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Effects of postharvest
collision damage on qualities
of kiwifruit during storage
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Introduction: Understanding the physicochemical quality variations of kiwifruit
subjected to repeated collisions during storage is critical for optimizing
postharvest processing and improving handling equipment. However, this issue
has received limited research attention. This study investigated the effects of
different factors (storage time, collision position, and collision frequency) on the
quality of kiwifruit during storage. This study provides new insights into the
preservation and storage of kiwifruit.

Methods: In this study, the effects of three collision frequencies (1, 3, and 5
impacts), three collision positions (top/stem shoulder, middle/cheek, and
bottom/calyx shoulder) simulated using an impactor, and a storage period of
42 days were evaluated on the physicochemical properties of kiwifruit.
Multivariate analysis of variance was performed on weight loss rate (WL),
hardness, soluble solids content (SSC), titratable acidity (TA), reducing sugars
(RS), and vitamin C (VC).

Results: The results showed that these factors significantly influenced WL and
the hardness of kiwifruit. The collision frequency and collision position both
affected SSC and RS, whereas collision frequency significantly influenced VC
content but not TA. On the contrary, the collision position had no significant
effect on VC content but significantly affected TA. The coefficient of
determination R2 for all multiple regression models exceeded 0.5.
Furthermore, correlation analysis demonstrated that repeated collisions
accelerated kiwifruit ripening, and weakened the correlation among
physicochemical properties.

Discussion: Overall, this study highlights the substantial impact of mechanical
damage on the physicochemical quality attributes of kiwifruit during storage,
offering a new perspective for assessing damage sensitivity under different
storage conditions.
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1 Introduction

Kiwifruit, a fruit highly prized for its rich nutritional profile, is
particularly noted for its high Vitamin C content, dietary fiber, and
antioxidant properties (Harker et al., 2019; Liang et al., 2022). The
fruit is widely consumed globally, both in its fresh form and as an
ingredient in various food products (Bassi et al., 2023). Postharvest
losses of kiwifruit occur throughout multiple different stages of the
supply chain, including harvesting, storing, handling, packaging,
transporting, and marketing (Al-Dairi et al., 2022). During these
processes, fruit may be bruised through mechanical stress, including
fingerprints, dropping, squeezing, and packing pressure (Wang
et al, 2021; Zhu et al., 2022). Collision damage represents one of
the most critical quality challenges during transportation. This
mechanical damage can result in bruising and severely reduce
marketability by altering the fruit’s physical and chemical
properties. Research indicates that mechanical damage can lead to
substantial postharvest losses ranging from 30% ~ 50% (Du et al.,
2019). Consequently, comprehending the effects of collision damage
on kiwifruit qualities is essential for devising strategies to mitigate
postharvest losses and prolong shelf life.

During mass harvesting using a shake-and-catch method or
postharvest handling (e.g., transportation), fruit-to-fruit or fruit-to-
limb are generally unavoidable (Li et al., 2023; Zaharan et al., 2020).
These impact forces are typically low in magnitude and may not leave
visible damage on the fruit surface. However, such mechanical impacts
can negatively affect fruit quality during storage. Mechanical damage
resulting from impact forces is a major contributor to the deterioration
of overall quality attributes and the economic value of produce. Fu
et al. (2023) employed the pendulum method to measure bruising in
apples caused by repeated low-intensity collisions. They found that
repeated collisions with lower intensity were preferable to reduce
bruise damage. The zone near the fruit stem was more susceptible to
causing smaller bruise sizes. Similarly, Wang et al. (2019) investigated
the impact behavior and damage level in litchi and found that most
damage occurred after ten fruit-to-fruit collisions. Accordingly, it was
hypothesized that different zones on the kiwifruit surface would bear
varying amounts and susceptibility of bruising, depending on the
locations of the kiwifruit surface and collision frequency.
Understanding the physicochemical properties change of kiwifruit
to bruising during storage after multiple impacts is essential for
developing strategies to minimize postharvest losses.

Numerous studies have examined the effects of various storage
conditions on kiwifruit qualities, with particular attention to factors
such as variety, loading methods, storage temperature, humidity, and
the application of preservatives (Zolfaghari et al., 2010; Ban et al,
2024; Chai et al.,, 2019; Xu et al., 2021; Polychroniadou et al., 2022).
Nalan and Nurdan (2024) investigated the relationship between
harvest time and physicochemical quality characteristics of
‘Hayward’ cultivar fruit during cold storage, finding that the
qualities of kiwifruit varied with harvest maturity under long-term
refrigeration. Song et al. (2022) established a vibrational bruise
prediction model based on a backpropagation (BP) neural network
to assess bruise damage in harvested kiwifruit. Their findings
indicated that vibration-induced damage and deformation could be
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predicted based on vibration acceleration, frequency, and duration.
Overall, previous studies have focused on the quality changes in
undamaged kiwifruit during storage or on the quantitative analysis of
mechanical damage resulting from compression and impact forces.
The quality variations of kiwifruit damaged by collision during
storage are different from those of undamaged kiwifruit. Existing
research has primarily focused on the influence of storage
conditions on fresh, intact kiwifruit and the quantitative analysis
of damage severity. However, the effects of collision damage and the
influence of kiwifruit quality during storage remain uninvestigated.
The specific effects of collision damage on postharvest quality
during storage remain largely unexplored. Therefore, this study
investigates how repeated collisions at different surface locations
affect the postharvest physicochemical properties of kiwifruit, using
a pendulum impact test. Thus, the study aimed to: (1) investigate
the effects of three factors including storage duration (42 days), and
three collision positions and three collision frequency on the
physicochemical quality attributes of kiwifruit, where few studies
have been discussed and (2) examine the influence of the of these
independent variables (storage duration, collision frequency and
collision position) on the dependent variables, including weight loss
(WL), hardness, soluble solids content (SSC), reducing sugars (RS),
titratable acidity (TA), vitamin C (VC) content, (3) determine the
correlations among physicochemical parameters during storage.

2 Materials and methods
2.1 Plant material and storage conditions

The ‘Xu Xiang  kiwifruits were hand-harvested at the
physiological maturity stage from an orchard located in Yangling,
Xianyang, China (108.06°E, 34.26°N) on the same day. Fruits of
uniform size and free from visual defects, including rot, splitting,
shrivelling, absence of bloom (wax), and bruising, were selected for
further analysis. Following the harvest, the fruits were transported
to the laboratory at Northwest A&F University for impact
treatment, as described in Section 2.2. The kiwifruit were
subsequently stored in a temperature-controlled chamber at 4 °C
and 72% relative humidity.

2.2 Experimental apparatus

A series of repeated impact tests, conducted once, three times,
and five times, were performed to evaluate effects on impact
parameters and physicochemical properties, focusing on different
surface zones of the kiwifruit: the stem shoulder, cheek area, and
calyx shoulder, which are referred to as the top, middle, and bottom
zones. The definitions of these three surface zones are illustrated in
Figure 1A. Before the impact tests, the impact regions on the
kiwifruits were outlined and marked with black pens. In contrast,
undamaged kiwifruits served as the control group. The impact tests
were carried out using a pendulum-type device consisting of a 400
mm long arm, a rotating angular indicator, an arm positioning
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(A) Schematic of the pendulum-type impact device and experimental setup (B) Physical and chemical quality testing.

mechanism, and a piezoelectric impact force sensor (JHBM-H1,
Bengbu sensor system engineering Co., Ltd, China) equipped with a
stainless-steel cylindrical impactor, all mounted on an aluminium
frame. During testing, the pendulum arm was manually drawn back
to a fixed position and released to strike the kiwifruit. The impact
force and contact duration between the fruit and the impactor were
recorded using an instrument information card (USB3100N, Aertai
Corp., China) at a sampling rate of 20 kHz, and the data were
processed using Art DQA software. The average impact force was
measured at 2.94 + 1.44 N, a magnitude consistent with forces
typically encountered by kiwifruit during harvesting, packaging,
and transportation (Chen et al., 2024).

Generally, the total number of treatments was 9 and each
treatment included 5 replicates. The study lasted for 42 days, and
the investigated physicochemical parameters were analyzed at
intervals of 1, 3, 5, 7, 16, 21, and 42 days. To avoid the influence
of low temperature on the testing of kiwifruit, all evaluations were
conducted at 20 °C after 2 hours of removing the kiwifruit from the
temperature-controlled chamber. The postharvest physicochemical
properties were assessed in the following sequence: weight loss
(WL), hardness, and selected chemical parameters, including
reducing sugars (RS), soluble solids concentration (SSC), total
acidity (TA) and vitamin C (VC). The testing procedure is
illustrated in Figure 1B.

2.3 Physical attributes measurements
Each kiwifruit was weighed using a digital balance with a
precision of 0.01 g (CN-LQ10002, Leqi, China). The weight loss

rate is calculated using Equation 1.

Mo=M, 140 1)

Frontiers in Plant Science

Where, M, and M; are the weight of kiwifruit before and after
storage, respectively (g), and the w is the weight loss rate (%).

The same surface zone of the kiwifruit impacted by the
pendulum-type device was first assessed for firmness using a P2
probe on a texture analyzer (TA.XT.Plus C, Stable Micro Systems,
Inc., England) at a speed of 3 mm/s and a penetration depth of 5
mm (Chen et al., 2024). It was worth noting that when evaluating
the hardness of kiwifruit, all the kiwifruit were peeled. The average
value was measured as the reference for sample hardness. Hardness
measurements for each kiwifruit were conducted in triplicate.
Subsequently, fresh juice was extracted from each kiwifruit for
chemical analysis.

2.4 Chemical attributes measurements

Kiwifruit juice was prepared through the processing of the flesh
in a juicer, followed by the filtration of larger impurities using a
filter cloth. The soluble solids content (SSC) of the juice was
determined using a handheld refractometer (ATAGO PAL-1,
model 8101, Japan) with juice extracted subsequent to texture
analysis. Reducing sugar (RS) was determined according to the
National Standard of the People’s Republic of China (GB/T 15038-
2006, 2006). Titratable acidity (TA) was assessed through
colorimetric titration using phenolphthalein and a 0.1 mol L™!
NaOH solution, with results expressed as malic acid equivalents per
100 mL of kiwifruit juice, based on a malic acid standard curve.
Vitamin C (VC) content was quantified as L-ascorbic acid and
measured by colorimetric titration with 0.05 mol L= 2,6-
dichloroindophenol sodium (GB 14754-2010, 2011). Three
replicate measurements for each group were conducted, with the
mean taken as the experimental value. The initial properties of the
selected kiwifruit are shown in Table 1.
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TABLE 1 The initial characteristics of fresh kiwifruit selected for the
study.

Main characteristics Value

Weight (g) 114.89 + 8.66
Firmness (N) 31.62 + 5.80
SSC (%) 13.93 + 0.83
RS (g/L) 1047 + 0.24
TA (g/L) 6.36 + 021
VC (mg/100g) 56.5 + 0.26

2.5 Pearson correlation and multiple
regression analysis

For Pearson’s correlation coefficient (r) (Equation 2), heat map
charts were utilized to graphically show the correlation matrices
between the quality attributes among all tested conditions. Each cell
in the correlation matrix corresponds to the correlation coefficient
(r). The color range of the heat map cells from green (high
correlation, r = 1) to red (high anti-correlation, r = -1), passing
from light yellow (no correlation, r = 0). The significance level was
set to ov = 0.001.

n(Sx) - (S(S)
VIS = (S - (7]

Where, 1 is the number of data points, i.e., (x, y) pairs, in the

r=1-

2

data set.

Also, the multiple regression model was applied to investigate
the influence of independent variables (storage duration, collision
times, and collision position) on the dependent variables (weight
loss, hardness, soluble solids content, reducing sugar, titratable
acidity, and VC) at a 5% significance level. Besides, the
determination coefficient (R?), maximum and minimum
residuals, and f-test were recorded to determine the accuracy of
each model.

2.6 Statistical analysis

IBM SPSS Statistics 26.0 (International Business Machine
Crop., New York, USA) was used for statistical analysis. The
multivariate analysis of variance was applied to investigate the
effects of collision frequency (once, three times, and five times),
collision position (top zone, middle zone, and bottom zone), and
storage duration on the physical quality (WL and hardness) and
chemical attributes (SSC, RS, TA and VC) at a 95% significance
level. Comparisons of physical and chemical attributes were
performed using the least significant difference (LSD) post hoc
test at o = 0.05. Graphs were generated using Origin 2021b
software (OriginLab Corp., Northampton, MA, USA). All results
are presented as mean * standard deviation.
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3 Results and discussion

3.1 Effect of storage duration, collision
frequency, and collision positions on the
physical attributes

3.1.1 Weight loss

Figure 2A showed that under different collision conditions, the
WL of kiwifruit increased significantly with prolonged storage.
During the early stage of storage, WL remained relatively low,
whereas in later stages, the variability in WL became more
pronounced. The storage duration had a significant effect on WL
(P < 0.0001). Within the first 21 days of storage, repeated collisions
had no significant effect on WL; however, WL gradually increased
with higher collision frequencies, and this effect intensified with
longer storage duration. Especially, on the 42nd day, the average
WL of the kiwifruit bottom zone after one impact, three impacts,
and five impacts was 3.11%, 3.37% and 4.65%. Thereby, the collision
frequency had a significant effect on WL (P < 0.0001). The cheek
zone of kiwifruit exhibited the greatest resistance to mechanical
damage compared with other positions, indicating the collision
position significantly influenced WL during storage (P = 0.004).

In the early storage stage, kiwifruit retained most of its moisture
and mechanical damage exerted only a limited effect. However, in
the later stage of storage, the weight loss of damaged kiwifruit was
significantly higher than that of undamaged kiwifruit. This is
because the impact load causes intracellular damage to the fruit
tissue cells, accelerating water loss and withering processes (Wei
etal., 2019). Notably, in later stages, variability in WL was observed
to increase, likely due to the cumulative effects of repeated collisions
and the progressive weakening of the fruit structure over time
(Islam et al., 2012). This variability may also be influenced by
cultivar, maturity, and skin condition, which affect the balance
among evaporation, oxidation, and microbial activity (Rivera et al.,
2021; Ali et al,, 2024). The cheek zone of kiwifruit exhibits the
highest resistance to mechanical damage, potentially due to its
thicker peel, densely arranged cells, and lower curvature. These
characteristics facilitate more uniform stress distribution upon
impact, thereby minimizing localized cell rupture. Consequently,
post-impact increases in WL remained relatively moderate.
Figure 2B presents the final regression model, with storage
duration, collision frequency, and collision position as
independent variables. The comparison between predicted and
measured WL indicated a good fit (R* = 0.792).

3.1.2 Hardness

As shown in Figure 3A, kiwifruit hardness consistently
decreased throughout storage. The maximum hardness was 33.46
N on Day 1, while the minimum hardness was 13.56 N on Day 7,
indicating pronounced softening during the early storage stage.
With prolonged storage, hardness further decreased to 11.19 N on
Day 42. These results indicated that storage duration had a
significant effect on the hardness reduction of kiwifruit during
storage (P<0.0001). The repeated impacts significantly influenced
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FIGURE 2

(A) Weight loss (WL) of different collision positions and frequency over 42 days (B) Results for the prediction models of weight loss (WL) based on

multiple regression models.

the rate of hardness reduction, with multiple impacts accelerating
softening (P<0.0001). Figure 3A also showed that the collision
position significantly affected kiwifruit hardness during storage (P
< 0.0001).

Changes in hardness generally reflect kiwifruit maturity and are
important indicators of fruit quality (Li et al., 2024). On the one
hand, mechanical damage can disrupt cell walls in the flesh,
promote microbial infection, and significantly accelerate fruit
softening (Sharma et al., 2009). On the other hand, when the cell
structure of kiwifruit is disrupted, both respiration and
transpiration rates increase, leading to accelerated loss of water
and nutrients (Xanthopoulos et al., 2017). The degradation of cell
wall components such as cellulose and pectin is exacerbated by
mechanical damage, which weakens the intercellular connections

and contributes to fruit softening (i.e., decreased firmness). Similar
findings were reported by Pan et al. (2022) in their study on cell wall
metabolism in small white apricots subjected to low-temperature
plasma treatment. Consequently, repeated collisions can rapidly
decrease kiwifruit hardness. Compared with other surface areas, the
kiwifruit stem shoulder exhibited greater resilience to impact stress,
whereas the calyx shoulder softened the fastest after impact. This
may be attributed to the larger curvature of the calyx shoulder,
which increases stress concentration during impact (Mao et al,
2023; Ban et al,, 2024). Therefore, avoiding repeated collisions on
the calyx shoulder of kiwifruit is essential for maintaining firmness
during storage. Figure 3B presented the hardness regression model
with all independent variables. The coefficient of determination (R?)
between the predicted and measured values of hardness was 0.561.
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3.2 Effect of storage duration, collision
frequency, and collision positions on the
chemical index

3.2.1 Soluble solids content

SSC is a crucial indicator of postharvest quality in kiwifruit.
During the experimental storage period, SSC ranged from a
maximum value of 14.36% on day 1 to a maximum value of 16.63%
on day 42, showing a significant upward trend with prolonged storage.
The increase was more pronounced during the first week than in later
stages, consistent with the findings of Pathare and Al-Dairi (2021). As
shown in Figure 4A, SSC varied slightly with collision frequency and
collision position. The analysis of variance revealed the significant
relationship between SSC and collision frequency (P = 0.016) and
collision position (P = 0.006). Compared to the other two collision
positions, the stem shoulder of kiwifruit exhibited the greatest
sensitivity to impact, significantly influencing SSC.

Regarding collision damage, Chai et al. (2019) observed that
SSC increased with rising storage temperature and duration during
kiwifruit ripening. Hussein et al. (2020) found no significant
relationship between SSC and impact bruising in pomegranates.
However, Maia et al. (2011) reported an increase in SSC in bananas
following bruise damage, which was attributed to the conversion of
starch to soluble sugars during the ripening process (Al-Dairi et al.,
2021; Gao et al,, 2021). Mechanical injury can induce stress
responses in the fruit, enhancing the activity of ripening-related
enzymes (e.g., pectinase, amylase), which further promotes cell wall
degradation and nutrient transformation. This includes the
accelerated conversion of starch to soluble sugars, thereby
affecting SSC (Polychroniadou et al, 2022). Figure 4B presented
the results of the SSC model and all independent variables. The
coefficient of determination (R2) was 0.674 between the predicted
and measured values of SSC.

10.3389/fpls.2025.1683638

3.2.2 Reducing sugar

As shown in Figure 5A, the RS content of kiwifruit increased
significantly with prolonged storage. The rate of increase was
greater during the first week than in later stages. After 42 days of
storage, the RS content of kiwifruit reached 11.30 g/L. This trend
can be attributed to the enzymatic conversion of starch into
reducing sugars primarily glucose and fructose, leading to their
gradual accumulation during storage (Yu et al., 2024). Analysis of
variance demonstrated that storage duration, collision frequency,
and collision position all exerted significant effects on RS (P <
0.001). However, during the early storage period, no significant
differences were observed among different collision treatments.
Significant variation in RS content emerged only when the top
zone was impacted, with differences becoming apparent after 42
days of storage under varying impact frequencies. Overall,
undamaged kiwifruits consistently exhibited higher RS content
than those subjected to mechanical damage, with the disparity
becoming more pronounced during the later stages of storage
under repeated impacts. Among the three collision positions,
impacts on the cheek region exerted the least influence on
RS content.

Kiwifruit subjected to mild impact damage during short-term
storage (within two weeks) may compensate for metabolic
disturbances through intrinsic self-repair mechanisms, thereby
exhibiting no significant RS differences. A similar observation was
reported by Pathare et al. (2023) in their study on simulated impact
effects in stored pomegranates. In contrast, during long-term
storage (beyond three weeks, particularly after six weeks),
cumulative damage exceeds the fruit’s capacity, leading to
progressive cellular degradation and intensified metabolic
disorders. This process results in significant differences in
response variables related to collision frequency and position
(Ren et al, 2020). As shown in Figure 5B, the RS prediction
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(A) Reducing sugar (RS) of different collision positions and frequency over 42 days (B) Results for the prediction models of soluble reducing sugar

(RS) based on multiple regression models.

model yielded a coefficient of determination (R?) of 0.537 between
predicted and observed values.

3.2.3 Titratable acidity

As shown in Figure 6A, the TA of kiwifruit significantly
decreased with the increase of storage period. The analysis of
variance showed no relation between the collision frequency and
the TA value of the kiwifruit (P = 0.273). On the contrary, the
collision position exerted a significant influence (P = 0.001). When
the calyx shoulder of the kiwifruit was subjected to one or repeated
collisions, no significant differences in TA were observed between
impacted and non-impacted fruit during the early storage period.
However, by the end of six weeks, the lowest TA value (2.94 g/L)
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was recorded in kiwifruits subjected to five impacts at the
calyx shoulder.

The reduction of TA is associated with accelerated fruit
senescence, as noted by Shahkoomahally and Ramezanian (2015).
The overall decrease in acidity during storage has been attributed to
the respiratory consumption of organic acids in fresh fruit
(Mubarok et al., 2022). Similarly, Nayab and Akhtar (2023)
reported a marked decline in TA in bananas, which became
inedible after 28 days of storage, likely due to dynamic changes in
malic, oxalic, and citric acid levels during the onset of ripening.
Therefore, over the entire storage period, the TA of kiwifruit
exhibits a continuous decline trend. Figure 6B presented the
results of the TA model and all independent variables. The
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(TA) based on multiple regression models.
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(A) Vitamin C (VC) of different collision positions and frequency over 42 days (B) Results for the prediction models of vitamin C (VC) based on

multiple regression models.

coefficient of determination (R?) was 0.543 between the predicted
and measured values of TA.

3.2.4 Vitamin C

As shown in Figure 7A, the vitamin C (VC) content of kiwifruit
decreased significantly during the storage period. During the initial
1-7 days, the VC content in kiwifruit remains relatively high, whereas
a pronounced decline occurred during the later stage of storage (16—
42 days) under all treatment conditions. The storage duration had a
significant effect on the VC content of kiwifruit. Furthermore,
increased impact frequency accelerated VC degradation. Analysis of
variance revealed a significant relationship between collision
frequency and VC content (P < 0.0001), whereas collision position
had no significant effect (P = 0.075). But, among fruit zones, the top
region was most effective in preserving VC, particularly under
repeated impacts, while the bottom zone was most susceptible,
exhibiting the lowest VC content across all impact scenarios.

In the early stages of storage, exposure to oxygen promotes the
oxidation of VC, leading to rapid degradation (Tavarini et al., 2008).
Additionally, it has been reported that as fruits become overripe,
VC levels decline in parallel with tissue breakdown (Kalt, 2005).
Consequently, VC content consistently decreases throughout
storage as kiwifruit ripens. Repeated collisions could exacerbate
kiwifruit damage by breaking the skin and cell walls, thereby
increasing exposure to oxygen and further influencing VC
content. Figure 7B presented the results of the VC model and all
independent variables. The coefficient of determination (R%) was
0.690 between the predicted and measured values of VC.

3.3 Correlation analysis between the main
indicators

The Pearson correlation coefficient matrix is shown as a heat map

(Figure 8). The Pearson correlation coefficient is used to provide the
linear correlation between physicochemical properties of kiwifruits,
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which is subjected to repeated impact series (once, three times, five
times) at three fruit surface zones (stem shoulder, cheek zone, calyx
shoulder). The color range of the heat map cells is from light yellow
(high correlation, r=1) to green (high anti-correlation, r=-1), passing
from white (no correlation, r = 0). Regarding the correlation between
chemical quality attributes, there was a significant negative
correlation between the WL with hardness, TA, and vitamin C of
kiwifruits in all tested conditions (r >- 0.926). There was a significant
negative correlation between the WL and SSC, RS of kiwifruits for all
tested conditions (r > 0.958). The hardness showed a significant
correlation with SSC, RS, and vitamin C content (r > 0.905). A
positive correlation was observed between RS with SSC in all kiwifruit
fruits across all tested conditions, and a negative correlation was
observed between RS with TA and vitamin C content. Meanwhile,
vitamin C content displayed a negative correlation with RS.
Generally, repeated impact on the stem shoulder and cheek zone of
kiwifruit can reduce the correlation between hardness and other
physicochemical properties, especially WL, TA. Repeated impact on
the fruit at its calyx shoulder reduced the correlation between the SSC
of the fruit. The correlation between the physical and
physicochemical properties of kiwifruit is not significantly affected
by slight impacts (Famiani et al., 2012; Cheng et al., 2022).

4 Conclusion

This study investigated the effects of repeated collisions on the
physicochemical properties of kiwifruit, revealing that impacts at
different surface zones influence fruit quality during storage.
Repeated collisions notably increased weight loss and accelerated
the reduction in firmness, particularly when applied to the calyx
shoulder, which was identified as the most susceptible area to
mechanical stress. Soluble solids content (SSC) and reducing
sugar (RS) levels generally increased with storage time. Both the
frequency and position of collisions exerted significant effects on the
contents of SSC and RS. Titratable acidity (TA) and vitamin C (VC)
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FIGURE 8

Heatmap of Pearson correlation coefficient (r) matrix between weight loss (WL), hardness, soluble solids content (SSC), reducing sugar (RS), tithable
acidity (TA), vitamin C (VC), maturity index (SSC/TA). Top zone, stem shoulder; middle zone, cheek zone; bottom zone, calyx shoulder). The yellower
and greener the color, the more correlation indicated. The color range of the heat map cells from green ((high correlation, r = -1) to yellow (high
anticorrelation, r = 1), passing from white (no correlation, r = 0). Significance level was set to 0.05, 0.01, 0.001.

content significantly decreased over time. An increase in collision
frequency did not significantly affect TA content but had a
significant impact on VC content. After collision damage at the
calyx shoulder, long term storage significantly affected TA content,
whereas damage at different positions did not significantly influence
changes in VC content. Furthermore, repeated collisions weakened
the correlations among various physicochemical parameters. These
findings underscore the importance of minimizing mechanical
impacts, particularly to the cheek and calyx shoulder regions,
during postharvest handling and storage to preserve the sensory
and nutritional quality of kiwifruit. This study enhances the
understanding of collision-induced damage in kiwifruit and offers
new insights for improving packaging and processing strategies.
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