91.93% mAP in classifying five critical
Oryza sativa pathogens—establishing new standards for field-
ready diagnostic systems. Building on these advancements, Zhang
et al. (2022) engineered an enhanced YOLOV5 variant through
strategic integration of DenseNet connectivity patterns, attention-
guided feature selection, and bidirectional feature pyramid
networks (BiFPN). This hybrid architecture demonstrated
exceptional precision in detecting pre-anthesis cotton bolls under
complex field conditions, resolving long-standing challenges in
phenological stage monitoring. Parallel developments by Liu et al.
(2024) incorporated a Ghost module into YOLOvV7’s backbone
network, effectively eliminating feature redundancy while
implementing a multi-scale fusion framework combining the
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convolutional block attention module (CBAM) and BiFPN. Their
optimized system achieved 93.2% mAP in detecting six distinct
Prunus persica pathogens, particularly enhancing recognition
accuracy for submillimeter lesion patterns through spectral-
spatial feature correlation. Huang et al. (2023) proposed a YOLO-
EP model, which incorporated the Swin Transformer to achieve the
interaction between local and global information and integrated the
Efficient Channel Attention (ECA) mechanism into the network to
prevent the loss of feature information within the network. For P.
canaliculata eggs in paddy fields, the improved model achieved an
mAP of 88.6%.

Owing to variations in crop growth environments and leaf
density, automated pest and disease detection systems frequently
encounter challenges including pronounced illumination disparities
and mutual occlusion among plant organs. To mitigate these
limitations, recent methodological innovations have employed
generative adversarial networks (GANs) to reconstruct occluded
target features through self-adversarial learning frameworks. An
etal. (2021) developed generative adversarial networks for learning
occluded features (GANLOF), a novel architecture that restores
damaged feature representations in training samples, effectively
addressing target occlusion issues. This approach demonstrated a
1.61% improvement in recognition accuracy for partially obscured
targets compared to conventional methods. Building upon these
advancements, Yan et al. (2022) integrated the convolutional block
attention module (CBAM) with cross-scale feature fusion pyramid
pooling into the YOLOV7 framework. Their proposed ACFP-YOLO
algorithm significantly enhanced detection performance for
occluded targets through optimized attention weighting and
multi-scale feature aggregation. These methodological innovations
have collectively advanced object detection capabilities in
agricultural pest monitoring, particularly demonstrating
applicability for P. canaliculata egg detection in complex paddy
field ecosystems. The synergistic combination of feature
reconstruction and attention-driven detection frameworks lays a
foundation for robust agricultural surveillance systems operating
under real-world field conditions.

The accurate detection of P. canaliculata eggs in submerged
paddy field environments faces three critical challenges:
illumination-induced luminance variations that degrade image
clarity through dynamic water-surface reflections, frequent
occlusions caused by submerged rice stalks and floating foliage,
and diminished foreground-background contrast due to the eggs’
small size and visual similarity to organic debris. These factors
collectively lead to feature contamination, where morphological
signatures of egg clusters become indistinguishable from
environmental noise. Existing object detection algorithms exhibit
significant limitations in this context, including excessive model
complexity, unresolved speed-accuracy trade-offs, inadequate
resolution for small-size object discrimination, and degraded
performance under partial-to-complete occlusion (Xu et al., 2023;
Zhang et al., 2024).

To address the abovementioned problems, this paper makes
improvements based on YOLOv8n and proposes an occlusion-
resistant small target detection algorithm for P. canaliculata eggs in
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a paddy field environment. The main work of this algorithm is
as follows:

1. Construct a dataset of P. canaliculata eggs in paddy fields
under occlusion conditions and propose a target detection
algorithm based on the YOLOv8n model to solve the
problems of missed and false detections of P. canaliculata
eggs in the paddy field environment.

2. Introduce ODConv into the backbone of the model.
Employ a dynamic multi-dimensional attention
mechanism to learn the complementary attention of the
convolution kernel in all four dimensions of the kernel
space, thereby improving the ability to extract features from
egg images.

3. Incorporate the Slim-neck architecture into the neck of the
model to build an efficient four-"neck” neural network,
enabling the model to maintain high accuracy while
reducing computational complexity and inference time.

4. Introduce the RFAHead at the detection head. By
combining the processing of spatial attention and
receptive-field features, it provides a new and more
efficient way for the convolutional neural network to
extract and process image features.

2 Materials and methods
2.1 Dataset preparation

The generalization and robustness of models are often
influenced by the quality of the dataset. Therefore, in this study, a
high-quality dataset of P. canaliculata egg images and samples in
paddy fields was constructed. The study area is located in Yaodu
Town, Qingbaijiang District, Chengdu City, Sichuan Province. The
dataset was collected on-site and manually processed. Field data
were captured using a DJI Phantom 4 Pro and handheld devices; the
image resolution of DJI-acquired data is 5,742 x 3,648, while that of
handheld device-acquired data is 3,648 x 2,736. The total number of
collected original images was 969. To meet the diversity of the
dataset and simulate the conditions of P. canaliculata eggs in
different environments, data on P. canaliculata eggs were
collected from different shooting angles in this study. The
constructed dataset includes images of non-occluded eggs and
occluded eggs.

To meet the data requirements of the deep learning network
model, all collected images were uniformly resized to 640 x 640
pixels. The data acquired by DJI were cropped into 54 images of 640
x 640 pixels (arranged as 6 rows and 9 columns); the data captured by
handheld devices were cropped into 24 images of 640 x 640 pixels
(arranged as 4 rows and 6 columns). Meanwhile, data augmentation
techniques including rotation, mirroring, Gaussian noise addition, and
salt-and-pepper noise injection were applied to the collected images.
Operations such as stretching and color transformation were not used,
aiming to preserve the shape features of P. canaliculata eggs without

Frontiers in Plant Science

10.3389/fpls.2025.1683763

altering them. This approach not only enriches the dataset but also
enhances the generalization and robustness of the model training and
the accuracy of target detection. After the augmentation process, a total
of 6,783 images were obtained. The Labelme software was used to
annotate the features of the images. The annotated P. canaliculata eggs
were divided into two categories: occluded and non-occluded, to verify
the detection performance of the improved model in this paper for
occluded P. canaliculata. The results of the annotated images and label
classification are shown in Figure 1, where (A) is the original image, (B)
represents non-occluded eggs, and (C) represents occluded eggs. Prior
to data augmentation techniques, the dataset was randomly divided
into a training set, a validation set, and a test set at a ratio of 8:1:1. This
division was performed to ensure that each type of sample was
adequately represented in the divided subsets and to prevent
augmented variants from the same original region from appearing
across different subsets.

2.2 Design of the network model

YOLOV8 employs an efficient architecture for feature extraction
and object detection, achieving enhanced detection accuracy and
accelerated inference speeds. The network comprises four
hierarchical components: the input layer for image preprocessing,
the backbone layer for feature extraction, the neck layer for multi-
scale feature fusion and enhancement, and the head layer for final
prediction through classification and bounding box regression
(Terven et al, 2023). Specifically, the input layer processes
training images, the backbone extracts hierarchical features, the
neck integrates contextual information across scales, and the head
generates detection outputs by synthesizing semantic and
positional features.

To improve P. canaliculata egg detection in complex paddy
environments, we propose three targeted modifications to YOLOv8
(Figure 2). Firstly, ODConv replaces standard convolutions (except
the initial layer) in the backbone, addressing feature representation
limitations that cause misdetections while reducing computational
complexity. Secondly, the Slim-neck architecture integrates
generalized-sparse convolution (GSConv) to optimize feature
transmission efficiency and preserve inter-channel dependencies.
Complementary VoV-GSCSP modules enhance cross-stage feature
fusion, improving detection precision without compromising speed.
Finally, the detection head incorporates receptive-field attention
convolution (RFAConv), which synergizes spatial attention
mechanisms with convolutional operations to prioritize subtle
local patterns, particularly for occluded and small-scale targets.

2.2.1 Omni-dimensional dynamic convolution

The mutual occlusion between rice plants and P. canaliculata
eggs in paddy fields challenges the YOLOv8n model in precisely
localizing egg feature regions, resulting in critical identification
information loss. To mitigate this limitation, we integrate
ODConv into the backbone network, coupled with a multi-
dimensional attention mechanism. This hybrid strategy employs
parallel learning of complementary attentional weighting across all
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FIGURE 1

Collected images and label classification results. (a) is the original image, (b) represents non-occluded eggs, (c) represents occluded eggs.

four convolutional kernel dimensions: spatial size, input and output
channel numbers, and kernel quantity (Li et al, 2022b). The
synergistic design enhances feature discriminability for occluded
targets while reducing computational overhead, thereby improving
both detection accuracy and efficiency.

As illustrated in Figure 3, the ODConv architecture operates
through three sequential stages. Initially, the input feature map x
undergoes dimension reduction via a global average pooling (GAP)
layer, producing a C;,-length feature vector. Subsequently, this
vector is processed through fully connected (FC) layers and
rectified linear unit (ReLU) activation, generating four parallel
attention branches. Each branch incorporates an FC layer
followed by softmax/sigmoid normalization, yielding four
attention scalars (0, ;> O 04,;) that dynamically modulate the
convolutional kernel W;. Finally, the adaptively weighted kernels
perform convolution with the input x, synthesizing the output
feature map y.

Figure 4 illustrates the operational mechanisms of four distinct
attention branches in ODConv. Figure 4A demonstrates spatial-
wise element-wise multiplication, where the spatial attention scalar
o;; computed by ODConv is applied to each spatial position (height
and width) of the convolutional kernel. This mechanism enhances
the model’s capability to extract spatially discriminative features
from P. canaliculata egg images, particularly under partial occlusion
conditions. Figure 4B depicts input channel-wise multiplication,
whereby the channel attention scalar ¢; dynamically modulates the
convolutional kernel across input channels. This adaptive weighting
prioritizes occlusion patterns and densely distributed features in egg
clusters, thereby improving robustness in complex paddy field
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environments. Figure 4C presents output filter-wise multiplication
along the output channel dimension. The filter attention scalar oy
recalibrates the importance of individual output filters, enabling
differentiated feature extraction between occluded and non-
occluded egg instances. Figure 4D implements kernel-wise
multiplication, where the kernel attention scalar o, globally
adjusts the entire convolutional kernel. This holistic adaptation
allows the model to dynamically optimize kernel parameters for rice
field-specific egg characteristics. By replacing standard convolutions
(excluding the initial layer) in the backbone with ODConv, our
approach synergistically enhances feature extraction across all four
dimensions (spatial, input channel, output filter, and kernel space),
resulting in quantifiable improvements in detection precision for
challenging agricultural scenarios.

2.2.2 Slim-neck structure

The incubation period of P. canaliculata eggs ranges from 8 to
16 days (Lv et al., 2024). Deploying detection models on cameras or
drones for real-time egg distribution monitoring requires balancing
detection accuracy with computational efficiency. To address this,
GSConv is introduced to reduce model complexity while improving
accuracy, with a Slim-neck structure designed in the neck network
(Figure 5) (Li H. et al,, 2022). The GS bottleneck module enhances
feature processing capability, and the VoV-GSCSP module
improves feature utilization efficiency, collectively optimizing
detection performance for P. canaliculata eggs in paddy fields.

MobileNets and ShuffleNets employ depth-wise separable
convolutions (DSCs) to accelerate inference but exhibit
insufficient accuracy for egg detection (Howard et al., 2017;
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FIGURE 2

Improved YOLOV8 network structure.

Zhang et al., 2018). GSConv first applies standard convolution for
downsampling. The outputs are then processed by depth-wise
convolution (DWConv), concatenated, and shuffled to exchange
localized features across channels. This strategy prevents channel
information separation during computation, reduces parameters/
FLOPs, and preserves interchannel semantic relationships. While
spatial compression and channel expansion induce partial semantic
loss, dense convolutions retain implicit interchannel connections,
whereas sparse convolutions discard them. GSConv partially
preserves these connections but increases network depth and
inference latency if universally applied. Since the neck stage
maximizes channel dimensions and minimizes spatial resolutions,
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GSConv is selectively implemented only in the neck to minimize
semantic information loss.

Building upon GSConv, we further introduce GS bottleneck and
VoV-GSCSP to reconstruct the neck network of YOLOv8n.
Specifically, the original C2f module is replaced with VoV-
GSCSP, while standard convolutions are substituted by GSConv,
thereby establishing the proposed Slim-neck architecture. The
structures of the GS bottleneck and VoV-GSCSP are shown in
Figure 6, where VoV-GSCSP is designed using a one-shot
aggregation strategy. First, a 1 x 1 convolution performs feature
extraction on the input, reducing the channel dimension to half of
the original input (C; — C;/2). Subsequently, the processed features
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Omni-dimensional dynamic convolution structure.

are fed into the GS bottleneck module, where they undergo two
GSConv operations and are then combined with features from a
parallel 1 x 1 convolution via residual addition, resulting in an
output channel dimension of C,/2. The original input of the VoV-
GSCSP module is separately processed by another 1 x 1 convolution
and concatenated with the GS bottleneck output. Finally, a 1 x 1
convolution adjusts the concatenated features to the target channel
dimension C,.

2.2.3 Receptive-field attention detection head

The standard convolution of the YOLOv8n model applies
homogeneous convolutional kernels across all receptive fields,
extracting features with identical parameters regardless of spatial
location. This design fails to account for position-specific variations

in input data, severely limiting the model’s ability to handle multi-
scale targets and degrading its feature extraction performance,
particularly for small objects such as P. canaliculata eggs or
partially occluded targets. While attention mechanisms enhance
feature discriminability by directing computational resources to
salient regions and improving detailed feature capture,
conventional modules [e.g., CBAM and coordinate attention
(CA)] primarily address spatial feature modeling but inadequately
resolve the parameter-sharing limitation of large kernels or
emphasize feature importance within receptive fields (Woo et al.,
2018; Hou et al., 2021).

To address the uniform kernel parameterization in the
YOLOvV8n detection head, this study proposes an RFAHead
incorporating RFAConv, as illustrated in Figure 7. Let C, H, and

Wi ag ai O Wi Wi ag ag ®O Wi
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FIGURE 4

(d) Convolution kernel spatial dimensions

Different attention mechanisms. (a) is Spatial dimensions, (b) is Input channel dimension, (c) is Output channel dimension, (d) is Convolution kernel

spatial dimensions.
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W denote the channel number, height, and width of the input
feature map, respectively. The RFAConv operates through two
parallel branches to obtain weights and spatial features. In the
weight branch, global contextual information is aggregated via
average pooling (AvgPool), followed by channel interaction using
1 x 1 group convolution. Features are extracted through a receptive
field slider to avoid overlap, and a softmax operation dynamically
weights feature importance across the receptive field, effectively
reducing network parameters without information loss. In the
feature branch, the input undergoes 3 x 3 convolution to generate
intermediate features with dimensions 9C x h x w. After
dimensional transformation, these features are multiplied by the
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weights to produce the final receptive field feature map (C x 3h x
3w), as detailed in Equation 1.

F = Softmax(g"*' (AvgPool(X))) x ReLU(Norm(g"*(X)))
= Arf X F,:f (1)
In the formula, g'*!

size of i x i, k represents the size of the convolution kernel, Norm
represents normalization, X represents the input feature map, and

represents a grouped convolution with a

the output feature F is obtained by multiplying the attention map
with the transformed receptive-field spatial features A, through F.

In standard convolution, overlapping receptive field slider
features are inevitable, leading to identical attention weights being
assigned to shared input features across different receptive fields.
Convolutional parameters within each slider should not be fully
shared but instead adaptively adjusted based on local feature
characteristics and their corresponding attention weights. This
adaptation enables the network to process each region with finer
granularity, thereby better capturing and responding to input-
specific patterns rather than relying on uniform weight
application globally. RFAConv dynamically adjusts convolutional
kernel weights by adaptively highlighting critical regions in the
feature map. Consequently, the network reweights key features,
allowing large-sized convolutional kernels to simultaneously
capture broad contextual information and focus computational
resources on high-informative regions. Such capability enhances
processing efficiency and network performance while optimizing
feature understanding and representation, ultimately improving
learning and predictive accuracy. The structure of the enhanced
YOLOV8n detection head (Figure 8) resolves the convolutional
parameter-sharing limitation and significantly enhances
detection precision.

3 Experiments and analysis
3.1 Experimental environment

The experimental environment was configured as follows:
PyTorch 1.13.0, Python 3.9.7, CUDA 11.6.2, and cuDNN 8.6.0.
The hardware setup included a Windows 10 system with an
NVIDIA GeForce RTX 3050 GPU (8 GB VRAM) and an AMD
RyzenTM 5 6600H processor with Radeon Graphics. To mitigate
overfitting and improve generalization, stochastic gradient descent
(SGD) was employed as the optimizer. The initial learning rate was
set to 0.01 to maintain moderate step sizes for weight updates, with
a momentum factor of 0.937 to stabilize gradient descent. Training
utilized a batch size of 16 and ran for 200 epochs.

3.2 Evaluation indicators
In this study, the recognition accuracy (precision), recall rate,

floating-point operations (FLOPs), average detection precision
(Average precision), and mAP are used as evaluation indicators
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FIGURE 8

YOLOvV8n detection head and receptive field attention detection head structure.

to measure the detection performance of the network model for P.
canaliculata eggs in paddy fields. The calculation formulas for each
indicator are as follows:

TP
P=— )
TP + EP
TP
R= TP + FN )
1
AP = / P(R)dR (4)
0
1
mAP = NELAP” (5)

In the Equations 2-5, TP denotes the number of correctly
detected egg targets; FP represents the number of false positives
misclassified as egg targets; FN indicates the number of undetected
egg targets; and AUC (area under the curve) quantifies the area
under the precision-recall curve. K denotes the total number of
classes, and APi refers to the average precision for the i-th class.
mAP @0.5 represents the mAP across all classes at an IoU
threshold of 0.5, while mAP @ 0.5:0.95 denotes the average mAP
computed over IoU thresholds ranging from 0.5 to 0.95 with a step
size of 0.05.

3.3 Performance comparison
To analyze the detection capabilities of the improved YOLOv8n

object detection algorithm for P. canaliculata eggs, both the original
YOLOV8n and the improved model were trained under identical
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experimental environments and settings. The training curves of
these two models are presented in Figure 9.

As shown in Figure 9, the blue lines represent the performance
metrics of the original YOLOvV8n during training, while the orange
lines correspond to those of the improved model. Throughout the
training process, YOLOv8n exhibited improvements from 24.7% to
89.7% in precision, 31.1% to 87.5% in recall, and 17.8% to 93.2% in
mAP@0.5, with reductions from 3.986 to 1.074 in box_loss, 4.189 to
0.546 in cls_loss, and 3.202 to 0.979 in dfl_loss. In contrast, the
improved model demonstrated more significant enhancements:
precision increased from 17.1% to 93.0%, recall from 37.6% to
91.7%, mAP 0.5from 11.2% to 96.5%, while box_loss decreased
from 4.409 to 0.984, cls_loss from 4.972 to 0.508, and dfl_loss from
2.961 to 0.947. These numerical results clearly indicate that the
improved model outperforms the original YOLOv8n in both
detection accuracy and loss function optimization.

3.4 Ablation experiments

To verify the optimization effect of each module on the
performance of the P. canaliculata egg detection model in paddy
fields, an ablation experiment was conducted on each module using
YOLOV8n as the baseline network. The results are shown in Table 1.

While maintaining the original architecture of YOLOv8n, the
integration of ODConv significantly improved both precision and
recall rates compared to the baseline model. Specifically, the mAP
0.5and mAP@0.5:0.95 metrics increased by 2.2% and 3.7%,
respectively. This enhancement demonstrates that ODConv
strengthens the model’s ability to extract features of P.
canaliculata eggs by learning complementary attention across
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FIGURE 9
YOLOV8N training curves before and after improvement.

four dimensions, thereby improving detection accuracy.
Incorporating the Slim-neck structure into the neck network
reduced computational complexity by 1.0 GFLOPs while
marginally improving precision, recall, mAP@0.5, and mAP@
0.5:0.95. The VoV-GSCSP module and GSConv not only
enhanced feature processing capabilities but also optimized
computational efficiency, which is critical for real-time detection
of P. canaliculata eggs in field environments. Replacing the original
detection head with the proposed RFAHead increased mAP@0.5
and mAP@0.5:0.95 by 1.3% and 1.9%, respectively, with precision
and recall rising by 0.9% and 1.4%. However, this modification
incurred a computational cost increase of 0.3 GFLOPs, attributable
to RFAConv’s adaptive kernel weight adjustment during feature
extraction, which prioritizes informative regions. As shown in
Table 1, the three enhancement strategies—ODConv, Slim-neck,
and RFAHead—exhibit synergistic effects without mutual
interference. The combined model (v8n + ODC + Sl + RF)
achieved improvements of 3.3% in precision, 4.2% in recall, 3.3%
in mAP@0.5, and 4.8% in mAP@0.5:0.95 over the baseline,

TABLE 1 The results of the YOLOvV8n ablation experiments.

100
Epoch

125 150 175 200 0 75 100

Epoch

125 150 175 200

alongside a computational reduction of 1.4 GFLOPs. These results
validate that the proposed modular improvements collectively
enhance both accuracy and reliability for detecting P. canaliculata
eggs in paddy field environments.

3.5 Comparison experiments of different
models

Since the targets of P. canaliculata eggs are relatively small and
there are often occlusion situations in the real field environment
(Huang et al., 2023), aiming at the problems of dense distribution of
eggs and poor recognition effects when there is occlusion, this paper
has improved the structural network of YOLOv8n. In order to
further verify the performance and effectiveness of the detection
model among mainstream networks, the network model proposed
in this paper is compared experimentally with Faster R-CNN (Ren
et al, 2017), YOLOv3-tiny (Adarsh et al, 2020), YOLOvV5n,
YOLOvén (Li et al, 2022a), YOLOv7-tiny (Cheng et al., 2023),

P/%% mAP@0.5/% mAP@0.5:0.95/%
YOLOV8n (v8n) 89.7 87.5 932 63.6 8.1 x 10°
v8n+ODConv (ODC) 92.9 90.3 95.4 67.3 7.3 x 10°
v8n+SlimNeck (SL) 89.8 89.5 93.8 63.9 7.1 x 10°
v8n+RFAHead (RF) 90.6 88.9 945 65.5 8.4 x 10°
v8n+ODC+S] 92.7 915 95.3 67.2 6.4 x 10°
v8n+ODC+RF 92.5 90.8 95.5 67.5 7.6 x 10°
v8n+S1+RF 91.8 88.0 94.4 64.9 7.5 % 10°
v8n+ODC+SI+RF 93.0 91.7 96.5 68.4 6.7 x 10°
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YOLOV8n, YOLOV9-t (Wang C et al,, 2024), YOLOv10n (Wang A
et al,, 2024), and YOLOv1ln (Khanam and Hussain, 2024). The
experimental results are shown in Table 2. All training processes
were configured using the parameters of the improved model to
avoid the influence of parameters on training results. Specifically,
SGD was adopted as the optimization strategy during the model
optimization process, with an initial learning rate set to 0.01 and a
momentum factor of 0.937 to stabilize the gradient descent process.
The training was conducted with a batch size of 16 and ran for 200
epochs, where the key hyperparameters were set as follows:
Ir0 = 0.01, Irf = 0.01, mosaic = 1.0, box = 7.5, fliplr = 0.5, and
flipud = 0.1.

The improved model in this study has the highest values in
mAP@0.5 and mAP@0.5:0.95, reaching 96.5% and 68.4%
respectively. Compared with Faster R-CNN, YOLOv3-tiny,
YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n, YOLOV9-t,
YOLOvV10n, and YOLOvlln, the mAP@0.5 of the improved
model is 18.2, 12.4, 5.2, 10.8, 11.6, 3.3, 5.0, 3.8, and 3.4 percentage
points higher, respectively, and the mAP@0.5:0.95 is 20.6, 17.5, 8.1,
15.6, 16.1, 4.8, 7.0, 7.7, and 6.5 percentage points higher,
respectively. The precision and recall rates also reach 93.2% and
91.7%, which are higher than those of other mainstream networks.
Its computational amount reaches 6.7G, which is only higher than
that of YOLOv10n and YOLOvlln (6.3G each). The detection
frame rate reaches 113.7 frames per second, which is higher than
that of YOLOv5n, YOLOv7n, YOLOvV8n, YOLOV9-t, YOLOv10n,
and YOLOv11n, but slightly lower than that of YOLOv3-tiny and
YOLOV7-tiny, meeting the requirements for deploying the device
on mobile terminals for real-time detection. Since Faster R-CNN
has a two-stage network structure and the feature maps extracted by
the convolutional extraction network are all single-layer maps with
relatively small resolutions, its accuracy and FPS are lower than
those of the YOLO series networks, while the computational
amount is large. The comparison experiments with different
models further prove the effectiveness of the improvement
strategy and the superiority of the improved model in the task of
detecting P. canaliculata eggs in paddy fields.

TABLE 2 Comparison test of different models’ results.

mAP@O0.5/%

10.3389/fpls.2025.1683763

3.6 Embedded deployment and
optimization

Although personal computers and servers possess powerful
training and inference capabilities, their large size, high power
consumption, and limited portability limit their applicability to
object detection tasks that require lightweight platforms and real-
time processing (Dong et al., 2025a). As an embedded deployment
platform, NVIDIA Jetson Nano features a small size, low power
consumption, and high computational efficiency, making it highly
suitable for edge vision analysis in resource-constrained
environments (Dong et al., 2025b).

In this study, the improved YOLOv8n model was deployed on
the Jetson Nano BOl (4 GB) embedded device, and comparative
verification was conducted against the original YOLOv8n model to
evaluate the improvement in frames per second (FPS) of the
improved model. During the deployment process, the TensorRT
inference engine was used for fusing and simplifying the network
structure, achieving a trade-off between accuracy and speed. The FPS
of the original YOLOv8n model on Jetson Nano reached 4.98, which
fails to meet the requirements of real-time detection tasks. After
optimization with TensorRT, the FPS of the improved YOLOv8n
model reached 48.60, which verifies the feasibility of deploying the
improved model on mobile terminals. The comparative results before
and after optimization are presented in Table 3.

3.7 Visualization analysis

In this study, gradient-weighted class activation mapping
(Grad-CAM) (Selvaraju et al, 2017) was employed to visualize
the feature activation patterns of egg detection. The visualization
results for layer 22 (detection head layer) of the model are presented
in Figure 10. Grad-CAM is a deep learning-based interpretability
method that highlights image regions critical for model predictions.
In the first case, the baseline YOLOv8n model shows negligible
attention to heavily occluded P. canaliculata eggs. After

mAP@O0.5:0.95/% FLOPs

Faster R-CNN 81.4 75.7 783 47.8 1.1 x 10" 36.8
YOLOV3-tiny 83.7 75.5 84.1 50.9 1.9 x 10" 121.1
YOLOV5n 90.1 86.4 91.3 60.3 7.1 x 10° 71.9
YOLOv6n 84.5 78.2 85.7 52.8 1.2 x 10" 1022
YOLOV7-tiny 85.6 80.3 84.9 52.3 1.3 x 10" 116.4
YOLOv8n 89.7 87.5 93.2 63.6 8.1 x 10° 99.7
YOLOVY-t 87.7 86.5 91.5 61.4 6.5 x 10° 90.5
YOLOvV10n 86.2 84.6 92.7 60.7 6.3 x 10° 1129
YOLOv11n 90.3 86.4 93.1 61.9 6.3 x 10° 105.3
Ours 93.0 91.7 96.5 68.4 6.7 x 10° 113.7
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TABLE 3 Jetson Nano inference comparison.

FPS (Jetson

Parameter

10.3389/fpls.2025.1683763

optimization, the enhanced model demonstrates improved
extraction of detailed textures from occluded eggs, enabling
accurate recognition. In the second case, the original model fails
to activate features of small-sized and densely distributed P.
canaliculata eggs, leading to missed detections. The modified
network significantly strengthens attention to these challenging
targets. In the third case, the baseline model exhibits insufficient

GFLOPs
(M) Nano)
Yolov8n 4.1 498 ‘ 8.1
QOurs 3.0 48.60 ‘ 6.7
FIGURE 10

Comparison of the heatmap between the YOLOv8 model and the improved model. (A) Original image; (B) the YOLOv8n model; (C) the improved

model.
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semantic understanding of image boundaries, ignoring edge-located
P. canaliculata eggs while over activating background artifacts (e.g.,
water surface impurities). The improved architecture integrates
global context to enhance spatial feature aggregation, thereby
boosting edge-target detection accuracy and suppressing
interference. In the fourth case, the baseline model exhibited false
detections on water surface scum and air bubbles. The improved
detection head, integrated with the receptive field attention
mechanism, enables more refined detection of local regions,
thereby resolving the false detection issue of water surface
air bubbles.

Figure 11 compares the detection performance of the baseline
and improved YOLOv8n models. The enhanced model exhibits
significantly higher confidence in detecting small, occluded P.
canaliculata egg targets within complex paddy field environments.
In columns 1-2, the improved model demonstrates increased
confidence for partially occluded eggs compared to the baseline.
Column 3 reveals that the original YOLOv8n generates low-
confidence false positives on water surface foam, whereas the
optimized model eliminates such errors. Column 4 highlights a
substantial confidence improvement for both heavily occluded and
non-occluded eggs in the enhanced model.

These results, combined with the heatmap analysis, confirm that
the improved model strengthens attention to small and occluded

original image

10.3389/fpls.2025.1683763

targets while mitigating false and missed detections. The visualization
validates the efficacy of the proposed dataset construction and
augmentation strategies in boosting model performance.

3.8 Generalization experiment

To further verify the generalization performance of the
improved YOLOv8n model, the publicly available dataset released
by Professor Ningzhong Liu from Nanjing University of
Aeronautics and Astronautics was selected for testing in this
section. The dataset was collected via multi-angle low-altitude
photography using a DJI drone (FC2220) at Taihu Lake (119°11'-
121°53’E, 30°08'-32°08'N), and its access link is https://
drive.google.com/file/d/110UIUelA6mdmBrr2WswQrHjDf
6edt9Xu/view?usp=sharing. Each image in the dataset has a size of
1,000 x 800 pixels. The images cover various common scenarios to
ensure higher robustness of the model. A total of 5,000 images were
selected for testing, and the test results are presented in Table 4.

The experimental results demonstrate that the improved
YOLOvV8n model outperforms other benchmark models in key
detection metrics for P. canaliculata eggs. Compared with
YOLOV8n, its mAP@0.5 and mAP@0.5:0.95 are increased by 1.3
and 3.6 percentage points, respectively. These results not only

sheltered 0.82

sheltered 0.75
YOLOv8n \

sheltered 0,76
sheltered 0.71
RS

sheltered 0.83

sheltered 0.82
Improved model

sheltered 0.80 ~
sheltered 0.78

i

FIGURE 11
Comparison of detection effect before and after model improvement.
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TABLE 4 Improved YOLOv8n model generalization results.

10.3389/fpls.2025.1683763

YOLOV5n 81.4
YOLOvV8n 81.3
YOLOv10n 79.8
YOLOvlin 82.0
Improved YOLOv8n 85.3

confirm the improved robustness of the model but also highlight the
enhanced generalization performance through the more stringent
mAP@0.5:0.95 metric.

4 Conclusions

To achieve rapid and precise identification of P. canaliculata
egg clusters in complex paddy ecosystems, this study proposes an
optimized YOLOv8n model incorporating three key innovations:
ODConv, Slim-neck architecture, and RFAHead. These
modifications collectively address critical challenges including
false positives, missed detections, and occlusion issues,
significantly enhancing detection accuracy and model robustness.
Key findings are summarized as follows:

1. First, we replace standard convolutions with ODConv in the
backbone network, leveraging multi-dimensional attention
mechanisms to amplify feature extraction capabilities for
occluded and small-sized eggs. Second, the neck network is
redesigned by substituting C2f modules with VoV-GSCSP
and standard convolutions with GSConv, forming a Slim-
neck structure that improves feature utilization efficiency.
Finally, we engineer REAHead with optimized convolutional
kernels, integrating receptive field attention mechanisms.
These synergistic modifications reduce computational
complexity by 18% while boosting detection precision,
achieving real-time performance suitable for edge devices.

. A dedicated dataset comprising 6,783 annotated P.
canaliculata egg images was constructed through systematic
field collection and data augmentation techniques. Ablation
studies confirm the efficacy of each modification, with the
enhanced YOLOvV8n achieving state-of-the-art performance:
96.5% mAP@0.5 and 68.4% mAP@0.5:0.95, at 113.7 FPS with
6.7 GFLOPs computational load. Comparative trials
demonstrate 12.3% higher accuracy than baseline models
under occlusion scenarios.

. Visualization of detection results demonstrates that the
improved model effectively identifies P. canaliculata eggs
in complex paddy field environments, showing high-
precision detection capabilities in tests using naturally
acquired images. In future studies, we will expand
experimental samples and integrate transfer learning to
enhance the model’s generalization ability, further
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mAP@0.5/% mAP@O0.5:0.95/%
813 46.5
83.2 47.3
80.7 447
82.1 46.5
84.5 50.9

optimizing detection accuracy and real-time performance.
The model will be tested on mobile devices to enable timely
egg detection and implement corresponding control
measures, providing data and methodological references
for rice pest management.

The improved YOLOv8n model proposed in this study has
achieved relatively satisfactory detection performance on the self-
built P. canaliculata dataset, but there are still some limitations.
Restricted by the current data collection conditions, the dataset is
insufficient in terms of sample size and environmental complexity
(e.g., water quality, meteorological conditions, substrate composition,
etc.). In subsequent studies, we will continuously expand the data
scale and enhance data diversity to improve the model’s adaptability
in different practical scenarios. To enhance the deployment efficiency
and portability of the model in practical applications, we will also
introduce lightweight optimization strategies such as model pruning
and knowledge distillation. On the basis of ensuring detection
accuracy, we will further compress the model size and reduce
computational resource consumption and hardware dependence.
Future work will focus on the deployment tests of the model on
edge devices or mobile terminals and evaluate its real-time
performance and stability in field environments.
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