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Sweet potato (Ipomoea batatas L.) exhibits strong resilience in nutrient-poor soils
and contains high levels of dietary fiber and antioxidant compounds. It also is
highly tolerant to water stress, which has also contributed to its global
distribution, particularly in regions prone to climatic variability. However,
frequent abnormal climatic events have recently caused declines in both the
quality and yield of sweet potatoes. To address this, machine learning (ML) and
deep learning (DL) models based on a Vision Transformer—Convolutional Neural
Network (ViT-CNN) were developed to classify water stress levels in sweet
potato. RGB-thermal imagery captured from low-altitude platforms and
various growth indicators were used to develop the classifier. The K-Nearest
Neighbors (KNN) model outperformed other ML models in classifying water
stress levels at all growth stages. The DL model simplified the original five-level
water stress classification into three levels. This enhanced its sensitivity to
extreme stress conditions, improve model performance, and increased its
applicability to practical agricultural management strategies. To enhance
practical applicability under open-field conditions, several environmental
variables were newly defined to calculate the crop water stress index (CWSI).
Furthermore, an integrated system was developed using gradient-weighted class
activation mapping (Grad-CAM), explainable artificial intelligence (XAl), and a
graphical user interface (GUI) to support intuitive interpretation and actionable
decision-making. The system will be expanded into an online and fixed-camera
platform to enhance its applicability to smart farming in diverse field crops.
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thermal imagery (TRI), red-green-blue (RGB) imagery, sweet potato, water stress,
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1 Introduction

Sweet potato (Ipomoea batatas L.) is recognized as a
nutritionally rich staple and is cultivated as an important food
security crop in many countries due to its ability to grow well in
poor soil conditions (Laveriano-Santos et al., 2022). Sweet potato is
resilient to temporary drought and low-fertility soils, supporting
consistent growth in poor climate conditions (Lindqvist-Kreuze
et al,, 2024; Yan et al,, 2022). Owing to its adaptive capacity and
nutritional value, sweet potato is globally regarded as a crop that can
contribute to addressing food shortages and food security
(Sapakhova et al., 2023).

The yield and quality of sweet potato, however, have been
considerably affected by frequent abnormal climate events
(Pushpalatha and Gangadharan, 2024). This has led to substantial
economic losses for many farming households (Tedesco et al,
2023). Prolonged drought or waterlogging can inhibit the normal
growth of sweet potato. In particular, insufficient water supply
during the tuber formation stage can lead to inadequate
accumulation of starch and fructose within the tubers, resulting
in reduced vyield and deteriorated quality (Zhang et al., 2002;
Nedunchezhiyan et al, 2012). Water saturation during critical
growth stages, particularly tuber initiation, interferes with
carbohydrate translocation and accumulation, which leads to
suboptimal yield and compromised quality (Gouveia et al,, 2020).

Crop water stress traditionally has been evaluated through
direct measurement of photosynthetic activity under field
conditions or by monitoring soil moisture levels in conjunction
with meteorological parameters (Thuoma and Madramootoo, 2017).
However, such methods are often labor-intensive and time-
consuming and consequently are not practical for large-scale or
continuous monitoring (Yang et al,, 2020). Furthermore, these
approaches are frequently constrained by subjectivity in data
collection and interpretation, which may lead to inconsistencies
between observers and experimental conditions (Grassini et al.,
2015). In light of this, there is a growing need to develop new
technologies that can overcome the limitations of traditional
methods and enable more efficient and accurate assessment of
water stress (Kamarudin et al., 2021). Recently, the integration of
remote sensing technologies, sensor-based measurements, and
artificial intelligence (AI) analysis techniques in agricultural field
has made it possible to monitor crop growth conditions rapidly,
precisely, and at early stages (Wei et al., 2023).

Among these approaches, unmanned aerial vehicle(UAV)-
based multispectral and hyperspectral image analysis is
commonly used to assess crop growth characteristics (Wang
et al, 2018; Ore et al., 2020). The operation of precision
agriculture systems often requires a substantial level of technical
knowledge in hardware calibration, data analysis, and model
interpretation. This dependency on skilled personnel limits the
practical usability of such technologies for general farmers who may
lack formal training or access to technical support and thus widens
the digital divide in agriculture (COBAN and OKTAY, 2018). In
particular, the need for expensive equipment and complex data
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analysis procedures impede the adoption of such technologies by
small- and medium-scale farms (Bhargava et al.,, 2024).

In addition, UAV-based high-altitude image acquisition is
highly sensitive to external environmental factors, which imposes
limitations on the precise measurement of subtle phenotypic traits
in crops (Aburaed et al, 2023). It hence becomes challenging to
obtain high-resolution data that capture subtle changes in leaves or
reflect the characteristics of individual plants, and the spatial
resolution of the collected data may be reduced in some
environments (Lu et al., 2020).

Numerous studies have been conducted on the use of low-
altitude imaging techniques to mitigate the limitations associated
with conventional UAV-based approaches and to address the
aforementioned constraints in quantitatively assessing crop water
stress (Samseemoung et al., 2012; Sankaran et al., 2015). Low-
altitude imaging enables the acquisition of more precise data due to
its closer proximity to the crop canopy (Zhang et al.,, 2014). It is also
well-suited for accurately analyzing subtle growth changes and the
degree of water stress in individual plants (Huang et al., 2016).
From a cost perspective, low-altitude imaging is advantageous
compared to UAV-based approaches (Jin et al., 2017). Because it
does not require specialized flight control skills and can be
implemented using relatively inexpensive equipment, it is readily
adoptable by farmers (Liu and Pattey, 2010).

In particular, the use of thermal imaging (TRI) cameras enables
continuous and repeated collection of crop-level temperature data
and thus is useful for acquiring time-series information on
individual plants (Ishimwe et al., 2014). In addition, red-green-
blue (RGB) cameras can be employed to evaluate plant status by
capturing visual indicators such as color, brightness, and texture
and thereby detect surface-level physiological changes (Vadivambal
and Jayas, 2011; Messina and Modica, 2020).

The crop water stress index (CWSI) is becoming a
representative indicator for quantitatively assessing the level of
water stress experienced by crops (Idso et al, 1981). Calculated
based on the difference between the actual observed canopy
temperature and the theoretically possible maximum and
minimum canopy leaf surface temperatures, the CWSI
comprehensively reflects soil moisture conditions, weather
variables, and the plant’s transpiration capacity (Trout et al,
2025; Katimbo et al., 2022). It can be effectively used in
agricultural decision-making processes, such as determining
optimal irrigation timing and optimizing water management, and
also allows early detection of crop stress (Kullberg et al., 2024).

The accuracy of CWSI, however, relies on precise canopy
temperature measurements, which require a range of specialized
equipment and environmental conditions, including high-resolution
thermal cameras, meteorological sensors, and calibration algorithms
(Sanchez-Pifiero et al., 2022). Due to these technical and economic
constraints, practical application in typical cultivation fields or small-
scale farms remains challenging (Wang et al, 2005). Accordingly,
recent studies have explored the possibility of indirectly estimating
canopy temperature or redefining the CWSI as a target variable for
model training (Kamankesh and Ghayedi, 2023).
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Al particularly machine learning (ML) and deep learning (DL)
techniques, has been actively utilized in agricultural decision-
making (Ayoub Shaikh et al., 2022; Alibabaei et al., 2022). ML is
effective for real-time analysis of crop growth conditions and yield
prediction by integrating data from satellites, UAVs, RGB and TR,
internet of things (IoT) sensors, and meteorological information
(Rahmani et al,, 2021). This approach provides precise detection of
water stress, temperature fluctuations, and abnormal growth
patterns (Chlingaryan et al, 2018). DL can recognize complex
patterns and handle large-scale data, and this allows it to capture
nonlinear relationships and subtle environmental variables (Joshi
et al,, 2023). Through iterative learning, its accuracy improves over
time, and it demonstrates high adaptability to various crops and
environmental conditions (Meghraoui et al., 2024; Wang et al,
2022). As a result, it provides real-time decision-making, labor
reduction, and improvements in productivity and quality, which in
turn can lead to precise and automated agricultural practices
(Tamayo-Vera et al., 2024).

This study developed ML classification models to assess the water
stress levels of field-grown sweet potatoes based on leaf temperature
and growth indicators obtained from low-altitude TRI and RGB
imagery. In addition, DL classification models were constructed
using TRI and RGB images. To enhance practicality under open-
field cultivation conditions, the variables required for calculating the
CWE I were replaced with field-observable variables, and a redefined
formula for index computation was proposed. The ML models
included logistic regression (LR), random forest (RF), k-nearest
neighbors (KNN), multilayer perceptron (MLP), and support vector
machine (SVM). For DL, a convolutional neural network (CNN)
integrated with a vision transformer (ViT) was implemented. The
performance of all models was evaluated and compared based on
accuracy and K-fold cross-validation. A GUI-based system, termed
the sweet potato water monitor system, was ultimately developed to
classify water stress levels in sweet potato crops and to provide
corresponding management recommendations, based on trained
ML and DL models.

2 Materials and methods
2.1 Sample preparation

The cultivar used in this study was Jinyulmi and the
experimental field, comprising two plots of 320 m* each (8 m x
40 m), was established at Gyeongsang National University’s
Naedong campus. Sweet potato transplanting began in May 2024
using seedlings approximately 25-30 cm in length, and harvesting
was conducted in September 2024. To help establish seedlings after
transplanting, sufficient irrigation was provided for three weeks.
Subsequently, RGB and thermal images of the sweet potato plants
were acquired for analysis.

Soil moisture levels were categorized into five classes: Severe
Dry (SD), Dry (D), Optimal (O), Wet (W), and Severe Wet (SW).
These categories were defined based on volumetric water content
(VWC) as follows: SD (<10%), D (20 £ 2%), O (30 + 3%), W (40
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3%), and SW (50%) (Huang et al., 2024). Approximately 300
samples were used in total, with around 50 samples per
treatment group.

Irrigation was conducted using a subsurface drip irrigation
system, and soil moisture content was measured at a depth of 20
cm using a portable soil moisture meter (FieldScout TDR-300,
Spectrum Technologies, USA).

Sweet potato growth was assessed twice during each of the
major growth stages: root differentiation, tuber initiation, bulking,
and final harvest. To comprehensively evaluate crop growth
conditions, stem length, normalized difference vegetation index
(NDVI), chlorophyll fluorescence (CF), and SPAD values were
collected as growth indicators. Stem length is a fundamental
morphological indicator that indirectly reflects biomass
accumulation and growth inhibition under water stress conditions
(Fujii et al., 2014). NDVI, a representative remote sensing index
based on photosynthetic activity, quantitatively indicates crop vigor
and health and is highly sensitive to stress signals such as water
deficiency or growth imbalance (Huang et al, 2021). CF is a
physiological indicator capable of detecting functional
abnormalities in the photosynthetic system and is useful for
identifying early, non-visible stress responses. SPAD values
indirectly estimate chlorophyll content in leaves, thereby
reflecting photosynthetic capacity and nitrogen status (Gorbe and
Calatayud, 2012; Uddling et al., 2007). By integrating these diverse
growth indicators, the water stress responses of sweet potato were
analyzed and used as input variables for the ML classifiers.

2.2 TRl and data acquisition

In the current study, Thermal images were acquired using an
FLIR A65, a handheld infrared thermal camera equipped with a 640 x
512pixel microbolometer sensor. This device functions as a TRI
temperature sensor capable of visually and comprehensively
monitoring temperature variations. The acquired thermal images
were calibrated using FLIR Tools, software provided by FLIR. To
ensure the accuracy of temperature measurements of the leaves and
plant canopy, the emissivity was set to 0.9 (Muller et al., 2021).

Thermal image acquisition was conducted manually from
approximately 1.05 meters above the plant canopy height. To
minimize the effects of direct sunlight, images were captured
between 6:00 and 7:00 a.m. from the center of each crop plot.
The collected images were then analyzed to determine the mean
temperature and temperature distribution for each treatment group.
Additionally, a calibration process was performed to ensure the
accuracy of the infrared data captured through the camera lens. For
this, the device’s performance was verified using ice (0 °C) and
boiling water (100 °C), followed by the application of the automatic
calibration function provided by the manufacturer through the
FLIR Tools software (Swamidoss et al., 2021).

In this study, TRI was utilized in two ways. First, leaf
temperature extracted from thermal images was used as a key
indicator indirectly reflecting the plant’s physiological water
status. Leaf temperature was integrated with other growth
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indicators, such as SPAD and the CWSI, as input variables for the
ML-based classification models. Additionally, leaf temperature was
used as leaf surface temperature data in the process of redefining the
CWSI formula for field applicability. Second, data were directly
utilized as input features for a CNN-based ViT classification model,
in conjunction with RGB images. This approach was adopted to
improve classification accuracy by integrating multimodal image
information. The model is designed to enhance water stress
classification performance and provide visual interpretability of
water stress.

To correct for local temperature variations and measurement
errors, leaf temperature was calculated based on the average of three
manually selected, independent regions from each thermal image.
These regions were morphologically distinct leaf areas, and the mean
temperature of each was first computed. The final leaf temperature
was then determined by averaging the values from the three regions.
This strategy was employed to reduce noise caused by single-pixel
extraction and to ensure that the resulting leaf temperature value
reliably represented the overall leaf condition.

2.3 RGB data acquisition

In this study, an RGB image correction program was developed
using Matlab R2024a (MathWorks, USA) to effectively compensate
for color distortion and brightness irregularities that may occur
during image acquisition. For color calibration, the international
standard reference target color checker (X-Rite, USA) was
employed to ensure color accuracy in the captured images.

A systematic color calibration protocol was applied to the RGB
imagery to ensure consistent and accurate color representation
across varying lighting conditions. To conduct color calibration,
the color checker was placed within the imaging frame, and the
deviation between captured RGB values and the reference values of
each color patch was quantitatively calculated. A correction matrix
was computed to minimize the differences between each RGB color
patch and its corresponding reference value, and this matrix was
applied across the entire image to correct for color distortion. To

10.3389/fpls.2025.1681915

further improve image quality, gamma correction and histogram
equalization algorithms were implemented to adjust brightness
balance. Lastly, to improve the image analysis accuracy, a
foreground-background separation algorithm was incorporated.
As a result, high-precision image preprocessing software capable
of both color correction and background removal was developed, as
illustrated in Figure 1.

2.4 Outlier removal

A total of 2,399 leaf temperature values and corresponding
thermal images were obtained during the study period (June: 489,
July: 1,095, August: 815). To improve the quality of the leaf
temperature dataset, a normal distribution was used, and values
outside the +36 range from the mean were considered as outliers.
As aresult, 14 samples during the early growth stage, one during the
tuber bulking stage, and eight during the late growth stage were
removed and 2,374 samples were used for model development.
thermal images were manually filtered based on the following
criteria: (i) if leaf regions were not clearly distinguishable, (ii) if
the image was out of focus, or (iii) if non-crop objects or human
body parts were visible in the frame. After applying these criteria, a
total of 632 thermal images were retained. The same exclusion
criteria applied to the thermal images were also used for the RGB
images, yielding a final set of 452 valid RGB images.

2.5 CWSI acquisition

To calculate the index using the conventional CWSI formula, it
is necessary to obtain the theoretically defined wet (T, and dry
(Tary) leaf temperatures (Idso et al., 1981). However, in practical
field conditions, it is often difficult to directly measure or accurately
derive these reference values due to environmental variability and
technical limitations (Katimbo et al., 2022; Zhang et al., 2025). This
study therefore redefined the conventional CWSI formula based on
field-measurable variables to quantitatively assess crop water stress.

FIGURE 1

Images processed using the developed calibration program ((A) raw image, (B) color-calibrated image).
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To accomplish this, a modified empirical approach using a fixed
T4ry and measurable environmental variables was proposed. Leaf
temperature (T.) was measured in real time using a TRI camera and
soil moisture content was obtained using a portable soil moisture
sensor. Air temperature (T,) and relative humidity (RH) were
retrieved from the local meteorological administration. Based on
these field-acquired data, the CWSI was computed through the
following procedure.

Equation 1 estimates the water stress correction coefficient (5),
which quantitatively reflects the crop’s water stress level based on
RH and soil moisture conditions. & was introduced in this study to
incorporate water-related physiological stress into the calculation,
representing the degree of water deficiency relative to optimal
growth conditions. It was calculated using soil moisture content
and RH and was formulated as the sum of a base value of 2, an
adjustment term (0.1 x |soil moisture — 30|), and a transpiration-
related term (2 x (1 — RH/100)). This formulation reflects the
physiological response in which the transpiration potential
decreases under high RH and water stress intensifies under low
soil moisture. To prevent excessive correction, & was capped at a
maximum value of 6 (8 < 6). With this approach the impact of water
conditions on plant growth could be more accurately represented.

RH

8 =2+0.1 x |Soil moisture — 30| +2 X (1 —r.o) G<6) (1)

Subsequently, in Equation 2, T\, was estimated by subtracting
d from T,, allowing the ideal wet leaf temperature to be indirectly
estimated based on the actual air temperature. Ty, was fixed at 34 °
C, the highest observed leaf temperature in the experimental plots.

Tyt =T, - 8 )

Finally, as shown in Equation 3, the CWSI was calculated using
the formula (T — Tywe)/(Tary = Twed). This formula accounts for
both elevated and reduced leaf temperatures as indicators of water
stress. Additionally, the CWSI value was constrained to a minimum
of 0.05 to minimize distortion due to potential sensor error.

[Tc B Twet -]

CWSI =
Tdry — Lwet

(0.05 < CWSI < 1) 3)

10.3389/fpls.2025.1681915

2.6 Variable selection for ML model
development

In this study, to develop machine learning models for classifying
water stress in sweet potato, the most important variables were
selected from among the growth indicators presented in Section 2.1,
the leaf temperature obtained from thermal image, and the CWSI.
To address this, a RF algorithm was used. RF is an ensemble model
based on multiple decision trees and is well-suited for variable
importance analysis, as it repeatedly uses key variables to construct
tree splits and objectively evaluates the degree to which the model
depends on each variable (Alduailij et al., 2022; Cao et al., 2020).

In addition, key growth indicators were selected for each growth
stage: early growth (June), tuber bulking (July), and late growth
(August). This allowed the identification of growth stage-specific
factors that influence crop growth and provided data to analyze
seasonal or monthly patterns. Furthermore, understanding which
variables are most important at each growth stage provides insight
into the environmental factors that should be monitored.
Ultimately, reducing unnecessary variables improves model
performance. Therefore, this approach enabled the extraction of
critical growth indicators to support water management decisions.

As shown in Table 1, a total of four growth indicators with the
highest contribution scores were selected using RF. For the early
growth stage, the selected variables were leaf temperature, CWSI,
stem length, and CF. For the tuber bulking stage, the most
influential indicators were CWSI, SPAD, leaf temperature, and
NDVL Lastly, for the late growth stage, the selected variables
were CWSI, stem length, leaf temperature, and CF. Through this
analysis, the most influential variables in terms of crop growth and
yield prediction were identified, establishing a foundation for

optimizing model performance.
2.7 ML model development
In this study, five ML models were employed: LR, RF, KNN,

MLP, and SVM. LR is a linear classification model that predicts the
probability of water stress occurring. It is computationally efficient,

TABLE 1 Random Forest-based feature importance across sweet potato growth indicator.

Feature Early growth stage importance = Tuber enlargement stage importance Late growth stage importance
Leaf

Temperature | 0246 0.161 0.185

CwWsI 0.177 0271 0.265

Stem Length | 0.174 0.122 0.178

CF 0.164 0.125 0.089

NDVI 0.139 0.152 0.103

SPAD 0.101 0.172 0.164
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interpretable, and well-suited for datasets where class separation is
relatively clear, allowing an intuitive understanding of the influence
of different variables (Sharma et al., 2021).

RF is an ensemble model that predicts water stress levels by
combining multiple decision trees. It exhibits robust performance
across various environments and effectively learns complex
relationships among variables (Yamparla et al, 2022). KNN
classifies new instances by comparing their similarity to the k
nearest neighbors in the training set. As it directly reflects data
patterns, it is flexible in adapting to data variability (Kumar et al,
2023). MLP is a multi-layer neural network capable of learning
nonlinear water stress patterns. It combines diverse features to
achieve high representational capacity and can effectively model
complex relationships (Bazrafshan et al., 2022). SVM is a powerful
classification algorithm that separates water stress levels using
hyperplanes. Even when data are not linearly separable, it can
learn complex patterns using kernel functions (Behmann et al,
2015; Kok et al., 2021).

Based on the characteristics of each model and the integrated
dataset selected via RF, training was conducted separately for each
growth stage. A total of 300 integrated data samples consisting of 50
samples per stage were used. The data were stratified according to
five water stress levels: SD, D, O, W, and SW, with a ratio of
1:1:2:1:1. The proportion of O-level samples was intentionally
doubled to avoid environmental bias. During the experiment,
sweet potatoes were cultivated in two greenhouse units—one
under D conditions and the other under W conditions. To
balance the influence of environmental conditions, O-condition
samples were collected from both units. The dataset was split into
80% for training and 20% for testing. Model performance was
evaluated based on classification accuracy.

128x128x32

128x128x1 64x64x32

64x64x64

e
Input image

128x128x3 128x128x32

64x64x32

Input image

FIGURE 2
Architecture of the developed CNN-based ViT model.
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2.8 Development of a TRI-RGB fusion-
based water stress classifier using a CNN-—
ViT model

In this study, a CNN-based ViT model was employed. The
CNN enables automatic extraction and learning of image features
and thus provides faster and more accurate classification compared
to manual methods (Oikonomidis et al., 2023). Therefore, it was
deemed suitable for classifying TRI and RGB images. By integrating
ViT, which can effectively capture general patterns and long-range
dependencies that CNN alone might miss, the model was enhanced
to more precisely reflect the complex visual characteristics of the
crop environment (Lehouel et al., 2024). This architecture
strengthened the interaction between features in multimodal
images composed of RGB and TRI inputs and contributed to
improved classification performance (Lee et al., 2023).

A total of 904 images, comprising 452 thermal image and 452
RGB images, were used. The dataset was composed of SD (156), D
(150), O (150), W (137), and SW (146) images. The data were split
into 80% for training and 20% for testing. To ensure stable model
performance, k-fold cross-validation was applied. As shown in
Figure 2, all input images were resized to 128x128 pixels and
normalized to the [0, 1] range by dividing the pixel values by 255.
RGB images were loaded in “RGB” mode and thermal images in
“grayscale” mode, with preprocessing tailored to each sensor type.

For thermal feature maps extracted by the CNN, the mean value
was calculated across spatial and batch dimensions to assess the
importance of each channel. Only channels with an average
activation greater than 0.1 were retained, and the resulting
channel mask was uniformly applied across all thermal features.
This filtering reduced the number of thermal channels and thereby

1x32768
32x32x64 32x32x128  16x16x128 )

& T

0:Dry
1: Normal
2: Wet
Output
Max-Pool2  Convolution3 Max-Pool 3 Fully-Connected
Feature extraction ' Classification )
e 1332768
32x32x64 32x32x128  16x16x128
||: - 1x512
=M = - 0:Dry
| S| | 1: Normal
- = 2: Wet
o Output

Max-Pool2  Convolution3 Max-Pool 3 Fully-Connected

[t Fm— ]

Feature extraction Class
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enhanced input efficiency. Feature maps from the RGB and TRI
CNNs were converted into vectors via Global Average Pooling and
then concatenated along the channel axis to create a fused feature
vector. This fusion vector was used as the input for the
final classifier.

The proposed model is a CNN-based ViT that extracts local
features from RGB and thermal inputs via separate CNNGs; it then
combines them into a unified feature vector, which is passed to a
Transformer block. The Transformer learns global patterns from
this vector and predicts one of the three water stress levels via the
final classification layer. The model includes approximately 220,000
trainable parameters and is designed to leverage CNN’s local feature
extraction and ViT’s global pattern learning to achieve high
classification accuracy with complex multimodal inputs. The
training configuration of the CNN-based ViT model is
summarized in Table 2. Key hyperparameters such as learning
rate, batch size, and number of epochs were determined based on
prior experiments to achieve optimal performance.

2.9 Sweet potato water monitor system

GUI is designed to enable users to interact intuitively with a
computer through visual elements such as buttons, menus, and
images, without the need to input complex commands
(Mohammad, 2021). The sweet potato water monitor system was
developed using Tkinter, OpenCV, and Pillow to classify the water

10.3389/fpls.2025.1681915

TABLE 2 Training configuration of the CNN-based ViT model.

Hyperparameter Value

Optimizer Adam
Learning Rate Default setting (0.001)
Loss Function Sparse Categorical Crossentropy
Epochs Up to 100
Early Stopping Patience = 10, based on validation loss
Batch Size 64

Validation Strategy 5-fold Stratified K-Fold Cross-Validation

i . Accuracy, Confusion Matrix, and
Evaluation Metrics . .
Classification Report

stress level of sweet potato crops based on RGB and thermal images
and to provide appropriate prescriptions accordingly.

Tkinter was employed to implement key interface components,
including buttons, labels, and image display areas, while OpenCV
and Pillow were used for image loading, preprocessing, and visual
output. This design allows users to easily import images and
intuitively check the predicted water stress levels along with
corresponding management recommendations. Figure 3 illustrates
the step-by-step workflow of the developed GUI software, including
the overall implementation process and functional interconnections
from image input and model inference to displaying results,

Start I

Water
supplying

RGB, TRI
Data Input

Stop
watering

Stage-specific
growth data

Severe
Dry

‘Water stress level
Classification

-ViT

1
1
1
'
1
Custom CNN H
0
1
1
1

Severe
Wet

Optimal

|

[ Maintaining water

FIGURE 3
Workflow of the developed sweet potato water monitor system.
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gradient-weighted class activation mapping (Grad-CAM)-based
visualization, and sensor data processing. This flowchart provides
practical insight into the logical structure and operational sequence
of the software.

2.10 Model evaluation and experimental
setup

The performance of the developed models was evaluated using
the test dataset. The evaluation was based on a confusion matrix,
which compares the model predictions with the actual ground truth
and consists of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). Based on the confusion
matrix, key performance metrics—accuracy, recall, precision, and
F1-score—were calculated to quantitatively assess the classification
performance of each model. The formulas used for these metrics are
provided in Equations 4-7.

Precisi TP @)
recision = —————
TP + FP
TP
Recall itivity) = ———— 5
ecall(Sensitivity) TP 1N (5)

Precision x Recall
FlScore=2 X —M (6)
Precesion + Recall

TN + TP

A - 7
COUraSY = TN+ TP + FP + FN @)

A 5-fold cross-validation procedure was employed to account
for the limited dataset size. To mitigate evaluation bias under class
imbalance, a stratified scheme was applied so that each fold
preserved the original class distribution. The data were shuftled at
each split, and a fixed random seed (e.g., random_state = 42) was
used to ensure reproducibility. In each fold, approximately 80% of
the data were allocated for training and 20% for validation. All
preprocessing steps (e.g., feature scaling) were fitted on the training
subset only and subsequently applied to the corresponding
validation subset to prevent data leakage. For fair comparison, the
same fold partitions were consistently applied across all models.
Performance metrics, including accuracy, macro/weighted FI-
score, precision, and recall, were reported as mean + standard
deviation across the five folds.

All experiments were conducted on a Windows operating
system using Jupyter Notebook (Anaconda Inc., USA). A GeForce
GTX 1060 GPU (NVIDIA, USA) was employed for model training
and inference. Python version 3.9.18 (Python Software Foundation,

10.3389/fpls.2025.1681915

USA) was used as the programming environment and TensorFlow
version 2.10.0 (Google Brain Team, USA) served as the deep
learning framework.

3 Results and discussion

3.1 Statistical difference verification using
ANOVA

To evaluate the statistical significance of the leaf temperature
data after removing outliers, an analysis of variance (ANOVA) was
performed. This statistical method is used to compare data groups
based on a single independent variable (group or category). In this
study, ANOVA was used to determine whether mean leaf
temperatures significantly differed among the five water stress
levels. As shown in Table 3, the analysis resulted in an F-statistic
0f 2.376 and a p-value of 0.043. Because the p-value is less than 0.05,
it indicates that the mean leaf temperature differs significantly
across water stress classes. In other words, the leaf temperature of
sweet potatoes varies depending on the water treatment level.

3.2 ML model training results

The ML models for classifying sweet potato water stress levels
were trained separately for each growth stage using five algorithms:
LR, RF, KNN, MLP, and SVM. In June, as shown in Figure 4, both
KNN and SVM achieved perfect classification accuracy (1.0), while
RF and LR each recorded a value of 0.84, and MLP showed lower
performance at 0.67. In the RF and LR models, samples from the SD
class were misclassified as SW, indicating decreased classification
performance in distinguishing extreme water levels. MLP also
showed similar misclassification patterns, with 50% of O-class
samples incorrectly classified as W-class. These results suggest
that the models had difficulty distinguishing between certain
adjacent classes, which may be attributed to overlapping feature
characteristics or an imbalanced data distribution.

In July, all models achieved perfect accuracy (1.0) as shown in
Figure 5, suggesting they effectively learned distinct features from
the test data. Considering that July samples might have had more
distinguishable characteristics compared to other months, these
results likely reflect strong generalization rather than overfitting.

In August, according to Figure 6, KNN and RF again achieved
perfect accuracy (1.0), while SVM, LR, and MLP each showed
accuracy of 0.84. All three models misclassified 50% of O-class
samples as SD. This implies that these models failed to differentiate

TABLE 3 ANOVA analysis of variance for sweet potato leaf temperature classification levels.

Source of variation = Sum of squares

Treatment 382.95 ‘ 4
Error 17607.61 ‘ 2312
Total 17990.57 ‘ 2316
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Degrees of freedom

Mean square F-value p-value F-critical
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Confusion matrix results of five ML classification models using the June integrated dataset.

O from SD, possibly due to overlapping features or the ambiguous
nature of mid-range water levels (O), which may not exhibit clear
boundaries compared to the more extreme SD class.

Although all models initially achieved perfect classification
accuracy on the test sets, this raised concerns about potential
overfitting. Therefore, 5-fold cross-validation was performed to
evaluate the generalization performance, yielding average
validation accuracies of 0.94 in June, 0.96 in July, and 0.94 in
August. The distribution of cross-validation accuracies for each
month is presented in Figure 7. Although these values are slightly
lower than the initial test accuracies, the results still demonstrate
strong model performance and indicate that the proposed approach
maintains robust generalization capability across different
growth stages.

3.3 Final ML model selection

In the results of the comparative analysis of multiple
classification models using integrated data by sweet potato growth
stages the KNN model consistently demonstrated the highest
classification accuracy across all stages. This outcome can be
attributed to the structural characteristics of the KNN algorithm
and its synergistic compatibility with the numerical patterns
embedded in the integrated dataset. KNN is a non-parametric
algorithm that does not construct an explicit model during
training. Instead, it performs classification by calculating distance-
based similarity between input data and training samples at
prediction time (Zhang, 2022; Uddin et al., 2022).
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This is particularly effective when dealing with well-structured,
quantitatively distinctive datasets such as the integrated data used in
this study. KNN eftectively captured the structure of each growth
stage and formed clear decision boundaries among similar samples.
Consequently, it successfully distinguished the numerical band
information associated with sweet potato growth characteristics.

Moreover, KNN does not require assumptions about the data
distribution, and thus is especially advantageous when processing
non-linear or multivariate traits of growth indicators that vary by
growth stage (Bansal et al., 2022). When the color characteristics of
sweet potato leaves maintain a consistent similarity-based structure
in high-dimensional space across stages, KNN can leverage this to
outperform other models in classification performance (Sagana
et al., 2022). In conclusion, the structural flexibility and distance-
based classification mechanism of KNN align well with the
numerical properties of sweet potato integrated data. This is
considered a key factor in explaining the consistent superiority of
the KNN model’s classification performance across all growth
stages in this study.

3.4 DL model training results

In this study, a CNN-based ViT classification model was
employed to classify sweet potato water stress levels using a fused
image composed of thermal images and RGB images. Unlike the
machine learning models based on integrated data, the fused image
classification model did not divide the water stress levels into five
categories. Instead, it consolidated the extreme water conditions
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FIGURE 7
Distribution of 5-fold cross-validation accuracy by month.

(SD and SW) and classified them into three categories: D, O, and W.
As shown in Figure 8, dividing the water stress levels into five
intervals resulted in reduced classification accuracy (0.75) and
elevated loss (0.7)—this suggests that the model struggled to
differentiate between finer stress categories. Although extreme
water conditions were relatively well identified through image-
based observations, the visual features between the dry and wet
conditions was ambiguous. This makes it difficult for the model to
differentiate between the two classes, which led to a decrease in
classification accuracy. Therefore, the water stress levels were
restructured based on the degree to which they could be
identified through image information alone, with the aim of
establishing a more reliable classification framework.

As a result of training the simplified stress-level classification
model, the accuracy reached a high value of 0.92. Figure 9 presents
confusion matrices of the TRI and RGB classification models. For
the three water stress levels (SD, O, SW), the model exhibited
generally high classification accuracy, achieving 100% accuracy for
both the SD and SW classes. The O class showed slightly lower
performance with an accuracy of 97%, with 3% of its samples
misclassified as SD. The application of 5-fold cross-validation
resulted in an average accuracy of 0.91.

3.5 Development of the sweet potato
water monitor system

In this study, a sweet potato water monitor system was
developed by integrating the KNN model with the CNN-based
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ViT model to effectively classify the water stress levels of sweet
potato crops (Figure 10). The developed system is a deep learning-
based RGB-thermal CNN+ViT prediction framework designed to
visualize and predict water stress levels in sweet potato crops,
consisting of four main interface components. It requires only
modest computational resources (=30.5M parameters; ~122 MB
in fp32) and operates in near real time on a CPU, with GPU
acceleration further reducing latency. Moreover, Grad-CAM
explanations are computed on-the-fly with moderate overhead,
enabling practical field deployment with consumer-grade hardware.

The top-left section of the GUI is the input image area, where
users can load RGB and thermal images separately. The ‘Load RGB’
button on the left allows users to import RGB images that capture
the visual characteristics of sweet potato leaves, while the ‘Load
Thermal’ button on the right inputs thermal images reflecting the
leaf temperature distribution. These two image types are utilized
independently in the CNN-based feature extraction process of the
model to analyze visual information.

The top-right section is the sensor-based input area. This area
includes radio buttons for selecting the growth period (June, July, or
August) and allows manual input of numerical growth indicators
corresponding to each period. These input values are fed into the
KNN-based auxiliary classifier, which forms a fused prediction
architecture in conjunction with the deep learning inference.

The bottom-right section serves as the output area for
displaying the prediction results. Upon clicking the ‘Run
Prediction’ button, the prediction outputs from the CNN+ViT
and KNN models are averaged to produce a final water stress
level. The result is presented as one of three classes: Severe Dry,
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Optimal, or Severe Wet. A gradient-colored bar beneath the
prediction output visually highlights the predicted stress level,
providing intuitive feedback to the user.

The bottom-left section corresponds to the attention map
visualization area. When the ‘Show Attention Map’ button is
clicked, the GUI displays visual explanations generated by Grad-
CAM based on Explainable AI (XAI). The left side shows the
attention regions derived from the RGB image, and the right side

Unit : %

displays those from the thermal image. This allows users to
intuitively identify the regions the model focused on during
decision-making and enhances interpretability and trust in
the model.

This sweet potato water monitor system is designed to predict
the water stress condition of crops based on both image data and
growth indicators, while visually explaining the decision-making
process of the deep learning model.
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FIGURE 9
Confusion matrix of the CNN+VIiT model for three water stress levels.
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The developed GUI software.

Figure 11 illustrates representative images corresponding to the
classification of crops into three distinct water stress levels: SD, O,
and SW.

3.6 Discussion

3.6.1 Model evaluation

This study compared and analyzed the classification
characteristics and performance of two approaches for sweet
potato water stress classification: a quantitative ML model based
on growth indicators and an image-based DL model using fused
RGB and thermal images. Specifically, a KNN model based on
integrated data including SPAD, CWSI, and leaf temperature was
combined with a ViT-based CNN architecture applied to image
data to establish a complementary prediction framework.

The ML-based KNN model demonstrated stable classification
performance, particularly for moderate water stress levels, by
leveraging quantitative growth indicators. In contrast, the DL-
based model exhibited high sensitivity in extreme stress
conditions. Notably, the KNN model achieved the highest
classification accuracy across all growth stages, which can be
attributed to its structural compatibility with quantitative data.

The experimental results revealed that when the water stress
levels were classified into five categories, the model achieved a
relatively low accuracy of 0.75 with an elevated loss of 0.7. By
contrast, simplifying the stress levels into three categories (SD, O,
SW) substantially improved classification accuracy to 0.92, with 5-
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fold cross-validation confirming robust performance at an average
accuracy of 0.91. The confusion matrices further showed that both
the SD and SW classes were identified with 100% accuracy, while
the O class reached 97%, with only 3% of the samples misclassified
as SD.

This restructuring was motivated not only by empirical
performance improvements but also by practical considerations.
In agricultural practice, irrigation and fertilization decisions are
generally aligned with broad soil moisture conditions such as
deficit, optimal, and excess, rather than highly granular categories.
Thus, a three-level classification scheme is more consistent with
real-world management practices and easier to implement on
small-scale farms that lack automated control systems.

From a modelling perspective, thermal and RGB imagery were
effective for detecting extreme stress levels but provided limited cues
for differentiating intermediate conditions. Consolidating the
categories allowed the CNN-based ViT model to focus on clearer
visual signals, which enhanced both robustness and generalizability.
Furthermore, the simplified classification outputs can be directly
translated into actionable recommendations such as “initiate

» «

irrigation,” “maintain current conditions,” or “reduce watering,”
thereby bridging the gap between advanced image-based analytics
and practical decision support in agriculture. The primary
distinction of this study is that it provides an integrated analysis
of sweet potato water stress by combining image data (RGB and
thermal imagery) with growth indicators such as SPAD, CWSI, and
leaf temperature. This fusion-based approach offers significant

advantages that not only enhance model accuracy but also
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FIGURE 11

Representative images showing the classification of crops into three water stress levels: SD, O, and SW.

improve interpretability and practical applicability in real-world
agricultural settings.

3.6.2 Previous studies

In contrast with the present study, most previous research has not
systematically classified the water stress levels of sweet potato crops or
integrated image-based analysis with growth indicators. Existing
studies on detecting and classifying water stress have primarily
focused on major cereal crops such as rice, maize, sugarcane, and
soybean. For example, Kapari et al. (2024) conducted an evaluation of
maize water stress and crop growth monitoring in small-scale farms
using UAV data. The results indicated that the Random Forest model
achieved a coefficient of determination (R?) of 0.85, a root mean
square error (RMSE) of 0.05, and a mean absolute error (MAE) of
0.04 (Kapari et al., 2024). de Melo et al. (2022) proposed a method for
predicting water stress in sugarcane crops using the deep neural
network Inception-ResNet-v2 trained on thermal images. The
analysis demonstrated improved performance, achieving accuracy
increases of 23%, 17%, and 14% for the AWC levels of 25%, 50%, and
100%, respectively, compared with previous approaches (de Melo
et al,, 2022). Mokhtar et al. (2023) applied six ML and DL models to
predict the irrigation water requirement (IWR) of snap beans using
various weather, soil, and crop variables as inputs. The results showed
that, under the S7 scenario, the DNN model achieved the best
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performance with MBE = -0.001, RMSE = 0.055 mm, and NSE =
0.824 (Mokhtar et al.,, 2023).

In the present study, a systematic classification of sweet potato
water stress levels was conducted by incorporating multiple growth
indicators along with leaf temperature data. Among the ML models,
KNN achieved the highest performance, reaching an accuracy of
1.00 across all growth stages, while maintaining strong results in 5-
fold cross-validation (0.94, 0.96, and 0.94). Furthermore, the
integration of RGB and thermal images using a CNN+ViT model
demonstrated superior performance, achieving an accuracy of 0.97,
with a 5-fold cross-validation result of 0.91. These reported results
were then compared with the findings of the present study, as
summarized in Table 4.

Previous studies proposed models that quantitatively predicted
water stress by combining UAV-derived MSI or HSI with growth
indicators (Wang et al., 2024; Dong et al., 2024; Sharma et al., 2025;
Brewer et al., 2022). Although these approaches demonstrated a
reasonable levels of predictive performance, their applicability in
real agricultural settings is limited due to the high cost of equipment
and the complexity of data processing and interpretation.
Moreover, most existing studies were restricted to specific crop
groups, particularly cereals, and often involved limited types of
image data and growth indicators. In contrast, root crops such as
sweet potato—despite that root enlargement is a key growth
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TABLE 4 Comparison of previous studies with the present study results.

Study Crop Best model

Kapari et al. (2024) Maize RF R? =
Melo et al. (2022) Sugarcane Inception-ResNet-v2

Mokhtar et al. (2023) | Snap bean Deep Neural Network (DNN)

Present study Sweet potato CNN-ViT

Present study Sweet potato KNN

indicator—have rarely been analyzed using an integrated approach
that combines physiological and image-based data to assess
water stress.

Notably, instead of relying solely on RGB images or individual
growth indicators, this study implemented a practical and scalable
analytical platform that integrates diverse sensor-based quantitative
physiological indicators with image data. This multidimensional
approach captures sweet potato responses to water stress more
comprehensively. Furthermore, this study integrated XAI techniques
based on Grad-CAM into the sweet potato water monitor system to
provide a visual explanation of prediction outcomes. Users can identify
the specific regions of the image that the model focused on during
inference, which significantly enhances the model’s transparency and its
applicability in real-world agricultural settings. This visualization feature
offers practical advantages and offers potential for direct application in
Ccrop management.

3.6.3 Limitations of this study

However, several limitations of this study should be
acknowledged. First, the image-based classification accuracy for
the O class was relatively low and consequently moderate stress
conditions were difficult to distinguish. This limitation is primarily
attributed to the intrinsic constraint of image data in capturing
detailed physiological responses. Second, the dataset exhibited class
imbalance due to an insufficient number of samples in some
categories, which may have introduced bias in model training.
Third, since the study relied on static images and growth
indicators, it could not reflect temporal variations in growth or
the accumulation patterns of stress over time. Lastly, the absence of
a quantitative analysis for sensory and chemical traits such as
sweetness, taste, and quality of sweet potato is an area that should
be addressed in future work.

3.6.4 Future work

Future work will focus on advancing the developed
classification and prediction system into a deployable platform for
agricultural use. A fixed-position camera system will periodically
capture crop images and automatically transmit them to an online
server for processing. Through this infrastructure, users will be able
to access prediction results, Grad-CAM visualizations, and sensor
data in real time via a web-based application, without requiring
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Performance metrics

0.85, RMSE = 0.05, MAE = 0.04

Accuracy improved by 23% (AWC 25%), 17% (AWC 50%), 14% (AWC 100%) vs. baseline
MBE = -0.001, RMSE = 0.055 mm, NSE = 0.824
Accuracy: 0.91

Accuracy: 0.94-0.96

additional software installation. Such an automated platform will
improve accessibility and provide both quantitative and visual
assessments of crop water status. Moreover, the validated
algorithmic framework is not limited to sweet potato; developing
crop-specific models may enable expansion into a general-purpose
diagnostic platform adaptable to diverse cultivation environments.

The system also demonstrates high practical feasibility, as it is
more cost-effective than hyperspectral equipment and can be readily
utilized by agricultural practitioners. It is being designed with an
intuitive user interface, essential data management functions, and
integration potential with existing farm management tools. Although
the detailed specifications of the web platform and software
architecture have not yet been finalized, the design process
prioritizes applicability in real-world settings.

In terms of economic impact, the deployment of the proposed
system may reduce reliance on costly sensing platforms such as
hyperspectral cameras and lower labor requirements for manual
monitoring, thereby contributing to reduced operational costs.
Furthermore, by providing real-time, automated, and interpretable
predictions, the system is expected to enhance water-use efficiency
and minimize resource waste, ultimately improving cost-effectiveness
for agricultural practitioners.

Figure 12 illustrates the agricultural management decision-making
process. The flow begins with data acquisition (climate, soil, and crop
imaging), followed by data transmission and preprocessing, leading to
Al-based analysis for water stress diagnosis and prediction. The
outputs then inform management decisions such as irrigation,
fertilization, and environmental control, completing a cycle that
supports efficient agricultural management.

4 Conclusion

This study developed and analyzed both an integrated data-
based ML model and a ViT-CNN DL model using RGB and thermal
image acquired from low-altitude platforms to efficiently classify
and predict the water stress levels of sweet potato. Among the ML
models, the KNN classifier achieved the highest accuracy across all
growth stages. The ViT-CNN model also demonstrated strong
performance, particularly through the application of a class
simplification strategy that improved prediction accuracy.
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Notably, restructuring the water stress levels from five to three
classes helped overcome the limitations of image-based
classification, reducing potential misclassification and enhancing
reliability for real-world applications.

To improve practicality under open-field cultivation conditions,
certain meteorological variables required for calculating the CWSI were
replaced with field-observable elements. A redefinition of the index
formula was proposed based on these replacements to provide a more
realistic computation of CWSI and increase the utility of TRI-based
growth indicators. This approach allows a CWSI-based quantitative
analysis even in limited sensor environments.

In summary, the developed sweet potato water monitor system—
integrating XAI visualization via Grad-CAM and a user interface for
sensor-based input—was designed to enable users to intuitively assess
crop water status and obtain appropriate recommendations. This
configuration offers both practicality and scalability, supporting its
application in real agricultural settings.

Future work will be carried out to build a fixed camera-based
imaging system, wherein data will be collected and processed through
an online infrastructure and delivered via a web-based application
platform. This extension will enable real-time monitoring and facilitate
the application of the system to other crops, thereby contributing to the
advancement of smart agriculture technologies. In addition, further
validation will be conducted using multiple sweet potato cultivars,
including TJinyulmi’, ‘Shinyulm{i’, and ‘Pungwonmi’, to assess the
system’s generalizability. Temporal analysis will also be incorporated
to capture the progression of water stress over time, providing insights
into dynamic crop responses. Finally, the economic feasibility and
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practical impact of the developed GUI-based system will be evaluated
to ensure its applicability in real-world agricultural practices.
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