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YOLOv8-FDA: lightweight wheat
ear detection and counting in
drone images based on
improved YOLOv8
Yuxuan Lin, Xiao Xiao and Haifeng Lin*

College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
Introduction: Wheat is a vital global staple crop, where accurate ear detection

and counting are essential for yield prediction and field management. However,

the complexity of field environments poses significant challenges to achieving

lightweight yet high-precision detection.

Methods: This study proposes YOLOv8-FDA, a lightweight detection and

counting method based on YOLOv8. The approach integrates RFAConv for

enhanced feature extraction, DySample for efficient multi-scale upsampling,

HWD for compressed and accelerated model training, and the SDL loss for

improved bounding box regression.

Results: Experimental results on the GWHD dataset show that YOLOv8-FDA

achieves a precision of 86.3%, recall of 77.5%, and mAP@0.5 of 84.9%,

outperforming the original YOLOv8n by significant margins. The model size is

2.96MB with a computational cost of 8.3 GFLOPs, and it operates at 19.2 FPS,

enabling real-time counting with over 97.5% accuracy using cross-

row segmentation.

Discussion: The proposed YOLOv8-FDA model demonstrates strong detection

performance, lightweight characteristics, and efficient real-time capability,

indicating its high practicality and suitability for deployment in real-world

agricultural applications.
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1 Introduction

Wheat is a core staple crop for global food security, with its

planted area, production, and trade volume ranking first among all

types of food crops (noa, 2025). Ensuring the sustainable

development of the wheat industry is therefore crucial to

maintaining long-term global food stability. Wheat yield directly

impacts human survival and social development. The number of

wheat heads in the field, as a key indicator for accurate yield

prediction (Maji et al., 2022), plays a vital role in wheat yield

estimation, breeding, cultivation management, and phenotypic

analysis. High-throughput detection and quantification of wheat

heads is essential for assessing wheat growth and density. Therefore,

research on wheat detection and counting holds substantial

significance. However, counting wheat heads from drone images

in real field environments remains challenging due to large image

sizes, object size calibration, dense object distribution, and

instance overlap.

Traditional detection and counting of wheat heads depend on

manual labor, which consumes a great deal of resources and is

subjective (Li et al., 2024a). As machine learning and deep learning

technologies are on the rise, real-time counting methods have

become a research hotspot. Currently, there are three main

methods for wheat head detection and counting: image

processing (IP), machine learning (ML), and deep learning (DL).

In IP-based research, Fernandez-Gallego et al. (2020) utilized RGB

images obtained from Unmanned Aerial Vehicles to obtain the

number of wheat heads in field images by filtering and locating local

peaks, achieving a detection accuracy of 90%. In ML-based research,

(Carlier et al., 2022) proposed a multi-sensor fusion classification

method based on RGB and multispectral superpixel features,

achieving a spike detection accuracy a of 94% using SVM (Hearst

et al., 1998), but the method suffers from poor real-time

performance. In past few years, DL-based algorithms for object

detection have been applied more frequently to detect and count

wheat heads. These methods mainly include two-stage algorithms

represented by the R-CNN (Girshick et al., 2014) series, which first

generates a series of candidate boxes, followed by object

classification and location refinement, and single-stage algorithms

typified by the YOLO (Redmon et al., 2016) and SSD (Liu et al.,

2016) series, which bypass candidate box generation by directly

formulating object localization as a regression problem. In terms of

two-stage methods, Li et al. (2022b) adopted the Faster R-CNN to

achieve wheat head image detection and site localization. The study

confirmed that the spike number (SN) prediction model performed

robustly in the validation of the manually labeled dataset (MSN),

with an average accuracy of 86.7%. In terms of single-stage

detectors, Khaki et al. (2022) designed WheatNet, which uses a

lightweight pruned MobileNetV2 (Sandler et al., 2018) as the core

feature extractor, achieving high accuracy in wheat head detection

and counting with real-time processing capabilities, thereby directly

serving field decision-making systems. (Li and Wu, 2022) proposed

an enhanced YOLOv5 architecture, which significantly improves

small wheat head detection accuracy through data augmentation

optimization, feature pyramid reconstruction, and dual attention
Frontiers in Plant Science 02
mechanism. The improved model achieved 94.3% mAP on the test

set, effectively overcoming issues of missed detection and

misidentification of dense wheat heads. Although single-stage and

two-stage detectors obtain comparable accuracy in wheat head

detection, single-stage methods are remarkably better suited for

real-time field counting tasks owing to their swifter inference speed

and reduced computational overhead.

In modern agriculture, YOLO-based detectors have become

indispensable for real-time monitoring because of their high

precision and inference speed. Shen et al. (2023a) put forward an

improved YOLOv5 algorithm using separable convolution to

replace standard convolution combined with a co-attention

mechanism, which improves the accuracy of detection in intricate

large-scale field backgrounds with overlap and occlusion. However,

the algorithm’s ability to detect wheat spikes at the image edges,

where they are not fully displayed, is inadequate. Li et al. (2024b)

integrated DCNv3 (Wang et al., 2023b), PConv (Chen et al., 2023)

and BiFPN (Tan et al., 2020) to reconstruct the detection

architecture, and introduced a CBAM (Jy and Kweon, 2018) to

enhance feature fusion. They proposed the YOLOv7-DeepSORT

variant with deep compression, achieving a significant reduction in

model size while simultaneously improving detection accuracy.

(Shen et al., 2023b), on the other hand, developed the ultra-small

S-YOLOv5s model based on ShuffleNetV2’s (Gong, 2024) channel

compression strategy, combined with lightweight upsampling

feature reconstruction technology, maintaining superior detection

performance even under extreme parameter compression

conditions. The current research focus is on reducing the model

parameter size while improving the accuracy of wheat

head detection.

In summary, compared to traditional manual calculations, IP

and MLmethods save labor and resources, and reduce the impact of

subjective factors. However, these methods are generally complex

and highly dependent on image features such as color and texture,

resulting in poor robustness. DL-based methods, on the other hand,

overcome the reliance on image-related features and made

significant progress in detection performance under complex

environments. However, these methods are not well-suited for

detecting small wheat head targets, resulting in a substantial

decline in accuracy. Moreover, most existing models contain a

large number of parameters, limiting the lightweight deployment in

real-world field environments. To tackle these problems, this paper

puts forward an enhanced lightweight YOLOv8 model that

maintains robust detection performance even in complex

environments for small-sized wheat heads. The core contributions

of this paper are summarized as follows:
1. The use of the RFAConv module enhances feature

extraction capabilities for wheat heads, reduces redundant

computations and memory access, and improves spatial

feature capture.

2. The introduction of the Dysample module enables dynamic

adjustment of feature map sca les , opt imiz ing

computational resource utilization and enhancing the

preservation of detailed wheat head information.
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3. The adoption of HWD enables more efficient

downsampling, reducing the number of parameters while

preserving frequency-domain features, thus improving

detection efficiency.

4. The integration of the SDL loss function jointly optimizes

the distance and shape fitting of bounding boxes,

remarkably improving the accuracy of wheat head

detection and counting and expediting model convergence.
2 Materials and methods

2.1 Dataset preparation

This study uses the 2021 GWHD (David et al., 2021) public

dataset, which contains over 6,000 wheat spike images from 16

research institutions across 12 countries, with a resolution of 1024 ×

1024. This dataset covers diverse wheat varieties, planting densities,

growth stages, field conditions, and acquisition methods, as
tiers in Plant Science 03
illustrated in Figure 1. The dataset was divided into training,

validation, and test sets in an 8:1:1 ratio.
2.2 Enhancement of the YOLOv8 model

2.2.1 Fundamental network architecture of the
YOLOv8 model

The YOLOv8 model is built upon earlier YOLO series (Yaseen,

2024), incorporating improvements through optimizations in

network architecture and training strategies, which further

enhance object detection performance and efficiency. The

YOLOv8 network architecture is made up of three primary

components: Backbone, Neck, and Head. Backbone extracts high-

level semantic features from the image, including object shapes,

textures, and contextual information. The neck fuses features from

various layers for multiscale processing, enhancing the ability to

detect targets at different scales. The head uses the fused features to

predict bounding boxes and classes, generating the final detection

results. Spatial Pyramid Pooling Force (SPPF) generates fixed
FIGURE 1

GWHD dataset example.
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feature representations for multi-scale objects without the need to

resize images or introduce spatial information loss, thereby

accelerating computational speed. The C2f block combines high-

level features with contextual information to improve detection

accuracy. The convolutional blocks consist of 2D convolution

layers, 2D batch normalization, and activation functions. The

detection algorithm employs an Anchor-Free method, getting rid

of the dependence on conventional Anchor Boxes. This

improvement effectively addresses the localization errors and the

imbalance between positive and negative sample distributions

inherent in anchor-based methods. The YOLOv8 series offers five

versions: n, s, m, l, x, based on different network depths and feature

map widths. Among these, YOLOv8n has the fewest parameters

and of the highest detection speed. Therefore, to balance the

model’s parameter count while enabling rapid data processing,

this study selected the lightweight YOLOv8n version. The

YOLOv8 network architecture is illustrated in Figure 2.

2.2.2 Improved YOLOv8 network architecture
This study aims to enhance the original YOLOv8 in four

aspects. First, in the Backbone, the original Conv module after

the first layer is replaced with RFAConv to improve feature
Frontiers in Plant Science 04
extraction capabilities. Next, in the Neck, the original Upsample

module is replaced with Dysample, which dynamically adjusts the

scale of the feature maps, better preserves detail information,

improves the model’s adaptability to objects of multiple scales,

and accelerates the convergence speed. Additionally, the original

downsampling Conv module is replaced with HWD, which

incorporates Haar wavelet transformation for more effective

downsampling, reducing parameters while preserving frequency-

domain features and detailed information. Finally, the SDL function

replaces the default YOLOv8 loss, jointly optimizing bounding box

distance and shape fitting, which significantly enhances localization

accuracy and accelerates model convergence. The improved model

in this study is named YOLOv8-FDA, as illustrated in Figure 3.

2.2.3 Receptive Field Attentive-RFAConv
Field detection of wheat spikes faces unique challenges,

including diverse spike morphologies and intricate details in

dense scenes. Traditional convolutional networks have limitations

due to their parameter sharing mechanism, struggle to adapt to the

geometric deformations and scale variations of wheat spikes,

leading to insufficient capability in capturing fine-grained spike

features (Khan et al., 2020). Moreover, the uniform application of
FIGURE 2

YOLOv8 network structure diagram.
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fixed convolutional kernels across spatial locations fails to

adequately model the local feature differences, further weakening

the model’s robustness in complex agricultural environments. To

address these problems, this study presents the RFAConv module

(Zhang et al., 2023), which significantly enhances the accuracy of

wheat spike detection through adaptive receptive field optimization

and attention-weighted mechanisms. The structural design is

shown in Figure 4.

The key innovation of RFAConv resides in the combination of

spatial attention mechanisms and traditional convolution

operations, which remarkably boosts the network’s capacity to

perceive local features and elevates the accuracy of representation.

This module can dynamically recognize the prominent regions

within the input feature map and adaptively modify the weight

distribution of the convolution kernels, enabling a focused

enhancement of key features. This design balances the need for a

large receptive field with efficient computational resource allocation,

thereby improving model performance while maintaining low

computational overhead.

As shown in Figure 5, the spatial characteristics of the receptive

field are composed of sliding windows that do not overlap 3 × 3,

each window being responsible for extracting detailed information
Frontiers in Plant Science 05
from local regions (Bertels et al., 2022). By introducing group

convolution techniques, the module expands the feature set that

matches the receptive field size and efficiently compresses the

feature dimensions using fast group convolution algorithms. This

process transforms the original features into a new representation

enriched with spatial attention, providing more discriminative

input for downstream tasks.

To improve feature detect accuracy, average pooling is used to

aggregate global contextual information within the receptive field,

significantly reducing computational complexity and the number of

parameters. Then, 1 × 1 group convolutions are applied to enable

cross-channel feature interaction, and the Softmax function is used

to adaptively weight the feature importance within the receptive

field, thereby enhancing the response strength of key regions. The

calculation of RFA, as shown in Equation 1, is formulated as

follows:

F = softmax  g1�1(AvgPool (X))
� �

� ReLU  Norm  gk�k(X)
� �� �

= Arf � Frf (1)
FIGURE 3

Structure of YOLOv8-FDA.
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In this case, g1�1 represents a group convolution with a size of 1

× 1, Norm refers to normalization, k denotes the size of the

convolution kernel and X represents the input feature map. The

feature map F is obtained by multiplying the attention map Arf with

the spatial features Frf that have been transformed by the sensory
Frontiers in Plant Science 06
fields. The final receptive field spatial feature map has dimensions of

C × 3H × 3W, where the width and height are three times the size of

the input feature map. To adjust the dimensions of the feature map,

a 3 × 3 convolution is applied. Through the attention map learned

by RFAConv, the model combines the feature information from
FIGURE 4

RFAConv structure.
FIGURE 5

Receptive field spatial feature transformation.
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each receptive field region, significantly improving the accuracy of

feature extraction.

2.2.4 Dynamic upsampling-DySample
This research employs the DySample (Liu et al., 2023) dynamic

upsampling technique for tackling the computational redundancy,

poor multi-scale adaptability, and insufficient detail preservation in

traditional upsampling methods for wheat spike detection. In the

YOLOv8-FDA, DySample substitutes for the standard Upsampling

module, overcoming the high resource demands of traditional

methods and significantly enhancing the practicality of deploying

the model on mobile devices in agricultural fields. This

improvement is particularly crucial for dense wheat spike

scenarios, where traditional methods often lead to edge blurring

and texture loss when processing small-scale spike grains, hindering

the extraction of key morphological features. DySample

reconstructs the upsampling process through a feature-driven

adaptive sampling mechanism, eliminating the need for complex

convolution operations and significantly reducing parameter size
Frontiers in Plant Science 07
and computational overhead. Its core innovation lies in dynamically

adjusting the sampling locations based on the spatial arrangement

of wheat spikes, enhancing the representation of details such as

spike grain connections and awns while preserving high-frequency

information. The lightweight architecture design effectively reduces

the dependence on high-resolution input images and significantly

optimizes resource utilization for real-time field detection, with

detailed design shown in Figure 6.

DySample uses a feature map c of size C × H1 × W1, and a

sampling set S of size 2 × H2 ×W2, where the first dimension of size

2 represents the x and y coordinates, the grid sampling function

uses the coordinates in S to re-sample the bilinearly interpolated

version of c, resulting in a new feature map of size C × H2 × W2.

This process is described as follows:

c 0 = grid_sample(c, S) (2)

DySample initially maps the input feature map c into a continuous
space through bilinear interpolation and computes an offset O to

modify the sampling locations. This offset O is then superimposed on
FIGURE 6

Dynamic upsampling based on sampling and module design in DySample. (A) Sampling based dynamic upsampling. (B) Sampling based dynamic
upsampling.
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the original sampling grid G to produce the final set of sampled points

S. As shown in Equation 3, the formula is as follows:

O = 0:5� sigmoid (linear1(c))� linear2(c) (3)

To enhance the adaptability of the offset, DySample generates a

point-wise dynamic range factor within the interval [0, 0.5] using

linear projection, which is then adjusted using a sigmoid function.

As defined in Equation 4, the offset O is calculated as follows:

S = G + O (4)

Finally, the upsampled feature map X 0 of size C × sH × sW is

generated using the sampling set through grid sampling, as shown

in Equation 2. DySample adapts to capture key details through

dynamic sampling position adjustment, significantly enhancing its

ability to represent complex textures of wheat spikes and small-

scale targets.

2.2.5 HWD module
In the YOLOv8n architecture, the traditional downsampling

with stride-2 convolutions drastically reduces feature map size,

leading to the disappearance of intricate and detailed elements

and a limited receptive field, which significantly weakens the

model’s ability to capture subtle local features. Inspired by the

Haar wavelet downsampling (HWD) model (Xu et al., 2023), whose

network architecture is shown in Figure 7, this study replaces the
Frontiers in Plant Science 08
standard downsampling process with the Haar wavelet transform.

This technique performs frequency-domain decomposition,

downsampling the feature map while preserving key image details

and expanding the model’s perception of global features. Compared

to strided convolutions, HWD offers a simpler and more efficient

design that reduces computational costs, accelerates training

convergence, and enhances detection performance. Based on

these advantages, this study replaces the stride-2 convolution

layers in the Neck with the HWD module, comprehensively

optimizing the model’s detection capabilities in complex scenarios.

The essence of the HWDmodule is composed of a lossless feature

encoding area and a feature learning area. The lossless encoding area

utilizes the Haar wavelet transform, which, at the target resolution,

applies cascaded high-pass (H0) and low-pass (H1) filtering followed by

downsampling (↓ 2) to generate a low frequency approximation

subband (A) and directional high-frequency subbands (horizontal-H,

vertical-V, diagonal-D) are generated. This process, illustrated in

Figure 8, preserves fine-grained features while compressing spatial

resolution. As shown in Equation 5, the formulation of this process is

presented as follows:

f1(x) = 1ffiffi
2

p f1,0(x) + 1ffiffi
2

p f1,1(x)

y1(x) =
1ffiffi
2

p f1,0(x) − 1ffiffi
2

p f1,1(x)

8<
:
fj,k(x) =

ffiffiffiffi
2j

p
f(2jx − k), k = 0, 1,…, 2j − 1:

(5)
FIGURE 7

HWD network structure.
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where j represents the scale level of the wavelet decomposition,

and k represents the direction selection of the wavelet function.

The feature learning area applies 1 × 1 Conv-BN-ReLU

operations. By adaptively adjusting feature channel dimensions,

this module efficiently filters redundant information, thus

improving the ability of the subsequent layers to extract

discriminative features. This architecture significantly boosts

model learning efficiency and generalization performance,

establishing a robust foundation for accurate data analysis.

Given an input feature map of sizeH ×W × C, the downsampled

output size is H
2 � W

2 � C. Compared to traditional downsampling

using a stride-2 3 × 3 convolution, the optimization of total

parameters and FLOPs overhead in HWD is shown in Table 1.

Table 1 shows that the quantity of parameters in strided

convolution is more than twice that of the HWD module. When

the quantity of channels C > 1, the computational overhead is also

significantly higher than that of the HWD module. In conclusion,

HWD module achieves a better trade-off between parameter count

and computational complexity while outputting multi-band

feature representation.
2.2.6 Scale-based Dynamic Loss
The initial YOLOv8 utilizes the Complete Intersection over

Union (CIoU) loss for bbox regression (Zheng et al., 2021), jointly

optimizing the Intersection over Union (IoU), the Euclidean

distance between the centroids of the bounding boxes, and the

aspect ratio similarity (Wang and Song, 2021). However, it has a
Frontiers in Plant Science 09
limitation regarding scale sensitivity: small targets experience

significant IoU fluctuations due to label inaccuracies, leading to

decreased regression stability. To tackle this problem, this study

presents the Scale-based Dynamic Loss (SDL) (Yang et al., 2025)

which dynamically adjusts the loss component weights according to

target size. As shown in Figure 9, as the target size decreases, the

weight of the scale loss (bLBS) decreases to suppress large

fluctuations, while the weight of the location loss (bLBL) increases

to enhance location stability. This adaptive mechanism improves

detection robustness for small targets and mitigates training

instability caused by label noise. As shown in Equations 6–8, the

formulas before and after the improvement are as follows:

LCIoU = 1 − IoU +
r2(bp, b

gt)

c2
+ av (6)

LBS = 1 − IoU + av (7)
FIGURE 8

Wavelet transform method diagram.
TABLE 1 Comparison of parameters and FLOPs for two downsampling
methods.

Module Parameters FLOPs

HWD 4C2 2HWC2 + 3.75HWC

Stride-2 3 × 3 Convolution 9C2 4.5HWC2 − 0.25HWC
FIGURE 9

The value of weight in Sloss and Lloss concerning the target BBox
area.
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LBL =
r2(bp, bgt)

c2
(8)

Here, IOU is the ratio of the area where the predicted bbox and

ground truth bbox overlap to the total area covered by both boxes

combined, av is the aspect ratio penalty term, which improves the

morphological consistency through the angular disparity metric

with adaptive weights, r2(bp, bgt) represents the Euclidean distance

between the center of the predicted bbox and the center of the

ground truth bbox, while c denotes the diagonal length of the

minimum enclosing rectangle that contains both the predicted and

ground truth boxes.

The size of the target changes when the model scales the image

or subsamples the feature map. As shown in Equations 9, 10, the

ratio between the original image and the current feature map and

the influence coefficient of BBox (bB) are calculated as follows:

ROC =
wo � ho
wc � hc

(9)

bB = min (
Bgt

Bgtmax  
� ROC � d , d )   (10)

where wo, wh are the width and height of the original image, and

wc, wh are the width and height of the current feature map. The

influence coefficient of the loss is based on the area of the current

bbox, with its range constrained to d, which is adjustable. As shown
Frontiers in Plant Science 10
in Equations 11–13, the final scale-based dynamic loss for the bbox

is given by the following formula:

bLBS
= 1 − d + bB (11)

bLBL
= 1 + d − bB (12)

LSDB = bLBS
� LBS + bLBL

� LBL (13)

In this way, SDL dynamically adjusts the ratio of scale loss and

location loss based on the size of the target, effectively improving the

regression accuracy for small targets such as wheat spikes.
3 Experiments and results

3.1 Experimental configuration

The experimental hardware and software environment and the

model training parameters are shown in Tables 2, 3 respectively.

The training parameters listed in Table 3 were primarily based

on the default recommendations of YOLOv8 (Yaseen, 2024). To

ensure stable convergence on the GWHD dataset, several key

hyperparameters, such as the learning rate and batch size, were

empirically adjusted through preliminary experiments. This

parameter selection strategy is consistent with previous practices

in similar object detection studies (Li et al., 2024b).

The baseline model and the YOLOv8-FDA were trained under

the same experimental environment and parameter settings, and

their loss variations during the training process are presented

in Figure 10.

As shown in Figure 10, the larger learning rate in the early

stages of training causes the loss of both models to decrease rapidly,

but also leads to instability. As training progresses, the models

gradually approach saturation, the learning rate decreases, and the

rate of loss reduction slows down. Eventually, the models converge

to a stable state. Compared to the baseline model, the YOLOv8-

FDA demonstrates faster convergence and lower loss throughout

the training process.
3.2 Performance measures

The experiment evaluates miss and false detection rates by

comparing YOLOv8-FDA with other models under identical

conditions. The evaluation primarily uses three metrics: precision,

recall, and mean Average Precision calculated at a single IoU

threshold of 0.5 (mAP@0.5). Precision reflects the accuracy of the

model, recall reflects the sensitivity of the model, mAP reflects the

average detection precision across all categories, and mAP@0.5

denotes the mean average precision when the IoU threshold is set at

0.5. As shown in Equations 14–17, the mathematical expressions for

these evaluation metrics are as follows:

P =
TP

TP + FP
(14)
TABLE 2 Model training software and hardware environment
configuration.

Software and hardware
environment

Configuration

Operating system Windows11

Software
Python3.10.0, PyTorch2.6.0,

CUDA12.1

CPU
Intel(R) Core™ i7-14700KF @

3.40GHz

GPU
NVIDIA GeForce RTX 4070

SUPER 12GB

RAM 32GB
TABLE 3 Training parameters.

Model training parameters Configuration

Parameter learning rate 0.01

Input image size 640 × 640

epoch 150

Momentum 0.937

batch size 16

Warmup bias lr 0.1

Weight decay 0.0005
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R =
TP

TP + FN
(15)

AP =
Z 1

0
P(R)dR (16)

mAP =
1
mo

m

i=1
AP(i) (17)

In the formula, TP denotes the number of correctly predicted

foreign object positive instances, which are indeed positive in the

outcomes of the detection. FP represents the number of instances

incorrectly predicted as foreign object positives but actually

belonging to non-foreign object classes. FN represents the

number of instances predicted as foreign object positives but

detected as non-foreign object negatives.

Additionally, this paper uses the number of parameters as the

evaluation metric for the algorithm’s space complexity and the

floating point operations (FLOPs) as the evaluation metric for the

algorithm’s computational complexity.
3.3 Experimental validation of model
components

To validate the enhancement impact of every improvement in the

YOLOv8-FDA, we contrast different evaluation metrics of every

enhanced model on the test set. In the experiment, each

improvement is regarded as a variable to guarantee the consistency

of the experimental environment and parameter settings. The

outcomes of the experiment are presented in Table 4, where “✓”

represents the corresponding improvement. Table 4 shows:

Table 4 shows the results of the ablation experiments, which

evaluate the contribution of each individual module and their
Frontiers in Plant Science 11
combinations to the performance of the model. The incorporation of

the RFAConv module, which enhances feature representation through

a receptive field attention mechanism, leads to significant performance

gains. Specifically, Precision improves by 1.1%, Recall increases by

2.7%, andmAP@0.5 rises by 2.1%. This improvement comes at the cost

of an increase of 0.2G in model FLOPs, indicating that RFAConv helps

the model better adapt to the morphological diversity of wheat spikes,

enhancing the detection accuracy for wheat ears.

The DySample module, which optimizes the feature map

resolution adjustment process, results in a 1.2% increase in Recall

while maintaining nearly the same number of parameters and FLOPs.

This shows that DySample plays a crucial role in improving themodel’s

ability to detect small-scale wheat spikes without adding significant

computational overhead. Meanwhile, the HWD module, which

performs dimensionality reduction using Haar wavelet transform,

reduces model parameters by 0.11M and FLOPs by 0.1G, while still

retaining 82.2% of the baseline mAP@0.5 performance, demonstrating

its efficiency in reducing model complexity without sacrificing

detection accuracy. Finally, the SDL module optimizes the IoU

calculation for bounding boxes, significantly improving localization

accuracy in dense wheat spike scenes. This results in a 0.8% increase in

Recall and a 0.2% increase in mAP@0.5, enhancing the model’s ability

to distinguish overlapping wheat spikes.

In addition to evaluating the performance of individual modules,

we also considered combinations of modules to assess their synergistic

effects. The combination of RFAConv and DySample, for example,

resulted in a 2.2% increase in Recall, showing that these modules work

well together to enhance the model’s sensitivity to small targets.

Furthermore, the combination of RFAConv, DySample, and SDL

demonstrated the greatest improvements, with both Recall and

mAP@0.5 increasing significantly. These results highlight the

importance of combining complementary modules for maximizing

detection accuracy, particularly in complex wheat spike scenes with

overlapping spikes. Overall, the combination of these modules leads to
FIGURE 10

The training loss curves of the baseline model and the YOLOv8-FDA.
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consistent improvements in both detection accuracy and

computational efficiency, with the final model achieving 86.3%

Precision, 77.5% Recall, and 84.9% mAP@0.5, as shown in the last

row of Table 4.

The YOLOv8-FDA achieves a breakthrough in complex

agricultural environments: while reducing model parameters by

0.06M, Precision increased by 1.4%, Recall improved by 3.3%, and

mAP@0.5 rose by 2.6%. This compact yet efficient structure

significantly boosts the generalization ability of the model, improving

its applicability and reliability in practical applications, providing a

robust and practical detection solution for precision agriculture. To

understand the internal workings of the model, the predicted results of

the original model and the proposed model in this paper are visualized

using the XGradCAM (Fu et al., 2020) algorithm, as shown

in Figure 11.

As illustrated in Figure 11, the YOLOv8-FDA effectively suppresses

interference from background and redundant information, directing

core attention to the spike axis of the wheat ear. In contrast, the original

model performs suboptimally due to excessive focus on non-critical

regions such as awns, stems, and leaves. This shows that YOLOv8-FDA

has the ability to capture the distinctive features of wheat ears with

greater precision, and its visualization results align closely with

experimental expectations.
3.4 Comparative analysis of model
performance

Under the experimental setting of 150 training epochs, the core

performance metrics of various detection models on the validation
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set all reached a stable state at the end of training, as shown in

Figure 12. This indicates that all models effectively converged on the

dataset, ensuring reliable performance comparison. For the baseline

selection, YOLOv5, YOLOv8, YOLOv10, and YOLOv11 were

chosen because they follow a clear architectural lineage from the

Ultralytics framework (Kang and Kim, 2023), are widely adopted in

the community, and have stable open-source implementations. In

contrast, YOLOv6 (Li et al., 2022a), YOLOv7 (Wang et al., 2023a),

and YOLOv9 (Wang et al., 2024) were excluded due to limited

community adoption, lack of long-term maintenance, or divergence

from the main codebase, which would reduce the reproducibility

and relevance of comparisons.

To verify the effectiveness of YOLOv8-FDA, it was tested and

compared with models such as YOLOv5n, YOLOv8n, YOLOv10n,

YOLOv11n, Faster R-CNN, and Rtdetr-resnet50. The results are

shown in Table 5. YOLOv8-FDA achieves 86.3% Precision, 77.5%

Recall, and 84.9% mAP@0.5, outperforming lightweight models

such as YOLOv5n, YOLOv8n, YOLOv10n, and YOLOv11n in both

accuracy and recall. Although YOLOv11 demonstrates stronger

performance than YOLOv5, YOLOv8, and YOLOv10, and achieves

this with fewer parameters and FLOPs, our goal is to enhance the

performance of lightweight baselines that are widely deployed in

practice. Therefore, YOLOv8n was selected as the core baseline for

improvement, as it represents a balance of simplicity, efficiency, and

relevance for lightweight enhancement (Lu et al., 2023).

Compared with Faster R-CNN, which achieves only 50.7%

Precision, 46.7% Recall, and 47.1% mAP@0.5 despite its large

model size (41.48M parameters) and high computational cost

(202 GFLOPs), YOLOv8-FDA demonstrates clear superiority in

both detection accuracy and efficiency. The relatively poor
TABLE 4 Ablation experiment results.

Baseline RFAConv Dysample HWD SDL Precision Recall mAP@0.5 Parameters FLOPs

Yolov8n – – – – 84.9% 74.2% 82.3% 3.02M 8.2G

Yolov8n ✓ – – – 86% 76.9% 84.4% 3.05M 8.4G

Yolov8n – ✓ – – 84.8% 75.4% 83.1% 3.03M 8.3G

Yolov8n – – ✓ – 83.8% 74.7% 82.2% 2.91M 8.1G

Yolov8n – – – ✓ 84.1% 75% 82.5% 3.02M 8.2G

Yolov8n ✓ ✓ – – 85% 76.8% 83.5% 3.06M 8.5G

Yolov8n ✓ – ✓ – 85.6% 77.1% 84.1% 2.94M 8.3G

Yolov8n ✓ – – ✓ 85.2% 76.4% 82.9% 3.05M 8.4G

Yolov8n – ✓ ✓ – 85.1% 75.5% 82.3% 2.93M 8.1G

Yolov8n – ✓ – ✓ 84.5% 75.3% 82.5% 3.03M 8.3G

Yolov8n – – ✓ ✓ 83.3% 74.7% 81.3% 2.92M 8.1G

Yolov8n ✓ ✓ ✓ – 85.9% 77.3% 84.1% 2.96M 8.3G

Yolov8n ✓ ✓ – ✓ 84.3% 76.2% 84.2% 3.06M 8.5G

Yolov8n ✓ – ✓ ✓ 85.5% 76.9% 83.7% 2.94M 8.3G

Yolov8n – ✓ ✓ ✓ 83.9% 75.3% 82.5% 2.93M 8.1G

Yolov8n ✓ ✓ ✓ ✓ 86.3% 77.5% 84.9% 2.96M 8.3G
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performance of Faster R-CNN may be attributed to the mismatch

between its two-stage detection framework and the dense small-

object characteristics of the GWHD 2021 dataset. Furthermore, its

large computational overhead requires longer training and careful

hyperparameter tuning to achieve convergence, and insufficient

training epochs or suboptimal optimization may further reduce its

accuracy and recall. Although Rtdetrresnet50 achieves the highest

Precision (91.6%) and Recall (80.8%), its computational burden is
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heavy, with 42.9M parameters and 130.7 GFLOPs, making it

unsuitable for lightweight and efficient deployment. In contrast,

YOLOv8-FDA maintains competitive accuracy with only 2.96M

parameters and 8.3 GFLOPs, striking an excellent balance between

accuracy and efficiency. In conclusion, YOLOv8-FDA not only

enhances counting accuracy but also sustains high detection

efficiency, making it well-suited for wheat spike detection and

counting tasks under practical conditions.
TABLE 5 Results of comparison experiments.

Model Precision (%) Recall (%)
mAP@0.5

(%)
Parameters (M) FLOPs (G)

YOLOv5n 82.7 73.8 81.2 2.51 7.1

YOLOv8n 84.9 74.2 82.3 3.02 8.2

YOLOv10n 82.3 73.7 81.6 2.71 8.3

YOLOv11n 84.7 75.4 83.7 2.59 6.4

Faster R-CNN 50.7 46.7 47.1 41.48 202

Rtdetr-resnet50 91.6 80.8 88.7 42.9 130.7

YOLOv8-FDA 86.3 77.5 84.9 2.96 8.3
FIGURE 11

Visualization of model prediction results based on XGradCAM algorithm. (A) Input image. (B) YOLOv8n Visualization Results. (C) YOLOv8-FDA
Visualization Results.
FIGURE 12

Comparison among the evaluation indices of diverse detection models. (A) Precision rate curves for each model. (B) Precision rate curves for each
model. (C) mAP@0.5 curves for each model.
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3.5 Robustness test

To evaluate the model’s robustness against interference,

robustness tests were conducted in complex scenarios such as

overlap and occlusion. A total of 637 images from the validation

set were used, with both the baseline model and the YOLOv8-FDA

applied for detection. The results were statistically analyzed and are

presented in Table 6, with corresponding visual examples shown in

Figure 13. In the visual representations, the green boxes stand for

accurate detections, whereas the red and blue boxes denote missed

detections and false detections, respectively.

As shown in Table 6, compared to the YOLOv8, the YOLOv8-

FDA demonstrates an improvement of 0.7% in correct detection

rate. The improvement is illustrated more intuitively through the

example in Figure 13, where the enhanced model remarkably

decreases both the miss detection rate and the false positive rate

compared to the YOLOv8. These results illustrate that the YOLOv8-

FDA shows a significant enhancement in handling complex field

scenarios, exhibiting strong robustness.
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4 Discussion

To address the issue of detection accuracy degradation caused

by the dense arrangement of small-scale wheat ears and occlusion in

complex field environments, this paper proposes the YOLOv8-FDA

model. The model optimizes multi-scale feature fusion through

dynamic upsampling techniques, significantly reducing the edge

blurring problem caused by traditional methods, thus ensuring

accurate localization of dense wheat ears. The Haar wavelet-based

downsampling strategy reduces the number of parameters while

preserving frequency-domain features, compressing the model size

to 2.96M with a computational cost of only 8.3GFLOPs, rendering it

appropriate for deployment on mobile devices. By dynamically

adjusting the loss weights, the model effectively mitigates the

regression instability caused by annotation errors in small targets.

This improvement has universal significance for object detection

with significant size differences in agricultural scenarios. In

addition, we compared YOLOv8-FDA with several recent

methods for wheat ear detection and counting. Multi-scale

Feature Enhancement Network (Qian et al., 2024) employs a

deformable spatial attention mechanism and multi-scale feature

fusion to improve accuracy under occlusion, yet its 37.65M hinder

practical deployment on resource-limited hardware. By contrast,

YOLOv8-FDA achieves comparable precision while dramatically

reducing model size. Li et al. (2024a) proposed a morphology-based

approach that yields high spike-count predictions but proves

sensitive to ear overlap and lighting variations. YOLOv8-FDA

effectively alleviates detection failures caused by overlapping
FIGURE 13

Detection examples of baseline and improved models in complex scenes.
TABLE 6 Robustness test results.

Model Total TP FP FN
Accuracy

(%)

YOLOv8 27076 23724 5228 3352 87.6

YOLOv8-
FDA

27076 23920 4878 3156 88.3
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spikes, although its robustness to variable illumination remains

constrained; future work may incorporate image preprocessing

techniques to address this shortcoming.

Despite these advances, YOLOv8-FDA still faces several

limitations: its training relies predominantly on the GWHD dataset,

whose limited coverage of field environments, wheat varieties and

developmental stages may reduce generalizability in heterogeneous

scenarios; its 8.3GFLOPs computational footprint, while modest, must

be further optimized to achieve genuine real-time performance on edge

devices; and its applicability to other crops has yet to be validated.

Future research will therefore prioritize cross-scenario transfer

learning-leveraging domain-adaptation and few-shot strategies to

enhance robustness in novel environments-edge-deployment

optimization through neural architecture search and quantization-

aware training to drive computational demands below 5GFLOPs,

and the construction of a universal agricultural detection framework

by developing multi-crop joint training paradigms and evaluating

transfer performance on tasks such as spike counting and disease

identification, thereby advancing intelligent solutions for

precision agriculture.
5 Conclusions

In response to the limitations of existing wheat ear detection

and counting methods, this study proposes an improved YOLOv8-

based model (YOLOv8-FDA), which significantly enhances the

accuracy of wheat ear detection and counting in drone images.

The integration of RFAConv, DySample, HWD, and SDL modules

provides a comprehensive solution for handling small-scale targets,

occlusions, and complex field scenarios. On the GWHD dataset, the

improved model achieves precision, recall, and mAP@0.5 of 86.3%,

77.5%, and 84.9%, respectively, representing improvements of 1.4%,

3.3%, and 2.3% compared to the original YOLOv8n model. The

parameter size and computational cost of the model are 2.96MB

and 8.3GFLOPs, respectively. These results demonstrate the

model’s strong performance and suitability for deployment on

mobile devices in real-world agricultural environments.

Although all experiments were conducted on high-performance

hardware (Intel i7-14700KF CPU and NVIDIA RTX 4070 Super

GPU), the lightweight nature of YOLOv8-FDA (2.96 MB, 8.3

GFLOPs) ensures its feasibility for deployment on resource-

constrained edge devices such as Jetson Nano (128-core Maxwell

GPU, 4 GB RAM, 472 GFLOPS) and Raspberry Pi 4B (quad-core

ARM Cortex-A72 CPU, up to 8 GB RAM). This makes it highly

suitable for real-time applications in agricultural environments,

where resource constraints are common.

Future work will explore transfer learning approaches to further

enhance the model’s adaptability across diverse application scenarios.

Additionally, we will conduct further field tests to validate the model’s

performance under different environmental conditions and optimize it

for wider deployment in agricultural practices.
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