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1School of Artificial Intelligence and Information Engineering, Zhejiang University of Science and
Technology, Hangzhou, China, 2Department of Zhejiang Hospital, Hangzhou, China, 3Samara Federal
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Introduction: Blueberries are highly prized for their nutritional value and

economic importance. However, their small size, dense clustering, and brief

ripening period make them difficult to harvest efficiently. Manual picking is costly

and error-prone, so there is an urgent need for automated, high-precision

solutions in real orchards.

Methods: We proposed an integrated framework that combined the STF-YOLO

model with the ByteTrack algorithm to detect blueberry maturity and perform

counting. Together with ByteTrack, it provided consistent fruit counts in video

streams. STF-YOLO replaced the YOLOv8 C2f block with a Detail Situational

Awareness Attention (DSAA) module to enable more precise discrimination of

maturity. It also incorporated an Adaptive Edge Fusion (AEF) neck to enhance

edge cues under leaf occlusion and a Multi-scale Neck Structure (MNS) to

aggregate richer context. Additionally, it adopted a Shared Differential

Convolution Head (SDCH) to reduce parameters while preserving accuracy.

Results: On our orchard dataset, the model achieved an mAP50 of 79.7%,

representing a 3.5% improvement over YOLOv8. When combined with

ByteTrack, it attained an average counting accuracy of 72.49% across blue,

purple, and green maturity classes in video sequences. Cross-dataset tests

further confirmed its robustness. On the MegaFruit benchmark (close-range

images), STF-YOLO achieved the highest mAP50 for peaches (91.6%),

strawberries (70.5%), and blueberries (90.6%). On the heterogeneous PASCAL

VOC2007 dataset, it achieved 66.3%mAP50, outperforming all lightweight YOLO

variants across 20 everyday object categories.

Discussion:Overall, these results suggest that the STF-YOLO integrated with the

ByteTrack framework can accurately detect and count blueberries in orchards.

This lays a solid foundation for the future development of automated blueberry

harvesting machinery and improvements in harvest efficiency.
KEYWORDS

fruit detection, fruit counting, target detection, YOLO, blueberry
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1 Introduction

Blueberry is among the world’s most valuable fruit crops from

an economic perspective, and is popular with consumers due to

their high antioxidant, vitamin and mineral content, which provides

anti-inflammatory and anti-cancer benefits (Cheng et al., 2024).

However, despite surging demand and cultivation, harvesting

remains the bottleneck of the supply chain in China, where

picking depends almost entirely on manual labor. In practice, two

issues are critical. Firstly, labor shortages during the peak season

mean that workers must harvest continuously within the narrow

24-72-hour optimum window. Fatigue leads to inconsistent

maturity selection and lower picking efficiency. Secondly, field

studies reported that manual compression causes 15–20% fruit

damage (Ali et al., 2015). These challenges are exacerbated by the

delicate texture, dense clustering and short ripening period of

blueberries, all of which complicate large-scale daily harvests

(Ding et al., 2023). Consequently, the development of automated,

high-precision detection and picking systems has become essential

for minimizing losses and meeting market demand. However,

beyond these obvious challenges, a deeper issue affecting the

entire supply chain has long been overlooked: the lack of accurate

yield forecasts. Blueberry growers must make critical decisions

weeks before the start of the harvest season, including labor

recruitment, procurement of packaging materials, arrangements

for cold chain logistics, and coordination of sales channels. These

decisions rely heavily on estimates of the harvestable fruit yield in

kilograms for the next one to two weeks. Currently, such estimates

rely almost entirely on farmers' experience, resulting in high levels

of subjectivity and significant errors. This frequently leads to the

misallocation of resources and economic losses. Therefore,

developing technology that can objectively and accurately assess

the quantity and distribution of fruit maturity within orchards is

fundamental to achieving precision agricultural management and

intelligent decision-making. The significance of this technology

extends far beyond addressing issues specific to the harvesting

process alone.

In recent years, a growing body of research has sought to

develop more accurate methods of detecting fruit. Traditional

machine learning approaches, such as Support Vector Machines

(SVMs), Random Forests and Classification and Regression Trees

(CART), have been explored (Breiman, 2001; Breiman et al., 2017).

However, they are limited by their reliance on handcrafted features,

which often struggle to generalize. This leads to degraded

performance when dealing with challenges like partial occlusion,

where the model must infer objects from incomplete information,

and significant variations in fruit size, color, or maturity.

Consequently, researchers have turned to deep learning

techniques, which have stronger feature extraction capabilities

and enable reliable recognition in complex orchard scenes. For

instance, Zhao et al. (2024) proposed RT-DETR-Tomato, a two-

stage detector that combines region proposal and refinement steps

to deliver precise tomato localization. Among single-stage detectors,

the YOLO (You Only Look Once) family offered an excellent

balance of speed and accuracy and became the mainstream choice
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for fruit detection (Redmon, 2016; Redmon and Farhadi, 2017;

Farhadi and Redmon, 2018). Zhang et al. (2022) used YOLOv3 to

track citrus fruits in videos and eliminate duplicate detections

caused by overlap. Zhao et al. (2024) enhanced YOLOv5 with

ShuffleNetv2 and CBAM attention (YOLO-Granada) for

lightweight yet accurate pomegranate detection, while An et al.

(2022) upgraded YOLOX with C3HB, NAM attention and SIOU

loss (SDNet) to identify strawberry growth stages. Collectively,

these studies demonstrate that single-stage YOLO variants and

carefully optimized two-stage detectors can significantly improve

the efficiency and accuracy of fruit detection tasks, thereby

highlighting their important role in making harvesting workflows

more efficient and increasing agricultural productivity.

Maturity is a crucial indicator for determining the optimal

harvest time, as harvesting too early or too late can negatively

impact flavor, quality, and economic value (Krishna et al., 2023). In

recent years, researchers have dedicated efforts to studying

advanced methods for fruit maturity detection. For example, Xiao

et al. (2023) developed a YOLOv8-based apple maturity detection

model that uses transfer learning to enhance feature extraction and

a custom dataset for precise classification. Lai et al. (2022) proposed

a YOLOv4-based system for real-time identification of mature oil

palm fruit clusters, achieving an mAP50 of 87.9%. Yang et al. (2023)

introduced LS-YOLOv8s, a strawberry maturity grading model

combining YOLOv8s with an LW-Swin Transformer module,

which attained 94.4% accuracy. Chen et al. (2024) designed a

multi-task loss function using Scale-Invariant IoU (SIoU) to

replace CIoU, improving the accuracy of YOLOv7-based DCNNs

in detecting tomato clusters and maturity. Similarly, Wang et al.

(2024) integrated Variable Focal Loss (VFL) and Wise-IoU (WIoU)

into NVW-YOLOv8s for real-time tomato maturity detection and

segmentation. Collectively, these studies demonstrate that deep

learning models achieve remarkable results in fruit maturity

detect ion, part icularly for large fruits or those with

simple backgrounds.

Compared to large fruits like apples and potatoes—which

exhibit relatively distinct shapes and fewer occlusion issues—

small fruits present additional detection challenges due to dense

distribution and severe occlusion. Xie et al. (2022) proposed an

improved YOLOv5-litchi model integrating a convolutional block

attention module and a small-object detection layer, achieving a

12.9% higher mAP50 than the original YOLOv5. Similarly, Yu et al.

(2024) developed a lightweight SOD-YOLOv5n model for winter

jujube detection, improving mAP50 by 3% while enabling real-time

fruit counting. Gai et al. (2021) further optimized YOLOv4 for

occluded and overlapping cherry fruits, increasing mAP50 by 15%

over the baseline model. However, these successes are often

demonstrated on relatively large fruits or in controlled, close-

range imaging scenarios.

Blueberries are particularly challenging to detect due to their

small size, clustered growth and color similarity to the background,

which makes maturity assessment and counting more complex and

relative to many other fruits, detection accuracies on blueberries are

often lower. MacEachern et al. (2023) applied six YOLO models to

detect blueberries at three different maturity stages. They achieved a
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mAP50 of 79.79%. Liu et al. (2023) proposed an enhanced YOLO-

based algorithm for blueberry maturity detection. This integrates a

lightweight CBAM (Little-CBAM), an improved MobileNetv3

backbone and a multi-scale fusion module (MSSENet). This

boosted the algorithm's ability to detect small targets and its anti-

interference capabilities. Adopting EIOU_Loss and optimizing the

anchor frames enabled the method to achieve a mAP50 of 78.3%,

which was 9% higher than that of YOLOv5x. Most prior studies

have relied on close-range imagery. Moreover, because these

examples all used close-range blueberry images (typically 20 cm-

50 cm above the canopy), they cannot capture the full scene and are

therefore not well suited for integration into field-harvesting robots.

However, to capture the entire blueberry crop, the person often

stood around 1.5 m-2 m away, depending on the length of the

branches and buds. This reduced the clarity of the fruit and, in turn,

the accuracy of detection. Zhao et al. (2024) acquired blueberry

images using a drone at a height of approximately 5 m above the

ground and improved the PF-YOLO model by applying location

coding and fast convolution technology, which only increased the

mAP50 from 48.9% to 54.4%. In summary, while recent

advancements in YOLO-based models have achieved high

detection accuracy or blueberries in close-range imagery, this

paradigm is fundamentally incompatible with practical field

applications requiring whole-plant visibility for tasks like accurate

counting. As demonstrated by Zhao et al. (2024), detection

performance suffers drastically at the medium-to-long range

distances necessary to capture the full extent of a blueberry bush

within a single frame. This significant accuracy gap underscores

a critical challenge: robust blueberry detection and counting

in operational field settings inherently demands imagery

encompassing the entire plant profile, inevitably captured from

distances where fruit clarity is reduced. Consequently, deploying

effective harvesting or scouting robots necessitates overcoming the

inherent difficulties of small-target detection in complex, wide-field

views obtained from these practical stand-off positions, a core focus

of this research.

Accurate yield estimation and maturity assessment are crucial

prerequisites for the automated harvesting of blueberries, as they

directly influence management decisions and efficiency across the

entire production chain. However, real orchard scenarios often

include fruits at varying maturity levels, with significant variability

not only between individual plants but also within fruit clusters,

making consistent visual assessment difficult. This complexity is

further exacerbated by the berries’ small size, dense clustering, and

color similarity to foliage. Currently, maturity assessment relies

heavily on subjective empirical estimates or labor-intensive

sampling methods, both of which lack the accuracy and

scalability required for large-scale, continuous monitoring.

Moreover, precision agriculture demands precise, real-time

orchard data to optimize harvest schedules, streamline picking

routes, and manage post-harvest logistics effectively. Therefore,

there is an urgent need for automated, intelligent detection

methods that can objectively and accurately quantify blueberry

maturity and yield, providing consistent, reproducible, and timely

data to reduce reliance on manual labor, minimize fruit loss, and
Frontiers in Plant Science 03
enhance operational efficiency and profitability (Lobos et al., 2014;

DeVetter et al., 2022).

This study focuses on developing an improved detection

method for assessing and counting blueberry maturity in real

orchard environments. The main contributions are as follows:
1. STF-YOLO (Small Target Fruit YOLO): An enhanced

YOLO model for blueberry maturity identification.

2. Innovative Architectural Modules: Detail Situational

Awareness Attention (DSAA): Dynamically allocates

attention weights. Adaptive Edge Fusion (AEF): Enhances

contour representation. Multi-Scale Neck Structure (MNS):

Improves small-target detection. The original head

structure is replaced with a Shared Differential

Convolut ion Head (SDCH), leveraging shared

convolutions to reduce model complexity while

enhancing performance.

3. Detection-to-Counting Framework: Blueberry fruits are

first detected in individual images, then precisely counted

using the ByteTrack algorithm. While performance varies

across maturity categories, the method demonstrates robust

overall performance in addressing practical challenges in

complex orchard environments—highlighting its

applicability and reliability.
The remainder of this paper is organized as follows: Section 2

details the blueberry dataset construction and model development.

Section 3 presents experimental results, Section 4 provides

discussion, and Section 5 concludes with findings and future

research directions.
2 Materials and methods

2.1 Data collection

We collected high-resolution videos of blueberry plants at

Shimen Blueberry Orchard (120°26'44.39" E, 30°39'36.91" N) in

Tongxiang City, Jiaxing Prefecture, Zhejiang Province, China,

during the ripening period from May to June 2024. Videos were

recorded using an iPhone 13 Pro at 3840×2160 pixel resolution

between 9:00 AM and 5:00 PM under optimal lighting conditions.

The camera was positioned 80–100 cm from the plants to balance

detailed feature capture with clarity. During collection, we carefully

selected representative blueberries and backgrounds to reflect

varying growth conditions across plants. Figure 1 provides an

overview of the data collection process. Panel (a) shows the exact

geographic collection area (marked in red). Panels (b) and (c) depict

typical field scenes, including planting environments and

infrastructure like support structures and pathways. Panels (d),

(e), and (f) illustrate blueberries at different maturity stages,

highlighting developmental variat ions in size , color ,

and appearance.

After recording the videos, we extracted 891 images of blueberry

plants, one frame at a time, in order to create a dataset. Extracting
frontiersin.org
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specific frames from the videos enabled us to create a

comprehensive dataset aligned with practical applications.
2.2 Data processing and construction

We manually annotated the aforementioned images using the

LabelImg tool (Tzutalin, 2015), as shown in Figure 2.
Frontiers in Plant Science 04
The annotation standard was the minimum bounding rectangle

surrounding the blueberry fruits, including both complete and

partially occluded blueberries.

Blueberries typically grow in clusters, often containing fruits at

different maturity stages. Consistent with the method described by

Yang et al. (2022), we visually assessed maturity based on color,

categorizing fruits as mature (blue), semi-mature (purple), or

immature (green). To ensure annotation accuracy, each image
FIGURE 1

Data collection area, field scenes, blueberry fruit sample images. (a-c) Data collection locations and scenarios, (d-f) examples of blueberry fruit
images at different maturity levels.
FIGURE 2

Annotated example.
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was magnified to at least 200% to accommodate the berries' small

size. All labels underwent independent review and correction before

inclusion in the final dataset. Upon completion, each annotated

image corresponded to a TXT file containing category and

coordinate information. For fruit detection model development

and validation, we randomly allocated 70% of images (623) for

training, 15% (134) for validation, and 15% (134) for testing. We

applied various data augmentation techniques—including rotation,

Gaussian noise addition, flipping, and scaling—to the training and

validation sets to enhance training effectiveness and generalization

capability. This augmentation yielded 3115 training images and 665

validation images. Finally, to alleviate hardware memory

constraints during training, we resized all input images from

3,840 × 2,160 pixels to 640 × 640 pixels. The sample distribution

is shown in Table 1.
2.3 Improved YOLOv8 algorithm

2.3.1 YOLOv8 network
The YOLO series of object detection models is widely acclaimed

for its efficient end-to-end detection capabilities and has been

extensively used in computer vision tasks including object

detection, image segmentation, and target tracking (Wu et al.,

2013). YOLOv8, the latest iteration of this series, introduces

significant architectural optimizations designed to enhance both

accuracy and efficiency in real-time detection (Sohan et al., 2024).

Compared to its predecessors (YOLOv5, YOLOv6, YOLOv7),

YOLOv8 incorporates a more efficient feature extraction

backbone and lightweight structures, reducing computational

overhead while improving overall performance. The YOLOv8

architecture comprises three main components, as illustrated

in Figure 3:
Fron
1. Backbone: YOLOv8's backbone integrates advanced

modules like ConvNext and Swin Transformer,
tiers in Plant Science 05
significantly enhancing feature extraction capabilities. The

inclusion of an improved E-ELAN structure and efficient

residual modules strengthens its ability to capture

contextual information and spatial details. This makes the

model particularly suitable for detecting small objects in

dense scenes with complex backgrounds.

2. Neck: The neck employs an enhanced feature pyramid

network (optimized from PAFPN) for efficient multi-

scale feature map fusion. Incorporating spatial and

channel attention mechanisms allows the model to

adaptively focus on salient feature regions. This improves

feature transmission and fusion effectiveness, boosting

de tec t ion per formance for smal l ob jec t s and

complex backgrounds.

3. Head: The detection head utilizes dynamic convolution and

adaptive feature weighting strategies for precise bounding

box and class prediction. An improved positive/negative

sample matching algorithm enhances multi-scale detection

robustness. The decoupled head structure processes

classification and regression tasks separately, mitigating

task conflict and further increasing detection accuracy.
Given YOLOv8's outstanding object detection performance, we

selected it as the baseline model for high-performance blueberry

fruit detection.

2.3.2 STF-YOLO
To address challenges in blueberry fruit detection, including (1)

small object sizes, (2) difficulties in assessing maturity, and (3)

occlusion caused by overlapping fruits or foliage, we propose an

enhanced model STF-YOLO, which is based on YOLOv8. STF-

YOLO integrates DSAA, AEF, MNS and SDCH, effectively

enhancing both the precision and efficiency of blueberry fruit

detection. Its architecture is illustrated in Figure 4. The following

sections provide a comprehensive explanation of the improvements

made to each module.

2.3.2.1 Detail situational awareness attention

In the context of blueberry fruit detection, intricate

environmental factors such as lighting and occlusion have been

observed to impede the clarity and definition of the fruit's edges and

intricate features, thereby exerting a detrimental influence on the

model's detection performance. Consequently, the detection model

must possess robust detail perception capabilities to accurately

distinguish fruits at different maturity levels. The issue under

discussion has been addressed by the design of the DSAA module

(see Figure 5a). This module consists of three main components:

basic feature extraction, the Convolutional Additive Token Mixer

(CATM) for capturing contextual information, and the

Convolutional Gated Linear Unit (CGLU) for enhancing feature

selection and improving the model's ability to focus on

relevant details.

The C2f structure in YOLOv8 primarily focuses on aggregating

overall information during feature extraction but lacks sufficient

capability to perceive detailed information. This limitation prevents
TABLE 1 Dataset sample distribution.

Number of
enhanced pictures

Number of
train, val, test

Maturity Labels

3914

Train set of 3115
images

mature 16120

immature 15420

semi-
mature

7780

Val set of 665 images

mature 3195

immature 3025

semi-
mature

1355

Test set of 134 images

mature 702

immature 680

semi-
mature

291
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it from effectively capturing the edge features of blueberry fruits and

the fine-grained information related to their maturity. Inspired by

Zhang et al. (2024), CATM introduces Query (Q), Key (K), and

Value (V) representations after the basic feature extraction to

capture contextual information between features. As shown in

Figure 5b), the module adaptively adjusts Q and K through

spatial operations, which use local convolutions (e.g., 3×3

convolutions) to enhance positional relationships, and channel

operations, which employ global average pooling and 1×1

convolutions to refine inter-channel dependencies. This results in

a weighted attention map as described in Equation 1.

Attention(Q,K ,V) = Softmax( QKTffiffiffiffi
dk

p )V (1)

where Q, K, and V represent the feature matrices for Query,

Key, and Value, respectively. The term
ffiffiffiffiffi
dk

p
denotes the dimension

of the Key, used for scaling to prevent excessively large gradients.

Spatial operations enhance the spatial positions of the feature maps

by emphasizing the relative positional relationships between pixels

through local convolutions (e.g., 3×3 convolutions). This allows the

model to better capture the detailed edges and shape variations of

the fruits, which are critical for identifying subtle differences in
Frontiers in Plant Science 06
blueberry maturity levels, such as size, contour, and texture changes.

Channel operations optimize inter-channel dependencies using

global average pooling and 1×1 convolutions, enabling the model

to focus on the feature channels related to fruit maturity, such as

color changes and texture details.

For feature fusion, CATM combines the spatially and channel-

wise weighted Q and K by adding them together and then

multiplying by V, resulting in the final attention-weighted

features. This design effectively captures the spatial relationships

of blueberry fruits and identifies specific detail patterns across

different channels, which are crucial for assessing fruit maturity.

As shown in Figure 5c), the feature maps are forwarded to the

CGLU module for further processing to enhance feature

discrimination (Shi, 2024). The core idea of CGLU is to regulate

the feature flow through a gating mechanism, thereby enhancing

the focus on important features while maintaining a lightweight

structure. The basic operation of CGLU is illustrated in Equation 2:

Gated   Feature =  s (W1*X + b1) ȯX (2)

Where s represents the Sigmoid activation function, which is

used to generate gating signals; X denotes the input feature map;W1

and b1 are the weights and biases of the convolutional layer,
FIGURE 3

Structure of YOLOv8.
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respectively; ∗ signifies the convolution operation; and o ̇ represents
element-wise multiplication (Hadamard Product). The gating

mechanism dynamically adjusts the feature flow by weighting the

input feature map X and outputting the weighted feature map,

thereby enabling dynamic modulation of the feature stream.

Through this approach, CGLU enhances the focus on useful

features while suppressing interference from irrelevant ones,

further improving the model's ability to distinguish blueberry

maturity levels.

The DSAA module replaces the traditional C2f structure by

combining basic feature extraction with advanced mechanisms to

enhance feature representation. This integration significantly

improves the model's ability to detect subtle features, such as

fruit edges and maturity-related patterns, while enabling it to

handle complex scenarios like varying lighting, angles, and

occlusions, ensuring robust and reliable performance in real-

world applications.

2.3.2.2 Adaptive edge fusion

In the task of blueberry fruit maturity detection, occlusions

often result in blurred or incomplete edge information of the fruits,

posing challenges for the model in accurately identifying the fruits
Frontiers in Plant Science 07
and assessing their maturity levels. To address this issue, we propose

an AEF module.

As illustrated in Figure 6a), the AEF module processes the input

image through two parallel pathways. One pathway applies

convolution operations to extract initial feature maps, while the

other pathway performs multi-scale feature extraction by utilizing

adaptive average pooling at various scales to generate feature maps

of different resolutions. These multi-scale feature maps enable the

model to perceive the fruit edges at multiple levels of detail,

particularly providing richer edge features when parts of the fruit

are occluded, thereby compensating for the information loss caused

by occlusion.

For each scale of the feature maps, the module further employs

pointwise convolution (PWC) and Depthwise convolution (DWC)

for feature compression before passing them into the contour

attention (CA) module, as shown in Figure 6b). The CA module

first performs average pooling on the feature maps to extract their

low-frequency components. It then calculates the difference

between the feature maps and their low-frequency components to

obtain high-frequency edge information. Specifically, the input

feature map X ∈  RC�H�W , represents a tensor with C channels,

H height and W width. By applying a 3×3 average pooling to each
FIGURE 4

Structure of STF-YOLO.
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channel of the feature map, the low-frequency component E is

computed. Subsequently, the difference between the input feature X

and E yields the high-frequency component R, as shown in

Equations 3, 4. This difference effectively highlights the high-

frequency components in the image, such as edges and texture

details.

Ec,i,j =
1
9 o

1

m=−1
o
1

n=−1
Xc,i+m,j+n (3)

Rc,i,j = Xc,i,j − Ec,i,j (4)

where c denotes the channel index, while i and j represent the

spatial position indices of the feature map. The variables m and n

indicate the offsets relative to the current position. Subsequently, a

PWC is applied to the edge information R, and the weights are

adjusted using a sigmoid function to obtain the modified edge
Frontiers in Plant Science 08
information R′, as illustrated in Equation 5.

R
0
c,i,j = s (o

C

d=1
o
k

u=−k
o
k

v=−k

Wc,d,u,v · Rd,i+u,j+v)   (5)

whereWc,d,u,v represents the weight parameters of the convolution

kernel, and k denotes the radius of the convolution kernel. The symbol

s signifies a linear activation function. The adjusted edge information R

′ is added to the original feature map X, resulting in the final enhanced

feature map Y, as shown in Equation 6.

Yc,i,j = Xc,i,j + R
0
c,i,j   (6)

This operation enhances edge information, enabling the CA

module to extract fruit contours and improve edge perception in

complex scenes, overcoming occlusion interference. After

processing, all enhanced edge feature maps at different scales are

upsampled back to their original sizes and fused through channel
FIGURE 5

Detail situational awareness attention structure.
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concatenation (Concat) operations, integrating multi-scale edge

information into a unified feature space. Simultaneously, the

features extracted from the other convolutional pathway are also

concatenated with the fusion results, combining global and local

features to further enhance the model's ability to perceive fruit edge

information in complex scenarios. Finally, a PWC is applied to

compress and integrate the concatenated feature maps, generating

the final output feature map for subsequent blueberry fruit maturity

detection tasks.

The proposed AEF can be expressed by Equation 7:

  Foutput = PWConv(Concat( CA(Pooli(Fconv))丨i ∈ S  f g))   (7)

where Fconv is to extract the initial features; Pooli represents the

adaptive average pooling operation at the i -th scale, and S

represents the target size of each pooling operation (e.g., 3×3,

6×6, 9×9, 12×12, etc.); Concat is the channel concatenation of

multi-scale features. PWConv stands for the 1×1 PWC used to

compress the fusion.

The AEF module is designed to mitigate the negative impact of

partial occlusion on fruit edge feature extraction. Through its

combination of multi-scale feature extraction and a contour attention

mechanism, the module enhances visible edge information at different

scales. This process helps the model infer the presence of a fruit from

incomplete contours, thereby compensating for missing edge details

when parts of the fruit are occluded. Furthermore, the module's

lightweight design ensures computational efficiency, making it

suitable for real-time detection on embedded devices. Therefore, the

module improves the model's robustness against partial occlusion and

complex backgrounds while maintaining high accuracy, enabling more

precise detection of blueberry fruits.

2.3.2.3 Multi-scale neck structure

Due to the small size of blueberry fruit and its vulnerability to

distant blur, it is prone to missed detection during the detection

process. To address this issue, a MNS is devised to enhance the
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model's detection capability for objects of various scales,

particularly for small ones.

The core of MNS lies in the utilization of feature layers of

different scales for information transfer and fusion, generating

feature maps enriched with multi-scale features. By adopting a

feature pyramid and multi-layer fusion strategy, the MNS extracts

and integrates features of different scales, enabling the detection of

objects of various sizes, especially small targets, in complex

scenarios (Lin et al., 2017).

Specifically, this structure acquires multi-level feature maps

from the Backbone network, which contain information of

varying resolutions and receptive fields. These feature maps allow

the model to focus on objects of different sizes while preserving

critical spatial details. As shown in the Neck part of Figure 3, after

passing through the SPPF module, the feature maps are processed

step by step, and multi-scale context information is extracted via the

Context guided down-sampling (CGDS) module (Wu et al., 2021),

as illustrated in Figure 7a).

The CGDS module plays a crucial role in the feature extraction

process. Input features are first compressed using a 1×1 convolution

to reduce dimensionality. Next, spatial and contextual information

are extracted using standard 3×3 convolution and dynamic

convolution (DConv), respectively. The multi-scale features are

then fused by the CBS module, followed by further processing

with a 1×1 convolution and adaptive average pooling to generate

global context information. Finally, a fully connected layer (as

shown in Figure 7b) generates weight distributions to adaptively

adjust the features.

This lightweight design allows the CGDS module to effectively

combine local information with global context, ensuring that spatial

details are preserved throughout the feature extraction process. As a

result, the processed feature maps at each scale are rich in context

information, significantly enhancing the network's feature

expression and improving its ability to detect small targets and

objects of different scales.
FIGURE 6

Adaptive edge fusion structure.
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2.3.2.4 Shared differential convolution head

In the original YOLOv8 network, each layer feature map is

independently convolved to ensure the complete transfer of features.

Nevertheless, this design brings about a considerable increase in

computation and memory overhead, particularly when multi-scale

feature fusion is carried out. To reduce the computational cost while

maintaining high detection accuracy, this paper presents a SDCH. By

sharing the convolution operation among different feature layers, the

proposed method not only effectively reduces the computational

redundancy but also guarantees the effectiveness of feature extraction.

As depicted in Figure 8, the CGS module, consisting of a

convolutional layer (Conv), Group Normalization (GroupNorm),

and SiLU activation, is utilized to process input feature layers (P3,

P4, and P5).

This module adapts the input data to varying feature scales,

ensuring consistent feature representation across different levels.

The convolutional layer extracts the essential features, while

GroupNorm stabilizes the feature distribution, improving

robustness and consistency during feature fusion. Finally, the

SiLU activation function introduces nonlinearity, enhancing the

expressiveness of the extracted features. As has been verified by

Tian et al. (2022), the CGS module effectively normalizes and fuses
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features, significantly improving the model’s detection accuracy,

particularly for small objects. The function description is provided

in Equation 8.

GroupNorm(x) =
x−mgffiffiffiffiffiffiffiffiffi
s 2
g +∈

p · g + b (8)

where x is the input feature map; mg and s 2
g are the mean and

variance of x over each group, respectively. The ∈ is a small

constant to prevent the denominator from becoming zero. g and

b are learnable scaling and offset parameters. The processed feature

maps are fed into the shared two-layer detail-enhanced convolution

(DEConv), as shown in Figure 9, to further fuse the multi-

scale features.

DEConv, which integrates a Vanilla Convolution (standard

convolution) and a differential convolution structure, effectively

captures high-frequency detailed features, such as edges and

contours (Chen et al., 2024). Its core encompasses central

difference convolution (CDC), angle difference convolution

(ADC), horizontal difference convolution (HDC), and vertical

difference convolution (VDC), which extract edge information

from different directions. By sharing the DEConv, the feature

extraction of P3, P4, and P5 is unified, significantly reducing the
FIGURE 8

Shared differential convolution head.
FIGURE 7

Context guided down-sampling module.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1682024
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1682024
number of convolutional layers and model parameters while

maintaining strong feature representation capabilities.

After DEConv processing, the feature map Fall is split into two

paths: one path is utilized for the regression prediction Preg of the

object position, and the other path is used for the classification

prediction   Pcls of the object category. The specific formula is

shown in Equation 9:

Pcls = Convcls(Fall)    , Preg = Convreg (Fall) (9)

After that, the scale operation adjusts the scale of the output

features to adapt to the output requirements of different levels, and

finally generates the object detection results.

2.3.2.5 Evaluation standard

To evaluate the performance of the proposed model, we utilized

commonly used metrics in object detection, including Precision,

Recall, Average Precision (AP), and mean Average Precision

(mAP). The calculations for these metrics are as shown in

Equations 10–13:

Precision = TP=   (  TP + FP   )� 100% (10)

Recall = TP=(  TP + FN   )� 100% (11)

AP =
Z 1

0
P(Recall)dR (12)

mAP = 1
n  o

n

i=1
AP(i)� 100% (13)

where TP denotes the true positive defections. FP represents

false positives and FN refers to false negatives. Precision and Recall

are used to derive the precision-recall curve, which evaluates the

trade-off between these metrics across various thresholds.

Param refer to the total number of learnable parameters in the

model, while FLOPs measure the number of floating-point

operations required to process a single input image. Both metrics

are crucial for evaluating the model's efficiency and computational

complexity. Lower values of Parameters and FLOPs indicate a

lighter and more efficient model.
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Additionally, Counting Accuracy (Pc) and Mean Counting

Accuracy (mPc) were employed to assess the counting results.

These metrics are defined as shown in Equations 14, 15:

Pc = (   1 − Na − Ntj j=    Nt   )� 100% (14)

mPc =
1
3 (Pc  blue + Pc  green + Pc  purple ) (15)

In these equations, Na represents the automatically counted

value, and Nt denotes the true count value. m is the number of

instances evaluated. Higher values of Pc and mPc indicate more

accurate counting results.
2.4 ByteTrack algorithm

Furthermore, in order to address the challenges associated with

manual counting, this study explores an automated counting

method based on raw blueberry videos for blueberry fruit

counting. The automated counting process was achieved by

integrating STF-YOLO with the widely-used Multiple Object

Tracking (MOT) method. The actual number of blueberries at

each growth stage was obtained through manual counting during

video collection.

The ByteTrack algorithm enhances the accuracy of object-

counting by introducing a data-association technique called Better

Tracking-by-Detection (Byte) as illustrated in Figure 10 (Zhang

et al., 2022). Building on STF-YOLO’s precise detections, ByteTrack

efficiently links detected blueberry instances across frames, making

it particularly effective in high-density scenarios with overlapping

fruits and frequent occlusions. By integrating ByteTrack with STF-

YOLO, our system combines state-of-the-art detection and robust

temporal tracking to deliver a reliable, end-to-end automated

blueberry counting solution.
2.5 Evaluation standard

To evaluate the performance of the proposed model, we utilized

commonly used metrics in object detection, including Precision,
FIGURE 9

Detail-enhanced convolution structure.
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Recall, Average Precision (AP), and mean Average Precision

(mAP). The calculations for these metrics are as shown in

Equations 16–19:

Precision = TP=   (  TP + FP   )� 100% (16)

Recall = TP=(  TP + FN   )� 100% (17)

AP =
Z 1

0
P(Recall)dR (18)

mAP = 1
no

n

i=1
AP(i)� 100% (19)

where TP denotes the true positive defections. FP represents

false positives and FN refers to false negatives. Precision and Recall

are used to derive the precision-recall curve, which evaluates the

trade-off between these metrics across various thresholds.

Param refer to the total number of learnable parameters in the

model, while FLOPs measure the number of floating-point

operations required to process a single input image. Both metrics

are crucial for evaluating the model's efficiency and computational

complexity. Lower values of Parameters and FLOPs indicate a

lighter and more efficient model.

Additionally, Counting Accuracy (Pc) and Mean Counting

Accuracy (mPc) were employed to assess the counting results.

These metrics are defined as shown in Equations 20, 21:

Pc = (   1 − Na − Ntj j   =    Nt   )  �100% (20)

mPc   =
1
3   (   Pc  blue + Pc  green + Pc  purple   )   #(16) (21)

In these equations, Na represents the automatically counted

value, and Nt denotes the true count value. m is the number of

instances evaluated. Higher values of Pc and mPc indicate more

accurate counting results.
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3 Results

3.1 Experimental platform and parameter
settings

This experiment was conducted using the following hardware

and software configurations. The hardware setup included an AMD

Ryzen 9 5900X 12-core processor running at 3.70 GHz, paired with

an Nvidia GeForce RTX 3090 graphics card and 128 GB of RAM.

The operating system used was Windows 11. The software

environment comprised PyCharm 2022 as the development

environment, Python version 3.12.4, and Torch version 2.3.1.

During the experiments, the size of the training images is set to

640×640 pixels, the epoch is 150, the batch size is 8, and the learning

rate is 0.01.
3.2 Comparative experiment of different
models

To validate the detection performance of STF-YOLO more

comprehensively, we compared it with nine lightweight or

enhanced YOLO variants. As shown in Table 2, STF-YOLO

demonstrates state-of-the-art performance across multiple key

metrics. Under the standard mAP50 metric, STF-YOLO achieves

the highest score of 79.7%. It is 2.9%, 3.3%, 3.5%, 2.0%, 3.7%, and

1.9% higher than YOLOv5 to YOLOv11, respectively, and it

outperforms YOLO-MIF, MAF-YOLO, and YOLO-SDFM by

2.5%, 2.4%, and 1.6%. Furthermore, STF-YOLO attains the

highest precision (82.3%) and recall (72.1%), representing

improvements of 0.6% and 3.5 % over YOLOv8, respectively.

Crucially, when evaluated under the stricter mAP50–95 metric,

which demands higher localization accuracy, STF-YOLO again

achieves the top performance with 52.5%, surpassing all other

models. This demonstrates that STF-YOLO not only identifies
FIGURE 10

The tracking process of ByteTrack algorithm.
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objects accurately but also provides more precise bounding box

localization than other advanced variants. Notably, these

comprehensive accuracy improvements are achieved with an

efficient model size of 2.67 million parameters and a

computational cost of 6.7 GFLOPs. This shows that STF-YOLO

successfully combines state-of-the-art detection performance with

exceptional lightweight efficiency, making it highly suitable for

practical agricultural scenarios.

Figure 11 summarizes the mAP50 performance of nine

lightweight or enhanced YOLO variants and our proposed

STF-YOLO model under four settings—overall (“all”) and three

blueberry categories (mature, semi-mature, and immature).

STF-YOLO achieves the highest overall mAP50 of 79.7 %,
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outperforming the next best model, YOLO-SDFM (78.1 %), by

1.6 %. In the mature category, STF-YOLO attains 85.7 % mAP50,

just behind YOLOv9t’s 86.3 % yet ahead of the other eight models

(83.3 %–85.6 %), demonstrating strong performance when color

contrast is high. For semi- mature category, where color cues are

subtler, STF-YOLO’s 81.4 % mAP50 exceeds the second-best

(YOLOv9t) by 1.2 %, highlighting its sensitivity to intermediate

hues. In the immature category—characterized by low contrast

against foliage—With a mAP50 of 71.8%, STF-YOLO outperforms

YOLO-SDFM by 1.8 %, highlighting its resilience to occlusion and

edge ambiguity. These consistent gains across categories confirm

that the DSAA, AEF, and MNS modules effectively extract fine-

grained, multi-scale features for challenging small-object detection.
FIGURE 11

mAP50 for different detection models across blueberry maturity.
TABLE 2 Performance comparison of different models.

Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Params (M) FLOPS (G)

YOLOv5n 80.8 70.8 76.8 50.7 2.50 7.1

YOLOv6n 81.0 68.8 76.4 50.5 4.23 11.8

YOLOv8n 81.7 68.6 76.2 51.2 3.01 8.1

YOLOv9t 81.9 71.1 77.7 51.3 1.97 7.6

YOLOv10n 80.2 69.1 76.0 50.7 2.27 6.5

YOLOv11n 82.0 70.7 77.8 52.1 2.58 6.3

YOLO-MIF 81.6 69.1 77.2 51.6 3.01 8.1

MAF-YOLO 80.9 71.4 77.3 50.9 2.99 8.7

YOLO-SDFM 82.2 72.0 78.1 51.6 3.44 8.5

STF-YOLO 82.3 72.1 79.7 52.5 2.67 6.7
The bold values represent the best (optimal) result achieved in each respective column.
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3.3 Ablation results and insights

To systematically validate the effectiveness of our proposed

modules, we conducted a series of ablation experiments, with the

results detailed in Table 3.

The baseline YOLOv8n model established a benchmark

performance with a mAP50 of 76.2% and a computational cost of

8.1G FLOPs. Initially, we assessed the contribution of each

module individually:

The DSAA module replaces the standard C2f structure in

YOLOv8 to enhance fine-grained detail perception. Its CATM

integrates both spatial and channel self-attention through

convolutional query-key interactions, allowing the model to

encode contextual dependencies between partially occluded fruit

regions. Simultaneously, the CGLU adaptively regulates feature flow

by generating gating coefficients that suppress irrelevant

background responses. Theoretically, this operation implements a

multiplicative feature re-weighting analogous to a selective

attention mechanism in human vision, amplifying high-frequency

edge cues critical for small-object discrimination. Empirically, the

inclusion of DSAA increased mAP50 from 76.2% → 77.2%,

confirming that enhanced detail awareness directly improves

recognition of maturity-related color–texture transitions.

The AEF module is designed to mitigate information loss caused

by leaf occlusion and overlapping fruits. It decomposes each feature

map into low-frequency components (global color distribution) and

high-frequency components (edge textures) using local average pooling

and residual subtraction. The CAmechanism then re-weights the high-

frequency responses via sigmoid activation, effectively restoring

missing contour information. From a signal-processing perspective,

AEF acts as a high-pass enhancement operator embedded within the

convolutional feature space, selectively amplifying edge gradients

associated with blueberry boundaries. This yields stronger gradient

flow during backpropagation, improving edge localization. As shown

in the ablation results, AEF alone raised mAP50 to 77.9%, and when

combined with DSAA, achieved 78.2%, demonstrating complementary

improvements in both contour integrity and textural perception.

Blueberries vary greatly in apparent size due to imaging distance

and camera angle. To address scale-dependent information loss, the
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MNS introduces a CGDS mechanism that fuses global contextual

features with local receptive fields through dynamic convolution

weighting. Theoretically, this structure approximates a hierarchical

Laplacian pyramid where each CGDS block adaptively balances

spatial detail preservation and contextual abstraction. This enables

consistent representation of small and large fruits within a unified

feature space. The ablation study shows that while MNS alone

increases FLOPs due to multi-scale aggregation, its integration with

DSAA + AEF yields more stable recall and mAP50–95

improvements (up to +1.3%) across categories, particularly

enhancing recognition of semi-mature fruits whose features

exhibit intermediate hues and subtle boundaries.

The SDCH module addresses the redundancy of independent

convolutions across feature scales in the YOLOv8 head. By

introducing shared convolutional kernels and Group Normalization,

it maintains consistent feature representation while significantly

reducing parameters (from 3.01 M to 2.67 M). The theoretical

foundation lies in parameter sharing and differential feature

extraction: the DEConv integrates CDC, ADC, HDC, VDC to

capture directional gradients that encode edge orientation and

curvature information. This differential representation enhances the

model’s sensitivity to geometric variations without expanding network

depth. Notably, SDCH not only improved mAP50 by +1.4% compared

to the DSAA + AEF + MNS configuration but also reduced FLOPs by

17.6%, validating its effectiveness in achieving a better accuracy–

efficiency trade-off.

This hierarchical integration improves both representational

power and generalization, allowing STF-YOLO to achieve 79.7%

mAP50, outperforming all compared models while remaining

lightweight. The improved mAP50-95 (52.5%) demonstrates

enhanced localization precision, which theoretically reflects better

alignment of predicted bounding boxes with the ground truth due

to improved feature discrimination.

In conclusion, the four novel modules collectively transform the

baseline YOLOv8 architecture into a fine-grained, scale-adaptive, and

computationally efficient detection framework. The improvements are

theoretically grounded in enhanced spatial–spectral feature

representation and empirically validated through significant gains in

precision, recall, mAP50 and mAP50–95 under real-world conditions.
TABLE 3 Ablation experiment outcomes.

YOLOv8n DSAA AEF MNS SDCH Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) FLOPs

✓ × × × × 81.7 68.6 76.2 51.2 8.1G

✓ ✓ × × × 81.4 70.9 77.2 51.9 7.6G

✓ × ✓ × × 82.7 69.9 77.9 52.2 7.6G

✓ × × ✓ × 81.8 69.5 76.8 51.3 9.8G

✓ × × × ✓ 84.0 69.6 77.3 51.8 7.6G

✓ ✓ ✓ × × 82.7 71.7 78.2 52.4 7.4G

✓ ✓ ✓ ✓ × 81.7 71.7 78.3 52.5 8.3G

✓ ✓ ✓ ✓ ✓ 82.3 72.1 79.7 52.5 6.7G
fr
The bold values represent the best (optimal) result achieved in each respective column.
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3.4 The effect of the model on video
counting

Figure 12 and Table 4 illustrate the blueberry video counting

results and the counting accuracy of STF-YOLO combined with

ByteTrack, respectively. In Video 1, the model achieved an mPc of

69.07%, a Pc of 73.74% for blue category, and a Pc of 72.55% for

purple category. These results indicate that the model has a high

recognition capability in scenes where the fruit color features are
Frontiers in Plant Science 15
relatively clear. However, the Pc for green category is only 60.92%,

demonstrating a decrease in counting accuracy when the color

contrast between the fruit and the background is minimal. In

Video 2, the model's mPc increased to 74.94%, with a Pc of

86.07% for blue category and 79.17% for purple category. Despite

these improvements, green fruits still exhibit a low Pc of 59.60%,

highlighting persistent challenges in counting fruits with less

distinct color features. Conversely, in Video 3, the model reached

an mPc of 73.45%, and the Pc for green category improved to
FIGURE 12

Video counting effect.
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72.22%. This enhancement may be attributed to the relatively

brighter background in Video 3 compared to Videos 1 and 2 (as

shown in Supplementary Figure S6), which increases the color

contrast between green category and the background.

As shown in the Table 4 and Figure 13, The counting process of

the target tracking algorithm is shown frame by frame, and all the

statistics can be clearly seen in the upper left corner. The method

integrated STF-YOLO with ByteTrack achieved an m Pc of 72.49%.

Overall, the proposed method demonstrates strong robustness and

effectiveness in blueberry fruit detection and counting across

different video scenes. It effectively adapts to varying lighting

conditions and background contrasts, maintaining high accuracy

and reliable performance. The synergy between STF-YOLO’s

precise detection capabilities and ByteTrack’s robust tracking

algorithm ensures accurate counting results, even in complex and

dynamic environments.

Although traditional manual counting methods may produce

more accurate estimates than the results of this study, they usually

rely on experienced growers and are only applicable to small-scale
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orchards. This makes long-term, large-scale, continuous

monitoring impractical. By contrast, the automatic counting

approach that combines STF-YOLO and the ByteTrack algorithm

is objective and repeatable. This significantly reduces labor costs

and makes it particularly suitable for deployment in blueberry

orchards in real production environments. Furthermore, the

model could be improved further — narrowing the gap with

manual estimation — by incorporating diverse training data and

iteratively refining the algorithm structure. Therefore, the proposed

method is highly practical and scalable, effectively addressing the

needs of modern agricultural production and precision

orchard management.

To evaluate the effectiveness of various multi-object tracking

algorithms for the counting task, we selected three mainstream

algorithms: ByteTrack, OCSORT, and StrongSORT. These were

tested on three video datasets with varying levels of scene

complexity. The experimental results are presented in Figure 14.

As shown in Figure 14, the ByteTrack algorithm demonstrated

the best overall performance and stability. It achieved mPc scores of

69.07%, 74.94%, and 73.45% on the three video test sets,

respectively, with an average mPc of 72.49%, the highest among

all algorithms. This indicates that ByteTrack possesses strong

robustness in handling challenges such as object occlusion and

dense crowds across different scenarios.

The OCSORT algorithm also showed competitive performance,

with an average mPc of 72.08%, which is very close to that of

ByteTrack. Notably, OCSORT achieved the highest individual score

of 77.75% on Video 2, highlighting its advantages in specific

scenarios. However, its performance on the other videos was
FIGURE 13

Frame-by-frame display.
TABLE 4 Results of counting blueberries in different videos.

Video m Pc(%) Pc  blue ( % ) Pc  purple ( % ) Pc  green ( % )

1 69.07 73.74 72.55 60.92

2 74.94 86.07 79.17 59.60

3 73.45 76.71 71.43 72.22

all 72.49 78.84 74.38 64.24
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slightly lower than ByteTrack's, suggesting a minor lack

of consistency.

In contrast, the StrongSORT algorithm's performance was

unsatisfactory in this experiment. Its average mPc was only

40.31%, significantly lower than the other two algorithms. A

substantial performance degradation was observed, particularly in

Video 2 and Video 3, indicating that the algorithm has limited

tracking and counting capabilities when dealing with complex,

dynamic scenes or frequent object interactions, leading to issues

like ID switches or track losses.

In summary, based on its high accuracy and stability, the

ByteTrack algorithm is identified as the most suitable tracking

algorithm for the target counting task in this evaluation.
3.5 Model comparison experiments on
different datasets

In order to further evaluate the generalization capability of the

proposed STF-YOLOmodel, extensive experiments were conducted

on two distinct datasets. MegaFruit and PASCAL VOC2007.

MegaFruit is a substantial, high-quality dataset of fruit,

comprising three subsets: strawberry, blueberry and peach as

showed in Figure 15. Strawberry comprises 20,242 images.

Blueberry comprises 2,540 images, and the peach contains 2,400

images. Conversely, the PASCAL VOC 2007 dataset is a widely used

standard in computer vision research. It contains 20 categories of

objects, ranging from animals and vehicles to everyday items.
Frontiers in Plant Science 17
This extensive range provides a robust basis for evaluating the

generalization and versatility of object detection algorithms.

We have also introduced various models from the YOLO series

for comparison purposes. As shown in Table 5, the STF-YOLO

model achieved the best overall performance on the MegaFruit

dataset. Of these, it attained a mAP50 of 91.6% for peaches, 70.5%

for strawberries and 90.6% for blueberries. It is worth noting that

the blueberry subset was captured at a close range of 20 cm–30 cm

with a focus on individual clusters (local views), whereas our own

blueberry dataset was recorded from 80 cm–100 cm with a focus on

full plants or wider angles. These factors result in higher image

resolution and simpler backgrounds in MegaFruit, contributing to

its elevated precision. The efficacy of the proposed method is further

evidenced by its superior performance compared to other YOLO

variants , including YOLOv8n, YOLOv9n, YOLOv10n

and YOLOv11n.

Additionally, when evaluated on the more challenging PASCAL

VOC2007 benchmark (see Table 6), STF-YOLO still maintained its

leading position, reaching a mAP50 of 66.3%, outperforming all the

other compared models. The model also achieved a precision of

78.1% and a recall of 50.9%. The class-wise heatmap in Figure 16

further highlights STF-YOLO's consistently high performance

across all 20 VOC categories, especially in the categories of

bicycle, bird, dog, horse and motorbike, without the pronounced

fluctuations seen in the baseline models. This consistent

performance underscores the model's superior generalization

capabilities, confirming its applicability to both specialized

agricultural detection tasks and broader detection scenarios.
FIGURE 14

Performance evaluation of different tracking algorithms for object counting.
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4 Discussion

4.1 The necessity of progressing from
detection and counting to yield prediction
and decision support

In modern blueberry production, the ultimate value of

technology lies in its ability to inform management decisions.

Traditional yield estimation methods suffer from significant

errors due to a lack of objective data support. Therefore,

transforming fruit detection and counting technology from purely

academic metrics into actionable information that supports

decision-making serves as a crucial bridge connecting research

and practice. The core contribution of this study lies in

developing a lightweight model (STF-YOLO) capable of high-

precision detection and counting of blueberries at varying stages

of ripeness under complex field conditions, laying the most critical

foundation for constructing dynamic yield prediction models.
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Placing our research within the existing literature reveals that

automated fruit detection and counting represent a research

hotspot in the field of yield prediction. Previous studies have

achieved significant progress across multiple crops. For instance,

Li et al. (2023) successfully combined YOLOv5 and ByteTrack

algorithms for video stream counting of dragon fruit flowers,

green fruits, and red fruits. Similarly, Du et al. (2024) employed

an optimized YOLOv5s and an improved DeepSort algorithm for

video tracking and counting of green peppers, effectively addressing

challenges such as color similarity and severe occlusion. These

studies all achieved favorable results and collectively demonstrate

that the “detection + tracking” approach based on the YOLO

framework represents the current mainstream and effective

technical route.

However, compared to crops like dragon fruit or green peppers

with relatively distinct features and larger volumes, blueberries pose

greater detection challenges due to their small size, high density,

and severe overlapping. Mainstream methods experience significant
TABLE 5 Results of different models on MageFruits dataset.

Model Mage_peach Mage_strawberry Mage_blueberry

YOLOv8n 90.8% 70.5% 90.2%

YOLOv9t 91.3% 68.7% 90.4%

YOLOv10n 90.2% 68.3% 89.6%

YOLOv11n 91.5% 70.2% 90.1%

STF-YOLO 91.6% 70.5% 90.6%
The bold values represent the best (optimal) result achieved in each respective column.
FIGURE 15

MegaFruit datasets.
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performance degradation when directly applied to targets like

blueberries. The STF-YOLO model proposed in this study

significantly enhances feature extraction capabilities for small,

edge-blurred objects by integrating modules like DSAA and AEF.

It demonstrates outstanding performance among lightweight

models of its kind, confirming its superiority in handling such

challenging targets.

Furthermore, while many studies (e.g., YOLO-Granada

proposed by Zhao et al. (2024) proposed YOLO-Granada) focus

on model lightweighting, this study maintains leading detection

accuracy while compressing model parameters to 2.67M and

reducing computational load to 6.7 GFLOPs—critical for future

deployment on edge computing devices. Unlike most studies

detecting only ripe fruits, our model distinguishes three maturity

stages simultaneously. Its robust generalization capability is
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validated on the public MegaFruit dataset, demonstrating the

universality of our model improvements.

Despite these positive outcomes, several limitations remain.

First, the current dataset suffers from limited scale and diversity.

Furthermore, as discussed, the dataset exhibits a significant class

imbalance (approx. 2:2:1 for mature: immature: semi-mature), with

an under-representation of the 'semi-mature' (purple) category.

This is because semi-mature fruits have the shortest existence

period. Second, as noted in numerous studies (e.g., Du et al.,

2024), inferring total fruit counts in 3D space from 2D images

presents inherent challenges. Third, severe occlusions remain a

primary cause of counting errors. While our method achieves an

average counting accuracy of 72.49% when combined with the

ByteTrack algorithm, it still falls short of human counting precision.

Finally, the accuracy of converting “counts” to “yield” depends on

sampling and weighing.

To address these limitations, future work will focus on:

constructing larger datasets that are more balanced across

different maturity stages and captured throughout the entire

growing season to enhance model robustness under varying

lighting and weather conditions; exploring the integration of

multi-view geometry or 3D reconstruction techniques to

fundamentally tackle occlusion issues; and incorporating

technologies like multispectral imaging to non-destructively

estimate fruit volume and weight, thereby improving the accuracy

of final yield predictions.
FIGURE 16

VOC2007 dataset heatmap.
TABLE 6 Results of different models on VOC2007 dataset.

Model Precision (%) Recall (%) mAP50

YOLOv8n 77.3 51.3 66.2

YOLOv9t 75.3 52.1 65.9

YOLOv10n 79.2 46.7 64.1

YOLOv11n 74.4 51.6 65.2

Ours 78.1 50.9 66.3
The bold values represent the best (optimal) result achieved in each respective column.
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The ultimate vision for this research framework is its

deployment on automated orchard patrol robots or fixed

monitoring nodes to collect orchard data periodically (e.g.,

weekly). The collected time-series count data will be combined

with environmental sensor data (temperature and light intensity) to

train robust yield prediction models. These models can generate

intuitive decision dashboards for farmers, such as: “Area A is

projected to reach peak harvest within 7–10 days, with an

estimated yield of 100 kilograms.” Such guidance will facilitate

human resource allocation, harvesting tool scheduling, and sales

planning. It will transform blueberry production from traditional,

experience-dependent practices into a new era of data-driven

precision smart agriculture.
4.2 The influence of different number of
subsample blocks on performance

As shown in Table 7, we conducted an ablation study on the

number of CGDS sub-sampling blocks to evaluate their effect on the

overall performance of STF-YOLO. CGDS are the key components

of the MNS structure. The various configurations (CGDS = 0-5) are

illustrated in Supplementary Figures S1–S5 and were each tested in

a separate experiment. The results indicate that initially,

incrementally adding CGDS blocks boosts precision, recall, and

mAP; however, beyond a critical point, this yield diminishing

returns or even degraded performance. Specifically, the model

with CGDS set to 3 achieves the best balance of accuracy (the

highest mAP, precision, and recall) and efficiency, with just 2.67

million parameters and 6.7 GFLOPs. Increasing CGDS to 4 or 5

markedly increases computational complexity without improving

accuracy. Therefore, CGDS = 3 is identified as the optimal MNS

configuration, striking the ideal balance between performance

and efficiency.
4.3 Model detect ability under various
complex backgrounds

In the preceding sections, various quantitative analyses and

evaluations were conducted on the detection and counting of
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blueberry maturity. In order to further evaluate the model's

robustness in handling complex backgrounds such as low color

contrast, occlusions, and overlaps were also examined.

As shown in Figure 17, the environment is characterized by

dense vegetation and immature blueberries. The blueberries' green

coloration closely resembles that of the surrounding leaves, which

can pose a challenge in blueberry detection and counting. All

baseline models, including the improved ones, performed poorly

in this scenario, failing to distinguish blueberries from leaves and

resulting in missed detections. Only MAF-YOLO successfully

handled two of these cases. In contrast, the enhanced STF-YOLO

model, leveraging its optimized color perception and discrimination

capabilities, significantly improved the detection rate of low-color-

difference green blueberries in such scenarios.

Figure 18 illustrates the detection capabilities of various models

in scenario (b), where the environment is characterized by fruits

severely obstructed by leaves, branches, or other fruits. This

common challenge often leads to missed detections and a

substantial drop in bounding-box accuracy for many object

detectors. As seen in the figure, baseline models like YOLOv8 and

even more advanced versions such as YOLOv9 and YOLOv10,

struggle significantly with these occluded targets (e.g., observe the

bottom row, where blue blueberries are heavily obscured).

Conversely, our proposed STF-YOLO model consistently

demonstrates superior performance. Thanks to its enhanced

feature extraction and contextual understanding capabilities, STF-

YOLO effectively detects partially occluded fruits, showcasing

greater reliability and robustness in such complex scenarios

compared to other state-of-the-art methods.

Figure 19 presents the challenge of accurately detecting multiple

blueberry fruits that are in close proximity or are partially

overlapping. As visualized in the comparison, this dense

clustering causes most baseline models to fail. These models often

mistakenly merge multiple distinct fruits into a single, inaccurate

bounding box (e.g., as seen in the top and middle rows) or fail to

detect all instances within the cluster. In sharp contrast, our

proposed STF-YOLO model demonstrates superior separation

capabilities. As highlighted in the enlarged sections, it successfully

distinguishes and applies individual bounding boxes to each

overlapping blueberry, thereby maintaining high detection

accuracy and performance in densely packed conditions.
TABLE 7 Ablation experiment for the number of CGDS.

Models Precision % Recall % map50 % Params Flops

STF-YOLO(CGDS = 0) 81.2 70.8 77.7 2.25M 6.1G

STF-YOLO(CGDS = 1) 81.6 70.8 78.2 2.26M 6.2G

STF-YOLO(CGDS = 2) 82.0 72.0 79.0 2.34M 6.5G

STF-YOLO(CGDS = 3) 82.3 72.1 79.7 2.67M 6.7G

STF-YOLO(CGDS = 4) 81.4 71.2 78.7 2.75M 7.0G

STF-YOLO(CGDS = 5) 81.9 71.7 79.0 3.08M 7.2G
The bold values represent the best (optimal) result achieved in each respective column.
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4.4 Direction for improvement

Although the proposed STF-YOLO model demonstrates

outstanding blueberry detection performance across various

complex scenarios, there remains room for further optimization.

First, false negatives persist under extremely challenging

conditions. For instance, in extremely low-light environments, the

model may fail to detect objects due to its inability to extract

effective features (as shown in Figure 20a).
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Second, severe occlusions remain a primary challenge leading to

detection failures and counting errors. To quantify this issue, we

categorized instances in the test set based on actual blueberry

occlusion area into three levels: Minor (occlusion area < 50%),

Moderate (occlusion area 50%–70%), and Severe (occlusion area >

70%). Visual examples are shown in Figure 21.

As shown in Table 8, which provides a direct comparison against

the YOLOv8 baseline, STF-YOLO's superiority in handling

occlusions is evident across all categories. Under Minor
FIGURE 17

Comparison of detection performance for green immature blueberries and background leaf camouflage scenarios.
FIGURE 18

Comparison of detection performance in scenarios with significant fruit occlusion.
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obstruction, STF-YOLO achieved a pass rate of 82.35%, representing

a significant improvement over YOLOv8's 63.72%. This performance

gap was maintained under Moderate obstruction, where our model

achieved a 56.25% pass rate compared to the baseline's 46.87%.
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While performance for both models degrades substantially under

Severe obstruction (e.g., the blurred boundary case shown in

Figure 20b), STF-YOLO (32.26%) still outperformed YOLOv8

(22.58%) by a notable margin. This indicates that while our model
FIGURE 19

Comparison of detection performance in scenarios with dense and overlapping blueberry clusters.
FIGURE 20

Failure detection phenomenon in extremely complex background: (a) Missed detection due to dim lighting; (b) Missed detection caused by blurred
boundary and severe occlusion.
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shows marked improvements, its feature representation capability for

heavily occluded targets remains a significant challenge. Therefore,

future research should continue enhancing the model's feature

representation ability, particularly its generalization and robustness in

these extremely complex environments.

Additionally, deploying STF-YOLO in diverse agricultural settings

presents several challenges. First, variable field conditions—such as

fluctuating light levels and weather variations—can degrade detection

accuracy. Second, the model's robustness across different crop varieties

and growth stages must be thoroughly evaluated and optimized.

Finally, to enable real-time system integration, STF-YOLO requires

resource-aware optimization and calibration to balance cost

constraints, hardware compatibility, and processing speed.

5 Conclusion

Accurate detection of blueberry maturity and precise fruit counting

are essential for optimizing harvesting efficiency and improving
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economic returns in modern agriculture. In this study, a

comprehensive blueberry video dataset was developed to capture the

challenges of maturity evaluation and counting in real orchard

environments. Leveraging this dataset, we developed a lightweight

and efficient detection model, STF-YOLO. This model integrates four

specialized modules—DSAA, AEF, MNS, and SDCH—to address key

issues in maturity assessment, fruit occlusion, small-object detection,

and model lightweight design. Experimental results demonstrate that

STF-YOLO exhibits superior performance in detecting blueberries

across all maturity stages. Compared with the original YOLOv8

model, STF-YOLO achieves improvements of 3.5% in both recall

and mean average precision (mAP), while reducing computational

complexity by 17.28%. Furthermore, STF-YOLO demonstrates

superior performance across precision, recall, and efficiency metrics

compared to other prevalent lightweight object detection models.

To evaluate generalization capability, STF-YOLO was tested on

two distinct datasets: the agricultural-focused MegaFruit dataset and

the diverse PASCAL VOC2007 dataset. On MegaFruit, STF-YOLO
FIGURE 21

Visual classification criteria for occlusion challenges.
TABLE 8 Obstruction pass rate.

Number of occlusion
instances in the test set

Model Degree Numbers
Number of successful
detections

Success rate

197

YOLOv8

Minor 102 65 63.72%

Moderate 64 30 46.87%

Severe 31 7 22.58%

STF-YOLO

Minor 102 84 82.35%

Moderate 64 36 56.25%

Severe 31 10 32.26%
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outperformed other YOLO variants, achieving the highest mAP scores

for peach, strawberry, and blueberry categories. On VOC2007, STF-

YOLO demonstrated state-of-the-art performance, confirming its

robustness and adaptability across diverse object categories and

complex real-world scenarios. Integrating STF-YOLO with the

ByteTrack algorithm enabled automated blueberry counting in video

sequences, achieving a counting accuracy of 72.49%. These results

validate the reliability and practical applicability of STF-YOLO for real-

world agricultural monitoring and automated harvesting systems. In

summary, the proposed method provides an innovative solution for

small-object fruit detection in complex agricultural scenarios. Future

work will focus on expanding STF-YOLO's applicability to diverse crop

types to enhance robustness and efficiency, thereby advancing

intelligent and precision agriculture technologies.
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