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YOLOV8-FDA: lightweight wheat
ear detection and counting in

drone images based on
improved YOLOvVS8

Yuxuan Lin, Xiao Xiao and Haifeng Lin*

College of Information Science and Technology, Nanjing Forestry University, Nanjing, China

Introduction: Wheat is a vital global staple crop, where accurate ear detection
and counting are essential for yield prediction and field management. However,
the complexity of field environments poses significant challenges to achieving
lightweight yet high-precision detection.

Methods: This study proposes YOLOvV8-FDA, a lightweight detection and
counting method based on YOLOv8. The approach integrates RFAConv for
enhanced feature extraction, DySample for efficient multi-scale upsampling,
HWD for compressed and accelerated model training, and the SDL loss for
improved bounding box regression.

Results: Experimental results on the GWHD dataset show that YOLOv8-FDA
achieves a precision of 86.3%, recall of 77.5%, and mAP@0.5 of 84.9%,
outperforming the original YOLOv8n by significant margins. The model size is
2.96MB with a computational cost of 8.3 GFLOPs, and it operates at 19.2 FPS,
enabling real-time counting with over 97.5% accuracy using cross-
row segmentation.

Discussion: The proposed YOLOv8-FDA model demonstrates strong detection
performance, lightweight characteristics, and efficient real-time capability,
indicating its high practicality and suitability for deployment in real-world
agricultural applications.
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1 Introduction

Wheat is a core staple crop for global food security, with its
planted area, production, and trade volume ranking first among all
types of food crops (noa, 2025). Ensuring the sustainable
development of the wheat industry is therefore crucial to
maintaining long-term global food stability. Wheat yield directly
impacts human survival and social development. The number of
wheat heads in the field, as a key indicator for accurate yield
prediction (Maji et al., 2022), plays a vital role in wheat yield
estimation, breeding, cultivation management, and phenotypic
analysis. High-throughput detection and quantification of wheat
heads is essential for assessing wheat growth and density. Therefore,
research on wheat detection and counting holds substantial
significance. However, counting wheat heads from drone images
in real field environments remains challenging due to large image
sizes, object size calibration, dense object distribution, and
instance overlap.

Traditional detection and counting of wheat heads depend on
manual labor, which consumes a great deal of resources and is
subjective (Li et al., 2024a). As machine learning and deep learning
technologies are on the rise, real-time counting methods have
become a research hotspot. Currently, there are three main
methods for wheat head detection and counting: image
processing (IP), machine learning (ML), and deep learning (DL).
In IP-based research, Fernandez-Gallego et al. (2020) utilized RGB
images obtained from Unmanned Aerial Vehicles to obtain the
number of wheat heads in field images by filtering and locating local
peaks, achieving a detection accuracy of 90%. In ML-based research,
(Carlier et al., 2022) proposed a multi-sensor fusion classification
method based on RGB and multispectral superpixel features,
achieving a spike detection accuracy a of 94% using SVM (Hearst
et al., 1998), but the method suffers from poor real-time
performance. In past few years, DL-based algorithms for object
detection have been applied more frequently to detect and count
wheat heads. These methods mainly include two-stage algorithms
represented by the R-CNN (Girshick et al., 2014) series, which first
generates a series of candidate boxes, followed by object
classification and location refinement, and single-stage algorithms
typified by the YOLO (Redmon et al., 2016) and SSD (Liu et al.,
2016) series, which bypass candidate box generation by directly
formulating object localization as a regression problem. In terms of
two-stage methods, Li et al. (2022b) adopted the Faster R-CNN to
achieve wheat head image detection and site localization. The study
confirmed that the spike number (SN) prediction model performed
robustly in the validation of the manually labeled dataset (MSN),
with an average accuracy of 86.7%. In terms of single-stage
detectors, Khaki et al. (2022) designed WheatNet, which uses a
lightweight pruned MobileNetV2 (Sandler et al., 2018) as the core
feature extractor, achieving high accuracy in wheat head detection
and counting with real-time processing capabilities, thereby directly
serving field decision-making systems. (Li and Wu, 2022) proposed
an enhanced YOLOV5 architecture, which significantly improves
small wheat head detection accuracy through data augmentation
optimization, feature pyramid reconstruction, and dual attention
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mechanism. The improved model achieved 94.3% mAP on the test
set, effectively overcoming issues of missed detection and
misidentification of dense wheat heads. Although single-stage and
two-stage detectors obtain comparable accuracy in wheat head
detection, single-stage methods are remarkably better suited for
real-time field counting tasks owing to their swifter inference speed
and reduced computational overhead.

In modern agriculture, YOLO-based detectors have become
indispensable for real-time monitoring because of their high
precision and inference speed. Shen et al. (2023a) put forward an
improved YOLOvV5 algorithm using separable convolution to
replace standard convolution combined with a co-attention
mechanism, which improves the accuracy of detection in intricate
large-scale field backgrounds with overlap and occlusion. However,
the algorithm’s ability to detect wheat spikes at the image edges,
where they are not fully displayed, is inadequate. Li et al. (2024b)
integrated DCNv3 (Wang et al., 2023b), PConv (Chen et al., 2023)
and BiFPN (Tan et al., 2020) to reconstruct the detection
architecture, and introduced a CBAM (Jy and Kweon, 2018) to
enhance feature fusion. They proposed the YOLOv7-DeepSORT
variant with deep compression, achieving a significant reduction in
model size while simultaneously improving detection accuracy.
(Shen et al., 2023b), on the other hand, developed the ultra-small
S-YOLOvV5s model based on ShuffleNetV2’s (Gong, 2024) channel
compression strategy, combined with lightweight upsampling
feature reconstruction technology, maintaining superior detection
performance even under extreme parameter compression
conditions. The current research focus is on reducing the model
parameter size while improving the accuracy of wheat
head detection.

In summary, compared to traditional manual calculations, IP
and ML methods save labor and resources, and reduce the impact of
subjective factors. However, these methods are generally complex
and highly dependent on image features such as color and texture,
resulting in poor robustness. DL-based methods, on the other hand,
overcome the reliance on image-related features and made
significant progress in detection performance under complex
environments. However, these methods are not well-suited for
detecting small wheat head targets, resulting in a substantial
decline in accuracy. Moreover, most existing models contain a
large number of parameters, limiting the lightweight deployment in
real-world field environments. To tackle these problems, this paper
puts forward an enhanced lightweight YOLOv8 model that
maintains robust detection performance even in complex
environments for small-sized wheat heads. The core contributions
of this paper are summarized as follows:

1. The use of the RFAConv module enhances feature
extraction capabilities for wheat heads, reduces redundant
computations and memory access, and improves spatial
feature capture.

2. The introduction of the Dysample module enables dynamic
adjustment of feature map scales, optimizing
computational resource utilization and enhancing the
preservation of detailed wheat head information.
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FIGURE 1
GWHD dataset example.

3. The adoption of HWD enables more efficient
downsampling, reducing the number of parameters while
preserving frequency-domain features, thus improving
detection efficiency.

4. The integration of the SDL loss function jointly optimizes
the distance and shape fitting of bounding boxes,
remarkably improving the accuracy of wheat head
detection and counting and expediting model convergence.

2 Materials and methods
2.1 Dataset preparation

This study uses the 2021 GWHD (David et al., 2021) public
dataset, which contains over 6,000 wheat spike images from 16
research institutions across 12 countries, with a resolution of 1024 x
1024. This dataset covers diverse wheat varieties, planting densities,
growth stages, field conditions, and acquisition methods, as
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illustrated in Figure 1. The dataset was divided into training,
validation, and test sets in an 8:1:1 ratio.

2.2 Enhancement of the YOLOvV8 model

2.2.1 Fundamental network architecture of the
YOLOvV8 model

The YOLOvV8 model is built upon earlier YOLO series (Yaseen,
2024), incorporating improvements through optimizations in
network architecture and training strategies, which further
enhance object detection performance and efficiency. The
YOLOV8 network architecture is made up of three primary
components: Backbone, Neck, and Head. Backbone extracts high-
level semantic features from the image, including object shapes,
textures, and contextual information. The neck fuses features from
various layers for multiscale processing, enhancing the ability to
detect targets at different scales. The head uses the fused features to
predict bounding boxes and classes, generating the final detection
results. Spatial Pyramid Pooling Force (SPPF) generates fixed
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FIGURE 2

YOLOV8 network structure diagram.

feature representations for multi-scale objects without the need to
resize images or introduce spatial information loss, thereby
accelerating computational speed. The C2f block combines high-
level features with contextual information to improve detection
accuracy. The convolutional blocks consist of 2D convolution
layers, 2D batch normalization, and activation functions. The
detection algorithm employs an Anchor-Free method, getting rid
of the dependence on conventional Anchor Boxes. This
improvement effectively addresses the localization errors and the
imbalance between positive and negative sample distributions
inherent in anchor-based methods. The YOLOVS series offers five
versions: n, s, m, 1, x, based on different network depths and feature
map widths. Among these, YOLOv8n has the fewest parameters
and of the highest detection speed. Therefore, to balance the
model’s parameter count while enabling rapid data processing,
this study selected the lightweight YOLOv8n version. The
YOLOV8 network architecture is illustrated in Figure 2.

2.2.2 Improved YOLOvV8 network architecture

This study aims to enhance the original YOLOV8 in four
aspects. First, in the Backbone, the original Conv module after
the first layer is replaced with RFAConv to improve feature
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extraction capabilities. Next, in the Neck, the original Upsample
module is replaced with Dysample, which dynamically adjusts the
scale of the feature maps, better preserves detail information,
improves the model’s adaptability to objects of multiple scales,
and accelerates the convergence speed. Additionally, the original
downsampling Conv module is replaced with HWD, which
incorporates Haar wavelet transformation for more effective
downsampling, reducing parameters while preserving frequency-
domain features and detailed information. Finally, the SDL function
replaces the default YOLOVS loss, jointly optimizing bounding box
distance and shape fitting, which significantly enhances localization
accuracy and accelerates model convergence. The improved model
in this study is named YOLOVS-FDA, as illustrated in Figure 3.

2.2.3 Receptive Field Attentive-RFAConv

Field detection of wheat spikes faces unique challenges,
including diverse spike morphologies and intricate details in
dense scenes. Traditional convolutional networks have limitations
due to their parameter sharing mechanism, struggle to adapt to the
geometric deformations and scale variations of wheat spikes,
leading to insufficient capability in capturing fine-grained spike
features (Khan et al., 2020). Moreover, the uniform application of
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FIGURE 3
Structure of YOLOvV8-FDA.

fixed convolutional kernels across spatial locations fails to
adequately model the local feature differences, further weakening
the model’s robustness in complex agricultural environments. To
address these problems, this study presents the REAConv module
(Zhang et al., 2023), which significantly enhances the accuracy of
wheat spike detection through adaptive receptive field optimization
and attention-weighted mechanisms. The structural design is
shown in Figure 4.

The key innovation of RFAConv resides in the combination of
spatial attention mechanisms and traditional convolution
operations, which remarkably boosts the network’s capacity to
perceive local features and elevates the accuracy of representation.
This module can dynamically recognize the prominent regions
within the input feature map and adaptively modify the weight
distribution of the convolution kernels, enabling a focused
enhancement of key features. This design balances the need for a
large receptive field with efficient computational resource allocation,
thereby improving model performance while maintaining low
computational overhead.

As shown in Figure 5, the spatial characteristics of the receptive
field are composed of sliding windows that do not overlap 3 x 3,
each window being responsible for extracting detailed information
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from local regions (Bertels et al, 2022). By introducing group
convolution techniques, the module expands the feature set that
matches the receptive field size and efficiently compresses the
feature dimensions using fast group convolution algorithms. This
process transforms the original features into a new representation
enriched with spatial attention, providing more discriminative
input for downstream tasks.

To improve feature detect accuracy, average pooling is used to
aggregate global contextual information within the receptive field,
significantly reducing computational complexity and the number of
parameters. Then, 1 x 1 group convolutions are applied to enable
cross-channel feature interaction, and the Softmax function is used
to adaptively weight the feature importance within the receptive
field, thereby enhancing the response strength of key regions. The
calculation of RFA, as shown in Equation 1, is formulated as
follows:

F = softmax (g"*! (AvgPool (X)))
x ReLU (Norm (gka(X)))

ZA,f X thf (1)
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RFAConv structure.
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FIGURE 5
Receptive field spatial feature transformation.

X1 represents a group convolution with a size of 1

In this case, g
x 1, Norm refers to normalization, k denotes the size of the
convolution kernel and X represents the input feature map. The
feature map F is obtained by multiplying the attention map A,y with

the spatial features F,, that have been transformed by the sensory
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Receptive-Field Spatial Feature
Cx3Hx3W

fields. The final receptive field spatial feature map has dimensions of
C x 3H x 3W, where the width and height are three times the size of
the input feature map. To adjust the dimensions of the feature map,
a 3 x 3 convolution is applied. Through the attention map learned
by RFAConv, the model combines the feature information from
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Dynamic upsampling based on sampling and module design in DySample. (A) Sampling based dynamic upsampling. (B) Sampling based dynamic

upsampling.

each receptive field region, significantly improving the accuracy of
feature extraction.

2.2.4 Dynamic upsampling-DySample

This research employs the DySample (Liu et al., 2023) dynamic
upsampling technique for tackling the computational redundancy,
poor multi-scale adaptability, and insufficient detail preservation in
traditional upsampling methods for wheat spike detection. In the
YOLOV8-FDA, DySample substitutes for the standard Upsampling
module, overcoming the high resource demands of traditional
methods and significantly enhancing the practicality of deploying
the model on mobile devices in agricultural fields. This
improvement is particularly crucial for dense wheat spike
scenarios, where traditional methods often lead to edge blurring
and texture loss when processing small-scale spike grains, hindering
the extraction of key morphological features. DySample
reconstructs the upsampling process through a feature-driven
adaptive sampling mechanism, eliminating the need for complex
convolution operations and significantly reducing parameter size
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and computational overhead. Its core innovation lies in dynamically
adjusting the sampling locations based on the spatial arrangement
of wheat spikes, enhancing the representation of details such as
spike grain connections and awns while preserving high-frequency
information. The lightweight architecture design effectively reduces
the dependence on high-resolution input images and significantly
optimizes resource utilization for real-time field detection, with
detailed design shown in Figure 6.

DySample uses a feature map y of size C x H; x Wy, and a
sampling set S of size 2 x H, x W,, where the first dimension of size
2 represents the x and y coordinates, the grid sampling function
uses the coordinates in S to re-sample the bilinearly interpolated
version of y, resulting in a new feature map of size C x H, x W..
This process is described as follows:

)

DySample initially maps the input feature map y into a continuous

x' = grid_sample(y, S)

space through bilinear interpolation and computes an offset O to
modify the sampling locations. This offset O is then superimposed on
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HWD network structure.

the original sampling grid G to produce the final set of sampled points
S. As shown in Equation 3, the formula is as follows:

O = 0.5 x sigmoid (linear; (y)) x linear,(y) (3)

To enhance the adaptability of the offset, DySample generates a
point-wise dynamic range factor within the interval [0, 0.5] using
linear projection, which is then adjusted using a sigmoid function.
As defined in Equation 4, the offset O is calculated as follows:

§=G+0 (4)

Finally, the upsampled feature map X’ of size C x sH x sW is
generated using the sampling set through grid sampling, as shown
in Equation 2. DySample adapts to capture key details through
dynamic sampling position adjustment, significantly enhancing its
ability to represent complex textures of wheat spikes and small-
scale targets.

2.2.5 HWD module

In the YOLOV8n architecture, the traditional downsampling
with stride-2 convolutions drastically reduces feature map size,
leading to the disappearance of intricate and detailed elements
and a limited receptive field, which significantly weakens the
model’s ability to capture subtle local features. Inspired by the
Haar wavelet downsampling (HWD) model (Xu et al., 2023), whose
network architecture is shown in Figure 7, this study replaces the
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standard downsampling process with the Haar wavelet transform.
This technique performs frequency-domain decomposition,
downsampling the feature map while preserving key image details
and expanding the model’s perception of global features. Compared
to strided convolutions, HWD offers a simpler and more efficient
design that reduces computational costs, accelerates training
convergence, and enhances detection performance. Based on
these advantages, this study replaces the stride-2 convolution
layers in the Neck with the HWD module, comprehensively
optimizing the model’s detection capabilities in complex scenarios.

The essence of the HWD module is composed of a lossless feature
encoding area and a feature learning area. The lossless encoding area
utilizes the Haar wavelet transform, which, at the target resolution,
applies cascaded high-pass (H,) and low-pass (H,) filtering followed by
downsampling (] 2) to generate a low frequency approximation
subband (A) and directional high-frequency subbands (horizontal-H,
vertical-V, diagonal-D) are generated. This process, illustrated in
Figure 8, preserves fine-grained features while compressing spatial
resolution. As shown in Equation 5, the formulation of this process is
presented as follows:

o(x) =
Y (x) = W Pro(x) - ﬁ 0r11(x) (5)

\/- % o) + \/5 ¢1,1(x)

(%) = V29(2x - k),k=0,1,....2 - L.
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where j represents the scale level of the wavelet decomposition,
and k represents the direction selection of the wavelet function.

The feature learning area applies 1 x 1 Conv-BN-ReLU
operations. By adaptively adjusting feature channel dimensions,
this module efficiently filters redundant information, thus
improving the ability of the subsequent layers to extract
discriminative features. This architecture significantly boosts
model learning efficiency and generalization performance,
establishing a robust foundation for accurate data analysis.

Given an input feature map of size H xW x C, the downsampled
output size is £ x % x C. Compared to traditional downsampling
using a stride-2 3 x 3 convolution, the optimization of total
parameters and FLOPs overhead in HWD is shown in Table 1.

Table 1 shows that the quantity of parameters in strided
convolution is more than twice that of the HWD module. When
the quantity of channels C > 1, the computational overhead is also
significantly higher than that of the HWD module. In conclusion,
HWD module achieves a better trade-off between parameter count
and computational complexity while outputting multi-band
feature representation.

2.2.6 Scale-based Dynamic Loss

The initial YOLOvS utilizes the Complete Intersection over
Union (CIoU) loss for bbox regression (Zheng et al., 2021), jointly
optimizing the Intersection over Union (IoU), the Euclidean
distance between the centroids of the bounding boxes, and the
aspect ratio similarity (Wang and Song, 2021). However, it has a

TABLE 1 Comparison of parameters and FLOPs for two downsampling
methods.

Module Parameters FLOPs
HWD 4C? 2HWC? + 3.75HWC
Stride-2 3 x 3 Convolution 9C? 45HWC* - 0.25HWC
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limitation regarding scale sensitivity: small targets experience
significant IoU fluctuations due to label inaccuracies, leading to
decreased regression stability. To tackle this problem, this study
presents the Scale-based Dynamic Loss (SDL) (Yang et al., 2025)
which dynamically adjusts the loss component weights according to
target size. As shown in Figure 9, as the target size decreases, the
weight of the scale loss (BLps) decreases to suppress large
fluctuations, while the weight of the location loss (8Lp;) increases
to enhance location stability. This adaptive mechanism improves
detection robustness for small targets and mitigates training
instability caused by label noise. As shown in Equations 6-8, the
formulas before and after the improvement are as follows:

2 Z’J )bgt
Loy =1 —IoU+%+ av (6)
Lps=1-1IoU+av (7)

1.5¢=
ﬂ \ Bg‘l max=81
B

0.5

v

9 25 49 81

FIGURE 9
The value of weight in Sloss and Lloss concerning the target BBox
area.
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TABLE 2 Model training software and hardware environment
configuration.

Software and hardware

. Configuration
environment

Operating system Windows11

Python3.10.0, PyTorch2.6.0,

Softw:
ottware CUDAI12.1
™ ;

CPU Intel(R) Core ™ i7-14700KF @

3.40GHz

NVIDIA GeForce RTX 4070
GPU
SUPER 12GB

RAM 32GB

TABLE 3 Training parameters.

Model training parameters Configuration

Parameter learning rate 0.01
Input image size 640 x 640
epoch 150
Momentum 0.937
batch size 16
Warmup bias Ir 0.1
Weight decay 0.0005
2 t
£y =200 ®)

Here, IOU is the ratio of the area where the predicted bbox and
ground truth bbox overlap to the total area covered by both boxes
combined, v is the aspect ratio penalty term, which improves the
morphological consistency through the angular disparity metric
with adaptive weights, pz(bp, b¥") represents the Euclidean distance
between the center of the predicted bbox and the center of the
ground truth bbox, while ¢ denotes the diagonal length of the
minimum enclosing rectangle that contains both the predicted and
ground truth boxes.

The size of the target changes when the model scales the image
or subsamples the feature map. As shown in Equations 9, 10, the
ratio between the original image and the current feature map and
the influence coefficient of BBox (fB) are calculated as follows:

R = w, X h, ©)
oc ™ we X h,
. By
Bg = min ( X Roc % 8, 0) (10)
gtmax

where w,, wy, are the width and height of the original image, and
W, wy, are the width and height of the current feature map. The
influence coefficient of the loss is based on the area of the current
bbox, with its range constrained to 8, which is adjustable. As shown
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in Equations 11-13, the final scale-based dynamic loss for the bbox
is given by the following formula:

B, =1-6+Ps (11)
B, =1+6- P (12)
Lspp = B,y X Lps+ Pr, X Lyt (13)

In this way, SDL dynamically adjusts the ratio of scale loss and
location loss based on the size of the target, effectively improving the
regression accuracy for small targets such as wheat spikes.

3 Experiments and results
3.1 Experimental configuration

The experimental hardware and software environment and the
model training parameters are shown in Tables 2, 3 respectively.

The training parameters listed in Table 3 were primarily based
on the default recommendations of YOLOv8 (Yaseen, 2024). To
ensure stable convergence on the GWHD dataset, several key
hyperparameters, such as the learning rate and batch size, were
empirically adjusted through preliminary experiments. This
parameter selection strategy is consistent with previous practices
in similar object detection studies (Li et al., 2024b).

The baseline model and the YOLOv8-FDA were trained under
the same experimental environment and parameter settings, and
their loss variations during the training process are presented
in Figure 10.

As shown in Figure 10, the larger learning rate in the early
stages of training causes the loss of both models to decrease rapidly,
but also leads to instability. As training progresses, the models
gradually approach saturation, the learning rate decreases, and the
rate of loss reduction slows down. Eventually, the models converge
to a stable state. Compared to the baseline model, the YOLOVS-
FDA demonstrates faster convergence and lower loss throughout
the training process.

3.2 Performance measures

The experiment evaluates miss and false detection rates by
comparing YOLOvV8-FDA with other models under identical
conditions. The evaluation primarily uses three metrics: precision,
recall, and mean Average Precision calculated at a single IoU
threshold of 0.5 (mAP@0.5). Precision reflects the accuracy of the
model, recall reflects the sensitivity of the model, mAP reflects the
average detection precision across all categories, and mAP@0.5
denotes the mean average precision when the IoU threshold is set at
0.5. As shown in Equations 14-17, the mathematical expressions for
these evaluation metrics are as follows:

TP

P=—r
TP + FP

(14)
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FIGURE 10
The training loss curves of the baseline model and the YOLOv8-FDA.

R= P 15
" TP+FN (15)
1
AP :/ P(R)dR (16)
0
1m
mAP = ;EAP(:) 17)

In the formula, TP denotes the number of correctly predicted
foreign object positive instances, which are indeed positive in the
outcomes of the detection. FP represents the number of instances
incorrectly predicted as foreign object positives but actually
belonging to non-foreign object classes. FN represents the
number of instances predicted as foreign object positives but
detected as non-foreign object negatives.

Additionally, this paper uses the number of parameters as the
evaluation metric for the algorithm’s space complexity and the
floating point operations (FLOPs) as the evaluation metric for the
algorithm’s computational complexity.

3.3 Experimental validation of model
components

To validate the enhancement impact of every improvement in the
YOLOV8-FDA, we contrast different evaluation metrics of every
enhanced model on the test set. In the experiment, each
improvement is regarded as a variable to guarantee the consistency
of the experimental environment and parameter settings. The
outcomes of the experiment are presented in Table 4, where “/”
represents the corresponding improvement. Table 4 shows:

Table 4 shows the results of the ablation experiments, which
evaluate the contribution of each individual module and their
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combinations to the performance of the model. The incorporation of
the RFAConv module, which enhances feature representation through
a receptive field attention mechanism, leads to significant performance
gains. Specifically, Precision improves by 1.1%, Recall increases by
2.7%, and mAP@0.5 rises by 2.1%. This improvement comes at the cost
of an increase of 0.2G in model FLOPs, indicating that RFAConv helps
the model better adapt to the morphological diversity of wheat spikes,
enhancing the detection accuracy for wheat ears.

The DySample module, which optimizes the feature map
resolution adjustment process, results in a 1.2% increase in Recall
while maintaining nearly the same number of parameters and FLOPs.
This shows that DySample plays a crucial role in improving the model’s
ability to detect small-scale wheat spikes without adding significant
computational overhead. Meanwhile, the HWD module, which
performs dimensionality reduction using Haar wavelet transform,
reduces model parameters by 0.11M and FLOPs by 0.1G, while still
retaining 82.2% of the baseline mAP@0.5 performance, demonstrating
its efficiency in reducing model complexity without sacrificing
detection accuracy. Finally, the SDL module optimizes the IoU
calculation for bounding boxes, significantly improving localization
accuracy in dense wheat spike scenes. This results in a 0.8% increase in
Recall and a 0.2% increase in mAP@0.5, enhancing the model’s ability
to distinguish overlapping wheat spikes.

In addition to evaluating the performance of individual modules,
we also considered combinations of modules to assess their synergistic
effects. The combination of RFAConv and DySample, for example,
resulted in a 2.2% increase in Recall, showing that these modules work
well together to enhance the model’s sensitivity to small targets.
Furthermore, the combination of RFAConv, DySample, and SDL
demonstrated the greatest improvements, with both Recall and
mAP@0.5 increasing significantly. These results highlight the
importance of combining complementary modules for maximizing
detection accuracy, particularly in complex wheat spike scenes with
overlapping spikes. Overall, the combination of these modules leads to
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TABLE 4 Ablation experiment results.

10.3389/fpls.2025.1682243

Baseline RFAConv Dysample HWD Precision Recall mAP@O0.5 Parameters FLOPs
Yolov8n - - - - 84.9% 74.2% 82.3% 3.02M 82G
Yolov8n v - - - 86% 76.9% 84.4% 3.05M 8.4G
Yolov8n - v - - 84.8% 75.4% 83.1% 3.03M 8.3G
Yolov8n - - v - 83.8% 74.7% 82.2% 2.91M 8.1G
Yolov8n - - - v 84.1% 75% 82.5% 3.02M 82G
Yolov8n v v - - 85% 76.8% 83.5% 3.06M 8.5G
Yolov8n v - v - 85.6% 77.1% 84.1% 2.94M 83G
Yolov8n v - - v 85.2% 76.4% 82.9% 3.05M 8.4G
Yolov8n - v v - 85.1% 75.5% 82.3% 2.93M 8.1G
Yolov8n - v - v 84.5% 75.3% 82.5% 3.03M 8.3G
Yolov8n - - v v 83.3% 74.7% 81.3% 2.92M 8.1G
Yolovsn v v v - 85.9% 77.3% 84.1% 2.96M 83G
Yolov8n v v - v 84.3% 76.2% 84.2% 3.06M 8.5G
Yolov8n v - v v 85.5% 76.9% 83.7% 2.94M 83G
Yolov8n - v v v 83.9% 75.3% 82.5% 2.93M 8.1G
Yolovsn v v v v 86.3% 77.5% 84.9% 2.96M 83G

consistent improvements in both detection accuracy and
computational efficiency, with the final model achieving 86.3%
Precision, 77.5% Recall, and 84.9% mAP®@0.5, as shown in the last
row of Table 4.

The YOLOVS-FDA achieves a breakthrough in complex
agricultural environments: while reducing model parameters by
0.06M, Precision increased by 1.4%, Recall improved by 3.3%, and
mAP@0.5 rose by 2.6%. This compact yet efficient structure
significantly boosts the generalization ability of the model, improving
its applicability and reliability in practical applications, providing a
robust and practical detection solution for precision agriculture. To
understand the internal workings of the model, the predicted results of
the original model and the proposed model in this paper are visualized
using the XGradCAM (Fu et al, 2020) algorithm, as shown
in Figure 11.

As illustrated in Figure 11, the YOLOv8-FDA effectively suppresses
interference from background and redundant information, directing
core attention to the spike axis of the wheat ear. In contrast, the original
model performs suboptimally due to excessive focus on non-critical
regions such as awns, stems, and leaves. This shows that YOLOv8-FDA
has the ability to capture the distinctive features of wheat ears with
greater precision, and its visualization results align closely with
experimental expectations.

3.4 Comparative analysis of model
performance

Under the experimental setting of 150 training epochs, the core
performance metrics of various detection models on the validation
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set all reached a stable state at the end of training, as shown in
Figure 12. This indicates that all models effectively converged on the
dataset, ensuring reliable performance comparison. For the baseline
selection, YOLOv5, YOLOvS, YOLOv10, and YOLOv11l were
chosen because they follow a clear architectural lineage from the
Ultralytics framework (Kang and Kim, 2023), are widely adopted in
the community, and have stable open-source implementations. In
contrast, YOLOV6 (Li et al., 2022a), YOLOv7 (Wang et al., 2023a),
and YOLOvV9 (Wang et al, 2024) were excluded due to limited
community adoption, lack of long-term maintenance, or divergence
from the main codebase, which would reduce the reproducibility
and relevance of comparisons.

To verify the effectiveness of YOLOv8-FDA, it was tested and
compared with models such as YOLOv5n, YOLOv8n, YOLOv10n,
YOLOvVl11n, Faster R-CNN, and Rtdetr-resnet50. The results are
shown in Table 5. YOLOvV8-FDA achieves 86.3% Precision, 77.5%
Recall, and 84.9% mAP®@0.5, outperforming lightweight models
such as YOLOv5n, YOLOv8n, YOLOv10n, and YOLOv11n in both
accuracy and recall. Although YOLOvI11 demonstrates stronger
performance than YOLOv5, YOLOVS, and YOLOV10, and achieves
this with fewer parameters and FLOPs, our goal is to enhance the
performance of lightweight baselines that are widely deployed in
practice. Therefore, YOLOv8n was selected as the core baseline for
improvement, as it represents a balance of simplicity, efficiency, and
relevance for lightweight enhancement (Lu et al., 2023).

Compared with Faster R-CNN, which achieves only 50.7%
Precision, 46.7% Recall, and 47.1% mAP@0.5 despite its large
model size (41.48M parameters) and high computational cost
(202 GFLOPs), YOLOV8-FDA demonstrates clear superiority in
both detection accuracy and efficiency. The relatively poor
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FIGURE 11

Visualization of model prediction results based on XGradCAM algorithm. (A) Input image. (B) YOLOv8n Visualization Results. (C) YOLOv8-FDA

Visualization Results.
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TABLE 5 Results of comparison experiments.

mAP@0.5

Precision (%) Recall (%) %) Parameters (M) FLOPs (G)
YOLOv5n 82.7 738 81.2 251 7.1
YOLOvSn 84.9 742 823 3.02 8.2
YOLOV10n 823 737 81.6 271 83
YOLOvl1n 84.7 754 83.7 259 6.4
Faster R-CNN 50.7 46.7 47.1 41.48 202
Rtdetr-resnet50 91.6 80.8 88.7 429 130.7
YOLOVS-FDA 86.3 77.5 84.9 2.96 83

performance of Faster R-CNN may be attributed to the mismatch
between its two-stage detection framework and the dense small-
object characteristics of the GWHD 2021 dataset. Furthermore, its
large computational overhead requires longer training and careful
hyperparameter tuning to achieve convergence, and insufficient
training epochs or suboptimal optimization may further reduce its
accuracy and recall. Although Rtdetrresnet50 achieves the highest
Precision (91.6%) and Recall (80.8%), its computational burden is
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heavy, with 42.9M parameters and 130.7 GFLOPs, making it
unsuitable for lightweight and efficient deployment. In contrast,
YOLOV8-FDA maintains competitive accuracy with only 2.96M
parameters and 8.3 GFLOPs, striking an excellent balance between
accuracy and efficiency. In conclusion, YOLOv8-FDA not only
enhances counting accuracy but also sustains high detection
efficiency, making it well-suited for wheat spike detection and
counting tasks under practical conditions.
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3.5 Robustness test

To evaluate the model’s robustness against interference,
robustness tests were conducted in complex scenarios such as
overlap and occlusion. A total of 637 images from the validation
set were used, with both the baseline model and the YOLOvS8-FDA
applied for detection. The results were statistically analyzed and are
presented in Table 6, with corresponding visual examples shown in
Figure 13. In the visual representations, the green boxes stand for
accurate detections, whereas the red and blue boxes denote missed
detections and false detections, respectively.

As shown in Table 6, compared to the YOLOVS, the YOLOVS-
FDA demonstrates an improvement of 0.7% in correct detection
rate. The improvement is illustrated more intuitively through the
example in Figure 13, where the enhanced model remarkably
decreases both the miss detection rate and the false positive rate
compared to the YOLOVS. These results illustrate that the YOLOvVS-
FDA shows a significant enhancement in handling complex field
scenarios, exhibiting strong robustness.

TABLE 6 Robustness test results.

10.3389/fpls.2025.1682243

4 Discussion

To address the issue of detection accuracy degradation caused
by the dense arrangement of small-scale wheat ears and occlusion in
complex field environments, this paper proposes the YOLOv8-FDA
model. The model optimizes multi-scale feature fusion through
dynamic upsampling techniques, significantly reducing the edge
blurring problem caused by traditional methods, thus ensuring
accurate localization of dense wheat ears. The Haar wavelet-based
downsampling strategy reduces the number of parameters while
preserving frequency-domain features, compressing the model size
to 2.96M with a computational cost of only 8.3GFLOPs, rendering it
appropriate for deployment on mobile devices. By dynamically
adjusting the loss weights, the model effectively mitigates the
regression instability caused by annotation errors in small targets.
This improvement has universal significance for object detection
with significant size differences in agricultural scenarios. In
addition, we compared YOLOv8-FDA with several recent
methods for wheat ear detection and counting. Multi-scale
Feature Enhancement Network (Qian et al, 2024) employs a
deformable spatial attention mechanism and multi-scale feature
fusion to improve accuracy under occlusion, yet its 37.65M hinder
practical deployment on resource-limited hardware. By contrast,
YOLOV8-FDA achieves comparable precision while dramatically
reducing model size. Li et al. (2024a) proposed a morphology-based
approach that yields high spike-count predictions but proves
sensitive to ear overlap and lighting variations. YOLOv8-FDA
effectively alleviates detection failures caused by overlapping

Accurac!
Model Total TP FP FN yracy
(%)
YOLOv8 27076 23724 5228 3352 87.6
YOLOVS- 27076 23920 4878 3156 88.3
FDA :
FIGURE 13

Detection examples of baseline and improved models in complex scenes.
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spikes, although its robustness to variable illumination remains
constrained; future work may incorporate image preprocessing
techniques to address this shortcoming.

Despite these advances, YOLOvV8-FDA still faces several
limitations: its training relies predominantly on the GWHD dataset,
whose limited coverage of field environments, wheat varieties and
developmental stages may reduce generalizability in heterogeneous
scenarios; its 8. 3GFLOPs computational footprint, while modest, must
be further optimized to achieve genuine real-time performance on edge
devices; and its applicability to other crops has yet to be validated.

Future research will therefore prioritize cross-scenario transfer
learning-leveraging domain-adaptation and few-shot strategies to
enhance robustness in novel environments-edge-deployment
optimization through neural architecture search and quantization-
aware training to drive computational demands below 5GFLOPs,
and the construction of a universal agricultural detection framework
by developing multi-crop joint training paradigms and evaluating
transfer performance on tasks such as spike counting and disease
identification, thereby advancing intelligent solutions for
precision agriculture.

5 Conclusions

In response to the limitations of existing wheat ear detection
and counting methods, this study proposes an improved YOLOVS-
based model (YOLOvV8-FDA), which significantly enhances the
accuracy of wheat ear detection and counting in drone images.
The integration of REAConv, DySample, HWD, and SDL modules
provides a comprehensive solution for handling small-scale targets,
occlusions, and complex field scenarios. On the GWHD dataset, the
improved model achieves precision, recall, and mAP@0.5 of 86.3%,
77.5%, and 84.9%, respectively, representing improvements of 1.4%,
3.3%, and 2.3% compared to the original YOLOv8n model. The
parameter size and computational cost of the model are 2.96MB
and 8.3GFLOPs, respectively. These results demonstrate the
model’s strong performance and suitability for deployment on
mobile devices in real-world agricultural environments.

Although all experiments were conducted on high-performance
hardware (Intel i7-14700KF CPU and NVIDIA RTX 4070 Super
GPU), the lightweight nature of YOLOv8-FDA (2.96 MB, 8.3
GFLOPs) ensures its feasibility for deployment on resource-
constrained edge devices such as Jetson Nano (128-core Maxwell
GPU, 4 GB RAM, 472 GFLOPS) and Raspberry Pi 4B (quad-core
ARM Cortex-A72 CPU, up to 8 GB RAM). This makes it highly
suitable for real-time applications in agricultural environments,
where resource constraints are common.

Future work will explore transfer learning approaches to further
enhance the model’s adaptability across diverse application scenarios.
Additionally, we will conduct further field tests to validate the model’s
performance under different environmental conditions and optimize it
for wider deployment in agricultural practices.
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