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Introduction: Blueberries are highly prized for their nutritional value and
economic importance. However, their small size, dense clustering, and brief
ripening period make them difficult to harvest efficiently. Manual picking is costly
and error-prone, so there is an urgent need for automated, high-precision
solutions in real orchards.

Methods: We proposed an integrated framework that combined the STF-YOLO
model with the ByteTrack algorithm to detect blueberry maturity and perform
counting. Together with ByteTrack, it provided consistent fruit counts in video
streams. STF-YOLO replaced the YOLOvV8 C2f block with a Detail Situational
Awareness Attention (DSAA) module to enable more precise discrimination of
maturity. It also incorporated an Adaptive Edge Fusion (AEF) neck to enhance
edge cues under leaf occlusion and a Multi-scale Neck Structure (MNS) to
aggregate richer context. Additionally, it adopted a Shared Differential
Convolution Head (SDCH) to reduce parameters while preserving accuracy.
Results: On our orchard dataset, the model achieved an mAP50 of 79.7%,
representing a 3.5% improvement over YOLOv8. When combined with
ByteTrack, it attained an average counting accuracy of 72.49% across blue,
purple, and green maturity classes in video sequences. Cross-dataset tests
further confirmed its robustness. On the MegaFruit benchmark (close-range
images), STF-YOLO achieved the highest mAP50 for peaches (91.6%),
strawberries (70.5%), and blueberries (90.6%). On the heterogeneous PASCAL
VOC2007 dataset, it achieved 66.3% mAP50, outperforming all lightweight YOLO
variants across 20 everyday object categories.

Discussion: Overall, these results suggest that the STF-YOLO integrated with the
ByteTrack framework can accurately detect and count blueberries in orchards.
This lays a solid foundation for the future development of automated blueberry
harvesting machinery and improvements in harvest efficiency.

fruit detection, fruit counting, target detection, YOLO, blueberry
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1 Introduction

Blueberry is among the world’s most valuable fruit crops from
an economic perspective, and is popular with consumers due to
their high antioxidant, vitamin and mineral content, which provides
anti-inflammatory and anti-cancer benefits (Cheng et al.,, 2024).
However, despite surging demand and cultivation, harvesting
remains the bottleneck of the supply chain in China, where
picking depends almost entirely on manual labor. In practice, two
issues are critical. Firstly, labor shortages during the peak season
mean that workers must harvest continuously within the narrow
24-72-hour optimum window. Fatigue leads to inconsistent
maturity selection and lower picking efficiency. Secondly, field
studies reported that manual compression causes 15-20% fruit
damage (Ali et al,, 2015). These challenges are exacerbated by the
delicate texture, dense clustering and short ripening period of
blueberries, all of which complicate large-scale daily harvests
(Ding et al,, 2023). Consequently, the development of automated,
high-precision detection and picking systems has become essential
for minimizing losses and meeting market demand. However,
beyond these obvious challenges, a deeper issue affecting the
entire supply chain has long been overlooked: the lack of accurate
yield forecasts. Blueberry growers must make critical decisions
weeks before the start of the harvest season, including labor
recruitment, procurement of packaging materials, arrangements
for cold chain logistics, and coordination of sales channels. These
decisions rely heavily on estimates of the harvestable fruit yield in
kilograms for the next one to two weeks. Currently, such estimates
rely almost entirely on farmers' experience, resulting in high levels
of subjectivity and significant errors. This frequently leads to the
misallocation of resources and economic losses. Therefore,
developing technology that can objectively and accurately assess
the quantity and distribution of fruit maturity within orchards is
fundamental to achieving precision agricultural management and
intelligent decision-making. The significance of this technology
extends far beyond addressing issues specific to the harvesting
process alone.

In recent years, a growing body of research has sought to
develop more accurate methods of detecting fruit. Traditional
machine learning approaches, such as Support Vector Machines
(SVMs), Random Forests and Classification and Regression Trees
(CART), have been explored (Breiman, 2001; Breiman et al., 2017).
However, they are limited by their reliance on handcrafted features,
which often struggle to generalize. This leads to degraded
performance when dealing with challenges like partial occlusion,
where the model must infer objects from incomplete information,
and significant variations in fruit size, color, or maturity.
Consequently, researchers have turned to deep learning
techniques, which have stronger feature extraction capabilities
and enable reliable recognition in complex orchard scenes. For
instance, Zhao et al. (2024) proposed RT-DETR-Tomato, a two-
stage detector that combines region proposal and refinement steps
to deliver precise tomato localization. Among single-stage detectors,
the YOLO (You Only Look Once) family offered an excellent
balance of speed and accuracy and became the mainstream choice
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for fruit detection (Redmon, 2016; Redmon and Farhadi, 2017;
Farhadi and Redmon, 2018). Zhang et al. (2022) used YOLOV3 to
track citrus fruits in videos and eliminate duplicate detections
caused by overlap. Zhao et al. (2024) enhanced YOLOvV5 with
ShuffleNetv2 and CBAM attention (YOLO-Granada) for
lightweight yet accurate pomegranate detection, while An et al
(2022) upgraded YOLOX with C3HB, NAM attention and SIOU
loss (SDNet) to identify strawberry growth stages. Collectively,
these studies demonstrate that single-stage YOLO variants and
carefully optimized two-stage detectors can significantly improve
the efficiency and accuracy of fruit detection tasks, thereby
highlighting their important role in making harvesting workflows
more efficient and increasing agricultural productivity.

Maturity is a crucial indicator for determining the optimal
harvest time, as harvesting too early or too late can negatively
impact flavor, quality, and economic value (Krishna et al., 2023). In
recent years, researchers have dedicated efforts to studying
advanced methods for fruit maturity detection. For example, Xiao
et al. (2023) developed a YOLOvS-based apple maturity detection
model that uses transfer learning to enhance feature extraction and
a custom dataset for precise classification. Lai et al. (2022) proposed
a YOLOv4-based system for real-time identification of mature oil
palm fruit clusters, achieving an mAP50 of 87.9%. Yang et al. (2023)
introduced LS-YOLOVSs, a strawberry maturity grading model
combining YOLOv8s with an LW-Swin Transformer module,
which attained 94.4% accuracy. Chen et al. (2024) designed a
multi-task loss function using Scale-Invariant IoU (SIoU) to
replace CloU, improving the accuracy of YOLOv7-based DCNNs
in detecting tomato clusters and maturity. Similarly, Wang et al.
(2024) integrated Variable Focal Loss (VFL) and Wise-IoU (WIoU)
into NVW-YOLOVS8s for real-time tomato maturity detection and
segmentation. Collectively, these studies demonstrate that deep
learning models achieve remarkable results in fruit maturity
detection, particularly for large fruits or those with
simple backgrounds.

Compared to large fruits like apples and potatoes—which
exhibit relatively distinct shapes and fewer occlusion issues—
small fruits present additional detection challenges due to dense
distribution and severe occlusion. Xie et al. (2022) proposed an
improved YOLOV5-litchi model integrating a convolutional block
attention module and a small-object detection layer, achieving a
12.9% higher mAP50 than the original YOLOVS. Similarly, Yu et al.
(2024) developed a lightweight SOD-YOLOv5n model for winter
jujube detection, improving mAP50 by 3% while enabling real-time
fruit counting. Gai et al. (2021) further optimized YOLOv4 for
occluded and overlapping cherry fruits, increasing mAP50 by 15%
over the baseline model. However, these successes are often
demonstrated on relatively large fruits or in controlled, close-
range imaging scenarios.

Blueberries are particularly challenging to detect due to their
small size, clustered growth and color similarity to the background,
which makes maturity assessment and counting more complex and
relative to many other fruits, detection accuracies on blueberries are
often lower. MacEachern et al. (2023) applied six YOLO models to
detect blueberries at three different maturity stages. They achieved a
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mAP50 of 79.79%. Liu et al. (2023) proposed an enhanced YOLO-
based algorithm for blueberry maturity detection. This integrates a
lightweight CBAM (Little-CBAM), an improved MobileNetv3
backbone and a multi-scale fusion module (MSSENet). This
boosted the algorithm's ability to detect small targets and its anti-
interference capabilities. Adopting EIOU_Loss and optimizing the
anchor frames enabled the method to achieve a mAP50 of 78.3%,
which was 9% higher than that of YOLOv5x. Most prior studies
have relied on close-range imagery. Moreover, because these
examples all used close-range blueberry images (typically 20 cm-
50 cm above the canopy), they cannot capture the full scene and are
therefore not well suited for integration into field-harvesting robots.
However, to capture the entire blueberry crop, the person often
stood around 1.5 m-2 m away, depending on the length of the
branches and buds. This reduced the clarity of the fruit and, in turn,
the accuracy of detection. Zhao et al. (2024) acquired blueberry
images using a drone at a height of approximately 5 m above the
ground and improved the PF-YOLO model by applying location
coding and fast convolution technology, which only increased the
mAP50 from 48.9% to 54.4%. In summary, while recent
advancements in YOLO-based models have achieved high
detection accuracy or blueberries in close-range imagery, this
paradigm is fundamentally incompatible with practical field
applications requiring whole-plant visibility for tasks like accurate
counting. As demonstrated by Zhao et al. (2024), detection
performance suffers drastically at the medium-to-long range
distances necessary to capture the full extent of a blueberry bush
within a single frame. This significant accuracy gap underscores
a critical challenge: robust blueberry detection and counting
in operational field settings inherently demands imagery
encompassing the entire plant profile, inevitably captured from
distances where fruit clarity is reduced. Consequently, deploying
effective harvesting or scouting robots necessitates overcoming the
inherent difficulties of small-target detection in complex, wide-field
views obtained from these practical stand-off positions, a core focus
of this research.

Accurate yield estimation and maturity assessment are crucial
prerequisites for the automated harvesting of blueberries, as they
directly influence management decisions and efficiency across the
entire production chain. However, real orchard scenarios often
include fruits at varying maturity levels, with significant variability
not only between individual plants but also within fruit clusters,
making consistent visual assessment difficult. This complexity is
further exacerbated by the berries’ small size, dense clustering, and
color similarity to foliage. Currently, maturity assessment relies
heavily on subjective empirical estimates or labor-intensive
sampling methods, both of which lack the accuracy and
scalability required for large-scale, continuous monitoring.
Moreover, precision agriculture demands precise, real-time
orchard data to optimize harvest schedules, streamline picking
routes, and manage post-harvest logistics effectively. Therefore,
there is an urgent need for automated, intelligent detection
methods that can objectively and accurately quantify blueberry
maturity and yield, providing consistent, reproducible, and timely
data to reduce reliance on manual labor, minimize fruit loss, and
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enhance operational efficiency and profitability (Lobos et al., 2014;
DeVetter et al., 2022).

This study focuses on developing an improved detection
method for assessing and counting blueberry maturity in real
orchard environments. The main contributions are as follows:

1. STE-YOLO (Small Target Fruit YOLO): An enhanced
YOLO model for blueberry maturity identification.

2. Innovative Architectural Modules: Detail Situational
Awareness Attention (DSAA): Dynamically allocates
attention weights. Adaptive Edge Fusion (AEF): Enhances
contour representation. Multi-Scale Neck Structure (MNS):
Improves small-target detection. The original head
structure is replaced with a Shared Differential
Convolution Head (SDCH), leveraging shared
convolutions to reduce model complexity while
enhancing performance.

3. Detection-to-Counting Framework: Blueberry fruits are
first detected in individual images, then precisely counted
using the ByteTrack algorithm. While performance varies
across maturity categories, the method demonstrates robust
overall performance in addressing practical challenges in
complex orchard environments—highlighting its
applicability and reliability.

The remainder of this paper is organized as follows: Section 2
details the blueberry dataset construction and model development.
Section 3 presents experimental results, Section 4 provides
discussion, and Section 5 concludes with findings and future
research directions.

2 Materials and methods
2.1 Data collection

We collected high-resolution videos of blueberry plants at
Shimen Blueberry Orchard (120°26'44.39" E, 30°39'36.91" N) in
Tongxiang City, Jiaxing Prefecture, Zhejiang Province, China,
during the ripening period from May to June 2024. Videos were
recorded using an iPhone 13 Pro at 3840x2160 pixel resolution
between 9:00 AM and 5:00 PM under optimal lighting conditions.
The camera was positioned 80-100 cm from the plants to balance
detailed feature capture with clarity. During collection, we carefully
selected representative blueberries and backgrounds to reflect
varying growth conditions across plants. Figure 1 provides an
overview of the data collection process. Panel (a) shows the exact
geographic collection area (marked in red). Panels (b) and (c) depict
typical field scenes, including planting environments and
infrastructure like support structures and pathways. Panels (d),
(e), and (f) illustrate blueberries at different maturity stages,
highlighting developmental variations in size, color,
and appearance.

After recording the videos, we extracted 891 images of blueberry
plants, one frame at a time, in order to create a dataset. Extracting
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(2)

FIGURE 1

Data collection area, field scenes, blueberry fruit sample images. (a-c) Data collection locations and scenarios, (d-f) examples of blueberry fruit

images at different maturity levels.

specific frames from the videos enabled us to create a
comprehensive dataset aligned with practical applications.

2.2 Data processing and construction

We manually annotated the aforementioned images using the
Labellmg tool (Tzutalin, 2015), as shown in Figure 2.

FIGURE 2
Annotated example.
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The annotation standard was the minimum bounding rectangle
surrounding the blueberry fruits, including both complete and
partially occluded blueberries.

Blueberries typically grow in clusters, often containing fruits at
different maturity stages. Consistent with the method described by
Yang et al. (2022), we visually assessed maturity based on color,
categorizing fruits as mature (blue), semi-mature (purple), or
immature (green). To ensure annotation accuracy, each image

¢ Immature

Semi mature
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was magnified to at least 200% to accommodate the berries' small
size. All labels underwent independent review and correction before
inclusion in the final dataset. Upon completion, each annotated
image corresponded to a TXT file containing category and
coordinate information. For fruit detection model development
and validation, we randomly allocated 70% of images (623) for
training, 15% (134) for validation, and 15% (134) for testing. We
applied various data augmentation techniques—including rotation,
Gaussian noise addition, flipping, and scaling—to the training and
validation sets to enhance training effectiveness and generalization
capability. This augmentation yielded 3115 training images and 665
validation images. Finally, to alleviate hardware memory
constraints during training, we resized all input images from
3,840 x 2,160 pixels to 640 x 640 pixels. The sample distribution
is shown in Table 1.

2.3 Improved YOLOvVS8 algorithm

2.3.1 YOLOvVS8 network

The YOLO series of object detection models is widely acclaimed
for its efficient end-to-end detection capabilities and has been
extensively used in computer vision tasks including object
detection, image segmentation, and target tracking (Wu et al,
2013). YOLOvVS, the latest iteration of this series, introduces
significant architectural optimizations designed to enhance both
accuracy and efficiency in real-time detection (Sohan et al., 2024).
Compared to its predecessors (YOLOvV5, YOLOv6, YOLOV7),
YOLOv8 incorporates a more efficient feature extraction
backbone and lightweight structures, reducing computational
overhead while improving overall performance. The YOLOv8
architecture comprises three main components, as illustrated
in Figure 3:

1. Backbone: YOLOvV8's backbone integrates advanced
modules like ConvNext and Swin Transformer,

TABLE 1 Dataset sample distribution.

Number of
train, val, test

Number of

enhanced pictures HERITTET | REDES

mature 16120
Train set of 3115 immature 15420
images
semi-
7780
mature
mature 3195
. immature 3025
3914 Val set of 665 images
semi-
1355
mature
mature 702
. immature 680
Test set of 134 images
semi-
291
mature
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significantly enhancing feature extraction capabilities. The
inclusion of an improved E-ELAN structure and efficient
residual modules strengthens its ability to capture
contextual information and spatial details. This makes the
model particularly suitable for detecting small objects in
dense scenes with complex backgrounds.

2. Neck: The neck employs an enhanced feature pyramid
network (optimized from PAFPN) for efficient multi-
scale feature map fusion. Incorporating spatial and
channel attention mechanisms allows the model to
adaptively focus on salient feature regions. This improves
feature transmission and fusion effectiveness, boosting
detection performance for small objects and
complex backgrounds.

3. Head: The detection head utilizes dynamic convolution and
adaptive feature weighting strategies for precise bounding
box and class prediction. An improved positive/negative
sample matching algorithm enhances multi-scale detection
robustness. The decoupled head structure processes
classification and regression tasks separately, mitigating
task conflict and further increasing detection accuracy.

Given YOLOVS's outstanding object detection performance, we
selected it as the baseline model for high-performance blueberry
fruit detection.

2.3.2 STF-YOLO

To address challenges in blueberry fruit detection, including (1)
small object sizes, (2) difficulties in assessing maturity, and (3)
occlusion caused by overlapping fruits or foliage, we propose an
enhanced model STF-YOLO, which is based on YOLOvS. STF-
YOLO integrates DSAA, AEF, MNS and SDCH, effectively
enhancing both the precision and efficiency of blueberry fruit
detection. Its architecture is illustrated in Figure 4. The following
sections provide a comprehensive explanation of the improvements
made to each module.

2.3.2.1 Detail situational awareness attention

In the context of blueberry fruit detection, intricate
environmental factors such as lighting and occlusion have been
observed to impede the clarity and definition of the fruit's edges and
intricate features, thereby exerting a detrimental influence on the
model's detection performance. Consequently, the detection model
must possess robust detail perception capabilities to accurately
distinguish fruits at different maturity levels. The issue under
discussion has been addressed by the design of the DSAA module
(see Figure 5a). This module consists of three main components:
basic feature extraction, the Convolutional Additive Token Mixer
(CATM) for capturing contextual information, and the
Convolutional Gated Linear Unit (CGLU) for enhancing feature
selection and improving the model's ability to focus on
relevant details.

The C2f structure in YOLOVS8 primarily focuses on aggregating
overall information during feature extraction but lacks sufficient
capability to perceive detailed information. This limitation prevents
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Output
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FIGURE 3
Structure of YOLOVS.

it from effectively capturing the edge features of blueberry fruits and
the fine-grained information related to their maturity. Inspired by
Zhang et al. (2024), CATM introduces Query (Q), Key (K), and
Value (V) representations after the basic feature extraction to
capture contextual information between features. As shown in
Figure 5b), the module adaptively adjusts Q and K through
spatial operations, which use local convolutions (e.g., 3x3
convolutions) to enhance positional relationships, and channel
operations, which employ global average pooling and 1x1
convolutions to refine inter-channel dependencies. This results in
a weighted attention map as described in Equation 1.

Attention(Q,K, V) = Softmux(%)V 1)

where Q, K, and V represent the feature matrices for Query,
Key, and Value, respectively. The term 1/d; denotes the dimension
of the Key, used for scaling to prevent excessively large gradients.
Spatial operations enhance the spatial positions of the feature maps
by emphasizing the relative positional relationships between pixels
through local convolutions (e.g., 3x3 convolutions). This allows the
model to better capture the detailed edges and shape variations of
the fruits, which are critical for identifying subtle differences in
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blueberry maturity levels, such as size, contour, and texture changes.
Channel operations optimize inter-channel dependencies using
global average pooling and 1x1 convolutions, enabling the model
to focus on the feature channels related to fruit maturity, such as
color changes and texture details.

For feature fusion, CATM combines the spatially and channel-
wise weighted Q and K by adding them together and then
multiplying by V, resulting in the final attention-weighted
features. This design effectively captures the spatial relationships
of blueberry fruits and identifies specific detail patterns across
different channels, which are crucial for assessing fruit maturity.

As shown in Figure 5c¢), the feature maps are forwarded to the
CGLU module for further processing to enhance feature
discrimination (Shi, 2024). The core idea of CGLU is to regulate
the feature flow through a gating mechanism, thereby enhancing
the focus on important features while maintaining a lightweight
structure. The basic operation of CGLU is illustrated in Equation 2:

Gated Feature = o(W;xX +b;)0X (2)

Where o represents the Sigmoid activation function, which is
used to generate gating signals; X denotes the input feature map; W,
and b, are the weights and biases of the convolutional layer,
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FIGURE 4
Structure of STF-YOLO.

respectively; * signifies the convolution operation; and 6 represents
element-wise multiplication (Hadamard Product). The gating
mechanism dynamically adjusts the feature flow by weighting the
input feature map X and outputting the weighted feature map,
thereby enabling dynamic modulation of the feature stream.
Through this approach, CGLU enhances the focus on useful
features while suppressing interference from irrelevant ones,
further improving the model's ability to distinguish blueberry
maturity levels.

The DSAA module replaces the traditional C2f structure by
combining basic feature extraction with advanced mechanisms to
enhance feature representation. This integration significantly
improves the model's ability to detect subtle features, such as
fruit edges and maturity-related patterns, while enabling it to
handle complex scenarios like varying lighting, angles, and
occlusions, ensuring robust and reliable performance in real-
world applications.

2.3.2.2 Adaptive edge fusion

In the task of blueberry fruit maturity detection, occlusions
often result in blurred or incomplete edge information of the fruits,
posing challenges for the model in accurately identifying the fruits

Frontiers in Plant Science

and assessing their maturity levels. To address this issue, we propose
an AEF module.

As illustrated in Figure 6a), the AEF module processes the input
image through two parallel pathways. One pathway applies
convolution operations to extract initial feature maps, while the
other pathway performs multi-scale feature extraction by utilizing
adaptive average pooling at various scales to generate feature maps
of different resolutions. These multi-scale feature maps enable the
model to perceive the fruit edges at multiple levels of detail,
particularly providing richer edge features when parts of the fruit
are occluded, thereby compensating for the information loss caused
by occlusion.

For each scale of the feature maps, the module further employs
pointwise convolution (PWC) and Depthwise convolution (DWC)
for feature compression before passing them into the contour
attention (CA) module, as shown in Figure 6b). The CA module
first performs average pooling on the feature maps to extract their
low-frequency components. It then calculates the difference
between the feature maps and their low-frequency components to
obtain high-frequency edge information. Specifically, the input
feature map X € RE*7*W | represents a tensor with C channels,
H height and W width. By applying a 3x3 average pooling to each
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Detail situational awareness attention structure

channel of the feature map, the low-frequency component E is
computed. Subsequently, the difference between the input feature X
and E yields the high-frequency component R, as shown in
Equations 3, 4. This difference effectively highlights the high-
frequency components in the image, such as edges and texture
details.

1 1

Ec,i,j = % E] Elxc,i+m,j+n (3)
m=—ln=—
Reij=Xeij—Ecij 4)

where ¢ denotes the channel index, while i and j represent the
spatial position indices of the feature map. The variables m and »
indicate the offsets relative to the current position. Subsequently, a
PWC is applied to the edge information R, and the weights are
adjusted using a sigmoid function to obtain the modified edge
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information R, as illustrated in Equation 5.

, C k k
Rc,i,j = 6(2 2 E Wc,d,u,v : Rd,i+u,j+v)
d=1u=—k

=1 v=—k

(5)

where W, represents the weight parameters of the convolution
kernel, and k denotes the radius of the convolution kernel. The symbol
o'signifies a linear activation function. The adjusted edge information R
'is added to the original feature map X, resulting in the final enhanced

feature map Y, as shown in Equation 6.
YC

Xeij+ Reyj (6)

S

This operation enhances edge information, enabling the CA
module to extract fruit contours and improve edge perception in
complex scenes, overcoming occlusion interference. After
processing, all enhanced edge feature maps at different scales are
upsampled back to their original sizes and fused through channel
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FIGURE 6
Adaptive edge fusion structure.

concatenation (Concat) operations, integrating multi-scale edge
information into a unified feature space. Simultaneously, the
features extracted from the other convolutional pathway are also
concatenated with the fusion results, combining global and local
features to further enhance the model's ability to perceive fruit edge
information in complex scenarios. Finally, a PWC is applied to
compress and integrate the concatenated feature maps, generating
the final output feature map for subsequent blueberry fruit maturity
detection tasks.
The proposed AEF can be expressed by Equation 7:

Foutpur = PWConv(Concat({ CA(Pool;(F ) liesS)h) (@)

where F,,,, is to extract the initial features; Pool; represents the
adaptive average pooling operation at the i -th scale, and S
represents the target size of each pooling operation (e.g., 3x3,
6x6, 9x9, 12x12, etc.); Concat is the channel concatenation of
multi-scale features. PWConv stands for the 1x1 PWC used to
compress the fusion.

The AEF module is designed to mitigate the negative impact of
partial occlusion on fruit edge feature extraction. Through its
combination of multi-scale feature extraction and a contour attention
mechanism, the module enhances visible edge information at different
scales. This process helps the model infer the presence of a fruit from
incomplete contours, thereby compensating for missing edge details
when parts of the fruit are occluded. Furthermore, the module's
lightweight design ensures computational efficiency, making it
suitable for real-time detection on embedded devices. Therefore, the
module improves the model's robustness against partial occlusion and
complex backgrounds while maintaining high accuracy, enabling more
precise detection of blueberry fruits.

2.3.2.3 Multi-scale neck structure

Due to the small size of blueberry fruit and its vulnerability to
distant blur, it is prone to missed detection during the detection
process. To address this issue, a MNS is devised to enhance the
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model's detection capability for objects of various scales,
particularly for small ones.

The core of MNS lies in the utilization of feature layers of
different scales for information transfer and fusion, generating
feature maps enriched with multi-scale features. By adopting a
feature pyramid and multi-layer fusion strategy, the MNS extracts
and integrates features of different scales, enabling the detection of
objects of various sizes, especially small targets, in complex
scenarios (Lin et al., 2017).

Specifically, this structure acquires multi-level feature maps
from the Backbone network, which contain information of
varying resolutions and receptive fields. These feature maps allow
the model to focus on objects of different sizes while preserving
critical spatial details. As shown in the Neck part of Figure 3, after
passing through the SPPF module, the feature maps are processed
step by step, and multi-scale context information is extracted via the
Context guided down-sampling (CGDS) module (Wu et al., 2021),
as illustrated in Figure 7a).

The CGDS module plays a crucial role in the feature extraction
process. Input features are first compressed using a 1x1 convolution
to reduce dimensionality. Next, spatial and contextual information
are extracted using standard 3x3 convolution and dynamic
convolution (DConv), respectively. The multi-scale features are
then fused by the CBS module, followed by further processing
with a 1x1 convolution and adaptive average pooling to generate
global context information. Finally, a fully connected layer (as
shown in Figure 7b) generates weight distributions to adaptively
adjust the features.

This lightweight design allows the CGDS module to effectively
combine local information with global context, ensuring that spatial
details are preserved throughout the feature extraction process. As a
result, the processed feature maps at each scale are rich in context
information, significantly enhancing the network's feature
expression and improving its ability to detect small targets and
objects of different scales.
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FIGURE 7
Context guided down-sampling module.

2.3.2.4 Shared differential convolution head

In the original YOLOV8 network, each layer feature map is
independently convolved to ensure the complete transfer of features.
Nevertheless, this design brings about a considerable increase in
computation and memory overhead, particularly when multi-scale
feature fusion is carried out. To reduce the computational cost while
maintaining high detection accuracy, this paper presents a SDCH. By
sharing the convolution operation among different feature layers, the
proposed method not only effectively reduces the computational
redundancy but also guarantees the effectiveness of feature extraction.

As depicted in Figure 8, the CGS module, consisting of a
convolutional layer (Conv), Group Normalization (GroupNorm),
and SiLU activation, is utilized to process input feature layers (P3,
P4, and P5).

This module adapts the input data to varying feature scales,
ensuring consistent feature representation across different levels.
The convolutional layer extracts the essential features, while
GroupNorm stabilizes the feature distribution, improving
robustness and consistency during feature fusion. Finally, the
SiLU activation function introduces nonlinearity, enhancing the
expressiveness of the extracted features. As has been verified by
Tian et al. (2022), the CGS module effectively normalizes and fuses

features, significantly improving the model’s detection accuracy,
particularly for small objects. The function description is provided
in Equation 8.

x4y

GroupNorm(x) = ﬁ
4

v+B )

where x is the input feature map; i, and ()'gZ are the mean and
variance of x over each group, respectively. The € is a small
constant to prevent the denominator from becoming zero. y and
B are learnable scaling and offset parameters. The processed feature
maps are fed into the shared two-layer detail-enhanced convolution
(DEConv), as shown in Figure 9, to further fuse the multi-
scale features.

DEConv, which integrates a Vanilla Convolution (standard
convolution) and a differential convolution structure, effectively
captures high-frequency detailed features, such as edges and
contours (Chen et al., 2024). Its core encompasses central
difference convolution (CDC), angle difference convolution
(ADC), horizontal difference convolution (HDC), and vertical
difference convolution (VDC), which extract edge information
from different directions. By sharing the DEConv, the feature
extraction of P3, P4, and P5 is unified, significantly reducing the

—» Conv_Reg —» Scale
» Conv_ Cls
P3 80*80 » CGS
\ 4 —» Conv_Reg —» Scale
P4 40*40 » CGS » DEConv » DEConv —
A » Conv Cls
P5 20%20 » CGS
—» Conv_Reg —» Scale
CGS = Conv GroupNorm SiLU
» Conv Cls
FIGURE 8

Shared differential convolution head.
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FIGURE 9

Detail-enhanced convolution structure.

number of convolutional layers and model parameters while
maintaining strong feature representation capabilities.

After DEConv processing, the feature map F, is split into two
reg Of the
object position, and the other path is used for the classification

paths: one path is utilized for the regression prediction P,

prediction P, of the object category. The specific formula is
shown in Equation 9:

Py = Convcls(Full) >Preg = Convreg(Fall) (9)

After that, the scale operation adjusts the scale of the output
features to adapt to the output requirements of different levels, and
finally generates the object detection results.

2.3.2.5 Evaluation standard

To evaluate the performance of the proposed model, we utilized
commonly used metrics in object detection, including Precision,
Recall, Average Precision (AP), and mean Average Precision
(mAP). The calculations for these metrics are as shown in
Equations 10-13:

Precision = TP/ ( TP+ FP ) x 100 % (10)
Recall = TP/( TP+ EN ) x 100 % (11)
1
AP = / P(Recall)dR (12)
0
mAP =1 S AP(i) x 100% (13)

i=1

where TP denotes the true positive defections. FP represents
false positives and FN refers to false negatives. Precision and Recall
are used to derive the precision-recall curve, which evaluates the
trade-off between these metrics across various thresholds.

Param refer to the total number of learnable parameters in the
model, while FLOPs measure the number of floating-point
operations required to process a single input image. Both metrics
are crucial for evaluating the model's efficiency and computational
complexity. Lower values of Parameters and FLOPs indicate a
lighter and more efficient model.
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Additionally, Counting Accuracy (P.) and Mean Counting
Accuracy (mP.) were employed to assess the counting results.
These metrics are defined as shown in Equations 14, 15:

P.=( 1-|N,-=N,J|/ N, )x100% (14)

mP, =1 (P,

€ blue + PC green + PC purple

) (15)

In these equations, N, represents the automatically counted
value, and N, denotes the true count value. m is the number of
instances evaluated. Higher values of P, and mP, indicate more
accurate counting results.

2.4 ByteTrack algorithm

Furthermore, in order to address the challenges associated with
manual counting, this study explores an automated counting
method based on raw blueberry videos for blueberry fruit
counting. The automated counting process was achieved by
integrating STF-YOLO with the widely-used Multiple Object
Tracking (MOT) method. The actual number of blueberries at
each growth stage was obtained through manual counting during
video collection.

The ByteTrack algorithm enhances the accuracy of object-
counting by introducing a data-association technique called Better
Tracking-by-Detection (Byte) as illustrated in Figure 10 (Zhang
etal, 2022). Building on STF-YOLO’s precise detections, ByteTrack
efficiently links detected blueberry instances across frames, making
it particularly effective in high-density scenarios with overlapping
fruits and frequent occlusions. By integrating ByteTrack with STE-
YOLO, our system combines state-of-the-art detection and robust
temporal tracking to deliver a reliable, end-to-end automated
blueberry counting solution.

2.5 Evaluation standard

To evaluate the performance of the proposed model, we utilized
commonly used metrics in object detection, including Precision,

frontiersin.org
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FIGURE 10
The tracking process of ByteTrack algorithm.

Recall, Average Precision (AP), and mean Average Precision
(mAP). The calculations for these metrics are as shown in
Equations 16-19:

Precision = TP/ ( TP+ FP ) x 100 % (16)
Recall = TP/( TP+ EN ) x 100 % (17)
1
AP = / P(Recall)dR (18)
0
mAP = 1 S AP(i) x 100% (19)

]
—_

where TP denotes the true positive defections. FP represents
false positives and FN refers to false negatives. Precision and Recall
are used to derive the precision-recall curve, which evaluates the
trade-off between these metrics across various thresholds.

Param refer to the total number of learnable parameters in the
model, while FLOPs measure the number of floating-point
operations required to process a single input image. Both metrics
are crucial for evaluating the model's efficiency and computational
complexity. Lower values of Parameters and FLOPs indicate a
lighter and more efficient model.

Additionally, Counting Accuracy (P.) and Mean Counting
Accuracy (mP.) were employed to assess the counting results.
These metrics are defined as shown in Equations 20, 21:

P.=(1-|N,-N,}| / N, ) x100% (20)

mP, =% (P +P . ) #(16) (21)

+
€ blue € green

In these equations, N, represents the automatically counted
value, and N, denotes the true count value. m is the number of
instances evaluated. Higher values of P, and mP, indicate more
accurate counting results.
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3 Results

3.1 Experimental platform and parameter
settings

This experiment was conducted using the following hardware
and software configurations. The hardware setup included an AMD
Ryzen 9 5900X 12-core processor running at 3.70 GHz, paired with
an Nvidia GeForce RTX 3090 graphics card and 128 GB of RAM.
The operating system used was Windows 11. The software
environment comprised PyCharm 2022 as the development
environment, Python version 3.12.4, and Torch version 2.3.1.
During the experiments, the size of the training images is set to
640x640 pixels, the epoch is 150, the batch size is 8, and the learning
rate is 0.01.

3.2 Comparative experiment of different
models

To validate the detection performance of STF-YOLO more
comprehensively, we compared it with nine lightweight or
enhanced YOLO variants. As shown in Table 2, STE-YOLO
demonstrates state-of-the-art performance across multiple key
metrics. Under the standard mAP50 metric, STE-YOLO achieves
the highest score of 79.7%. It is 2.9%, 3.3%, 3.5%, 2.0%, 3.7%, and
1.9% higher than YOLOvV5 to YOLOVILI, respectively, and it
outperforms YOLO-MIF, MAF-YOLO, and YOLO-SDFM by
2.5%, 2.4%, and 1.6%. Furthermore, STF-YOLO attains the
highest precision (82.3%) and recall (72.1%), representing
improvements of 0.6% and 3.5 % over YOLOVS, respectively.
Crucially, when evaluated under the stricter mAP50-95 metric,
which demands higher localization accuracy, STF-YOLO again
achieves the top performance with 52.5%, surpassing all other
models. This demonstrates that STF-YOLO not only identifies
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TABLE 2 Performance comparison of different models.

10.3389/fpls.2025.1682024

Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) Params (M) FLOPS (G)
YOLOv5n 80.8 70.8 76.8 50.7 2.50 7.1
YOLOv6n 81.0 68.8 76.4 50.5 423 118
YOLOvSn 81.7 68.6 76.2 512 3.01 8.1
YOLOV9t 819 71.1 77.7 513 1.97 7.6
YOLOvI0n 80.2 69.1 76.0 50.7 227 65
YOLOvlIn 82.0 70.7 77.8 52.1 258 6.3
YOLO-MIF 81.6 69.1 77.2 516 3.01 8.1
MAE-YOLO 80.9 714 77.3 50.9 2.99 8.7
YOLO-SDFM 82.2 72.0 78.1 516 344 8.5
STF-YOLO 82.3 72.1 79.7 525 267 6.7

The bold values represent the best (optimal) result achieved in each respective column.

objects accurately but also provides more precise bounding box
localization than other advanced variants. Notably, these
comprehensive accuracy improvements are achieved with an
efficient model size of 2.67 million parameters and a
computational cost of 6.7 GFLOPs. This shows that STF-YOLO
successfully combines state-of-the-art detection performance with
exceptional lightweight efficiency, making it highly suitable for
practical agricultural scenarios.

Figure 11 summarizes the mAP50 performance of nine
lightweight or enhanced YOLO variants and our proposed
STF-YOLO model under four settings—overall (“all”) and three
blueberry categories (mature, semi-mature, and immature).
STE-YOLO achieves the highest overall mAP50 of 79.7 %,

outperforming the next best model, YOLO-SDEM (78.1 %), by
1.6 %. In the mature category, STF-YOLO attains 85.7 % mAP50,
just behind YOLOVIt’s 86.3 % yet ahead of the other eight models
(83.3 %-85.6 %), demonstrating strong performance when color
contrast is high. For semi- mature category, where color cues are
subtler, STF-YOLO’s 81.4 % mAP50 exceeds the second-best
(YOLOV9t) by 1.2 %, highlighting its sensitivity to intermediate
hues. In the immature category—characterized by low contrast
against foliage—With a mAP50 of 71.8%, STF-YOLO outperforms
YOLO-SDFM by 1.8 %, highlighting its resilience to occlusion and
edge ambiguity. These consistent gains across categories confirm
that the DSAA, AEF, and MNS modules effectively extract fine-
grained, multi-scale features for challenging small-object detection.

BN Overall (all) BN Mature (bluc)

I Semi-mature (purple) B Immature (green)

Detection Accuracy of Each Model across Blueberry Maturity Levels
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853
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Model
FIGURE 11
mAP50 for different detection models across blueberry maturity.
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3.3 Ablation results and insights

To systematically validate the effectiveness of our proposed
modules, we conducted a series of ablation experiments, with the
results detailed in Table 3.

The baseline YOLOv8n model established a benchmark
performance with a mAP50 of 76.2% and a computational cost of
8.1G FLOPs. Initially, we assessed the contribution of each
module individually:

The DSAA module replaces the standard C2f structure in
YOLOVS to enhance fine-grained detail perception. Its CATM
integrates both spatial and channel self-attention through
convolutional query-key interactions, allowing the model to
encode contextual dependencies between partially occluded fruit
regions. Simultaneously, the CGLU adaptively regulates feature flow
by generating gating coefficients that suppress irrelevant
background responses. Theoretically, this operation implements a
multiplicative feature re-weighting analogous to a selective
attention mechanism in human vision, amplifying high-frequency
edge cues critical for small-object discrimination. Empirically, the
inclusion of DSAA increased mAP50 from 76.2% — 77.2%,
confirming that enhanced detail awareness directly improves
recognition of maturity-related color-texture transitions.

The AEF module is designed to mitigate information loss caused
by leaf occlusion and overlapping fruits. It decomposes each feature
map into low-frequency components (global color distribution) and
high-frequency components (edge textures) using local average pooling
and residual subtraction. The CA mechanism then re-weights the high-
frequency responses via sigmoid activation, effectively restoring
missing contour information. From a signal-processing perspective,
AEF acts as a high-pass enhancement operator embedded within the
convolutional feature space, selectively amplifying edge gradients
associated with blueberry boundaries. This yields stronger gradient
flow during backpropagation, improving edge localization. As shown
in the ablation results, AEF alone raised mAP50 to 77.9%, and when
combined with DSAA, achieved 78.2%, demonstrating complementary
improvements in both contour integrity and textural perception.

Blueberries vary greatly in apparent size due to imaging distance
and camera angle. To address scale-dependent information loss, the

TABLE 3 Ablation experiment outcomes.

Precision (%)

10.3389/fpls.2025.1682024

MNS introduces a CGDS mechanism that fuses global contextual
features with local receptive fields through dynamic convolution
weighting. Theoretically, this structure approximates a hierarchical
Laplacian pyramid where each CGDS block adaptively balances
spatial detail preservation and contextual abstraction. This enables
consistent representation of small and large fruits within a unified
feature space. The ablation study shows that while MNS alone
increases FLOPs due to multi-scale aggregation, its integration with
DSAA + AEF yields more stable recall and mAP50-95
improvements (up to +1.3%) across categories, particularly
enhancing recognition of semi-mature fruits whose features
exhibit intermediate hues and subtle boundaries.

The SDCH module addresses the redundancy of independent
convolutions across feature scales in the YOLOv8 head. By
introducing shared convolutional kernels and Group Normalization,
it maintains consistent feature representation while significantly
reducing parameters (from 3.01 M to 2.67 M). The theoretical
foundation lies in parameter sharing and differential feature
extraction: the DEConv integrates CDC, ADC, HDC, VDC to
capture directional gradients that encode edge orientation and
curvature information. This differential representation enhances the
model’s sensitivity to geometric variations without expanding network
depth. Notably, SDCH not only improved mAP50 by +1.4% compared
to the DSAA + AEF + MNS configuration but also reduced FLOPs by
17.6%, validating its effectiveness in achieving a better accuracy-
efficiency trade-off.

This hierarchical integration improves both representational
power and generalization, allowing STF-YOLO to achieve 79.7%
mAP50, outperforming all compared models while remaining
lightweight. The improved mAP50-95 (52.5%) demonstrates
enhanced localization precision, which theoretically reflects better
alignment of predicted bounding boxes with the ground truth due
to improved feature discrimination.

In conclusion, the four novel modules collectively transform the
baseline YOLOV8 architecture into a fine-grained, scale-adaptive, and
computationally efficient detection framework. The improvements are
theoretically grounded in enhanced spatial-spectral feature
representation and empirically validated through significant gains in
precision, recall, mAP50 and mAP50-95 under real-world conditions.

Recall (%) = mAP50 (%) mAP50-95 (%)

YOLOv8n

4 X X X X 81.7
4 v X X X 81.4
v X v X X 82.7
v X X v X 81.8
v X X X v 84.0
4 v v X X 82.7
v v v v X 81.7
4 4 v v v 82.3

The bold values represent the best (optimal) result achieved in each respective column.
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68.6 76.2 51.2 8.1G
70.9 77.2 51.9 7.6G
69.9 77.9 52.2 7.6G
69.5 76.8 51.3 9.8G
69.6 77.3 51.8 7.6G
71.7 78.2 524 7.4G
71.7 78.3 52.5 8.3G
72.1 79.7 52.5 6.7G
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3.4 The effect of the model on video
counting

Figure 12 and Table 4 illustrate the blueberry video counting
results and the counting accuracy of STF-YOLO combined with
ByteTrack, respectively. In Video 1, the model achieved an mP_ of
69.07%, a P. of 73.74% for blue category, and a P, of 72.55% for
purple category. These results indicate that the model has a high
recognition capability in scenes where the fruit color features are

rame: 4602/5603 Video FPS: 58.99 Processing FPS: 1.56|
blue: 88 green: 100 purple: 18
Total Count: 206 i

lue Pc: 72.13% green Pc: 50.51% purple Pc: 75.00%

lue APc: 72.13% green APc: 50.51% purple APc: 75.00% | |
mAPC: 65.88% |
Elapsed Time: 49m 15s

FIGURE 12
Video counting effect.
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relatively clear. However, the P, for green category is only 60.92%,
demonstrating a decrease in counting accuracy when the color
contrast between the fruit and the background is minimal. In
Video 2, the model's mP_ increased to 74.94%, with a P_ of
86.07% for blue category and 79.17% for purple category. Despite
these improvements, green fruits still exhibit a low P_ of 59.60%,
highlighting persistent challenges in counting fruits with less
distinct color features. Conversely, in Video 3, the model reached
an mP_. of 73.45%, and the P. for green category improved to
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TABLE 4 Results of counting blueberries in different videos.

Video  mPU%) P, (%) P, (%) P, (%)
1 69.07 73.74 72.55 60.92
2 74.94 86.07 79.17 59.60
3 73.45 76.71 71.43 7222
all 72.49 78.84 74.38 64.24

72.22%. This enhancement may be attributed to the relatively
brighter background in Video 3 compared to Videos 1 and 2 (as
shown in Supplementary Figure S6), which increases the color
contrast between green category and the background.

As shown in the Table 4 and Figure 13, The counting process of
the target tracking algorithm is shown frame by frame, and all the
statistics can be clearly seen in the upper left corner. The method
integrated STF-YOLO with ByteTrack achieved an m P, of 72.49%.
Opverall, the proposed method demonstrates strong robustness and
effectiveness in blueberry fruit detection and counting across
different video scenes. It effectively adapts to varying lighting
conditions and background contrasts, maintaining high accuracy
and reliable performance. The synergy between STE-YOLO’s
precise detection capabilities and ByteTrack’s robust tracking
algorithm ensures accurate counting results, even in complex and
dynamic environments.

Although traditional manual counting methods may produce
more accurate estimates than the results of this study, they usually
rely on experienced growers and are only applicable to small-scale

FIGURE 13
Frame-by-frame display.
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orchards. This makes long-term, large-scale, continuous
monitoring impractical. By contrast, the automatic counting
approach that combines STF-YOLO and the ByteTrack algorithm
is objective and repeatable. This significantly reduces labor costs
and makes it particularly suitable for deployment in blueberry
orchards in real production environments. Furthermore, the
model could be improved further — narrowing the gap with
manual estimation — by incorporating diverse training data and
iteratively refining the algorithm structure. Therefore, the proposed
method is highly practical and scalable, effectively addressing the
needs of modern agricultural production and precision
orchard management.

To evaluate the effectiveness of various multi-object tracking
algorithms for the counting task, we selected three mainstream
algorithms: ByteTrack, OCSORT, and StrongSORT. These were
tested on three video datasets with varying levels of scene
complexity. The experimental results are presented in Figure 14.

As shown in Figure 14, the ByteTrack algorithm demonstrated
the best overall performance and stability. It achieved mP, scores of
69.07%, 74.94%, and 73.45% on the three video test sets,
respectively, with an average mP. of 72.49%, the highest among
all algorithms. This indicates that ByteTrack possesses strong
robustness in handling challenges such as object occlusion and
dense crowds across different scenarios.

The OCSORT algorithm also showed competitive performance,
with an average mP. of 72.08%, which is very close to that of
ByteTrack. Notably, OCSORT achieved the highest individual score
of 77.75% on Video 2, highlighting its advantages in specific
scenarios. However, its performance on the other videos was

S77% purple P 17.14%
5.77% porple APE 17.14%

;4{"‘#{— 7
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Performance evaluation of different tracking algorithms for object counting.

slightly lower than ByteTrack's, suggesting a minor lack
of consistency.

In contrast, the StrongSORT algorithm's performance was
unsatisfactory in this experiment. Its average mP. was only
40.31%, significantly lower than the other two algorithms. A
substantial performance degradation was observed, particularly in
Video 2 and Video 3, indicating that the algorithm has limited
tracking and counting capabilities when dealing with complex,
dynamic scenes or frequent object interactions, leading to issues
like ID switches or track losses.

In summary, based on its high accuracy and stability, the
ByteTrack algorithm is identified as the most suitable tracking
algorithm for the target counting task in this evaluation.

3.5 Model comparison experiments on
different datasets

In order to further evaluate the generalization capability of the
proposed STF-YOLO model, extensive experiments were conducted
on two distinct datasets. MegaFruit and PASCAL VOC2007.
MegaFruit is a substantial, high-quality dataset of fruit,
comprising three subsets: strawberry, blueberry and peach as
showed in Figure 15. Strawberry comprises 20,242 images.
Blueberry comprises 2,540 images, and the peach contains 2,400
images. Conversely, the PASCAL VOC 2007 dataset is a widely used
standard in computer vision research. It contains 20 categories of
objects, ranging from animals and vehicles to everyday items.
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This extensive range provides a robust basis for evaluating the
generalization and versatility of object detection algorithms.

We have also introduced various models from the YOLO series
for comparison purposes. As shown in Table 5, the STF-YOLO
model achieved the best overall performance on the MegaFruit
dataset. Of these, it attained a mAP50 of 91.6% for peaches, 70.5%
for strawberries and 90.6% for blueberries. It is worth noting that
the blueberry subset was captured at a close range of 20 cm-30 cm
with a focus on individual clusters (local views), whereas our own
blueberry dataset was recorded from 80 cm-100 cm with a focus on
full plants or wider angles. These factors result in higher image
resolution and simpler backgrounds in MegaFruit, contributing to
its elevated precision. The efficacy of the proposed method is further
evidenced by its superior performance compared to other YOLO
variants, including YOLOv8n, YOLOv9n, YOLOv10n
and YOLOvl11n.

Additionally, when evaluated on the more challenging PASCAL
VOC2007 benchmark (see Table 6), STF-YOLO still maintained its
leading position, reaching a mAP50 of 66.3%, outperforming all the
other compared models. The model also achieved a precision of
78.1% and a recall of 50.9%. The class-wise heatmap in Figure 16
further highlights STF-YOLO's consistently high performance
across all 20 VOC categories, especially in the categories of
bicycle, bird, dog, horse and motorbike, without the pronounced
fluctuations seen in the baseline models. This consistent
performance underscores the model's superior generalization
capabilities, confirming its applicability to both specialized
agricultural detection tasks and broader detection scenarios.
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FIGURE 15
MegaFruit datasets.

4 Discussion

4.1 The necessity of progressing from
detection and counting to yield prediction
and decision support

In modern blueberry production, the ultimate value of
technology lies in its ability to inform management decisions.
Traditional yield estimation methods suffer from significant
errors due to a lack of objective data support. Therefore,
transforming fruit detection and counting technology from purely
academic metrics into actionable information that supports
decision-making serves as a crucial bridge connecting research
and practice. The core contribution of this study lies in
developing a lightweight model (STF-YOLO) capable of high-
precision detection and counting of blueberries at varying stages
of ripeness under complex field conditions, laying the most critical
foundation for constructing dynamic yield prediction models.

TABLE 5 Results of different models on MageFruits dataset.

Placing our research within the existing literature reveals that
automated fruit detection and counting represent a research
hotspot in the field of yield prediction. Previous studies have
achieved significant progress across multiple crops. For instance,
Li et al. (2023) successfully combined YOLOv5 and ByteTrack
algorithms for video stream counting of dragon fruit flowers,
green fruits, and red fruits. Similarly, Du et al. (2024) employed
an optimized YOLOv5s and an improved DeepSort algorithm for
video tracking and counting of green peppers, effectively addressing
challenges such as color similarity and severe occlusion. These
studies all achieved favorable results and collectively demonstrate
that the “detection + tracking” approach based on the YOLO
framework represents the current mainstream and effective
technical route.

However, compared to crops like dragon fruit or green peppers
with relatively distinct features and larger volumes, blueberries pose
greater detection challenges due to their small size, high density,
and severe overlapping. Mainstream methods experience significant

Model Mage_peach Mage_strawberry Mage_blueberry
YOLOv8n 90.8% 70.5% 90.2%
YOLOV9t 91.3% 68.7% 90.4%
YOLOv10n 90.2% 68.3% 89.6%
YOLOvlin 91.5% 70.2% 90.1%
STF-YOLO 91.6% 70.5% 90.6%
The bold values represent the best (optimal) result achieved in each respective column.
Frontiers in Plant Science 18 frontiersin.org
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TABLE 6 Results of different models on VOC2007 dataset.

Model Precision (%) Recall (%) mAP50
YOLOvSn 773 513 66.2
YOLOV9t 753 52.1 65.9
YOLOv10n 79.2 46.7 64.1
YOLOvl1n 74.4 516 65.2
Ours 78.1 50.9 66.3

The bold values represent the best (optimal) result achieved in each respective column.

performance degradation when directly applied to targets like
blueberries. The STF-YOLO model proposed in this study
significantly enhances feature extraction capabilities for small,
edge-blurred objects by integrating modules like DSAA and AEF.
It demonstrates outstanding performance among lightweight
models of its kind, confirming its superiority in handling such
challenging targets.

Furthermore, while many studies (e.g., YOLO-Granada
proposed by Zhao et al. (2024) proposed YOLO-Granada) focus
on model lightweighting, this study maintains leading detection
accuracy while compressing model parameters to 2.67M and
reducing computational load to 6.7 GFLOPs—critical for future
deployment on edge computing devices. Unlike most studies
detecting only ripe fruits, our model distinguishes three maturity
stages simultaneously. Its robust generalization capability is
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FIGURE 16

VOC2007 dataset heatmap.
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validated on the public MegaFruit dataset, demonstrating the
universality of our model improvements.

Despite these positive outcomes, several limitations remain.
First, the current dataset suffers from limited scale and diversity.
Furthermore, as discussed, the dataset exhibits a significant class
imbalance (approx. 2:2:1 for mature: immature: semi-mature), with
an under-representation of the 'semi-mature' (purple) category.
This is because semi-mature fruits have the shortest existence
period. Second, as noted in numerous studies (e.g., Du et al,
2024), inferring total fruit counts in 3D space from 2D images
presents inherent challenges. Third, severe occlusions remain a
primary cause of counting errors. While our method achieves an
average counting accuracy of 72.49% when combined with the
ByteTrack algorithm, it still falls short of human counting precision.
Finally, the accuracy of converting “counts” to “yield” depends on
sampling and weighing.

To address these limitations, future work will focus on:
constructing larger datasets that are more balanced across
different maturity stages and captured throughout the entire
growing season to enhance model robustness under varying
lighting and weather conditions; exploring the integration of
multi-view geometry or 3D reconstruction techniques to
fundamentally tackle occlusion issues; and incorporating
technologies like multispectral imaging to non-destructively
estimate fruit volume and weight, thereby improving the accuracy
of final yield predictions.
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The ultimate vision for this research framework is its
deployment on automated orchard patrol robots or fixed
monitoring nodes to collect orchard data periodically (e.g.,
weekly). The collected time-series count data will be combined
with environmental sensor data (temperature and light intensity) to
train robust yield prediction models. These models can generate
intuitive decision dashboards for farmers, such as: “Area A is
projected to reach peak harvest within 7-10 days, with an
estimated yield of 100 kilograms.” Such guidance will facilitate
human resource allocation, harvesting tool scheduling, and sales
planning. It will transform blueberry production from traditional,
experience-dependent practices into a new era of data-driven
precision smart agriculture.

4.2 The influence of different number of
subsample blocks on performance

As shown in Table 7, we conducted an ablation study on the
number of CGDS sub-sampling blocks to evaluate their effect on the
overall performance of STF-YOLO. CGDS are the key components
of the MNS structure. The various configurations (CGDS = 0-5) are
illustrated in Supplementary Figures S1-S5 and were each tested in
a separate experiment. The results indicate that initially,
incrementally adding CGDS blocks boosts precision, recall, and
mAP; however, beyond a critical point, this yield diminishing
returns or even degraded performance. Specifically, the model
with CGDS set to 3 achieves the best balance of accuracy (the
highest mAP, precision, and recall) and efficiency, with just 2.67
million parameters and 6.7 GFLOPs. Increasing CGDS to 4 or 5
markedly increases computational complexity without improving
accuracy. Therefore, CGDS = 3 is identified as the optimal MNS
configuration, striking the ideal balance between performance
and efficiency.

4.3 Model detect ability under various
complex backgrounds

In the preceding sections, various quantitative analyses and
evaluations were conducted on the detection and counting of

TABLE 7 Ablation experiment for the number of CGDS.

10.3389/fpls.2025.1682024

blueberry maturity. In order to further evaluate the model's
robustness in handling complex backgrounds such as low color
contrast, occlusions, and overlaps were also examined.

As shown in Figure 17, the environment is characterized by
dense vegetation and immature blueberries. The blueberries' green
coloration closely resembles that of the surrounding leaves, which
can pose a challenge in blueberry detection and counting. All
baseline models, including the improved ones, performed poorly
in this scenario, failing to distinguish blueberries from leaves and
resulting in missed detections. Only MAF-YOLO successfully
handled two of these cases. In contrast, the enhanced STF-YOLO
model, leveraging its optimized color perception and discrimination
capabilities, significantly improved the detection rate of low-color-
difference green blueberries in such scenarios.

Figure 18 illustrates the detection capabilities of various models
in scenario (b), where the environment is characterized by fruits
severely obstructed by leaves, branches, or other fruits. This
common challenge often leads to missed detections and a
substantial drop in bounding-box accuracy for many object
detectors. As seen in the figure, baseline models like YOLOv8 and
even more advanced versions such as YOLOvV9 and YOLOV10,
struggle significantly with these occluded targets (e.g., observe the
bottom row, where blue blueberries are heavily obscured).
Conversely, our proposed STF-YOLO model consistently
demonstrates superior performance. Thanks to its enhanced
feature extraction and contextual understanding capabilities, STF-
YOLO effectively detects partially occluded fruits, showcasing
greater reliability and robustness in such complex scenarios
compared to other state-of-the-art methods.

Figure 19 presents the challenge of accurately detecting multiple
blueberry fruits that are in close proximity or are partially
overlapping. As visualized in the comparison, this dense
clustering causes most baseline models to fail. These models often
mistakenly merge multiple distinct fruits into a single, inaccurate
bounding box (e.g., as seen in the top and middle rows) or fail to
detect all instances within the cluster. In sharp contrast, our
proposed STE-YOLO model demonstrates superior separation
capabilities. As highlighted in the enlarged sections, it successfully
distinguishes and applies individual bounding boxes to each
overlapping blueberry, thereby maintaining high detection
accuracy and performance in densely packed conditions.

Models Precision % Recall % map50 % Params Flops
STF-YOLO(CGDS = 0) 81.2 70.8 77.7 2.25M 6.1G
STF-YOLO(CGDS = 1) 81.6 70.8 78.2 2.26M 6.2G
STF-YOLO(CGDS = 2) 82.0 72.0 79.0 2.34M 6.5G
STF-YOLO(CGDS = 3) 82.3 72.1 79.7 2.67M 6.7G
STE-YOLO(CGDS = 4) 81.4 71.2 787 2.75M 7.0G
STF-YOLO(CGDS = 5) 81.9 71.7 79.0 3.08M 7.2G

The bold values represent the best (optimal) result achieved in each respective column.
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FIGURE 17

YOLO-SDFM MAF-YOLO

STF-YOLO

Comparison of detection performance for green immature blueberries and background leaf camouflage scenarios.

4.4 Direction for improvement

Although the proposed STF-YOLO model demonstrates
outstanding blueberry detection performance across various
complex scenarios, there remains room for further optimization.

First, false negatives persist under extremely challenging
conditions. For instance, in extremely low-light environments, the
model may fail to detect objects due to its inability to extract
effective features (as shown in Figure 20a).

YOLOvS YOLOvV9

YOLOvV10

FIGURE 18

YOLO-SDFM MAF-YOLO STF-YOLO

Second, severe occlusions remain a primary challenge leading to
detection failures and counting errors. To quantify this issue, we
categorized instances in the test set based on actual blueberry
occlusion area into three levels: Minor (occlusion area < 50%),
Moderate (occlusion area 50%-70%), and Severe (occlusion area >
70%). Visual examples are shown in Figure 21.

As shown in Table 8, which provides a direct comparison against
the YOLOv8 baseline, STF-YOLO's superiority in handling
occlusions is evident across all categories. Under Minor

Comparison of detection performance in scenarios with significant fruit occlusion.
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FIGURE 19
Comparison of detection performance in scenarios with dense and overlapping blueberry clusters.

obstruction, STF-YOLO achieved a pass rate of 82.35%, representing While performance for both models degrades substantially under
a significant improvement over YOLOV8's 63.72%. This performance ~ Severe obstruction (e.g., the blurred boundary case shown in
gap was maintained under Moderate obstruction, where our model ~ Figure 20b), STF-YOLO (32.26%) still outperformed YOLOVS
achieved a 56.25% pass rate compared to the baseline's 46.87%. (22.58%) by a notable margin. This indicates that while our model

FIGURE 20
Failure detection phenomenon in extremely complex background: (a) Missed detection due to dim lighting; (b) Missed detection caused by blurred

boundary and severe occlusion.
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Minor

Moderate

Severe

FIGURE 21
Visual classification criteria for occlusion challenges.

shows marked improvements, its feature representation capability for
heavily occluded targets remains a significant challenge. Therefore,
future research should continue enhancing the model's feature
representation ability, particularly its generalization and robustness in
these extremely complex environments.

Additionally, deploying STF-YOLO in diverse agricultural settings
presents several challenges. First, variable field conditions—such as
fluctuating light levels and weather variations—can degrade detection
accuracy. Second, the model's robustness across different crop varieties
and growth stages must be thoroughly evaluated and optimized.
Finally, to enable real-time system integration, STF-YOLO requires
resource-aware optimization and calibration to balance cost
constraints, hardware compatibility, and processing speed.

5 Conclusion

Accurate detection of blueberry maturity and precise fruit counting
are essential for optimizing harvesting efficiency and improving

TABLE 8 Obstruction pass rate.

Number of occlusion

economic returns in modern agriculture. In this study, a
comprehensive blueberry video dataset was developed to capture the
challenges of maturity evaluation and counting in real orchard
environments. Leveraging this dataset, we developed a lightweight
and efficient detection model, STE-YOLO. This model integrates four
specialized modules—DSAA, AEF, MNS, and SDCH—to address key
issues in maturity assessment, fruit occlusion, small-object detection,
and model lightweight design. Experimental results demonstrate that
STF-YOLO exhibits superior performance in detecting blueberries
across all maturity stages. Compared with the original YOLOvVS
model, STF-YOLO achieves improvements of 3.5% in both recall
and mean average precision (mAP), while reducing computational
complexity by 17.28%. Furthermore, STF-YOLO demonstrates
superior performance across precision, recall, and efficiency metrics
compared to other prevalent lightweight object detection models.

To evaluate generalization capability, STF-YOLO was tested on
two distinct datasets: the agricultural-focused MegaFruit dataset and
the diverse PASCAL VOC2007 dataset. On MegaFruit, STF-YOLO

Number of successful

. . Numbers . Success rate
instances in the test set detections
Minor 102 65 63.72%
YOLOV8 Moderate 64 30 46.87%
Severe 31 7 22.58%
197
Minor 102 84 82.35%
STF-YOLO Moderate 64 36 56.25%
Severe 31 10 32.26%
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outperformed other YOLO variants, achieving the highest mAP scores
for peach, strawberry, and blueberry categories. On VOC2007, STF-
YOLO demonstrated state-of-the-art performance, confirming its
robustness and adaptability across diverse object categories and
complex real-world scenarios. Integrating STF-YOLO with the
ByteTrack algorithm enabled automated blueberry counting in video
sequences, achieving a counting accuracy of 72.49%. These results
validate the reliability and practical applicability of STE-YOLO for real-
world agricultural monitoring and automated harvesting systems. In
summary, the proposed method provides an innovative solution for
small-object fruit detection in complex agricultural scenarios. Future
work will focus on expanding STE-YOLO's applicability to diverse crop
types to enhance robustness and efficiency, thereby advancing
intelligent and precision agriculture technologies.
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