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Grape berries biochemical
shifts from vines under
summer stress treated with
kaolin and silicon mixtures
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Introduction: Climate change is intensifying abiotic stress in viticulture, with

higher temperatures, water deficits, and increased solar radiation directly

affecting grape berry development, biochemical balance, and overall fruit

quality. These challenges compromise the delicate balance of sugars, acids,

phenolic compounds, and aromatic profiles that define the sensory attributes

and typicity of the resulting wine. Innovative practices are therefore needed to

sustain fruit quality and composition under increasingly variable and extreme

climatic conditions. Silicon (Si) and kaolin (Kl) have already shown highly positive

effects in mitigating the impacts of climate change on grapevines.

Methods: Building on this, the aim of this study was to test their combined foliar

application to simultaneously alleviate drought and heat stress and enhance

berry quality. An integrated assessment was conducted over two growing

seasons in a commercial vineyard (Vitis vinifera L. cv. Touriga Franca) located

at Quinta de Ventozelo (Douro Demarcated Region, Portugal) to evaluate the

effects of combined Kl (2%) and Si foliar sprays at different concentrations (2–8%).

The study included analyses of fruit biochemical composition, must quality,

cuticular wax profile, histological traits, carbon isotope discrimination (d13C),

hormonal balance, and yield parameters.

Results and discussion: Results showed that Si and Kl treatments modulated

secondary metabolite accumulation (phenols, flavonoids, anthocyanins, and

tannins) in a season- and stage-dependent manner, with significant increases

under milder environmental conditions, particularly in seasons with lower heat

and drought stress. This suggests that these products can act as elicitors or stress

mitigators, depending on the environmental context. Treated vines maintained

higher organic acid levels and lower probable alcohol content, indicating an

improved sugar–acid balance. Moreover, the treatments influenced the cuticular

wax composition, enhancing triterpenoid content and increasing cuticle

thickness and epidermal cell size, which, together with enriched d13C values,

support improved water-use efficiency. The hormonal profiles confirmed the
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role of Si and Kl in fine-tuning stress and growth signals, contributing to better

fruit robustness.

Conclusions: These findings demonstrate that the combined foliar application of

kaolin and silicon is a promising tool to protect grape berry quality by modulating

biochemical composition, cuticular wax profile, histological traits, isotopic

signature, and hormonal balance, helping maintain fruit integrity and quality,

and compositional stability under the ongoing challenges of climate change.
KEYWORDS

viticulture, kaolin, silicon, abiotic stress mitigation, secondary metabolites, grape berry
quality, foliar application, cuticular waxes
GRAPHICAL ABSTRACT
Introduction

Climate change is increasingly altering grapevine development,

with serious consequences for grape yield and wine quality.

Temperature and precipitation, two critical climatic factors,

strongly influence the onset of ripening, affecting fruit

development and quality (Luzio et al., 2021; Bernardo et al.,

2022). These effects are particularly pronounced in regions with

Mediterranean climates, which are considered climate change

hotspots (Conde et al., 2007; Kuhn et al., 2014; Leolini et al.,

2020; Santos et al., 2020). Characterized by hot, dry summers

with limited precipitation, these areas usually face intensified

drought stress, impairing grapevine physiology, and reducing

both berry quality and vineyard productivity. Furthermore, global

warming is leading to earlier grape maturation, which has been

documented across many of these viticultural regions (Duchêne and

Schneider, 2005; Wolfe et al., 2005; Etien et al., 2009; Duchêne et al.,

2010; Urhausen et al., 2011; Webb et al., 2011; Morales-Castilla

et al., 2020). This shift is largely driven by summer stress, which

stimulates the production of abscisic acid (ABA), a key hormone in
02
the ripening process (Chaves et al., 2009). Increased temperatures

can also cause sugar accumulation to outpace the development of

phenolic and aromatic compounds, resulting in a mismatch

between sugar accumulation and phenolic synthesis (Kliewer and

Torres, 1972; Van Leeuwen and Seguin, 2006; Goode, 2012; Sadras

and Moran, 2012). This imbalance may prevent the full

development of anthocyanin and tannin, whose accumulation is

favored by cooler temperatures, while higher temperatures are

known to decrease their synthesis or promote their degradation.

Additionally, high temperatures accelerate the degradation of malic

acid, especially during warm nights, further disrupting the balance

between sugars, acids, and aromas (Gatti et al., 2014; Leolini

et al., 2019).

Grape ripening is tightly regulated by hormonal dynamics,

which orchestrate the synthesis of secondary metabolites essential

for redox homeostasis and wine quality (Kuhn et al., 2014; Soto

et al., 2015). Among these hormones, ABA plays a pivotal role,

particularly under environmental stressors such as heat, intense

light, UV-B radiation, and water deficit (Fortes et al., 2015; Dinis

et al., 2018a). While ABA accumulation is a well-known marker of
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ripening onset, recent findings highlight its integration within a

complex hormonal signaling network, involving cross-talk with

other growth regulators (Kuhn et al., 2014; Pérez-Llorca et al.,

2019). Under abiotic stress, the levels of indole-3-acetic acid (IAA)

tend to decline, limiting cell expansion and berry growth but

facilitating the ripening process, as elevated IAA is known to

delay maturation (Davies, 2010; Böttcher et al., 2010). Conversely,

salicylic acid (SA) generally increases in response to stress,

activating defense mechanisms. However, its antagonistic

interaction with ABA can hinder ripening and pigment

accumulation, potentially compromising berry quality (Miura and

Tada, 2014; Li et al., 2025). Jasmonic acid (JA) also tends to rise

under stress conditions such as heat and drought, promoting the

accumulation of phenolic compounds and anthocyanins, thereby

enhancing fruit quality (Fortes et al., 2015; Wasternack and Strnad,

2019). Prolonged or excessive JA signaling may divert resources

from growth to defense, resulting in yield reduction (Munné-Bosch

and Muller, 2013; Campos et al., 2016). Altogether, stress-induced

hormonal adjustments influence critical traits such as anthocyanin

biosynthesis, berry size, sugar accumulation, and the timing of

ripening (Niculcea et al., 2013; Parada et al., 2017). Besides

hormonal regulation, berry structural features also contribute to

stress resilience. For instance, cuticle thickness, cuticular wax

composition, and epidermal tissue characteristics can influence

water loss, oxidative stress protection, and fruit firmness,

determining the grape’s ability to withstand heat and drought

stress (Lara et al., 2014; Zhang et al., 2021). As climate change is

increasingly challenging viticulture, there is an urgent need for

adaptive strategies to preserve grape quality and ensure vineyard

sustainability under climate pressure. Among these, foliar

applications of kaolin (Kl) and silicon (Si) have emerged as

promising tools to reduce thermal and water stress, support

physiological function, and maintain berry quality. Kl is a natural

occurring inert clay mineral rich in kaolinite, widely used in

agriculture for its eco-friendly properties and versatility. When

applied as a white foliar coating, it increases solar reflectance,

which lowers leaf temperature, minimizes photoinhibition, and

protects against thermal damage (Glenn et al., 2010; Dinis et al.,

2016b; Luciani et al., 2020). In grapevines, these effects translate into

improved photosynthetic performance and water retention,

contributing to better berry composition under abiotic stress

(Shellie and Glenn, 2008; Dinis et al., 2018b). Additionally, Kl

forms a protective barrier that limits pest and pathogen attacks

(Brito et al., 2019; Linder et al., 2020; Rashad et al., 2023). Its

benefits in enhancing fruit quality have also been demonstrated in

various crops such as apples, pomegranates, tomatoes, and olives

(Saour and Makee, 2003; Melgarejo et al., 2004; Cantore

et al., 2009).

Although not considered an essential nutrient, Si is increasingly

recognized as a beneficial biostimulant that enhances plant

tolerance to abiotic stress (Pereira et al., 2024). Absorbed by

plants in the form of orthosilicic acid, Si accumulates in tissues

where it reinforces cell walls and contributes to both structural

integrity and biochemical defense mechanisms (Ma and Yamagi,

2006; Coskun et al., 2018). Its roles include improving nutrient
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uptake, enhancing photosynthetic capacity, stabilizing cellular

membranes, and promoting osmotic adjustment. Si also activates

antioxidant enzymes and facilitates the scavenging of reactive

oxygen species (ROS), especially under drought, salinity, and

biotic stress. Moreover, it interacts with key phytohormones such

as ABA, strengthening the plant’s stress signaling pathways

(Debona et al., 2017; Rastogi et al., 2021). In grapevines, Si

application has been associated with improved water-use

efficiency, better-regulated stomatal conductance, reinforced cell

walls (Dinis et al., 2024a), delayed senescence, and increased

resilience to environmental challenges (Gunes et al., 2008; Ma

and Yamaji, 2015; Rizwan et al., 2019).

Based on the known stress-mitigation effects of Si and Kl, we

hypothesize that their combined foliar application can modulate

key metabolic pathways and enhance berry quality, while also

promoting physiological resilience under variable stress

conditions. In this sense, the objective of this study was to

evaluate the effects of the combined application of Kl (2%) and Si

(2-8%) on the biochemical composition, cuticular wax content, fruit

histology, carbon isotope composition (d¹³C), hormonal profile,

and yield of grape berries under summer stress conditions.
Material and methods

Field trail and experimental design

The field trial was carried out in a commercial vineyard (Quinta

de Ventozelo, 41°18.954′ N, 8°38.940′ W), located in Ervedosa do

Douro, within the Cima Corgo sub-region of the Douro

Demarcated Region. This area features a moderate Mediterranean

climate, characterized by hot, dry summers and mild, wet winters,

making it particularly suitable for producing high-quality Port and

Douro wines. The vine training system was single Royat cordon and

the vineyard was irrigated. The experiment was performed in two

consecutive growing seasons (2023 and 2024) in a vineyard planted

in 2014 with Vitis vinifera L. cv. Touriga Franca grafted onto 1103P

rootstock. In 2023, four treatments were evaluated: an untreated

control and three foliar formulations combining kaolin (Kl) with

increasing silicon (Si) concentrations: MiKS 1- 2% Kl + 2% Si, MiKS

2- 2% Kl + 4% Si, and MiKS 3- 2% Kl + 6% Si. The experimental

layout followed a randomized block design with three replicates per

treatment (12 rows in total), each consisting of 15 vines. Based on

the 2023 outcomes, the 2024 trial excluded MiKS1 and introduced a

new formulation, MiKS 4 (2% Kl + 8% Si), while maintaining the

remaining treatments. Foliar applications were performed twice per

season, at two-week intervals, in end-June (E-L32) and early July

(E-L34), spraying the whole canopy.
Bunch number, yield, and bunch mass

At E-L38, the number of bunches per vine and the yield (kg

vine−¹) were assessed in fifteen treated vines per treatment.

Additionally, the average bunch weight was also determined. The
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decision on harvest date was made by Quinta de Ventozelo, based

on their own routine monitoring of grape ripening.
Chemical analysis of grape juice

For the chemical analysis of grape juice, three replicates of 100

fresh berries (one replicate per plot) at two phenological stages (E-L35

– veraison and E-L38 – harvest) were collected. The probable alcohol

content was analyzed according to OIV methodologies (OIV, 2003).

Total acidity was quantified using Fourier Transform Infrared

Spectroscopy (FTIR) (OIV, 2010), and pH was measured with a

pH meter (3310 Jenway, UK). L-malic and tartaric acid

concentrations were determined using an enzymatic method with

an automated clinical chemistry analyzer (Miura One, TDI, Spain)

following the procedure of Escribano-Viana et al. (2019).
Fruit metabolites quantification

For each treatment, three fruit samples were collected at two

phenological stages (E-L35 – veraison and E-L38 – harvest), each

comprising approximately 15 berries, with one sample obtained

from each experimental replicate (15 vines per row x 3 replicates,

totaling 45 vines per treatment). Immediately after collection,

samples were flash-frozen in liquid nitrogen in the field. In the

laboratory, berries were lyophilized, and all analytical results are

reported on a dry weight basis. Following lyophilization, samples

were ground into a fine powder under liquid nitrogen.

Quantification of phenolic and flavonoid
compounds

To determine phenolic and flavonoid compounds, a methanolic

extract at a concentration of 4 mg of lyophilized sample per ml was

prepared and used for the following quantifications.

Total phenols were quantified using the Folin–Ciocalteu

method, with absorbance measured at 725 nm (Rodrigues et al.,

2015). Results were expressed in milligrams of gallic acid

equivalents per g of dry weight (mg GAE g−¹ DW).

Total flavonoid content in the extracts was quantified using the

aluminum chloride (AlCl3) complex method, with absorbance

measured at 510 nm, as described by Rodrigues et al. (2015).

Results were expressed as milligrams of catechin equivalents per

gram of dry weight (mg CAE g−¹ DW).

Anthocyanins and tannins quantification
The total anthocyanin content was quantified using the

differential pH method, which is based on its pH-dependent color

changes (Lee et al., 2005). Absorbance readings were taken at

specific wavelengths under different pH conditions, allowing for

the calculation of the total anthocyanin content. Results were

expressed as milligrams of cyanidin-3-glucoside equivalents per

gram of dry weight (mg cyd-3-glu g−¹ DW).

The content of condensed tannins was determined using the

vanillin-HCl assay (Dambergs et al., 2012), which is based on their
Frontiers in Plant Science 04
reaction with vanillin in the presence of hydrochloric acid. The

absorbance was measured at 500 nm, and the concentration of

condensed tannins was calculated using a standard curve prepared

with catechin. The results were expressed as milligrams of catechin

equivalents per gram of dry weight (mg CAE g−¹ DW).
Grapevine fruit cuticular waxes

Extraction and chemical characterization
The total amount of cuticular waxes was quantified following

the method described by Riederer and Schreiber, (1995). Fresh

berries were collected and stored at 4°C until analysis. Samples were

grouped into five sets, each containing five fruits. Cuticular waxes

from each fruit group were extracted by immersing the samples in

50 mL of chloroform in glass tubes for 2 minutes. After evaporation

of the chloroform, the wax residue was weighed, and quantities were

expressed relative to the total fruit surface area and total mass.

For chemical analyses, an internal standard of tetracosane was

added to the dried composite wax extract, which were then re-

dissolved in chloroform. An aliquot (100 μL) was evaporated to

dryness under a nitrogen stream and derivatized with a 1:1 (v/v)

mixture of bis-trimethylsilyltrifluoroacetamide (BSTFA, CF3C

[=NSi(CH3)3]OSi(CH3)3) and pyridine at 70°C for 30 minutes,

converting hydroxyl groups to their corresponding trimethylsilyl

(TMS) derivatives.

Chromatographic separation was performed on a gas

chromatograph (Agilent 7890A, USA) equipped with an HP5-MS

column (30 m × 0.25 mm I.D. × 0.25 mm film thickness, Supelco,

USA) using helium as the carrier gas, with a temperature gradient

from 80°C to 325°C and injection (1 μL) at 280°C in pulsed splitless

mode. System performance was regularly verified using an Alkane

Standard Mixture (C10; C20 - C40, all even, 50 mg L-1, Supelco 94234,

Sigma-Aldrich, USA).

Compound detection was achieved with a 5977B MSD mass

detector using electron ionization at 70 eV in full scan mode (m/z

50–650). Identification relied on available standards and computer

matching against the NIST Mass Spectral Library 11.

For quantification, detection was switched to a flame ionization

detector (FID, Agilent 7890A, USA) set at 280°C. Quantification

(μg g−¹ FW) was based on the response of an internal standard of

known concentration. When available, individual standards were

used to determine response factors, which were applied to

structurally similar compounds with close retention times. Results

are expressed as both estimated concentrations and relative

peak areas.

Multiple wax classes were identified on the cuticular surfaces.

Unknown compounds were tentatively identified using the NIST

library’s Match Factor and Reversed Match Factor, where higher

values indicate more reliable matches. Procedural blanks were

analyzed to detect interferences, such as bibenzyl. ELSS screening

further identified contaminants including bis(2-ethylhexyl)

phthalate, cis-13-docosenamide, and tris(2,4-di-tert-butylphenyl)

phosphate, which were excluded from total area calculations as

they likely originated from the extraction process. To detect
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potential contaminants from packaging materials and tubing, an

extractable and leachable screening standard (ELSS, TraceCERT®,

Sigma-Aldrich, USA) was used to monitor volatile and semi-

volatile compounds.

Octanol/water partition coefficients (KOW) for individual

chemicals identified in the cuticular wax extracts were calculated

using the EPI Suite™ 6.3 software (EPA, USA).
Histological traits

Anatomical tissue measurements were conducted on six berries

per treatment, with two fruits collected from each of the three

replicates, only at E-L38 phenological stage (harvest) of 2024. After

fixation in formalin aceto-alcohol for 48 hours, the samples

underwent dehydration, clearing, and paraffin embedding.

Transverse sections (4mm thick) were then prepared using a

rotary microtome (Leica RM 2135, Germany). These sections

were mounted on slides and stained with 0.1% toluidine blue.

Tissue thickness was measured using an inverted optical

microscope (Olympus IX51, Olympus Corporation, Tokyo, Japan)

and analyzed with Digimizer image analysis software (MedCalc

Software, Ostend, Belgium).
d¹³C isotopic quantification

d¹³C isotopic quantification was conducted exclusively on

berries (1 sample of 15 berries per plot x 3 replicates) collected at

E-L38 phenological stage (harvest) of each growing season.

The carbon isotope quantification was measured by online

analysis using a ThermoQuest Flash 1112 Elemental Analyzer

equipped with an autosampler and coupled to a Delta-Plus IRMS

(ThermoQuest, Bremen, Germany) through a ConFlo III interface

(ThermoQuest). One microliter of must was placed in a tin capsule

and sealed. All the carbon in the sample was oxidized to CO2 by the

reactors of the elemental analyzer. The analyzer passed the gas

through a gas chromatography (GC) column to separate the CO2

from other gases and then brought the CO2 into the mass

spectrometer by a helium flow. The carbon isotope composition

was expressed as (Eqn 1):

d13C  = ½(Rs=Rstd) − 1�1000
where Rs is the 13C/12C ratio of the sample and Rstd is the

i n t e rna t i on a l r e f e r en c e s t anda rd V i enna Pee Dee

Belemnite (VPDB).
Phytohormone composition

The contents of abscisic acid (ABA), indole-3-acetic acid (IAA),

jasmonic acid (JA), and salicylic acid (SA) were determined, in E-

L32 – beginning of bunch closure, E-L35 – veraison and E-L38 –

harvest penological stages of 2024 (three samples of 15 berries),

using high-performance liquid chromatography coupled with a
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triple quadrupole mass spectrometer (Micromass®, Manchester,

UK) via an orthogonal Z-spray electrospray ion source (Durgbanshi

et al., 2005). Approximately 20 mg of lyophilized fruits were

extracted in 2.0 mL of distilled water using a mill ball apparatus

(MillMix20, Domel, Železniki, Slovenia). [²H6]-ABA, [²H5]-IAA,

dihydrojasmonic acid (DHJA) and [¹³C6]- SA (Sigma-Aldrich,

USA) were used as internal standards.

After centrifugation at 10,000 ×g, the supernatants were collected,

and the pH was adjusted to 2.8–3.2 with 30% acetic acid. Extracts

were partitioned twice with diethyl ether, and the resulting

supernatants were evaporated under vacuum using a centrifuge

concentrator (Speed Vac, Jouan, Saint Herblain Cedex, France) at

room temperature. The dry residue was resuspended in 500 mL of a

9:1 water:methanol solution, filtered through 0.22 mm PTFE filters,

and directly injected into an ultra-performance liquid

chromatography system (Waters™ Acquity SDS, Waters

Corporation, Milford, MA, USA) interfaced with a TQD triple

quadrupole mass spectrometer (Micromass® Ltd., Manchester, UK).

Chromatographic separation was performed on a reversed-phase

C18 column (Gravity, 50 × 2.1 mm, 1.8 mm particle size; Macherey-

Nagel GmbH, Germany) using a methanol:water gradient

supplemented with 0.1% acetic acid at a flow rate of 300 mL min−¹.

The aqueous phase was maintained at 90% for the first 2 minutes,

decreased to 10% over 6 minutes, then increased back to 90% by 7

minutes, and held constant until the end of the 8-minute run.

Mass spectrometry was conducted in multiple reaction

monitoring mode using nitrogen as the drying and nebulizer gas

(cone gas flow: 250 L h−¹; desolvation flow: 1200 L h−¹) and argon as

the collision gas. Cone voltage and collision energies were set

according to Durgbanshi et al. (2005), with minor modifications.

Data processing was carried out using MassLynx™ v4.1 software,

and phytohormone concentrations were determined by

interpolating the response ratios of the phytohormones to their

internal standards against a calibration curve prepared with

commercial ABA, IAA, JA, and SA standards.
Statistical analyses

Data analysis was performed using the SPSS 20.0 software (SPSS

Software, Chicago, IL, USA). After testing for analysis of variance

(ANOVA) assumptions, statistical differences among treatments

within each developmental stage and year were evaluated by one-

way factorial ANOVA, followed by the post hoc Tukey test.

Different letters represent significant differences (P < 0.05) among

the applied formulations.
Results and discussion

The application of combined Si and Kl formulations

significantly influenced multiple physiological, biochemical, and

anatomical characteristics of grapevines (Pereira et al., 2025), with

variable responses across the two growing seasons and phenological

stages. These findings underline the complex and context-
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dependent interactions between foliar treatments and plant

metabolism leading to changes in fruit metabolism.
Climatic conditions

Meteorological data, comprising precipitation and minimum,

average, and maximum temperatures, were recorded throughout

the experimental period by an on-site weather station and are

summarized in Figure 1.

In 2023, average air temperature increased progressively from

around 17°C in April to a peak of 26°C in August, before declining to

8°C by December. Minimummonthly temperatures ranged from 5.4°

C (December) to 18°C (August), while maximum values reached up

to 35°C in August. The summer was notably dry. The highest rainfall

occurred in September and October, but the July–August period was

marked by a complete absence of rainfall, coinciding with peak

temperatures. These conditions suggest elevated drought stress,

potentially affecting vine physiology and irrigation demand.

In contrast, 2024 presented cooler initial conditions, with an

average temperature of 9°C in January, rising to 26°C in August,

and declining to 20°C in September. Minimum monthly

temperatures ranged from 6°C (January) to 19°C (August), while

maximum temperatures varied from 13°C (January) to 35°C

(August), before dropping to 28°C in September. Precipitation

was lower overall compared to 2023, with the highest monthly

total (around 19 mm) recorded in March and no rainfall in August.

According to the geoclimatic classification proposed by

Tonietto and Carbonneau (2004), the experimental site in the
Frontiers in Plant Science 06
Douro Demarcated Region corresponded to a very warm and dry

viticultural climate in 2023 (HI = 2895.5; DI = –30) and to an

extremely warm and dry climate in 2024 (HI = 3855.8; DI = –54.9),

based on local climatic data.
The impact of formulations in bunch
number, yield, and bunch mass

Regarding yield (Figure 2), significant differences were observed

only in 2024 for the parameter average weight per bunch, with

MiKS 2 showing a significantly higher value than both the control

plants and those treated with MiKS 4, representing increases of

27.0% and 36.7%, respectively. An increase in cluster weight

following foliar application of Si has also been reported by Schabl

et al. (2020), supporting the potential of Si-based formulations to

enhance yield components under specific conditions. The absence

of a similar increase for MiKS 4-treated plants, despite its positive

effects on physiological (Pereira et al., 2025), biochemical, and

anatomical traits, may indicate a trade-off between stress

resilience and biomass allocation to fruit under certain

environmental scenarios.
Impacts of Kl and Si applications on the
chemical composition of berries

Table 1 presents the chemical composition of grape juice from

plants treated with different Kl and Si formulations, evaluated at
FIGURE 1

Monthly precipitation (mm) and mean air temperature (minimum, average and maximum) (ºC) of the experimental site, collected by an on-site
weather station, from April 2023 to September 2024.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1681593
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pereira et al. 10.3389/fpls.2025.1681593
the E-L35 and E-L38 phenological stages in both 2023 and 2024.

During E-L35 in 2023, no significant differences were observed in

probable alcohol, pH, or malic and tartaric acid contents across

treatments. However, total acidity showed significant variation,

with MiKS 3-treated plants presenting the highest values,
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corresponding to a 10.6% increase compared to MiKS 1. In this

study, although no statistically significant differences were

observed, a slightly reduction was noted for tartaric acid in MiKS

1, and malic acid in MiKS 2-treated plants. At E-L38 in 2023,

significant differences between treatments were observed only for
E 2FIGUR

Number of clusters, yield and average weight per bunch of vines with different foliar applications: untreated plants (Control), plants treated with Kl
2% and Si 2% (MiKS 1), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated with Kl 2% and Si
8% (MiKS 4) (N=15). Results are expressed as mean ± standard deviation. Different letters indicate significant differences (P < 0.05) and the absence
of letters indicates no statistically significant differences (P > 0.05) between treatments, within the same year, according to Tukey’s test.
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tartaric acid content, with MiKS 2-treated plants exhibiting

significantly higher levels than those treated with MiKS 3,

representing a 21.4% increase. However, this increase did not

translate into differences in total acidity. During E-L35 in 2024,

untreated vines and those treated with the highest Si

concentrations (MiKS 3 and MiKS 4) showed the highest

probable alcohol content, exceeding the levels observed in MiKS

2-treated vines by 16.9%, 25.4%, and 17.2%, respectively. Malic

acid followed a trend similar to total acidity, with MiKS 2 and

MiKS 4 displaying the highest concentrations. Additionally, MiKS

4 also presented the highest tartaric acid content. At E-L38 in 2024,

untreated plants and those receiving the lowest Si dose (MiKS 2)

exhibited the highest probable alcohol content, significantly

surpassing the levels observed in plants treated with higher Si

doses (MiKS 3 and MiKS 4). Consequently, plants treated with

MiKS 3 and MiKS 4 displayed increased tartaric and malic acid

levels. Specifically, malic acid concentrations were higher

compared to MiKS 2 plants (21.3 and 13.3% increase for MiKS 3

and MiKS 4, respectively) while tartaric acid levels were

significantly greater than those in untreated and MiKS 2-treated
Frontiers in Plant Science 08
vines. The observed increases in both tartaric and malic acids,

alongside decreases in probable alcohol content in MiKS 3- and

MiKS 4-treated plants during E-L38 in 2024 suggest a shift in

carbon allocation and sugar–acid balance. This pattern may be

associated with reduced sugar accumulation in the berries,

potentially linked to enhanced metabolic activity or shifts in

carbon partitioning during grape berry ripening (Conde et al.,

2007), although no direct measurements of source–sink

relationships were performed in this work. These changes are

particularly relevant in the current context of climate change,

where rising temperatures tend to accelerate sugar accumulation

and reduce organic acids in grapes, often leading to wines with

excessively high alcohol levels and poor freshness. In fact, higher

organic acid content is associated with improved sensory profiles,

such as enhanced crispness and longevity, while lower alcohol

wines are increasingly demanded by health-conscious consumers

and required to meet market and regulatory expectations (Van

Leeuwen and Darriet, 2016; Poni et al., 2018; Roy and Ash, 2022).

An increase in tartaric acid content following Si application has

been reported by several authors, further supporting the positive
TABLE 1 Oenological parameters (probable alcohol, total acidity, pH and organic acids content) evaluated in berries from vines with different foliar
applications: with different applications: untreated plants (Control), plants treated with Kl 2% and Si 2% (MiKS 1), plants treated with Kl 2% and Si 4%
(MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated with Kl 2% and Si 8% (MiKS 4) (N=3). Results are expressed as mean ±
standard deviation. Different letters indicate significant differences (P < 0.05) and the absence of letters indicates no statistically significant differences
(P > 0.05) between treatments, within the same year and phenological stage, according to Tukey’s test.

Year
Phenological

stage
Treatment

Phenols
(mg g-1)

Flavonoids
(mg g-1)

Anthocyanins
(mg g-1)

Tannins
(mg g-1)

2023

E-L35

Control 47.7 ± 0.564 b 38.1 ± 3.56 b 2.07 ± 0.087 b 33.5 ± 1.92 c

MiKS 1 (Kl_2% + Si_2%) 30.5 ± 2.01 a 23.6 ± 2.18 a 2.16 ± 0.137 b 25.3 ± 1.50 b

MiKS 2 (Kl_2% + Si_4%) 32.9 ± 0.361 a 25.5 ± 1.14 a 1.81 ± 0.063 a 20.5 ± 0.965 a

MiKS 3 (Kl_2% + Si_6%) 47.6 ± 1.60 b 46.8 ± 2.39 c 1.86 ± 0.068 a 41.2 ± 0.849 d

P value <0.001 <0.001 <0.001 <0.001

E-L38

Control 32.6 ± 1.68 ab 43.3 ± 1.71 d 2.90 ± 0.063 c 25.1 ± 2.36 c

MiKS 1 (Kl_2% + Si_2%) 28.8 ± 1.25 a 15.9 ± 1.30 a 3.13 ± 0.169 d 16.6 ± 1.14 a

MiKS 2 (Kl_2% + Si_4%) 31.1 ± 0.974 ab 19.7 ± 0.591 b 2.67 ± 0.069 b 17.5 ± 1.55 a

MiKS 3 (Kl_2% + Si_6%) 33.6 ± 4.36 b 22.8 ± 1.60 c 1.82 ± 0.017 a 21.0 ± 1.70 b

P value 0.032 <0.001 <0.001 <0.001

2024

E-L35

Control 27.9 ± 0.218 c 29.9 ± 2.97 b 0.647 ± 0.063 a 12.3 ± 0.488 a

MiKS 2 (Kl_2% + Si_4%) 26.2 ± 0.491 a 24.6 ± 1.92 a 1.24 ± 0.067 b 16.6 ± 1.99 b

MiKS 3 (Kl_2% + Si_6%) 27.7 ± 0.569 bc 24.9 ± 2.33 a 2.33 ± 0.100 d 17.9 ± 0.686 b

MiKS 4 (Kl_2% + Si_8%) 26.9 ± 0.568 ab 24.6 ± 1.00 a 1.87 ± 0.119 c 18.3 ± 1.75 b

P value <0.001 0.002 <0.001 <0.001

E-L38

Control 20.0 ± 0.608 a 11.4 ± 1.10 a 5.68 ± 0.606 a 7.07 ± 1.37 a

MiKS 2 (Kl_2% + Si_4%) 23.6 ± 0.515 b 15.4 ± 0.743 b 5.41 ± 0.224 ab 11.4 ± 1.71 b

MiKS 3 (Kl_2% + Si_6%) 26.2 ± 0.521 c 14.2 ± 0.595 b 7.27 ± 0.910 bc 9.90 ± 1.32 b

MiKS 4 (Kl_2% + Si_8%) 26.0 ± 0.481 c 14.3 ± 0.506 b 8.73 ± 0.393 c 9.83 ± 0.822 b

P value <0.001 <0.001 <0.001 0.001
E-L35, veraison; E-L38, maturation; Kl, kaolin; Si, silicon; MiKS, combined formulation with Kl and Si.
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TABLE 2 Secondary metabolites (phenolics, flavonoids, anthocyanins and tannins) evaluated in berries from vines with different foliar applications: untreated plants (Control), plants treated with Kl 2% and Si
2% (MiKS 1), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated with Kl 2% and Si 8% (MiKS 4) (N=9). Results are expressed as mean ± standard
deviation. Different letters indicate significant differences (P < 0.05) and the absence of letters indicates no statistically significant differences (P > 0.05) between treatments, within the same year and

idity
ric acid)

pH
Malic acid
(g L-1)

Tartaric acid
(g L-1)

56 bc 3.01 ± 0.140 3.77 ± 0.920 5.55 ± 1.58

064 a 3.05 ± 0.050 3.42 ± 0.325 5.27 ± 0.338

36 ab 3.03 ± 0.069 3.12 ± 0.342 6.23 ± 1.00

.97 c 2.98 ± 0.125 3.47 ± 0.774 6.27 ± 1.05

0.869 0.073 0.083

.157 3.84 ± 0.085 1.35 ± 0.531 1.66 ± 0.562 ab

.150 3.78 ± 0.040 1.39 ± 0.355 1.58 ± 0.510 ab

.229 3.77 ± 0.044 1.06 ± 0.323 1.87 ± 0.615 b

.312 3.76 ± 0.100 1.32 ± 0.165 1.54 ± 0.177 a

0.567 0.361 0.023

110 a 2.85 ± 0.029 4.39 ± 0.310 a 6.27 ± 0.025 b

060 c 2.84 ± 0.068 6.84 ± 0.379 b 5.81 ± 0.040 a

340 b 2.89 ± 0.067 4.62 ± 0.315 a 5.66 ± 0.110 a

415 c 2.87 ± 0.015 6.99 ± 0.870 b 7.02 ± 0.030 c

1 0.680 <0.001 <0.001

.117 3.83 ± 0.025 1.71 ± 0.051 b 1.76 ± 0.085 a

.155 3.71 ± 0.117 1.50 ± 0.064 a 1.77 ± 0.147 a

.040 3.79 ± 0.085 1.82 ± 0.031 b 1.96 ± 0.015 b

.150 3.79 ± 0.095 1.70 ± 0.062 b 1.95 ± 0.040 b

0.489 <0.001 0.039
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phenological stage, according to Tukey’s test.

Year
Phenological

stage
Treatment

Probable alcohol
(% vol)

Total ac
(g L-1 tarta

2023

E-L35

Control 7.28 ± 0.685 10.6 ± 2

MiKS 1 (Kl_2% + Si_2%) 7.34 ± 0.250 9.88 ± 0

MiKS 2 (Kl_2% + Si_4%) 7.17 ± 0.514 10.5 ± 1

MiKS 3 (Kl_2% + Si_6%) 7.05 ± 0.507 10.9 ± 1

P value 0.902 0.00

E-L38

Control 12.8 ± 0.397 3.78 ± 0

MiKS 1 (Kl_2% + Si_2%) 12.6 ± 0.025 3.75 ± 0

MiKS 2 (Kl_2% + Si_4%) 12.3 ± 0.284 3.65 ± 0

MiKS 3 (Kl_2% + Si_6%) 12.0 ± 0.927 3.62 ± 0

P value 0.419 0.79

2024

E-L35

Control 6.31 ± 0.351 b 12.5 ± 0

MiKS 2 (Kl_2% + Si_4%) 5.40 ± 0.050 a 15.7 ± 0

MiKS 3 (Kl_2% + Si_6%) 6.77 ± 0.233 b 13.5 ± 0.

MiKS 4 (Kl_2% + Si_8%) 6.33 ± 0.060 b 15.0 ± 0

P value <0.001 <0.00

E-L38

Control 12.9 ± 0.070 b 4.18 ± 0

MiKS 2 (Kl_2% + Si_4%) 12.7 ± 0.315 b 4.03 ± 0

MiKS 3 (Kl_2% + Si_6%) 12.2 ± 0.131 a 4.15 ± 0

MiKS 4 (Kl_2% + Si_8%) 11.9 ± 0.083 a 3.90 ± 0

P value <0.001 0.08

E-L35, veraison; E-L38, maturation; Kl, kaolin; Si, silicon; MiKS, combined formulation with Kl and Si.
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role of Si in organic acid retention in grape berries (Losada et al.,

2022; Sut et al., 2022; Dinis et al., 2024a). Additionally, a reduction

in°Brix, and consequently in probable alcohol content, has also

been reported by Collins et al. (2024). Likewise, Dinis et al. (2024b)

observed significant increases in tartaric acid content along with

reductions in wine alcohol levels following the application of Kl.

The reduction in probable alcohol content can be attributed to the

shading effect provided by Kl, which lowers berry temperature,

reduces water loss, and may delay the ripening process (Coniberti

et al., 2013). Furthermore, the higher tartaric acid levels may result

from decreased acid degradation due to the healthier canopy

protecting the berries from excessive sun exposure, as well as the

reflective properties of the Kl coating itself (Dinis et al., 2020).
Formulations effects on secondary
metabolites of fruits

Secondary metabolites such as phenolics, flavonoids,

anthocyanins, and tannins play a crucial role in grape berry

chemical composition, contributing to antioxidant capacity, color,

and stress resilience (Conde et al., 2016; Losada et al., 2022). The

modulation of secondary metabolites such as total phenols,

flavonoids, 2, and tannins by Si and Kl combined application

indicates a notable influence on berry biochemical quality.

Table 2 summarizes the content of secondary metabolites in

grapevine berries treated with different MiKS formulations during

E-L35 and E-L38 phenological stages in both 2023 and 2024.

At E-L35 in 2023, both untreated plants and those treated with

MiKS 3 (highest Si concentration) showed similar phenolic levels,

which were significantly higher than those observed in plants

treated with MiKS 1 and MiKS 2.

For flavonoids, the pattern was similar, with MiKS 3-treated

plants exhibiting the highest levels, with increases of 22.8%, 98.3%,

and 83.5% compared to the control, MiKS 1, and MiKS 2,

respectively. Additionally, MiKS 1 and MiKS 2 treated plants also

exhibited significantly lower flavonoid content than control plants,

with decreases of 38.1 and 33.1%, respectively. In terms of

anthocyanins, vines treated with MiKS 2 and MiKS 3 showed

significantly lower levels compared to the control group, with

reductions of 12.6% and 10.1%, respectively, and also lower than

those recorded in MiKS 1 (16.2 and 13.9% decrease, respectively, for

MiKS 2 and MiKS 3).

Regarding tannins, MiKS 2-treated plants exhibited the lowest

levels, significantly different from all other treatments. MiKS 1 and

control plants presented intermediate values, while MiKS 3-treated

plants showed the highest tannin content, with significant increases

of 23.0%, 62.8%, and 101.0% compared to control, MiKS 1, and

MiKS 2, respectively.

At E-L38 in 2023, significant differences in phenolic content

were noted between MiKS 1 and MiKS 3, with MiKS 3 being higher,

exhibiting a 16.7% increase, as observed in E-L35. For flavonoids, all

treatments had smaller contents than the control but differed

significantly: MiKS 1 showed the lowest content, followed by

MiKS 2, and MiKS 3. Anthocyanin showed an opposite trend,
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being highest in MiKS 1-treated vines, significantly surpassing all

other treatments, while MiKS 3-treated vines presented the lowest

levels, with a reduction of 41.9% compared with MiKS 1. An

increase in anthocyanin content from veraison to maturation was

observed in both years and across all treatments, except for MiKS 3,

where values remained similar. This increase was more pronounced

in 2024, whereas in 2023 the absence of rainfall in July and August,

combined with very high temperatures, likely intensified stress

conditions and may have contributed to anthocyanin degradation.

In contrast, for tannins, all MiKS formulations resulted in

significantly lower contents compared to the control.

In 2024, at E-L35, control plants displayed the highest phenols

levels, without statistical differences to MiKS3. Both MiKS 2 and

MiKS 4 (the new treatment added in 2024 with 8%Si) had lower

phenol contents, with 6.1% and 3.5%, decrease, respectively.

For flavonoids, all treated plants had significantly lower levels

than control, with decreases of 17.7, 16.7, and 17.7%, for MiKS 2,

MiKS 3, and MiKS 4, respectively. A different pattern was observed

for anthocyanins and tannins. In fact, all treated plants exhibited

significantly higher levels of anthocyanins when compared to the

control, with increases of 91.5% (MiKS 2), 259.7% (MiKS 3), and

188.7% (MiKS 4). Regarding tannins, untreated plants also

exhibited the lowest content, being significantly different from

treated plants, which showed increases ranging from 35.0%

to 48.8%.

At E-L38 in 2024, all treatments with Si and Kl generally

resulted in significant increases in secondary metabolites

compared to control plants. Indeed, treated plants exhibited

significantly higher phenolic content than the control, with

increases of 18.0%, 31.0%, and 30.0% for MiKS 2, MiKS 3, and

MiKS 4, respectively.

Flavonoid content also followed this trend, with treated plants

outperforming the control and recording increases of 35.1% for

MiKS 2, 24.6% for MiKS 3, and 25.4% for MiKS 4.

In the anthocyanin quantification, MiKS 3 and MiKS 4

treatments resulted in significantly higher contents than the

control, with increases of 28.1% and 53.8%, respectively. Finally,

regarding tannins, untreated plants again presented the lowest

content, while treated plants exhibited increases ranging between

39.0% and 61.2%.

As shown in Figure 1, the 2023 growing season was marked by

extremely low precipitation and persistently high temperatures,

during the summer months. These harsh environmental

conditions likely intensified plant stress responses and altered

metabolic allocation. Under such circumstances, higher Si

concentrations (MiKS 2 and MiKS 3) were associated with

reduced anthocyanin levels and, in the case of MiKS 2, lower

tannin content. This may be explained by a reduction in oxidative

signaling, which is required to activate the phenylpropanoid

pathway (Chaves et al., 2009; Liang et al., 2019). Conversely, in

2024, when rainfall was more regular, especially during key

phenological stages, the trend reversed. Treated vines generally

exhibited significant increases in anthocyanins, flavonoids, and

tannins, compounds that are crucial for taste, mouthfeel and wine

evolution (Guerra, 2002; Pozzan et al., 2012; Garrido and Borges,
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2013). Thus, in 2024, the MiKS 4 treatment resulted in grapes with a

higher phenolic compound content, despite having a lower

probable alcohol concentration. This suggests that under less

extreme conditions, the treatments acted as elicitors of secondary

metabolism, a role previously attributed to Si-based products (Erb

and Kliebenstein , 2020; Hernandez-Apaolaza , 2022) .

Improvements in the plant antioxidant system following Si

application under abiotic stress have been widely reported by

several authors (Liang et al., 2005; Kim et al., 2017; Wang et al.,

2017; Abd_Allah et al., 2019; Lukacova et al., 2019; Ahanger et al.,

2020; Dinis et al., 2024a). In particular, Losada et al. (2022)

demonstrated that the application of monosilicic acid in

grapevines led to a higher content of total phenols, total
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anthocyanins, and total tannins. Similarly, foliar application of Kl

has been shown to increase total phenols and anthocyanins in

resulting wines (Conde et al., 2016; Dinis et al., 2016a, 2024b). The

consistent increase in total phenols across all treatments at E-L38 in

2024 supports the hypothesis that Si and Kl may stimulate the

activity of key enzymes such as phenylalanine ammonia-lyase

(PAL), promoting phenolic biosynthesis even in the absence of

acute stress conditions (Savant et al., 1996). In the present work,

flavonoid dynamics showed a strong dependence on both

phenological stage and year, highlighting the modulating effect of

environmental context on biosynthetic pathways. In 2024, an

opposite trend was observed between E-L35 and E-L38: while

control plants presented the highest flavonoid content at E-L35,
FIGURE 3

Relative amounts (%) of the most abundant aliphatic compounds in the total cuticular waxes of berries from vines with different foliar applications:
untreated plants (Control), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated with Kl 2%
and Si 8% (MiKS 4) (N=25).
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all treated plants surpassed the control at E-L38. This shift

reinforces the idea that Si and Kl treatments interact with plant

development in a context-specific manner, either by alleviating

stress or by actively enhancing metabolic functions depending on

the prevailing environmental conditions.
Cuticular wax composition was influenced
by Kl + Si application

The outermost layer of plant organs, the cuticle, composed of

epi- and intracuticular waxes, acts as a barrier against abiotic

stresses such as dehydration, extreme heat or cold, and broader

climate-driven alterations in temperature and precipitation patterns

(Klavins and Klavins, 2020). These waxes contain very long chain

(VLC, C>20) aliphatic compounds, including fatty acids, aldehydes,

alcohols, ketones, alkanes, and esters (Dimopoulos et al., 2020;

Zhang et al., 2021), while they may also contain triterpenoids,

tocopherols, sterols, and flavonoids (Jetter and Schäffer, 2001;

Buschhaus and Jetter, 2011; Bernard and Joubès, 2013;

Dimopoulos et al., 2020). The chemical composition of these

waxes shapes the cuticle’s microstructure and affects the adhesion

and retention of water, pesticides, and airborne particles (Belding

et al., 2000). Figure 3 presents the relative abundance of the main

aliphatic compounds in the total cuticular waxes of grape berries

subjected to different Si and Kl treatments. As in many fleshy fruits,

the grape berry cuticle is composed primarily of aliphatic waxes and

triterpenoids (Lara et al., 2014). However, the results reveal clear

treatment-dependent shifts in both the concentration and relative
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abundance of the main aliphatic compounds in grape berry

cuticular waxes. Triterpenoids, derived from squalene (Klavins

and Klavins, 2020), dominated the wax composition in this study,

with relative abundances ranging from 63% to 67%. This is

consistent with previous reports, showing that triterpenoids are

the predominant compounds within the intracuticular wax layer

(Jetter and Schäffer, 2001; Buschhaus and Jetter, 2011). Similarly,

Zhang et al. (2021) also found that triterpenoids and fatty acids

were the major components of grape berry cuticular waxes. Given

the substantial amounts of triterpenoids observed in this work,

grape berry cuticular wax could represent valuable bioactive

compounds with potential functional properties (Zhang et al.,

2021). In this study, fatty acids accounted for 26% to 30% of the

total wax fraction, depending on the treatment. In contrast, fatty

alcohols and alkanes/aldehydes were consistently low, each

representing approximately 3% across all treatments. These low

amounts were corroborated by other studies in grape berries (Zhang

et al., 2021), blueberry (Chu et al., 2017) and apple (Belding

et al., 1998).

When analysing the concentration of individual compounds,

significant differences among treatments were found for the fatty

acids tetracosanoic, hexacosanoic, octacosanoic, and triacontanoic

(Figure 4a). For tetracosanoic acid, MiKS 3-treated plants showed

levels 23.1% higher than those treated with MiKS 2. Hexacosanoic

and octacosanoic acids followed a similar trend: MiKS 2-treated

plants recorded the lowest, while MiKS 4-treated plants had the

highest concentrations, corresponding to increases of 38.7% and

39.5%, for hexanoic and octanoic acids, respectively. Additionally,

both MiKS 3 and MiKS 4 significantly increased triacontanoic acid
FIGURE 4

Concentration (µg g-1 FW) of the most abundant aliphatic compounds in the total cuticular waxes of berries from vines with different foliar
applications: untreated plants (Control), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated
with Kl 2% and Si 8% (MiKS 4) (N=25). Results are expressed as mean ± standard deviation. Different letters indicate significant differences (P < 0.05)
and the absence of letters indicates no statistically significant differences (P > 0.05) between treatments, according to Tukey’s test.
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content compared to MiKS 2, with gains of 27.2% and 30.3%. Taken

together, these results indicate that the combined application of Si

and Kl promoted an accumulation of specific long-chain fatty acids,

which, according to previous studies, suggests a stimulation of fatty

acid elongation pathways (Samuels et al., 2008). This compositional

shift may reinforce the cuticle’s barrier function by enhancing its

hydrophobicity and mechanical strength, contributing to improved

protection against dehydration and pathogen penetration (Yeats

and Rose, 2013). Furthermore, as these long-chain fatty acids can

act as signaling molecules in plant–pathogen interactions, their

modulation by Si + Kl treatments points to a potential dual role in

enhancing defense responses while maintaining cuticle integrity

(Hegde et al., 1997; Ahmed et al., 2014).

Regarding fatty alcohols (Figure 4b), significant differences were

observed only for 1-hexacosanol, with MiKS 3- and MiKS 4-treated

plants exhibiting concentrations significantly higher than those of

MiKS 2-treated plants, corresponding to increases of 26.1% and

23.9%, respectively. This selective increase may be associated with

the stimulation of fatty acid reductase activity under Si influence,

which can promote the conversion of long-chain fatty acids into

primary alcohols (Wang et al., 2021a). Such modifications in

specific wax fractions could contribute to changes in cuticle

permeability and surface properties, ultimately affecting the

plant’s interaction with water and pathogens.

No significant differences were found for the alkane and

aldehyde fractions (Figure 4c), suggesting that these compound

classes are less responsive to Si and Kl treatments under the

conditions tested. Interestingly, alkanes are generally regarded as

key contributors to minimizing cuticular water loss by increasing

the hydrophobicity of the cuticle surface (Klavins and Klavins,

2020), which implies that maintaining stable levels of these

compounds may help preserve baseline water retention even

when other wax fractions are modulated. Conversely, significant

differences were found for oleanolic acid (Figure 4d), with MiKS 3-

treated plants showing concentrations 14.2% higher than the

control. This triterpenoid was consistently the most abundant

across all treatments, which aligns with previous reports that

oleanolic acid and its precursors are the main triterpenoids in

grapes (Radler, 1965). Notably, the proportion of cuticular

triterpenoids and aliphatic waxes can vary greatly among

grapevine cultivars; for example, oleanolic acid may account for

up to 42% of the total wax content in Muscat d’Alsace berries,

whereas it is completely absent in Sylvaner berries (Pensec et al.,

2014). The significant increase observed in MiKS 3-treated plants

reinforces the idea that Si can promote triterpenoid biosynthesis,

enhancing the accumulation of compounds that play key roles in

pathogen defense and berry firmness (Szakiel et al., 2012; Jetter and

Schäffer, 2001; Klavins and Klavins, 2020). These findings are in line

with studies indicating that Si can stimulate cuticle deposition and

alter its chemical composition, potentially improving water

retention and strengthening resistance to pathogens (Guntzer

et al., 2012; Wang et al., 2021a). Indeed, higher cuticular content

has been reported to correlate negatively with water loss, thereby

extending fruit shelf life (Lara et al., 2014). On the other hand, since

Kl does not penetrate plant tissues or modulate cuticle or wax
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biosynthetic pathways, its effect is predominantly physical and

reflective. The white particle film forms a protective barrier on

the surface of the epidermis and cuticle, reducing absorbed solar

radiation, berry temperature, and water loss (Glenn et al., 2010).

This barrier can also help limit wax degradation by preventing

fusion or structural rearrangement under excessive heat

(Dimopoulos et al., 2020); however, it does not stimulate the

synthesis of new lipid fractions.

MiKS treatments enhanced long-chain fatty acids, 1-hexacosanol,

and oleanolic acid, reinforcing cuticle hydrophobicity and defense,

thereby improving berry protection under stress.
The influence of treatments on the berry
histological parameters

The histological parameters assessed in 2024 (Figure 5) provide

further evidence of how Si and Kl applications can modulate the

structural features of grape berry skins. During E-L35, all treated plants

showed greater cuticle thickness and larger epidermal cells compared to

the control, with MiKS 3-treated fruits displaying the highest values for

both traits. Increased cuticle thickness is generally associated with

reduced transpirational water loss and improved tolerance to

dehydration, while also serving as a physical barrier that can hinder

pathogen penetration. The concomitant enlargement of epidermal cells

may further contribute to structural reinforcement of the fruit surface

under stress conditions. At E-L38, the same trend was observed for

cuticle thickness: MiKS 2-, MiKS 3-, and MiKS 4-treated berries

exhibited significantly thicker cuticles than the control, with increases

of 52.7%, 61.2%, and 68.5%, respectively. Interestingly, while cuticle

thickness increased consistently with treatment, epidermal cell size was

highest in untreated plants and in those treated with MiKS 4. This may

indicate that cuticular deposition and epidermal expansion are not

strictly correlated, and that MiKS 4 might promote structural

reinforcement of the cuticle without limiting epidermal cell growth,

possibly through altered metabolic allocation or signaling pathways

associated with stress responses. The thickness of the subepidermal cell

layer remained unchanged across treatments, indicating that Si and Kl

primarily affect the outermost protective layers. Indeed, Si is well

known for strengthening cell walls and stimulating the biosynthesis

of cutin and waxes, which together contribute to thicker, more robust

cuticles that reduce water loss and enhance resistance to abiotic and

biotic stressors (Guntzer et al., 2012; Zargar et al., 2019; Wang et al.,

2021b; Zhu and Li, 2021). In contrast, Kl acts as a reflective particle film

that lowers fruit surface temperatures and reduces sunburn, indirectly

supporting epidermal integrity and cuticle development under heat

stress (Glenn and Puterka, 2010).
Kl+Si mixtures application regulates fruit
physiological behavior

The d¹³C isotopic signature is widely recognized as an

integrative indicator of intrinsic water-use efficiency (WUE) in

plants, since higher d¹³C values typically reflect lower stomatal
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conductance and greater CO2 assimilation efficiency under limited

water availability (Cernusak et al., 2013). The quantified results of

the d¹³C isotopic composition under different treatments at E-L38

in both 2023 and 2024 are presented in Figure 6. Significant
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differences were observed only in 2024, when berries from MiKS

4-treated plants exhibited significantly higher d¹³C values, with

increases of 4.27%, 5.55%, and 4.70% compared to the control,

MiKS 2, and MiKS 3-treated plants, respectively. The enrichment in
FIGURE 5

Histological parameters (cuticular thickness, and epidermal and subepidermal cells) of berries from vines with different foliar applications: untreated
plants (Control), plants treated with Kl 2% and Si 2% (MiKS 1), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS
3), and plants treated with Kl 2% and Si 8% (MiKS 4) (N=6). Results are expressed as mean ± standard deviation. Different letters indicate significant
differences (P < 0.05) and the absence of letters indicates no statistically significant differences (P > 0.05) between treatments, within the same
phenological stage, according to Tukey’s test.
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13C, which results in higher d¹³C values, for MiKS 4-treated vines

suggests that this formulation may have promoted physiological

adjustments leading to improved WUE during the 2024 growing

season, which experienced milder drought conditions than 2023.

Notably, this trend is consistent with findings from our research

group, which also reported increased WUE in MiKS 4-treated

plants at E-L38 in 2024 (Pereira et al., 2025). These results align

with the enhanced cuticular wax deposition, increased cuticle

thickness, and improved epidermal cell density and organization

observed in the present work, for MiKS 4-treated plants, all of which

likely contributed to reduced transpirational water loss and tighter

stomatal regulation. In the work developed by Zhang et al. (2020), a

positive correlation was observed between Si content and foliar

d13C. Moreover, foliar application of Si, especially at higher doses,

appears to reinforce structural barriers that limit water loss in the

fruit under moderate stress (Guntzer et al., 2012; Wang et al.,

2021a). These results suggest that the observed differences in d¹³C
are mainly attributable to Si, since foliar Kl applications alone

usually do not change carbon isotope composition significantly.

Taken together, the d¹³C enrichment observed in 2024 and the
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related anatomical changes in berry tissues highlight the multiple

ways these treatments strengthen fruit robustness under drought

conditions. By supporting both physiological processes and

structural defenses, they help maintain berry water status and

quality under variable water regimes (Cernusak et al., 2013;

Krishankumar et al., 2025). Conversely, the lack of significant

differences observed in 2023 suggests that the applied

formulations were particularly effective in mitigating the effects of

the extremely warm conditions that year.
Impacts of the different formulations on
the hormonal signaling

Figure 7 shows the phytohormonal profile of grape berries from

vines treated with different Kl and Si formulations, revealing a

dynamic interaction between treatments and hormonal regulation.

Statistically significant differences among treatments were observed

across the three phenological stages, except for salicylic acid (SA) at

E-L35 and abscisic acid (ABA) at E-L38. At E-L32, the highest SA
FIGURE 6

d13C composition of berries from vines with different foliar applications: untreated plants (Control), plants treated with Kl 2% and Si 2% (MiKS 1),
plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS 3), and plants treated with Kl 2% and Si 8% (MiKS 4) (N=9).
Results are expressed as mean ± standard deviation. Different letters indicate significant differences (P < 0.05) and the absence of letters indicates no
statistically significant differences (P > 0.05) between treatments, within the same year, according to Tukey’s test.
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content was found in MiKS 3-treated plants, with an increase of

67.0% compared to the control and 130.0% relative to MiKS 4.

MiKS 2-treated plants also presented significantly higher SA levels

than control and MiKS 4 plants. This suggests an early activation of

systemic acquired resistance pathways in plants treated with MiKS 2

and 3, which can prime the synthesis of phenolics and flavonoids
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(Pieterse et al., 2009; Erb and Kliebenstein, 2020). For JA, the

highest levels were observed in MiKS 2-treated plants, followed by

MiKS 3, with both showing significantly higher values than the

control (59.6% and 54.7% increase, respectively). Elevated JA levels

further indicate enhanced defense signaling, in line with reports that

JA plays a key role in biotic stress responses (Pieterse et al., 2009;
FIGURE 7

Hormonal profile (salicylic acid, jasmonic acid, abscisic acid, and indol-3-acetic acid) of berries from vines with different foliar applications: untreated
plants (Control), plants treated with Kl 2% and Si 2% (MiKS 1), plants treated with Kl 2% and Si 4% (MiKS 2), plants treated with Kl 2% and Si 6% (MiKS
3), and plants treated with Kl 2% and Si 8% (MiKS 4) (N=9). Results are expressed as mean ± standard deviation. Different letters indicate significant
differences (P < 0.05) and the absence of letters indicates no statistically significant differences (P > 0.05) between treatments, within the same
phenological stage, according to Tukey’s test.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1681593
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pereira et al. 10.3389/fpls.2025.1681593
Dinis et al., 2018a). In contrast, ABA content was significantly lower

in MiKS 2 and MiKS 3-treated plants (–4.4% and –36.8% compared

to control), pointing to a possible downregulation of drought stress

signaling, consistent with observations that ABA mediates stomatal

closure and water deficit responses (Chaves et al., 2009).

Meanwhile, IAA levels were highest in MiKS 4-treated plants,

with increases of 146.2% and 123.6%, compared with MiKS3 and

control plants, respectively, which may reflect enhanced cell

expansion and berry growth in these plants, as the auxins are

central to berry development and ripening (Böttcher et al., 2010).

At E-L35, although MiKS 3-treated plants showed the highest

SA content, differences were not statistically significant. On the

other hand, JA levels were highest in the control plants and

decreased significantly in MiKS 2 (–93.4%), MiKS 3 (–34.7%),

and MiKS 4 (–34.5%) treatments, indicating that Si and Kl may

reduce stress perception or redirect resources towards growth,

aligning with findings that Kl films mitigate heat stress and

promote physiological stability (Glenn and Puterka, 2010).

Similarly to E-L32, ABA content remained lowest in MiKS 3-

treated plants, with control, MiKS 2 and MiKS 4 being 9.5%,

21.0% and 19.1% higher, respectively, again suggesting a

dampened drought-response signal in these plants (Chaves et al.,

2009). In contrast, IAA concentrations peaked in MiKS 3-treated

plants (+202.7% vs MiKS 2, + 166.5% vs MiKS 4), reinforcing the

idea that MiKS 3 formulation can stimulate auxin-mediated growth

during berry ripening (Böttcher et al., 2010).

At E-L38, MiKS 3-treated plants showed the lowest SA content

(–20.7% vs control), which may indicate a return to basal defense

levels as ripening finalizes. For JA, all MiKS treatments led to

significantly lower levels than the control, with reductions of 59.5%

(MiKS 2), 124.5% (MiKS 3), and 224.5% (MiKS 4). The reduced JA

levels observed in treated plants at harvest could reflect lower stress

pressure or a shift towards ripening-associated processes (Erb and

Kliebenstein, 2020). ABA differences were no longer significant at

this stage. For IAA, the highest content was found in the control and

MiKS 3 treatments. At the same time, MiKS 2 and MiKS 4 showed

decreases of 25.4% and 50.7%, respectively, relative to the control.

The reduction in IAA levels may suggest that certain formulations

limit excessive berry enlargement, as lower auxin activity is known

to restrict cell expansion and thereby reduce berry growth (Böttcher

et al., 2010). These results align with recent findings in other crops

showing that foliar Si applications can modulate phytohormonal

pathways in fruit tissues. Specifically, the reductions in ABA levels

and increases in SA and IAA under certain Si-based formulations

observed in this work are consistent with Yang et al. (2024), who

reported that appropriate doses of foliar Si significantly decreased

ABA while enhancing gibberellin, auxin, and salicylic acid levels in

tomato fruits. Previous studies also reported that Kl applications,

beyond their physical effect, can also modulate hormonal balance in

grape berries by reducing ABA and adjusting SA and IAA levels,

helping to fine-tune drought responses and ripening (Frioni et al.,

2020; Bernardo et al., 2022).
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Conclusion

In general, this work provides evidence that the combined foliar

application of Kl and Si represents a promising and practical

strategy to mitigate the negative impacts of drought and heat

stress on grape berry development, composition, and quality. The

synergistic effects observed here, especially in 2024, demonstrate

that these treatments modulate secondary metabolite accumulation,

enhance the chemical composition and structure of cuticular waxes,

and promote beneficial histological adaptations that strengthen the

berry’s physical barriers, reducing transpirational water loss and

improving tolerance to dehydration. Furthermore, the increase in

d¹³C values and the fine-tuning of key phytohormonal pathways,

notably the reductions in ABA and the adjustments in SA, JA, and

IAA, highlight the ability of these foliar sprays to influence plant

stress responses. This integrated action supports improved water-

use efficiency, reduced probable alcohol, increased tartaric acid

content with no lasting effect over total acidity, and overall fruit

quality under increasingly variable climatic conditions.

Nonetheless, some of this variation could reflect slight differences

in berry maturity, which were not fully accounted for in this work.

Together, these findings reinforce the potential of combining Kl and

Si as part of sustainable viticulture management practices to

preserve fruit quality, maintain yield stability, and enhance

vineyard adaptability in regions most exposed to the challenges of

climate change. Considering all the parameters evaluated, MiKS 3

emerged as the most promising formulation, as it promoted

significant improvements in plant performance while showing

only minor differences when compared to MiKS 4. Therefore, the

increased cost associated with the use of 8% Si in MiKS 4 may not be

justified, given the similar outcomes achieved with the 6% Si

concentration in MiKS 3.
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