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Sweet potato (Ipomoea batatas L.) exhibits strong resilience in nutrient-poor soils

and contains high levels of dietary fiber and antioxidant compounds. It also is

highly tolerant to water stress, which has also contributed to its global

distribution, particularly in regions prone to climatic variability. However,

frequent abnormal climatic events have recently caused declines in both the

quality and yield of sweet potatoes. To address this, machine learning (ML) and

deep learning (DL) models based on a Vision Transformer–Convolutional Neural

Network (ViT-CNN) were developed to classify water stress levels in sweet

potato. RGB–thermal imagery captured from low-altitude platforms and

various growth indicators were used to develop the classifier. The K-Nearest

Neighbors (KNN) model outperformed other ML models in classifying water

stress levels at all growth stages. The DL model simplified the original five-level

water stress classification into three levels. This enhanced its sensitivity to

extreme stress conditions, improve model performance, and increased its

applicability to practical agricultural management strategies. To enhance

practical applicability under open-field conditions, several environmental

variables were newly defined to calculate the crop water stress index (CWSI).

Furthermore, an integrated system was developed using gradient-weighted class

activation mapping (Grad-CAM), explainable artificial intelligence (XAI), and a

graphical user interface (GUI) to support intuitive interpretation and actionable

decision-making. The system will be expanded into an online and fixed-camera

platform to enhance its applicability to smart farming in diverse field crops.
KEYWORDS

thermal imagery (TRI), red-green-blue (RGB) imagery, sweet potato, water stress,
artificial intelligence (AI)
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1 Introduction

Sweet potato (Ipomoea batatas L.) is recognized as a

nutritionally rich staple and is cultivated as an important food

security crop in many countries due to its ability to grow well in

poor soil conditions (Laveriano-Santos et al., 2022). Sweet potato is

resilient to temporary drought and low-fertility soils, supporting

consistent growth in poor climate conditions (Lindqvist-Kreuze

et al., 2024; Yan et al., 2022). Owing to its adaptive capacity and

nutritional value, sweet potato is globally regarded as a crop that can

contribute to addressing food shortages and food security

(Sapakhova et al., 2023).

The yield and quality of sweet potato, however, have been

considerably affected by frequent abnormal climate events

(Pushpalatha and Gangadharan, 2024). This has led to substantial

economic losses for many farming households (Tedesco et al.,

2023). Prolonged drought or waterlogging can inhibit the normal

growth of sweet potato. In particular, insufficient water supply

during the tuber formation stage can lead to inadequate

accumulation of starch and fructose within the tubers, resulting

in reduced yield and deteriorated quality (Zhang et al., 2002;

Nedunchezhiyan et al., 2012). Water saturation during critical

growth stages, particularly tuber initiation, interferes with

carbohydrate translocation and accumulation, which leads to

suboptimal yield and compromised quality (Gouveia et al., 2020).

Crop water stress traditionally has been evaluated through

direct measurement of photosynthetic activity under field

conditions or by monitoring soil moisture levels in conjunction

with meteorological parameters (Ihuoma and Madramootoo, 2017).

However, such methods are often labor-intensive and time-

consuming and consequently are not practical for large-scale or

continuous monitoring (Yang et al., 2020). Furthermore, these

approaches are frequently constrained by subjectivity in data

collection and interpretation, which may lead to inconsistencies

between observers and experimental conditions (Grassini et al.,

2015). In light of this, there is a growing need to develop new

technologies that can overcome the limitations of traditional

methods and enable more efficient and accurate assessment of

water stress (Kamarudin et al., 2021). Recently, the integration of

remote sensing technologies, sensor-based measurements, and

artificial intelligence (AI) analysis techniques in agricultural field

has made it possible to monitor crop growth conditions rapidly,

precisely, and at early stages (Wei et al., 2023).

Among these approaches, unmanned aerial vehicle(UAV)-

based multispectral and hyperspectral image analysis is

commonly used to assess crop growth characteristics (Wang

et al., 2018; Oré et al., 2020). The operation of precision

agriculture systems often requires a substantial level of technical

knowledge in hardware calibration, data analysis, and model

interpretation. This dependency on skilled personnel limits the

practical usability of such technologies for general farmers who may

lack formal training or access to technical support and thus widens

the digital divide in agriculture (ÇOBAN and OKTAY, 2018). In

particular, the need for expensive equipment and complex data
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analysis procedures impede the adoption of such technologies by

small- and medium-scale farms (Bhargava et al., 2024).

In addition, UAV-based high-altitude image acquisition is

highly sensitive to external environmental factors, which imposes

limitations on the precise measurement of subtle phenotypic traits

in crops (Aburaed et al., 2023). It hence becomes challenging to

obtain high-resolution data that capture subtle changes in leaves or

reflect the characteristics of individual plants, and the spatial

resolution of the collected data may be reduced in some

environments (Lu et al., 2020).

Numerous studies have been conducted on the use of low-

altitude imaging techniques to mitigate the limitations associated

with conventional UAV-based approaches and to address the

aforementioned constraints in quantitatively assessing crop water

stress (Samseemoung et al., 2012; Sankaran et al., 2015). Low-

altitude imaging enables the acquisition of more precise data due to

its closer proximity to the crop canopy (Zhang et al., 2014). It is also

well-suited for accurately analyzing subtle growth changes and the

degree of water stress in individual plants (Huang et al., 2016).

From a cost perspective, low-altitude imaging is advantageous

compared to UAV-based approaches (Jin et al., 2017). Because it

does not require specialized flight control skills and can be

implemented using relatively inexpensive equipment, it is readily

adoptable by farmers (Liu and Pattey, 2010).

In particular, the use of thermal imaging (TRI) cameras enables

continuous and repeated collection of crop-level temperature data

and thus is useful for acquiring time-series information on

individual plants (Ishimwe et al., 2014). In addition, red-green-

blue (RGB) cameras can be employed to evaluate plant status by

capturing visual indicators such as color, brightness, and texture

and thereby detect surface-level physiological changes (Vadivambal

and Jayas, 2011; Messina and Modica, 2020).

The crop water stress index (CWSI) is becoming a

representative indicator for quantitatively assessing the level of

water stress experienced by crops (Idso et al., 1981). Calculated

based on the difference between the actual observed canopy

temperature and the theoretically possible maximum and

minimum canopy leaf surface temperatures, the CWSI

comprehensively reflects soil moisture conditions, weather

variables, and the plant’s transpiration capacity (Trout et al.,

2025; Katimbo et al., 2022). It can be effectively used in

agricultural decision-making processes, such as determining

optimal irrigation timing and optimizing water management, and

also allows early detection of crop stress (Kullberg et al., 2024).

The accuracy of CWSI, however, relies on precise canopy

temperature measurements, which require a range of specialized

equipment and environmental conditions, including high-resolution

thermal cameras, meteorological sensors, and calibration algorithms

(Sánchez-Piñero et al., 2022). Due to these technical and economic

constraints, practical application in typical cultivation fields or small-

scale farms remains challenging (Wang et al., 2005). Accordingly,

recent studies have explored the possibility of indirectly estimating

canopy temperature or redefining the CWSI as a target variable for

model training (Kamankesh and Ghayedi, 2023).
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AI, particularly machine learning (ML) and deep learning (DL)

techniques, has been actively utilized in agricultural decision-

making (Ayoub Shaikh et al., 2022; Alibabaei et al., 2022). ML is

effective for real-time analysis of crop growth conditions and yield

prediction by integrating data from satellites, UAVs, RGB and TRI,

internet of things (IoT) sensors, and meteorological information

(Rahmani et al., 2021). This approach provides precise detection of

water stress, temperature fluctuations, and abnormal growth

patterns (Chlingaryan et al., 2018). DL can recognize complex

patterns and handle large-scale data, and this allows it to capture

nonlinear relationships and subtle environmental variables (Joshi

et al., 2023). Through iterative learning, its accuracy improves over

time, and it demonstrates high adaptability to various crops and

environmental conditions (Meghraoui et al., 2024; Wang et al.,

2022). As a result, it provides real-time decision-making, labor

reduction, and improvements in productivity and quality, which in

turn can lead to precise and automated agricultural practices

(Tamayo-Vera et al., 2024).

This study developed ML classification models to assess the water

stress levels of field-grown sweet potatoes based on leaf temperature

and growth indicators obtained from low-altitude TRI and RGB

imagery. In addition, DL classification models were constructed

using TRI and RGB images. To enhance practicality under open-

field cultivation conditions, the variables required for calculating the

CWSI were replaced with field-observable variables, and a redefined

formula for index computation was proposed. The ML models

included logistic regression (LR), random forest (RF), k-nearest

neighbors (KNN), multilayer perceptron (MLP), and support vector

machine (SVM). For DL, a convolutional neural network (CNN)

integrated with a vision transformer (ViT) was implemented. The

performance of all models was evaluated and compared based on

accuracy and K-fold cross-validation. A GUI-based system, termed

the sweet potato water monitor system, was ultimately developed to

classify water stress levels in sweet potato crops and to provide

corresponding management recommendations, based on trained

ML and DL models.
2 Materials and methods

2.1 Sample preparation

The cultivar used in this study was Jinyulmi and the

experimental field, comprising two plots of 320 m² each (8 m ×

40 m), was established at Gyeongsang National University’s

Naedong campus. Sweet potato transplanting began in May 2024

using seedlings approximately 25–30 cm in length, and harvesting

was conducted in September 2024. To help establish seedlings after

transplanting, sufficient irrigation was provided for three weeks.

Subsequently, RGB and thermal images of the sweet potato plants

were acquired for analysis.

Soil moisture levels were categorized into five classes: Severe

Dry (SD), Dry (D), Optimal (O), Wet (W), and Severe Wet (SW).

These categories were defined based on volumetric water content

(VWC) as follows: SD (≤10%), D (20 ± 2%), O (30 ± 3%), W (40 ±
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3%), and SW (50%) (Huang et al., 2024). Approximately 300

samples were used in total, with around 50 samples per

treatment group.

Irrigation was conducted using a subsurface drip irrigation

system, and soil moisture content was measured at a depth of 20

cm using a portable soil moisture meter (FieldScout TDR-300,

Spectrum Technologies, USA).

Sweet potato growth was assessed twice during each of the

major growth stages: root differentiation, tuber initiation, bulking,

and final harvest. To comprehensively evaluate crop growth

conditions, stem length, normalized difference vegetation index

(NDVI), chlorophyll fluorescence (CF), and SPAD values were

collected as growth indicators. Stem length is a fundamental

morphological indicator that indirectly reflects biomass

accumulation and growth inhibition under water stress conditions

(Fujii et al., 2014). NDVI, a representative remote sensing index

based on photosynthetic activity, quantitatively indicates crop vigor

and health and is highly sensitive to stress signals such as water

deficiency or growth imbalance (Huang et al., 2021). CF is a

physiological indicator capable of detecting functional

abnormalities in the photosynthetic system and is useful for

identifying early, non-visible stress responses. SPAD values

indirectly estimate chlorophyll content in leaves, thereby

reflecting photosynthetic capacity and nitrogen status (Gorbe and

Calatayud, 2012; Uddling et al., 2007). By integrating these diverse

growth indicators, the water stress responses of sweet potato were

analyzed and used as input variables for the ML classifiers.
2.2 TRI and data acquisition

In the current study, Thermal images were acquired using an

FLIR A65, a handheld infrared thermal camera equipped with a 640 ×

512pixel microbolometer sensor. This device functions as a TRI

temperature sensor capable of visually and comprehensively

monitoring temperature variations. The acquired thermal images

were calibrated using FLIR Tools, software provided by FLIR. To

ensure the accuracy of temperature measurements of the leaves and

plant canopy, the emissivity was set to 0.9 (Muller et al., 2021).

Thermal image acquisition was conducted manually from

approximately 1.05 meters above the plant canopy height. To

minimize the effects of direct sunlight, images were captured

between 6:00 and 7:00 a.m. from the center of each crop plot.

The collected images were then analyzed to determine the mean

temperature and temperature distribution for each treatment group.

Additionally, a calibration process was performed to ensure the

accuracy of the infrared data captured through the camera lens. For

this, the device’s performance was verified using ice (0 °C) and

boiling water (100 °C), followed by the application of the automatic

calibration function provided by the manufacturer through the

FLIR Tools software (Swamidoss et al., 2021).

In this study, TRI was utilized in two ways. First, leaf

temperature extracted from thermal images was used as a key

indicator indirectly reflecting the plant’s physiological water

status. Leaf temperature was integrated with other growth
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indicators, such as SPAD and the CWSI, as input variables for the

ML-based classification models. Additionally, leaf temperature was

used as leaf surface temperature data in the process of redefining the

CWSI formula for field applicability. Second, data were directly

utilized as input features for a CNN-based ViT classification model,

in conjunction with RGB images. This approach was adopted to

improve classification accuracy by integrating multimodal image

information. The model is designed to enhance water stress

classification performance and provide visual interpretability of

water stress.

To correct for local temperature variations and measurement

errors, leaf temperature was calculated based on the average of three

manually selected, independent regions from each thermal image.

These regions were morphologically distinct leaf areas, and the mean

temperature of each was first computed. The final leaf temperature

was then determined by averaging the values from the three regions.

This strategy was employed to reduce noise caused by single-pixel

extraction and to ensure that the resulting leaf temperature value

reliably represented the overall leaf condition.
2.3 RGB data acquisition

In this study, an RGB image correction program was developed

using Matlab R2024a (MathWorks, USA) to effectively compensate

for color distortion and brightness irregularities that may occur

during image acquisition. For color calibration, the international

standard reference target color checker (X-Rite, USA) was

employed to ensure color accuracy in the captured images.

A systematic color calibration protocol was applied to the RGB

imagery to ensure consistent and accurate color representation

across varying lighting conditions. To conduct color calibration,

the color checker was placed within the imaging frame, and the

deviation between captured RGB values and the reference values of

each color patch was quantitatively calculated. A correction matrix

was computed to minimize the differences between each RGB color

patch and its corresponding reference value, and this matrix was

applied across the entire image to correct for color distortion. To
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further improve image quality, gamma correction and histogram

equalization algorithms were implemented to adjust brightness

balance. Lastly, to improve the image analysis accuracy, a

foreground-background separation algorithm was incorporated.

As a result, high-precision image preprocessing software capable

of both color correction and background removal was developed, as

illustrated in Figure 1.
2.4 Outlier removal

A total of 2,399 leaf temperature values and corresponding

thermal images were obtained during the study period (June: 489,

July: 1,095, August: 815). To improve the quality of the leaf

temperature dataset, a normal distribution was used, and values

outside the ±3s range from the mean were considered as outliers.

As a result, 14 samples during the early growth stage, one during the

tuber bulking stage, and eight during the late growth stage were

removed and 2,374 samples were used for model development.

thermal images were manually filtered based on the following

criteria: (i) if leaf regions were not clearly distinguishable, (ii) if

the image was out of focus, or (iii) if non-crop objects or human

body parts were visible in the frame. After applying these criteria, a

total of 632 thermal images were retained. The same exclusion

criteria applied to the thermal images were also used for the RGB

images, yielding a final set of 452 valid RGB images.
2.5 CWSI acquisition

To calculate the index using the conventional CWSI formula, it

is necessary to obtain the theoretically defined wet (Twet) and dry

(Tdry) leaf temperatures (Idso et al., 1981). However, in practical

field conditions, it is often difficult to directly measure or accurately

derive these reference values due to environmental variability and

technical limitations (Katimbo et al., 2022; Zhang et al., 2025). This

study therefore redefined the conventional CWSI formula based on

field-measurable variables to quantitatively assess crop water stress.
FIGURE 1

Images processed using the developed calibration program ((A) raw image, (B) color-calibrated image).
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To accomplish this, a modified empirical approach using a fixed

Tdry and measurable environmental variables was proposed. Leaf

temperature (Tc) was measured in real time using a TRI camera and

soil moisture content was obtained using a portable soil moisture

sensor. Air temperature (Ta) and relative humidity (RH) were

retrieved from the local meteorological administration. Based on

these field-acquired data, the CWSI was computed through the

following procedure.

Equation 1 estimates the water stress correction coefficient (d),
which quantitatively reflects the crop’s water stress level based on

RH and soil moisture conditions. d was introduced in this study to

incorporate water-related physiological stress into the calculation,

representing the degree of water deficiency relative to optimal

growth conditions. It was calculated using soil moisture content

and RH and was formulated as the sum of a base value of 2, an

adjustment term (0.1 × |soil moisture − 30|), and a transpiration-

related term (2 × (1 − RH/100)). This formulation reflects the

physiological response in which the transpiration potential

decreases under high RH and water stress intensifies under low

soil moisture. To prevent excessive correction, d was capped at a

maximum value of 6 (d ≤ 6). With this approach the impact of water

conditions on plant growth could be more accurately represented.

d = 2 + 0:1� Soil moisture − 30j j + 2 � (1 −
RH
100

)  (d ≤ 6) (1)

Subsequently, in Equation 2, Twet was estimated by subtracting

d from Ta, allowing the ideal wet leaf temperature to be indirectly

estimated based on the actual air temperature. Tdry was fixed at 34 °

C, the highest observed leaf temperature in the experimental plots.

Twet  = Ta −  d (2)

Finally, as shown in Equation 3, the CWSI was calculated using

the formula (Tc − Twet)/(Tdry − Twet). This formula accounts for

both elevated and reduced leaf temperatures as indicators of water

stress. Additionally, the CWSI value was constrained to a minimum

of 0.05 to minimize distortion due to potential sensor error.

 CWSI =  
⌈Tc  −  Twet ⌉
Tdry  −  Twet

      (0:05 ≤ CWSI ≤ 1) (3)
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2.6 Variable selection for ML model
development

In this study, to develop machine learning models for classifying

water stress in sweet potato, the most important variables were

selected from among the growth indicators presented in Section 2.1,

the leaf temperature obtained from thermal image, and the CWSI.

To address this, a RF algorithm was used. RF is an ensemble model

based on multiple decision trees and is well-suited for variable

importance analysis, as it repeatedly uses key variables to construct

tree splits and objectively evaluates the degree to which the model

depends on each variable (Alduailij et al., 2022; Cao et al., 2020).

In addition, key growth indicators were selected for each growth

stage: early growth (June), tuber bulking (July), and late growth

(August). This allowed the identification of growth stage-specific

factors that influence crop growth and provided data to analyze

seasonal or monthly patterns. Furthermore, understanding which

variables are most important at each growth stage provides insight

into the environmental factors that should be monitored.

Ultimately, reducing unnecessary variables improves model

performance. Therefore, this approach enabled the extraction of

critical growth indicators to support water management decisions.

As shown in Table 1, a total of four growth indicators with the

highest contribution scores were selected using RF. For the early

growth stage, the selected variables were leaf temperature, CWSI,

stem length, and CF. For the tuber bulking stage, the most

influential indicators were CWSI, SPAD, leaf temperature, and

NDVI. Lastly, for the late growth stage, the selected variables

were CWSI, stem length, leaf temperature, and CF. Through this

analysis, the most influential variables in terms of crop growth and

yield prediction were identified, establishing a foundation for

optimizing model performance.
2.7 ML model development

In this study, five ML models were employed: LR, RF, KNN,

MLP, and SVM. LR is a linear classification model that predicts the

probability of water stress occurring. It is computationally efficient,
TABLE 1 Random Forest-based feature importance across sweet potato growth indicator.

Feature Early growth stage importance Tuber enlargement stage importance Late growth stage importance

Leaf
Temperature

0.246 0.161 0.185

CWSI 0.177 0.271 0.265

Stem Length 0.174 0.122 0.178

CF 0.164 0.125 0.089

NDVI 0.139 0.152 0.103

SPAD 0.101 0.172 0.164
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interpretable, and well-suited for datasets where class separation is

relatively clear, allowing an intuitive understanding of the influence

of different variables (Sharma et al., 2021).

RF is an ensemble model that predicts water stress levels by

combining multiple decision trees. It exhibits robust performance

across various environments and effectively learns complex

relationships among variables (Yamparla et al., 2022). KNN

classifies new instances by comparing their similarity to the k

nearest neighbors in the training set. As it directly reflects data

patterns, it is flexible in adapting to data variability (Kumar et al.,

2023). MLP is a multi-layer neural network capable of learning

nonlinear water stress patterns. It combines diverse features to

achieve high representational capacity and can effectively model

complex relationships (Bazrafshan et al., 2022). SVM is a powerful

classification algorithm that separates water stress levels using

hyperplanes. Even when data are not linearly separable, it can

learn complex patterns using kernel functions (Behmann et al.,

2015; Kok et al., 2021).

Based on the characteristics of each model and the integrated

dataset selected via RF, training was conducted separately for each

growth stage. A total of 300 integrated data samples consisting of 50

samples per stage were used. The data were stratified according to

five water stress levels: SD, D, O, W, and SW, with a ratio of

1:1:2:1:1. The proportion of O-level samples was intentionally

doubled to avoid environmental bias. During the experiment,

sweet potatoes were cultivated in two greenhouse units—one

under D conditions and the other under W conditions. To

balance the influence of environmental conditions, O-condition

samples were collected from both units. The dataset was split into

80% for training and 20% for testing. Model performance was

evaluated based on classification accuracy.
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2.8 Development of a TRI-RGB fusion-
based water stress classifier using a CNN–
ViT model

In this study, a CNN-based ViT model was employed. The

CNN enables automatic extraction and learning of image features

and thus provides faster and more accurate classification compared

to manual methods (Oikonomidis et al., 2023). Therefore, it was

deemed suitable for classifying TRI and RGB images. By integrating

ViT, which can effectively capture general patterns and long-range

dependencies that CNN alone might miss, the model was enhanced

to more precisely reflect the complex visual characteristics of the

crop environment (Lehouel et al., 2024). This architecture

strengthened the interaction between features in multimodal

images composed of RGB and TRI inputs and contributed to

improved classification performance (Lee et al., 2023).

A total of 904 images, comprising 452 thermal image and 452

RGB images, were used. The dataset was composed of SD (156), D

(150), O (150), W (137), and SW (146) images. The data were split

into 80% for training and 20% for testing. To ensure stable model

performance, k-fold cross-validation was applied. As shown in

Figure 2, all input images were resized to 128×128 pixels and

normalized to the [0, 1] range by dividing the pixel values by 255.

RGB images were loaded in “RGB” mode and thermal images in

“grayscale” mode, with preprocessing tailored to each sensor type.

For thermal feature maps extracted by the CNN, the mean value

was calculated across spatial and batch dimensions to assess the

importance of each channel. Only channels with an average

activation greater than 0.1 were retained, and the resulting

channel mask was uniformly applied across all thermal features.

This filtering reduced the number of thermal channels and thereby
FIGURE 2

Architecture of the developed CNN-based ViT model.
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enhanced input efficiency. Feature maps from the RGB and TRI

CNNs were converted into vectors via Global Average Pooling and

then concatenated along the channel axis to create a fused feature

vector. This fusion vector was used as the input for the

final classifier.

The proposed model is a CNN-based ViT that extracts local

features from RGB and thermal inputs via separate CNNs; it then

combines them into a unified feature vector, which is passed to a

Transformer block. The Transformer learns global patterns from

this vector and predicts one of the three water stress levels via the

final classification layer. The model includes approximately 220,000

trainable parameters and is designed to leverage CNN’s local feature

extraction and ViT’s global pattern learning to achieve high

classification accuracy with complex multimodal inputs. The

training configuration of the CNN-based ViT model is

summarized in Table 2. Key hyperparameters such as learning

rate, batch size, and number of epochs were determined based on

prior experiments to achieve optimal performance.
2.9 Sweet potato water monitor system

GUI is designed to enable users to interact intuitively with a

computer through visual elements such as buttons, menus, and

images, without the need to input complex commands

(Mohammad, 2021). The sweet potato water monitor system was

developed using Tkinter, OpenCV, and Pillow to classify the water
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stress level of sweet potato crops based on RGB and thermal images

and to provide appropriate prescriptions accordingly.

Tkinter was employed to implement key interface components,

including buttons, labels, and image display areas, while OpenCV

and Pillow were used for image loading, preprocessing, and visual

output. This design allows users to easily import images and

intuitively check the predicted water stress levels along with

corresponding management recommendations. Figure 3 illustrates

the step-by-step workflow of the developed GUI software, including

the overall implementation process and functional interconnections

from image input and model inference to displaying results,
FIGURE 3

Workflow of the developed sweet potato water monitor system.
TABLE 2 Training configuration of the CNN-based ViT model.

Hyperparameter Value

Optimizer Adam

Learning Rate Default setting (0.001)

Loss Function Sparse Categorical Crossentropy

Epochs Up to 100

Early Stopping Patience = 10, based on validation loss

Batch Size 64

Validation Strategy 5-fold Stratified K-Fold Cross-Validation

Evaluation Metrics
Accuracy, Confusion Matrix, and
Classification Report
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gradient-weighted class activation mapping (Grad-CAM)-based

visualization, and sensor data processing. This flowchart provides

practical insight into the logical structure and operational sequence

of the software.
2.10 Model evaluation and experimental
setup

The performance of the developed models was evaluated using

the test dataset. The evaluation was based on a confusion matrix,

which compares the model predictions with the actual ground truth

and consists of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). Based on the confusion

matrix, key performance metrics—accuracy, recall, precision, and

F1-score—were calculated to quantitatively assess the classification

performance of each model. The formulas used for these metrics are

provided in Equations 4–7.

Precision =
TP

TP + FP
(4)

Recall(Sensitivity) =
TP

TP + FN
(5)

F1 Score = 2� Precision� Recall
Precesion + Recall

(6)

Accuracy =
TN + TP

TN + TP + FP + FN
(7)

A 5-fold cross-validation procedure was employed to account

for the limited dataset size. To mitigate evaluation bias under class

imbalance, a stratified scheme was applied so that each fold

preserved the original class distribution. The data were shuffled at

each split, and a fixed random seed (e.g., random_state = 42) was

used to ensure reproducibility. In each fold, approximately 80% of

the data were allocated for training and 20% for validation. All

preprocessing steps (e.g., feature scaling) were fitted on the training

subset only and subsequently applied to the corresponding

validation subset to prevent data leakage. For fair comparison, the

same fold partitions were consistently applied across all models.

Performance metrics, including accuracy, macro/weighted F1-

score, precision, and recall, were reported as mean ± standard

deviation across the five folds.

All experiments were conducted on a Windows operating

system using Jupyter Notebook (Anaconda Inc., USA). A GeForce

GTX 1060 GPU (NVIDIA, USA) was employed for model training

and inference. Python version 3.9.18 (Python Software Foundation,
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USA) was used as the programming environment and TensorFlow

version 2.10.0 (Google Brain Team, USA) served as the deep

learning framework.
3 Results and discussion

3.1 Statistical difference verification using
ANOVA

To evaluate the statistical significance of the leaf temperature

data after removing outliers, an analysis of variance (ANOVA) was

performed. This statistical method is used to compare data groups

based on a single independent variable (group or category). In this

study, ANOVA was used to determine whether mean leaf

temperatures significantly differed among the five water stress

levels. As shown in Table 3, the analysis resulted in an F-statistic

of 2.376 and a p-value of 0.043. Because the p-value is less than 0.05,

it indicates that the mean leaf temperature differs significantly

across water stress classes. In other words, the leaf temperature of

sweet potatoes varies depending on the water treatment level.
3.2 ML model training results

The ML models for classifying sweet potato water stress levels

were trained separately for each growth stage using five algorithms:

LR, RF, KNN, MLP, and SVM. In June, as shown in Figure 4, both

KNN and SVM achieved perfect classification accuracy (1.0), while

RF and LR each recorded a value of 0.84, and MLP showed lower

performance at 0.67. In the RF and LR models, samples from the SD

class were misclassified as SW, indicating decreased classification

performance in distinguishing extreme water levels. MLP also

showed similar misclassification patterns, with 50% of O-class

samples incorrectly classified as W-class. These results suggest

that the models had difficulty distinguishing between certain

adjacent classes, which may be attributed to overlapping feature

characteristics or an imbalanced data distribution.

In July, all models achieved perfect accuracy (1.0) as shown in

Figure 5, suggesting they effectively learned distinct features from

the test data. Considering that July samples might have had more

distinguishable characteristics compared to other months, these

results likely reflect strong generalization rather than overfitting.

In August, according to Figure 6, KNN and RF again achieved

perfect accuracy (1.0), while SVM, LR, and MLP each showed

accuracy of 0.84. All three models misclassified 50% of O-class

samples as SD. This implies that these models failed to differentiate
TABLE 3 ANOVA analysis of variance for sweet potato leaf temperature classification levels.

Source of variation Sum of squares Degrees of freedom Mean square F-value p-value F-critical

Treatment 382.95 4 95.74 12.57 4.34×10-2 2.38

Error 17607.61 2312 7.62

Total 17990.57 2316
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O from SD, possibly due to overlapping features or the ambiguous

nature of mid-range water levels (O), which may not exhibit clear

boundaries compared to the more extreme SD class.

Although all models initially achieved perfect classification

accuracy on the test sets, this raised concerns about potential

overfitting. Therefore, 5-fold cross-validation was performed to

evaluate the generalization performance, yielding average

validation accuracies of 0.94 in June, 0.96 in July, and 0.94 in

August. The distribution of cross-validation accuracies for each

month is presented in Figure 7. Although these values are slightly

lower than the initial test accuracies, the results still demonstrate

strong model performance and indicate that the proposed approach

maintains robust generalization capability across different

growth stages.
3.3 Final ML model selection

In the results of the comparative analysis of multiple

classification models using integrated data by sweet potato growth

stages the KNN model consistently demonstrated the highest

classification accuracy across all stages. This outcome can be

attributed to the structural characteristics of the KNN algorithm

and its synergistic compatibility with the numerical patterns

embedded in the integrated dataset. KNN is a non-parametric

algorithm that does not construct an explicit model during

training. Instead, it performs classification by calculating distance-

based similarity between input data and training samples at

prediction time (Zhang, 2022; Uddin et al., 2022).
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This is particularly effective when dealing with well-structured,

quantitatively distinctive datasets such as the integrated data used in

this study. KNN effectively captured the structure of each growth

stage and formed clear decision boundaries among similar samples.

Consequently, it successfully distinguished the numerical band

information associated with sweet potato growth characteristics.

Moreover, KNN does not require assumptions about the data

distribution, and thus is especially advantageous when processing

non-linear or multivariate traits of growth indicators that vary by

growth stage (Bansal et al., 2022). When the color characteristics of

sweet potato leaves maintain a consistent similarity-based structure

in high-dimensional space across stages, KNN can leverage this to

outperform other models in classification performance (Sagana

et al., 2022). In conclusion, the structural flexibility and distance-

based classification mechanism of KNN align well with the

numerical properties of sweet potato integrated data. This is

considered a key factor in explaining the consistent superiority of

the KNN model’s classification performance across all growth

stages in this study.
3.4 DL model training results

In this study, a CNN-based ViT classification model was

employed to classify sweet potato water stress levels using a fused

image composed of thermal images and RGB images. Unlike the

machine learning models based on integrated data, the fused image

classification model did not divide the water stress levels into five

categories. Instead, it consolidated the extreme water conditions
FIGURE 4

Confusion matrix results of five ML classification models using the June integrated dataset.
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FIGURE 5

Confusion matrix results of five ML classification models using the July integrated dataset.
FIGURE 6

Confusion matrix results of five ML classification models using the August integrated dataset.
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(SD and SW) and classified them into three categories: D, O, andW.

As shown in Figure 8, dividing the water stress levels into five

intervals resulted in reduced classification accuracy (0.75) and

elevated loss (0.7)—this suggests that the model struggled to

differentiate between finer stress categories. Although extreme

water conditions were relatively well identified through image-

based observations, the visual features between the dry and wet

conditions was ambiguous. This makes it difficult for the model to

differentiate between the two classes, which led to a decrease in

classification accuracy. Therefore, the water stress levels were

restructured based on the degree to which they could be

identified through image information alone, with the aim of

establishing a more reliable classification framework.

As a result of training the simplified stress-level classification

model, the accuracy reached a high value of 0.92. Figure 9 presents

confusion matrices of the TRI and RGB classification models. For

the three water stress levels (SD, O, SW), the model exhibited

generally high classification accuracy, achieving 100% accuracy for

both the SD and SW classes. The O class showed slightly lower

performance with an accuracy of 97%, with 3% of its samples

misclassified as SD. The application of 5-fold cross-validation

resulted in an average accuracy of 0.91.
3.5 Development of the sweet potato
water monitor system

In this study, a sweet potato water monitor system was

developed by integrating the KNN model with the CNN-based
Frontiers in Plant Science 11
ViT model to effectively classify the water stress levels of sweet

potato crops (Figure 10). The developed system is a deep learning-

based RGB–thermal CNN+ViT prediction framework designed to

visualize and predict water stress levels in sweet potato crops,

consisting of four main interface components. It requires only

modest computational resources (≈30.5M parameters; ~122 MB

in fp32) and operates in near real time on a CPU, with GPU

acceleration further reducing latency. Moreover, Grad-CAM

explanations are computed on-the-fly with moderate overhead,

enabling practical field deployment with consumer-grade hardware.

The top-left section of the GUI is the input image area, where

users can load RGB and thermal images separately. The ‘Load RGB’

button on the left allows users to import RGB images that capture

the visual characteristics of sweet potato leaves, while the ‘Load

Thermal’ button on the right inputs thermal images reflecting the

leaf temperature distribution. These two image types are utilized

independently in the CNN-based feature extraction process of the

model to analyze visual information.

The top-right section is the sensor-based input area. This area

includes radio buttons for selecting the growth period (June, July, or

August) and allows manual input of numerical growth indicators

corresponding to each period. These input values are fed into the

KNN-based auxiliary classifier, which forms a fused prediction

architecture in conjunction with the deep learning inference.

The bottom-right section serves as the output area for

displaying the prediction results. Upon clicking the ‘Run

Prediction’ button, the prediction outputs from the CNN+ViT

and KNN models are averaged to produce a final water stress

level. The result is presented as one of three classes: Severe Dry,
FIGURE 7

Distribution of 5-fold cross-validation accuracy by month.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1681915
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Choi et al. 10.3389/fpls.2025.1681915
Optimal, or Severe Wet. A gradient-colored bar beneath the

prediction output visually highlights the predicted stress level,

providing intuitive feedback to the user.

The bottom-left section corresponds to the attention map

visualization area. When the ‘Show Attention Map’ button is

clicked, the GUI displays visual explanations generated by Grad-

CAM based on Explainable AI (XAI). The left side shows the

attention regions derived from the RGB image, and the right side
Frontiers in Plant Science 12
displays those from the thermal image. This allows users to

intuitively identify the regions the model focused on during

decision-making and enhances interpretability and trust in

the model.

This sweet potato water monitor system is designed to predict

the water stress condition of crops based on both image data and

growth indicators, while visually explaining the decision-making

process of the deep learning model.
FIGURE 8

Confusion matrix of the CNN+ViT model for five water stress levels.
FIGURE 9

Confusion matrix of the CNN+ViT model for three water stress levels.
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Figure 11 illustrates representative images corresponding to the

classification of crops into three distinct water stress levels: SD, O,

and SW.
3.6 Discussion

3.6.1 Model evaluation
This study compared and analyzed the classification

characteristics and performance of two approaches for sweet

potato water stress classification: a quantitative ML model based

on growth indicators and an image-based DL model using fused

RGB and thermal images. Specifically, a KNN model based on

integrated data including SPAD, CWSI, and leaf temperature was

combined with a ViT-based CNN architecture applied to image

data to establish a complementary prediction framework.

The ML-based KNN model demonstrated stable classification

performance, particularly for moderate water stress levels, by

leveraging quantitative growth indicators. In contrast, the DL-

based model exhibited high sensitivity in extreme stress

conditions. Notably, the KNN model achieved the highest

classification accuracy across all growth stages, which can be

attributed to its structural compatibility with quantitative data.

The experimental results revealed that when the water stress

levels were classified into five categories, the model achieved a

relatively low accuracy of 0.75 with an elevated loss of 0.7. By

contrast, simplifying the stress levels into three categories (SD, O,

SW) substantially improved classification accuracy to 0.92, with 5-
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fold cross-validation confirming robust performance at an average

accuracy of 0.91. The confusion matrices further showed that both

the SD and SW classes were identified with 100% accuracy, while

the O class reached 97%, with only 3% of the samples misclassified

as SD.

This restructuring was motivated not only by empirical

performance improvements but also by practical considerations.

In agricultural practice, irrigation and fertilization decisions are

generally aligned with broad soil moisture conditions such as

deficit, optimal, and excess, rather than highly granular categories.

Thus, a three-level classification scheme is more consistent with

real-world management practices and easier to implement on

small-scale farms that lack automated control systems.

From a modelling perspective, thermal and RGB imagery were

effective for detecting extreme stress levels but provided limited cues

for differentiating intermediate conditions. Consolidating the

categories allowed the CNN-based ViT model to focus on clearer

visual signals, which enhanced both robustness and generalizability.

Furthermore, the simplified classification outputs can be directly

translated into actionable recommendations such as “initiate

irrigation,” “maintain current conditions,” or “reduce watering,”

thereby bridging the gap between advanced image-based analytics

and practical decision support in agriculture. The primary

distinction of this study is that it provides an integrated analysis

of sweet potato water stress by combining image data (RGB and

thermal imagery) with growth indicators such as SPAD, CWSI, and

leaf temperature. This fusion-based approach offers significant

advantages that not only enhance model accuracy but also
FIGURE 10

The developed GUI software.
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improve interpretability and practical applicability in real-world

agricultural settings.

3.6.2 Previous studies
In contrast with the present study, most previous research has not

systematically classified the water stress levels of sweet potato crops or

integrated image-based analysis with growth indicators. Existing

studies on detecting and classifying water stress have primarily

focused on major cereal crops such as rice, maize, sugarcane, and

soybean. For example, Kapari et al. (2024) conducted an evaluation of

maize water stress and crop growth monitoring in small-scale farms

using UAV data. The results indicated that the Random Forest model

achieved a coefficient of determination (R²) of 0.85, a root mean

square error (RMSE) of 0.05, and a mean absolute error (MAE) of

0.04 (Kapari et al., 2024). de Melo et al. (2022) proposed a method for

predicting water stress in sugarcane crops using the deep neural

network Inception-ResNet-v2 trained on thermal images. The

analysis demonstrated improved performance, achieving accuracy

increases of 23%, 17%, and 14% for the AWC levels of 25%, 50%, and

100%, respectively, compared with previous approaches (de Melo

et al., 2022). Mokhtar et al. (2023) applied six ML and DL models to

predict the irrigation water requirement (IWR) of snap beans using

various weather, soil, and crop variables as inputs. The results showed

that, under the S7 scenario, the DNN model achieved the best
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performance with MBE = –0.001, RMSE = 0.055 mm, and NSE =

0.824 (Mokhtar et al., 2023).

In the present study, a systematic classification of sweet potato

water stress levels was conducted by incorporating multiple growth

indicators along with leaf temperature data. Among the ML models,

KNN achieved the highest performance, reaching an accuracy of

1.00 across all growth stages, while maintaining strong results in 5-

fold cross-validation (0.94, 0.96, and 0.94). Furthermore, the

integration of RGB and thermal images using a CNN+ViT model

demonstrated superior performance, achieving an accuracy of 0.97,

with a 5-fold cross-validation result of 0.91. These reported results

were then compared with the findings of the present study, as

summarized in Table 4.

Previous studies proposed models that quantitatively predicted

water stress by combining UAV-derived MSI or HSI with growth

indicators (Wang et al., 2024; Dong et al., 2024; Sharma et al., 2025;

Brewer et al., 2022). Although these approaches demonstrated a

reasonable levels of predictive performance, their applicability in

real agricultural settings is limited due to the high cost of equipment

and the complexity of data processing and interpretation.

Moreover, most existing studies were restricted to specific crop

groups, particularly cereals, and often involved limited types of

image data and growth indicators. In contrast, root crops such as

sweet potato—despite that root enlargement is a key growth
FIGURE 11

Representative images showing the classification of crops into three water stress levels: SD, O, and SW.
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indicator—have rarely been analyzed using an integrated approach

that combines physiological and image-based data to assess

water stress.

Notably, instead of relying solely on RGB images or individual

growth indicators, this study implemented a practical and scalable

analytical platform that integrates diverse sensor-based quantitative

physiological indicators with image data. This multidimensional

approach captures sweet potato responses to water stress more

comprehensively. Furthermore, this study integrated XAI techniques

based on Grad-CAM into the sweet potato water monitor system to

provide a visual explanation of prediction outcomes. Users can identify

the specific regions of the image that the model focused on during

inference, which significantly enhances the model’s transparency and its

applicability in real-world agricultural settings. This visualization feature

offers practical advantages and offers potential for direct application in

crop management.

3.6.3 Limitations of this study
However, several limitations of this study should be

acknowledged. First, the image-based classification accuracy for

the O class was relatively low and consequently moderate stress

conditions were difficult to distinguish. This limitation is primarily

attributed to the intrinsic constraint of image data in capturing

detailed physiological responses. Second, the dataset exhibited class

imbalance due to an insufficient number of samples in some

categories, which may have introduced bias in model training.

Third, since the study relied on static images and growth

indicators, it could not reflect temporal variations in growth or

the accumulation patterns of stress over time. Lastly, the absence of

a quantitative analysis for sensory and chemical traits such as

sweetness, taste, and quality of sweet potato is an area that should

be addressed in future work.

3.6.4 Future work
Future work will focus on advancing the developed

classification and prediction system into a deployable platform for

agricultural use. A fixed-position camera system will periodically

capture crop images and automatically transmit them to an online

server for processing. Through this infrastructure, users will be able

to access prediction results, Grad-CAM visualizations, and sensor

data in real time via a web-based application, without requiring
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additional software installation. Such an automated platform will

improve accessibility and provide both quantitative and visual

assessments of crop water status. Moreover, the validated

algorithmic framework is not limited to sweet potato; developing

crop-specific models may enable expansion into a general-purpose

diagnostic platform adaptable to diverse cultivation environments.

The system also demonstrates high practical feasibility, as it is

more cost-effective than hyperspectral equipment and can be readily

utilized by agricultural practitioners. It is being designed with an

intuitive user interface, essential data management functions, and

integration potential with existing farm management tools. Although

the detailed specifications of the web platform and software

architecture have not yet been finalized, the design process

prioritizes applicability in real-world settings.

In terms of economic impact, the deployment of the proposed

system may reduce reliance on costly sensing platforms such as

hyperspectral cameras and lower labor requirements for manual

monitoring, thereby contributing to reduced operational costs.

Furthermore, by providing real-time, automated, and interpretable

predictions, the system is expected to enhance water-use efficiency

and minimize resource waste, ultimately improving cost-effectiveness

for agricultural practitioners.

Figure 12 illustrates the agricultural management decision-making

process. The flow begins with data acquisition (climate, soil, and crop

imaging), followed by data transmission and preprocessing, leading to

AI-based analysis for water stress diagnosis and prediction. The

outputs then inform management decisions such as irrigation,

fertilization, and environmental control, completing a cycle that

supports efficient agricultural management.
4 Conclusion

This study developed and analyzed both an integrated data-

basedMLmodel and a ViT-CNNDLmodel using RGB and thermal

image acquired from low-altitude platforms to efficiently classify

and predict the water stress levels of sweet potato. Among the ML

models, the KNN classifier achieved the highest accuracy across all

growth stages. The ViT-CNN model also demonstrated strong

performance, particularly through the application of a class

simplification strategy that improved prediction accuracy.
TABLE 4 Comparison of previous studies with the present study results.

Study Crop Best model Performance metrics

Kapari et al. (2024) Maize RF R² = 0.85, RMSE = 0.05, MAE = 0.04

Melo et al. (2022) Sugarcane Inception-ResNet-v2 Accuracy improved by 23% (AWC 25%), 17% (AWC 50%), 14% (AWC 100%) vs. baseline

Mokhtar et al. (2023) Snap bean Deep Neural Network (DNN) MBE = –0.001, RMSE = 0.055 mm, NSE = 0.824

Present study Sweet potato CNN–ViT Accuracy: 0.91

Present study Sweet potato KNN Accuracy: 0.94-0.96
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Notably, restructuring the water stress levels from five to three

classes helped overcome the limitations of image-based

classification, reducing potential misclassification and enhancing

reliability for real-world applications.

To improve practicality under open-field cultivation conditions,

certain meteorological variables required for calculating the CWSI were

replaced with field-observable elements. A redefinition of the index

formula was proposed based on these replacements to provide a more

realistic computation of CWSI and increase the utility of TRI-based

growth indicators. This approach allows a CWSI-based quantitative

analysis even in limited sensor environments.

In summary, the developed sweet potato water monitor system—

integrating XAI visualization via Grad-CAM and a user interface for

sensor-based input—was designed to enable users to intuitively assess

crop water status and obtain appropriate recommendations. This

configuration offers both practicality and scalability, supporting its

application in real agricultural settings.

Future work will be carried out to build a fixed camera-based

imaging system, wherein data will be collected and processed through

an online infrastructure and delivered via a web-based application

platform. This extension will enable real-time monitoring and facilitate

the application of the system to other crops, thereby contributing to the

advancement of smart agriculture technologies. In addition, further

validation will be conducted using multiple sweet potato cultivars,

including ‘Jinyulmi’, ‘Shinyulmi’, and ‘Pungwonmi’, to assess the

system’s generalizability. Temporal analysis will also be incorporated

to capture the progression of water stress over time, providing insights

into dynamic crop responses. Finally, the economic feasibility and
Frontiers in Plant Science 16
practical impact of the developed GUI-based system will be evaluated

to ensure its applicability in real-world agricultural practices.
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Oré, G., Alcântara, M. S., Góes, J. A., Oliveira, L. P., Yepes, J., Teruel, B., et al. (2020).
Crop growth monitoring with drone-borne DInSAR. Remote Sens. 12, 1–18.
doi: 10.3390/rs12040615

Pushpalatha, R., and Gangadharan, B. (2024). Climate resilience, yield and
geographical suitability of sweet potato under the changing climate: A review. Nat.
Resour. Forum 48, 106–119. doi: 10.1111/1477-8947.12309

Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A.,
Hosseinzadeh, M., et al. (2021). Machine learning (Ml) in medicine: Review,
applications, and challenges. Mathematics 9, 1–52. doi: 10.3390/math9222970

Sagana, C., Keerthika, P., Thangatamilan, M., Kamali, R., Nanthini, K., and Maghathani, S.
(2022). Identification of suitable crop based on weather condition. 2022 Int. Conf. Comput.
Commun. Informa. ICCCI 2022, 1–6. doi: 10.1109/ICCCI54379.2022.9740905

Samseemoung, G., Soni, P., Jayasuriya, H. P. W., and Salokhe, V. M. (2012).
Application of low altitude remote sensing (LARS) platform for monitoring crop
growth and weed infestation in a soybean plantation. Precis. Agric. 13, 611–627.
doi: 10.1007/s11119-012-9271-8
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