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and green manure cropping
systems on fruit quality of
Korla fragrant pear
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Korla Fragrant Pear(Pyrus sinkiangensis Yu), a high-value Geographical Indication
product from Xinjiang, China, faces declining fruit quality due to soil degradation
from intensive monoculture. This study investigated microbial fertilizer (JF) and
green manure (oil sunflower - DK1, DK2; sweet clover - CM1, CM2) intercropping
in a pear orchard to improve soil and fruit quality, compared to conventional
fertilization (CK). Comprehensive analyses assessed soil properties, fruit minerals,
metabolites (monosaccharides, fatty acids, amino acids), and volatile organic
compounds (VOCs).Both JF and green manure treatments improved soil
physicochemical properties, with CM1 showing the greatest effect. Treatments
JF, CM1, CM2, DK1, and DK2 significantly increased fruit K, P, Fe, and Mn content
but significantly decreased Zn content. JF significantly enhanced
monosaccharide accumulation, while CM1 and high-density oil sunflower
(DK2) notably increased fatty acid and free amino acid content. However, all
treatments (JF, CM1, CM2, DK1, DK2) significantly reduced total fruit VOCs.
Correlation analysis indicated fruit Zn content was positively correlated with
most VOCs. Reduced Zn inhibited alcohol dehydrogenase (ADH) and copper-
zinc superoxide dismutase (Cu/Zn SOD) activity, leading to decreased VOC
synthesis. Therefore, while CM1 is recommended as the optimal strategy for
improving basic nutritional quality and soil fertility, coordinated zinc nutrition
management is essential when implementing green manure to balance
nutritional enhancement with maintaining characteristic flavor, ensuring
sustainable industry development.
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1 Introduction

Korla Fragrant Pear (Pyrus sinkiangensis Yu), a distinctive fruit
tree germplasm resource of Xinjiang, has a cultivation history
traceable back to the 6th century AD (Chen et al,, 2006). It has
now become a pillar industry of the agricultural economy in
Southern Xinjiang, with a cultivation area exceeding one million
mu (Jia et al,, 2018; Yu et al,, 2022). The fruit quality of this cultivar
exhibits multi-dimensional advantages: the synergistic eftect of a
high sugar-acid ratio (17.47-17.68) and soluble solids content
(10.56-10.59%) (Yang et al, 2024) contributes to its sweet and
full-bodied flavor; the characteristic of discretely distributed and
extremely low content of stone cell clusters (0.315-0.652%) (Wang
et al., 2022) imparts a fine-textured flesh; concurrently, the flesh is
rich in vitamin C, which supports immune function and promotes
collagen synthesis (Qiao et al., 2020; Wang et al., 2022).
Furthermore, the dynamic balance of organic acids during
ripening, where malic acid accounts for over 80% of the
metabolic profile (Yu et al., 2018), further optimizes the fruit
softening process. Crucially, its volatile organic compound
(VOCs) metabolic network comprises 68 characteristic
components (Liu et al., 2023). Among these, esters (ethyl acetate,
butyl hexanoate) and aldehydes (hexanal, (E)-2-hexenal) with odor
activity values (OAV > 1) form a unique distinct flavor profile,
serving as the core driver of quality premium.

To increase yield and income, fruit growers commonly apply
inorganic fertilizers. While inorganic fertilizers can rapidly
replenish nutrients for crops, excessive application damages soil
aggregate structure (Dinesh et al., 2010), reduces soil aeration and
permeability (Shi et al., 2024), and consequently severely impedes
root respiration and the normal uptake of nutrients (Kong et al.,
2017). As these issues have become increasingly prominent, both
the yield and quality of Korla fragrant pears have shown varying
degrees of decline. To safeguard the quality and yield of Korla
fragrant pears, planting green manure and applying microbial
fertilizers have emerged as practical and cost-effective soil
improvement methods (Otto et al,, 2020; Sahgal et al., 2024). As a
widely adopted field management practice, green manure
cultivation has been proven to offer multiple soil improvement
benefits (Hu et al., 2023). The nitrogen-fixing ability of leguminous
green manures converts atmospheric nitrogen into plant-available
forms, significantly increasing soil nitrogen content (Chen et al,
2014). Simultaneously, green manure can improve soil pH, creating
conditions more favorable for crop growth (Kama et al, 2025).
Additionally, green manure effectively reduces soil bulk density,
enhances soil aeration, and provides a favorable environment for
root growth (Glab, 2014). Its organic matter increases soil porosity,
optimizes soil structure, and enhances soil aggregate stability (Fang
et al., 2021). Furthermore, green manure can improve fruit yield
and quality; for instance, Ramirez-Perez et al. found in vineyards
that leguminous green manure significantly increased grape yield
and soluble solids content (Ramirez-Pérez et al., 2024).Microbial
fertilizers, through their rich beneficial microorganisms, play
multiple key roles in the soil (Kumar et al., 2025). These
microorganisms can activate soil nutrients, converting elements
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such as nitrogen, phosphorus, and potassium—which are difficult
for crops to absorb and utilize—into available forms, thereby
providing a continuous supply of nutrition for plants (Pandey
and Saharan, 2025). Concurrently, they can secrete substances
like organic acids and polysaccharides to improve soil aggregate
structure, enhance soil aeration and water retention capacity, and
thus promote root development (Guo et al, 2018). Moreover,
microorganisms in microbial fertilizers can produce antimicrobial
substances and suppress the growth of soil-borne pathogens
through competition, enhancing crop disease resistance and stress
tolerance (Cucu et al.,, 2025). Through these mechanisms, microbial
fertilizers not only significantly reduce the application of chemical
fertilizers, mitigating soil degradation and environmental pollution,
but also help improve fruit yield and quality, making them an
important measure for achieving sustainable agricultural
development. Therefore, planting green manure and applying
microbial fertilizers are effective field management measures for
improving the soil environment in Korla fragrant pear orchards and
enhancing pear quality and yield.

Previous studies have predominantly focused on the analysis of
characteristic aroma components, paying insufficient attention to
soil degradation issues in pear orchards. Addressing the problem of
flavor deterioration in Korla Fragrant Pear fruit caused by soil
degradation in orchards, this study conducted a field intercropping
experiment with green manure in a 7-8-year-old pear orchard to
investigate its impact on Korla Fragrant Pear quality. The research
aims to provide theoretical foundations and technical pathways for
green manure-driven soil improvement and flavor enhancement in
pear orchards. This is of significant practical importance for
facilitating a paradigm shift in the Korla fragrant pear industry
from “yield priority” towards “quality orientation”.

2 Materials and methods
2.1 Experimental site description

The experiment was conducted during 2023 in Heshilike
Township, Korla City, Bayingolin Mongol Autonomous
Prefecture, Xinjiang, located at coordinates 41°43’38”N, 85°
57°46”E with an elevation of 855.3 meters. Situated in central
Xinjiang, the site lies at the southern foothills of the Tianshan
Mountains on the northeastern edge of the Tarim Basin. It is
bordered by the Tianshan branch range to the north and adjacent
to the Taklimakan Desert, the world’s second-largest desert, to the
south. The region experiences a warm-temperate continental
climate characterized by significant diurnal temperature variations
and abundant sunshine. The average annual sunshine duration is
2990 hours. The mean annual temperature ranges between 14 and
15°C, while annual precipitation falls between 50 and 58
millimeters. The maximum annual evaporation reaches 2788.2
millimeters. The effective accumulated temperature (>10°C)
ranges from 4100 to 4400°C, and the frost-free period lasts 210 to
239 days. The prevailing wind direction is from the northeast. The
orchard soil has a sandy texture with the following baseline nutrient
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levels, pH 7.80, soil organic matter (SOM) 11.22 grams per  Bacillus licheniformis) were applied in split doses. Sixty percent of
kilogram, available phosphorus (AP) 12.06 milligrams per  the nitrogen and microbial fertilizer was applied before bud break,
kilogram, available potassium (AK) 167.17 milligrams per  with the remaining forty percent applied as a top dressing at the
kilogram, and alkali-hydrolyzable nitrogen (AN) 16.63 milligrams  early fruit expansion stage. Fertilization involved digging an
per kilogram. annular trench approximately 30 centimeters deep and 30
centimeters wide, located 50 to 80 centimeters from the central
trunk. Fertilizers were evenly distributed within this trench. Sweet
2.2 Plant material and experimental design clover and oil sunflower were used as green manure crops. Seeds
sourced from the Inner Mongolia Autonomous Region were
The study was carried out over the 2022 to 2023 period using 7 - purchased from Gansu Lanbin Ecological Technology Co., Ltd.
8-year-old Korla Fragrant Pear (Pyrus sinkiangensis Yu) trees  Sweet clover seeds had 95% purity and an 85% germination rate. Oil
grafted onto Pyrus betulifolia rootstock. Trees were spaced at 3 sunflower seeds had 90% purity and an 80% germination rate. The
meters by 5 meters, equivalent to 675 trees per hectare. Six  distance between the pear tree rows and the green manure rows was
fertilization treatments were implemented within the pear  maintained at 70 to 80 centimeters. Green manure sowing occurred
orchard. These treatments included conventional fertilization in early April, followed by mechanical crushing and soil
(CK), application of microbial fertilizer (JF) containing Bacillus  incorporation in late July.
subtilis and Bacillus licheniformis, intercropping with oil sunflower
(Helianthus annuus L) at a low density (DK1, row spacing 25
centimeters, seeding rate 27 kilograms per hectare), intercropping 2.3 Sample collection and processing
with oil sunflower at a high density (DK2, row spacing 20
centimeters, seeding rate 33 kilograms per hectare), intercropping Soil samples were collected during the Korla Fragrant Pear
with sweet clover (Melilotus officinalis Linn.) at a low density (CM1,  ripening period on September 6, 2023, within the orchard. For each
row spacing 25 centimeters, seeding rate 21 kilograms per hectare),  treatment, five healthy pear trees exhibiting similar growth vigor
and intercropping with sweet clover at a high density (CM2, row  were selected and tagged using the five-point sampling method. Soil
spacing 20 centimeters, seeding rate 27 kilograms per hectare). This ~ samples from the 0-20 centimeter layer were collected from both
constituted a field trial with different fertilization treatments applied  sides of the fertilization trench after removing surface litter. Soil
during the growing season. Details regarding fertilizer application  samples from the same depth on both sides of the trench for each
rates, specific green manure species, and sowing techniques are  replicate tree were combined into one composite sample. After
presented in Table 1. initial mixing and breaking of clods, soil samples were placed in zip-
Each treatment plot covered an area of 666.67 kg per hectare, ~ lock bags, stored in insulated containers with dry ice, and
with three replicates per treatment, resulting in a total experimental  transported to the laboratory under refrigerated conditions. Upon
area of 12,000 kg per hectare. A base application of sheep manure at  returning to the laboratory, soil samples were air-dried. Plant roots
15,000 kilograms per hectare was applied once during autumn.  and stones were removed by sieving the soil through a 2-millimeter
Phosphorus fertilizer applied as triple superphosphate (46% P,Os)  mesh. The sieved soil was thoroughly homogenized by further
and potassium fertilizer applied as potassium sulfate (51% K,O)  sieving through a 1-millimeter mesh and stored in sealed bags for
were fully applied before the spring bud break stage. Nitrogen  physicochemical analysis.
fertilizer applied as urea (46% N) and the microbial fertilizer Fruit sampling coincided with soil collection. From each of the
(Shipulang produced by Tsuneishi Fertilizer (Qingdao) Co., Ltd.,  five tagged trees per treatment, 12 mature fruits were harvested
containing >500 million CFU per gram of Bacillus subtilis and  from the mid-upper canopy (1.5 to 2.0 meters above ground level)

TABLE 1 Experimental treatment design plan.

Nutrient
Row application
Green Seeding rate Sowing . Agricultural microbial ratekg/hm
Treatment 2 spacing e 2

manure type (kg/hm") depth (cm) e fertilizer(kg/hm?) ( )
N P,Os5 K,O
CK None 0 0 0 0 300 300 150
JF None 0 0 0 1200 300 300 150
DK1 Oil Sunflower 27 2-3 25 0 300 300 150
DK2 Oil Sunflower 33 2-3 20 0 300 300 150
CM1 Sweetclover 21 1 25 0 300 300 150
CM2 Sweetclover 27 1 20 0 300 300 150
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in the east, south, west, and north directions, resulting in 60 fruits
collected per treatment. Fruits were rinsed with ultrapure water.
After coring with a ceramic knife, the flesh was sliced into 5-
millimeter pieces. The flesh slices were homogenized using a
blender. The homogenate was filtered through a 100-mesh nylon
sieve. The filtered homogenate was aliquoted into 5-milliliter acid-
washed centrifuge tubes and stored at -80°C ultra-low temperature
freezers for subsequent analysis of mineral elements,
monosaccharides, free amino acids, fatty acids, and
volatile compounds.

2.4 Analytical methods

Soil physicochemical properties were analyzed following
methods described in Bao’s Soil and Agricultural Chemistry
Analysis (Bao, 2000). Soil pH was measured potentiometrically
using a pH meter with a soil-to-water ratio of 2.5 to 1. Electrical
conductivity (EC) was determined using a conductivity meter. Total
nitrogen (TN) content was measured using the semi-micro Kjeldahl
method. Soil organic matter (SOM) content was determined by the
potassium dichromate external heating method. Alkali-
hydrolyzable nitrogen (AN) was analyzed using the alkaline
hydrolysis diffusion method. Available phosphorus (AP) was
extracted using sodium bicarbonate and quantified by the
molybdenum antimony anti-spectrophotometric method.
Available potassium (AK) was extracted using ammonium acetate
and measured by flame photometry.

Monosaccharide composition was analyzed using a Thermo
ICS5000+ ion chromatography system (Thermo Fisher Scientific,
Massachusetts, USA) according to the method described by He et al.
(2018) (He et al., 2018).

Amino acid analysis was performed using a Waters 2695 high-
performance liquid chromatography (HPLC) system (Waters
Corporation, Massachusetts, USA) following the method of Chen
et al. (2015) (Chen et al., 2015).

Fatty acid analysis was conducted using hydrolysis-extraction
and esterification methods as specified in the Chinese National
Standard GB 5009.168—2016.

Analysis of mineral elements in fruit was performed according
to the Chinese National Standard GB 5009.268-2016.

Volatile organic compounds were analyzed by headspace solid-
phase microextraction coupled with gas chromatography-mass
spectrometry (HS-SPME-GC-MS). Five grams of pear
homogenate were weighed into a 20-milliliter headspace vial. Five
milliliters of saturated sodium chloride (NaCl) solution were added,
followed by 10 microliters of cyclohexanone solution (0.947
milligrams per milliliter in chromatographic grade methanol) as
an internal standard. The vial was immediately sealed with a
polytetrafluoroethylene (PTFE) septum. A pre-conditioned SPME
fiber was exposed to the vial headspace at 50°C for 31 minutes to
adsorb volatiles. The fiber was then inserted into the GC injector
port and thermally desorbed for 7 minutes.

Gas chromatography was performed using an SH-Wax capillary
column (30 meters length, 0.25 millimeters internal diameter, 0.25
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micrometers film thickness). The injector temperature was set to
250°C in splitless mode. The column temperature program was
initiated at 40°C and held for 3 minutes. The temperature was then
ramped to 100°C at a rate of 6°C per minute, followed by a ramp to
230°C at 10°C per minute, with a final hold time of 5 minutes.
Helium was used as the carrier gas at a constant flow rate of 0.8
milliliters per minute.

Mass spectrometry detection utilized electron ionization (EI)
mode at 70 electron volts. Data acquisition was performed in scan
mode over a mass range of 33 to 400 mass-to-charge ratio (m/z).
The ion source temperature was maintained at 200°C, and the
transfer line temperature was set to 250°C. A solvent delay of 1
minute was applied.

VOC content(mg/L)

peak area x internal standard concentration

" sample weight x internal standard peak area

2.5 Data analysis

All experiments were performed with three biological replicates.
Data are presented as mean * standard deviation (SD). One-way
analysis of variance (ANOVA) was conducted using IBM SPSS
Statistics 27 software (IBM Corp., Armonk, NY, USA) to determine
significant differences (p< 0.05). Cluster analysis and Spearman’s
rank correlation coefficient analysis were performed using
OriginPro 2024 software (OriginLab Corporation, Northampton,
MA, USA).

3 Results and analysis

3.1 Effects of different organic fertilizers on
soil physicochemical properties in Korla
fragrant pear orchards

Data presented in Table 2 show that soil pH and electrical
conductivity (EC) in all treatment groups were significantly lower
than those in the CK treatment (p< 0.05). Compared to CK, soil pH
decreased by 2.55%, 4.02%, 2.95%, 4.02%, and 2.68% in the JF,
CM1, CM2, DK1, and DK2 treatments, respectively. Among these,
the CM1 and DKI1 treatments showed the largest pH reduction
(4.02% lower than CK), which was significantly greater than the
reductions observed in the other treatments. This indicates that
low-density planting of sweet clover and oil sunflower green
manures significantly reduced soil pH. Soil EC decreased by
16.02%, 20.48%, 9.15%, and 9.27% in the JF, CM1, CM2, and
DKI1 treatments compared to CK, with the JF and CM1 treatments
demonstrating the most significant reductions in EC. In contrast,
soil organic matter (SOM) content was significantly increased in all
treatments compared to CK (p< 0.05). The increases were 12.02%
for JF, 15.42% for CM1, 12.85% for CM2, 24.32% for DK1, and
17.33% for DK2. The green manure treatments (DK and CM series)

frontiersin.org


https://doi.org/10.3389/fpls.2025.1680899
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ke et al. 10.3389/fpls.2025.1680899

TABLE 2 Soil physicochemical properties under different green manure incorporation treatments in Korla fragrant pear orchards.

Treatment pH EC SOM AK AP AN
CK 7.46 + 0.08a 1373.33 + 4.04a 10.87 + 0.52¢ 16133 + 7.51c 1111 + 0.25¢ 16.25 + 0.44d
JF 7.27 + 0.01b 1153.33 + 48.17c 12.17 + 0.39b 178.00 + 2.65b 12.9 + 0.35b 18.80 + 0.18b
M1 7.16 + 0.03¢ 1092.00 + 67.74c 1255 + 0.06b 188.00 + 2.00a 14.04 + 0.30a 20.00 + 0.39%
cM2 7.26 + 0.02b 1247.67 + 50.64b 12.26 + 0.19b 176.67 + 8.02b 13.79 + 0.41a 19.05 + 0.36b
DK1 7.16 % 0.03¢ 1246.00 + 21.93b 13.51 + 0.24a 189.67 + 3.22a 13.88 + 0.26a 18.80 + 0.18b
DK2 7.24 + 0.07bc 1296.67 + 56.01ab 12.76 + 0.54b 17133 + 5.77b 13.74 + 0.15a 17.88 + 0.35¢

SOM, Soil organic matter (g/kg); AN, Alkali-hydrolyzable nitrogen (mg/kg); AP, Available phosphorus (mg/kg); AK, Available potassium (mg/kg).
Data are presented as mean + standard deviation (n = 3), with a significance level of p = 0.05. Different lowercase letters in the same column indicate significant differences (p< 0.05).

generally exhibited higher SOM content than the microbial fertilizer ~ effect in improving soil physicochemical properties, significantly
treatment (JF), with the DK1 treatment showing the most  outperforming the other treatments.
pronounced effect.

Regarding available nutrients, the contents of available nitrogen
(AN), available phosphorus (AP), and available potassium (AK) 3.2 Effects of different organic fertilizers on
were all significantly higher in all treatment groups compared to CK ~ mineral element content in Korla frag rant
(p< 0.05). Soil AN increased significantly by 15.69%, 15.69%, [P€ars
10.03%, 23.08%, and 17.23% in the JF, CM1, CM2, DK1, and
DK2 treatments, respectively, compared to CK. The DK series, Different organic fertilizers exerted varied regulatory effects on
particularly DK1, showed the greatest increase, suggesting that  the mineral element content of Korla Fragrant Pears (Figure 1A).
planting green manure, especially oil sunflower at low density, =~ Compared to the CK treatment, the JF treatment reduced fruit
offers a greater advantage in enhancing soil AN. Soil AP increased  potassium (K) content by 2.7%. In contrast, all green manure
significantly by 16.11%, 24.93%, 23.67%, 26.37%, and 24.12% in the ~ treatments increased fruit K content. The CM1 and DKl
JE, CM1, CM2, DK1, and DK2 treatments, respectively. The treatments showed significant increases of 16.8% and 12.6%,
improvement in AP was more substantial with green manure  respectively, compared to CK (p< 0.05). This trend aligned with
cultivation than with microbial fertilizer application, and no  the changes observed in soil available potassium content. The JF
significant difference was observed between planting oil sunflower  treatment significantly decreased fruit phosphorus (P) content (p<
and sweet clover. Soil AK content increased by 10.33%, 17.57%,  0.05). Conversely, the CM1 and DK1 treatments enhanced fruit P
6.20%, 16.53%, and 9.51% in the JF, CM1, CM2, DK1, and DK2  content, increasing it by 14.10% and 16.86%, respectively. Among
treatments, respectively. The largest increases in AK were observed  these, only the DK1 treatment showed a significant difference
in the DK1 (16.53%) and CM1 (17.57%) treatments, which were = compared to CK (p< 0.05).
significantly superior to the other treatments. In summary, low- Regarding trace elements (Figure 1B), fruit iron (Fe) content
density sweet clover (CM1) demonstrated the most prominent increased significantly compared to CK in the JF, CM1, CM2, and

A) (B)
1400 K 10000
a a a Cu
I P 9000 - = Mn
1200 |
b b 1 b 8000 [ Zn
I lIy L " Fe
1000 | 7000 - b
£ 2 2 6000 |
[y g- c
kS H
= 5 s000 -
= =
3 S 4000 d
200 | =
3000 bt
ab a
be E ¢ = be 2000 q ¢ c
z d es =
i e
1000 a a b he d
c” b am ap= c=
0 0 - c
CK JF Ml M2 DKI1 DK2 JE M1 cM2 DK1 DK2
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FIGURE 1
The effects of incorporating different green manures on K,P (A), and trace elements (B) in Korla fragrant pears. Data are presented as mean + standard
deviation (n = 3), with a significance level of P = 0.05. Different lowercase letters in the same column indicate significant differences (P< 0.05).
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DK?2 treatments (p< 0.05), with increases of 115.9%, 207.7%, 13.8%,
and 78.5%, respectively. The CM1 treatment resulted in
significantly higher Fe content than the JF, CM2, and DK2
treatments. Conversely, the DK1 treatment led to a significant
7.3% reduction in Fe content (p< 0.05). Fruit manganese (Mn)
content increased significantly in the JF and CMI treatments (p<
0.05), rising by 26.6% and 46.2%, respectively, compared to CK. No
significant differences in Mn content were observed between the
CM2, DK1, DK2 treatments and CK. Fruit copper (Cu) content
decreased significantly in the JF and DK2 treatments by 39.8% and
46.1%, respectively, compared to CK (p< 0.05). The CM1, CM2, and
DKI1 treatments showed no significant difference in Cu content
compared to CK. Overall, Cu levels in fruit from green manure
treatments remained stable, indicating that green manure
cultivation helped maintain copper homeostasis in the fruit. All
treatments (JF, CM1, CM2, DK1, DK2) significantly reduced fruit
zinc (Zn) content compared to CK (p< 0.05), with reductions of
61.9%, 34.5%, 54.0%, 55.8%, and 37.6%, respectively. The Zn
content in fruit from the JF treatment was significantly lower
than that from the green manure treatments. Within the green
manure treatments, Zn content followed the order CM1 > CM2 and
DK1 > DK2.

Gle (mg/g)

CK P cMmI M2 DK1 DK2
Treatment
((O I
a [ Fue
I B Gal
0.8 Rha
o 06|
E
H b
] L be
£ o4 . . ¢
a a I

CK

CM1 CcM2 DK2
Treatment

FIGURE 2

10.3389/fpls.2025.1680899

3.3 Effects of different organic fertilizers on
monosaccharides in Korla fragrant pears

The results demonstrate that organic fertilizer treatments
significantly altered the monosaccharide composition in Korla
Fragrant Pear fruit (Figure 2). Among the seven monosaccharides
analyzed, compared to the CK treatment, all organic fertilizer
treatments (JF, CM1, CM2, DK1, DK2) upregulated the accumulation
levels of glucose, arabinose, galactose, xylose, galacturonic acid, and
rhamnose. Fucose levels remained stable across all treatments.

Regarding the dominant sugar glucose (Figure 2A), significant
increases were observed in the JF, CM1, DK1, and DK2 treatments
compared to CK (p< 0.05), with increases of 29.99%, 27.04%,
21.31%, and 39.26%, respectively. The DK2 treatment showed the
most pronounced effect. Pentose sugar accumulation exhibited
differential responses (Figure 2B). Arabinose content, a pentose
sugar, was significantly elevated by all treatments (JF, CM1, CM2,
DK1, DK2) compared to CK (p< 0.05), with increases of 94.86%,
50.47%, 64.02%, 61.68%, and 77.57%, respectively. The JF and DK2
treatments yielded the highest increases. Galactose content was also
significantly increased by all treatments (p< 0.05), rising by 62.50%,
15.50%, 15.00%, 34.50%, and 50.00% in the JF, CM1, CM2, DKI,

[ Xyl
(B) . [ Ara
Gal

)

&

g

5

=

8

CK

CM1 CM2 DK1 DK2

Treatment

The effects of incorporating different green manures on monosaccharides in Korla fragrant pears. Data are presented as mean + standard deviation
(n = 3), with a significance level of P = 0.05. Different lowercase letters in the same column indicate significant differences (P< 0.05).
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and DK2 treatments, respectively, compared to CK. Xylose content,
another pentose sugar, was significantly enhanced by all treatments
(p< 0.05), increasing by 52.05%, 54.21%, 44.32%, 18.50%, and
50.18% in the JF, CM1, CM2, DKI1, and DK2 treatments,
respectively. The JF and CMI1 treatments were significantly more
effective than the others in boosting xylose.

Galacturonic acid content was significantly increased by the JF and
CML1 treatments (p< 0.05), rising by 43.84% and 36.99% compared to
CK, with the JF treatment showing the greater effect(Figure 2C).
Rhamnose content was significantly elevated by all treatments (p<
0.05), increasing by 192.62%, 132.79%, 29.10%, 61.07%, and 54.51% in
the JF, CM1, CM2, DK1, and DK2 treatments, respectively. The JF and
CMI treatments were significantly superior to the others in enhancing
rhamnose. Notably, fucose content showed no significant differences
among the treatments, ranging from 0.065 to 0.110. In summary, the
efficacy of different organic fertilizer treatments in upregulating specific
monosaccharides varied. The DK2 treatment was optimal for glucose
enhancement. The JF treatment significantly enhanced arabinose,
galactose, rhamnose, and galacturonic acid. The CM1 treatment was
relatively more effective for xylose accumulation. Fucose metabolism
remained insensitive to the organic fertilizer treatments.

3.4 Effects of different organic fertilizers on
free amino acids in Korla fragrant pears

The results demonstrate that different treatments significantly
modulated amino acid metabolism (Table 3). Among the umami

10.3389/fpls.2025.1680899

amino acids, the JF, CM1, CM2, and DK2 treatments significantly
increased the content of aspartic acid (Asp) in the fruit compared to
CK (p< 0.05), with increases of 35.26%, 82.92%, 29.48%, and
52.76%, respectively. The CM1 treatment exhibited the strongest
accumulation, significantly outperforming the other treatments.
The JF, CM1, and DK2 treatments significantly increased
glutamic acid (Glu) content, rising by 16.62%, 16.88%, and
11.86% compared to CK (p< 0.05). For umami amino acids, the
CM1 treatment yielded the most favorable results.

Regarding sweet amino acids, the JF, CM1, CM2, and DK2
treatments significantly increased serine (Ser) content compared to
CK (p< 0.05), with increases of 67.35%, 36.05%, 58.50%, and
93.20%, respectively. The DK2 treatment was significantly
superior to the others. All treatments (JF, CM1, CM2, DK1, DK2)
significantly increased alanine (Ala) content (p< 0.05), showing
increases of 48.07%, 32.39%, 16.97%, 11.57%, and 70.18% compared
to CK. The DK2 treatment demonstrated significantly greater
efficacy than the other treatments. Sweet amino acid
accumulation was strongest under the DK2 treatment.

For essential amino acids, all treatments (JF, CM1, CM2, DK1,
DK2) significantly increased threonine (Thr) content compared to
CK (p< 0.05), with increases of 87.75%, 31.05%, 25.93%, 25.93%, and
107.69%, respectively. The DKI1 treatment showed a relative
advantage over others for Thr. Valine (Val) content was
significantly increased by all treatments (p< 0.05), rising by 56.69%,
9.33%, 9.69%, 8.47%, and 84.91% in the JF, CM1, CM2, DK1, and
DK2 treatments, respectively, with DK2 yielding the highest Val
content. Methionine (Met) content was significantly elevated by all

TABLE 3 The effects of incorporating different green manures on the content of free amino acids in Korla fragrant pears (ug/kg).

Free Amino acid CK JF CM1 CcM2 DK1 DK2
asp 33.55 £ 0.99d 45.38 + 0.43c 61.37 £ 0.65a 43.44 £ 0.17¢ 31.7 £ 1.02d 51.25 + 1.99b
glu 7.76 + 0.04b 9.05 + 0.06a 9.07 + 0.06a 7.49 + 0.04b 7.37 +0.26b 8.68 + 0.23a
ser 1.47 + 0.10d 2.46 + 0.10b 2.00 + 0.08¢ 2.33 +£0.12b 1.94 £ 0.04c 2.84 £ 0.05a
his 0.38 + 0.08b 0.48 + 0.02b 0.51 + 0.06b 0.57 + 0.13b 0.42 + 0.04b 1.38 £ 0.07a
gly 0.49 + 0.20a 0.6 + 0.03a 0.41 + 0.03a 0.56 + 0.19a 0.36 + 0.02a 0.56 + 0.03a
thr 3.51 +0.03d 6.59 + 0.06b 4.6 £ 0.04c 4.42 £ 0.02¢c 442 £ 0.12¢ 7.29 £ 0.15a
arg 0.73 + 0.20a 0.93 + 0.34a 0.56 + 0.08a 0.54 + 0.05a 0.51 £ 0.11a 0.5 £ 0.11a
ala 3.89 +0.11e 5.76 + 0.13b 5.15 + 0.10c 4.55 +0.01d 4.34 + 0.23d 6.62 + 0.03a
tyr 0.54 + 0.08b 0.89 + 0.23a 0.41 + 0.08b 0.4 £ 0.03b 0.45 + 0.18b 0.49 + 0.14b

cys-s 0.45 + 0.00b 0.8 + 0.05a 0.86 + 0.03a 0.86 + 0.03a 0.52 + 0.00b 0.93 + 0.00a
val 8.15 + 0.12d 12.77 + 0.00b 8.91 £ 0.07¢ 8.94 + 0.06¢ 8.84 + 0.28¢ 15.07 £ 0.24a
met 0.69 + 0.02c 1.16 + 0.00b 0.97 + 0.02b 1.13 + 0.09b 1.04 + 0.02b 2.12 £ 0.07a
phe 0.44 + 0.02a 0.53 + 0.12a 0.47 £ 0.01a 0.51 + 0.09a 0.47 £ 0.03a 0.46 + 0.03a
ile 2.76 £ 0.01e 4.55 + 0.07b 3.06 + 0.04cd 2.92 + 0.07de 3.28 + 0.07¢ 5.72 + 0.14a
leu 0.54 + 0.04c 0.82 + 0.08b 0.61 + 0.00bc 0.65 + 0.06bc 0.53 + 0.02¢ 1.34 £ 0.05a
lys 0.28 + 0.08a 0.46 + 0.24a 0.23 + 0.00a 0.29 + 0.04a 0.21 £ 0.01a 0.28 + 0.03a
pro 2.10 + 0.32b 2.53 + 0.39ab 2.40 + 0.11ab 1.99 + 0.10b 2.23 +0.31ab 2.93 £0.29a

Data are presented as mean + standard deviation (n = 3), with a significance level of p = 0.05. Different lowercase letters in the same column indicate significant differences (p< 0.05).
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treatments (p< 0.05), increasing by 68.12%, 40.58%, 63.77%, 50.72%,
and 207.25% in the JF, CM1, CM2, DK1, and DK2 treatments,
respectively. Isoleucine (Ile) content was significantly increased by all
treatments (p< 0.05), showing gains of 64.86%, 10.87%, 5.80%,
18.84%, and 107.25% compared to CK. The DK2 treatment
resulted in significantly higher Ile content than the other groups.
Leucine (Leu) content was significantly increased by the JF, CMI,
CM2, and DK2 treatments (p< 0.05), with increases of 51.85%,
12.96%, 20.37%, and 148.15% compared to CK. The DK2 treatment
induced the most significant accumulation of Leu. Overall, the DK2
treatment demonstrated the most substantial increases in the majority
of essential amino acids (Thr, Val, Met, Ile, Leu).

Among other amino acids, all treatments (JF, CM1, CM2, DK1,
DK?2) significantly increased histidine (His) content compared to
CK (p< 0.05), with increases of 26.32%, 34.21%, 50.00%, 10.53%,
and 263.16%, respectively. The accumulation under the DK2
treatment was exceptionally pronounced. This study demonstrates
that organic fertilizer application enhances free amino acid content
in Korla Fragrant Pears. Further analysis indicates that the DK2
treatment exhibited the most significant effect on amino acid
accumulation. This treatment appears to promote the synthesis
and accumulation of amino acids through specific metabolic
pathways, playing a pivotal role in the overall regulation of amino
acid metabolism.

3.5 Effects of different organic fertilizers on
fatty acids in Korla fragrant pears

This study revealed the differential regulatory mechanisms of
green manure treatments on fatty acid metabolism in Korla Fragrant
Pear fruit (Table 4). The influence of different treatments on the
content of various fatty acids exhibited significant differences. Among
short-chain fatty acids, all treatments (JF, CM1, CM2, DK1, DK2)

10.3389/fpls.2025.1680899

significantly increased the content of C10:0 (decanoic acid) compared
to CK (p< 0.05), with increases of 52.54%, 240.34%, 133.22%,
148.47%, and 76.61%, respectively. The CMI treatment showed the
strongest accumulation, significantly outperforming the other
treatments (p< 0.05).

For medium-chain fatty acids, the JF and DKI treatments
significantly increased the content of C12:0 (lauric acid)
compared to CK (p< 0.05), rising by 9.14% and 17.44%,
respectively. The DKI1 treatment induced the strongest
accumulation. All treatments significantly increased the content
of C16:0 (palmitic acid) (p< 0.05), showing gains of 2.65%, 57.92%,
27.33%, 24.76%, and 58.39% in the JF, CM1, CM2, DK1, and DK2
treatments, respectively, compared to CK. The DK2 treatment
yielded the strongest accumulation of palmitic acid (p< 0.05).

Regarding long-chain monounsaturated fatty acids, all treatments
significantly increased the content of C18:1,c+t (cis + trans oleic acid)
(p< 0.05), rising by 13.94%, 78.20%, 31.34%, 16.65%, and 121.05% in
the JF, CM1, CM2, DKI, and DK2 treatments, respectively, compared
to CK. The DK2 treatment was the most effective. All treatments also
significantly increased the content of C24:1 (nervonic acid) (p< 0.05),
with increases of 12.46%, 144.64%, 53.62%, 70.53%, and 51.01%,
respectively. The CM1 treatment was the most effective for nervonic
acid accumulation.

For long-chain polyunsaturated fatty acids, all treatments
significantly increased the content of C18:2,trans (trans-linoleic
acid) (p< 0.05), showing increases of 10.64%, 74.43%, 39.26%,
23.88%, and 86.25% in the JF, CM1, CM2, DKI1, and DK2
treatments, respectively, compared to CK. The DK2 treatment
demonstrated the strongest accumulation effect. The content of
C18:3n3 (a-linolenic acid) was significantly elevated by all
treatments (p< 0.05), increasing by 40.29%, 87.93%, 48.95%,
40.68%, and 176.77% in the JF, CM1, CM2, DKI, and DK2
treatments, respectively. The DK2 treatment exhibited the greatest
accumulation capacity for o-linolenic acid.

TABLE 4 The effects of incorporating different green manures on the fatty acid content in Korla fragrant pears (ug/g).

CM1

CM2 DK1 DK2

10.040 + 0.010a

21.990 + 5.790a

235.920 + 1.180a

92.700 + 10.380a

274.230 + 126.010a

112.450 + 0.800a

19.050 + 0.170ab

181.270 + 1.780ab

14.320 + 0.090b

5.450 + 0.600ab

49.810 + 4.190a

6.880 + 0.720bc

20.820 + 4.170a

190.220 + 20.850ab

86.170 + 29.390a

247.270 + 130.900a

89.230 + 6.950a

14.040 £ 0.900bc

144.720 + 23.990abc

11.350 + 1.690bc

5.040 + 0.830ab

35.070 + 0.370b

7.330 £ 0.710b

26.600 + 3.790a

186.380 + 63.730ab

91.430 + 8.130a

150.130 + 7.670a

96.830 + 32.260a

12.470 + 5.240bc

128.720 + 44.470abc

10.720 + 3.710bc

4.120 + 1.880ab

38.460 + 6.710ab

5.210 + 0.680cd

18.430 + 2.010a

236.620 + 5.280a

80.750 + 2.470a

160.100 + 27.710a

108.630 + 6.110a

23.630 + 0.240a

193.530 + 1.020a

21.090 + 0.200a

6.150 + 0.500a

31.630 + 2.010b

Fatty acid CK JF
C10:0 0.003 + 0.001e 4500 + 0.640de
C12:0 0.023 + 0.010a 24.720 + 2.310a
Cl16:0 0.149 + 0.035b 153.350 + 1.700ab
C17:0 0.07 + 0.014a 80.660 + 1.380a
C17:1 0.141 + 0.061a 284.740 + 34.610a
C18:0 0.079 + 0.008a 79.030 + 0.930a
Cl18:1,c+t 0.011 + 0.003¢ 12.180 + 0.080bc
Cl18:2,trans 0.104 + 0.038¢ 114.97 + 1.17bc
C18:3n3 0.008 + 0.003¢ 10.69 + 0.03bc
C20:0 0.004 + 0.00b 4.110 + 0.220ab
C22:2 0.026 + 0.01b 28.780 + 1.620b
C24:1 0.01 + 0.003¢ 11.640 + 1.780c

25.320 + 1.680a

15.900 + 0.650bc

17.650 + 3.870b

15.630 + 0.650bc

Data are presented as mean + standard deviation (n = 3), with a significance level of p = 0.05. Different lowercase letters in the same column indicate significant differences (p< 0.05).
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Among long-chain saturated fatty acids, all treatments significantly
increased the content of C20:0 (arachidic acid) (p< 0.05), with increases
of 12.60%, 49.32%, 38.08%, 12.88%, and 68.49% in the JF, CM1, CM2,
DK1, and DK2 treatments, respectively, compared to CK. The DK2
treatment showed the strongest accumulation effect. The content of
C22:2 (docosadienoic acid) was significantly increased by all treatments
(p< 0.05), rising by 9.26%, 89.10%, 33.14%, 46.01%, and 20.08% in the
JE, CM1, CM2, DK1, and DK2 treatments, respectively. The CM1
treatment induced the strongest accumulation of docosadienoic acid.

Overall, the CM1 and DK2 treatments demonstrated strong
accumulation capabilities for the majority of fatty acid components,
particularly for C10:0 (decanoic acid), C16:0 (palmitic acid), C18:1,c+t
(oleic acid), C18:2,trans (trans-linoleic acid), C18:3n3 (o-linolenic
acid), C20:0 (arachidic acid), C22:2 (docosadienoic acid), and C24:1
(nervonic acid). This indicates that these two treatments significantly
promote the synthesis and accumulation of fatty acids.

3.6 Effects of different organic fertilizers on
volatile compounds in Korla fragrant pears

Cluster analysis (Figure 3A) revealed good reproducibility
among parallel samples within each treatment group (JF, CM1,
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CM2, DK1, DK2). Compared to the CK treatment, all organic
fertilizer treatments (JF, CM1, CM2, DK1, DK2) resulted in a
significant reduction in the total volatile compound content in
Korla Fragrant Pears. However, under the DK2 treatment
specifically, several individual compounds exhibited significantly
higher content than other treatments. These included Nonanal, 1-
Nonen-4-ol, 1-Octanol, 2,5-Dihydroxybenzaldehyde 2TMS
derivative, and 6-Methyl-5-hepten-2-one. Venn analysis
(Figure 3B) identified 16 core VOCs common to all five
treatments. These core VOCs overlapped with those found in CK
and showed a significant positive correlation with zinc (Zn) content
(Figure 3C). Notably, while Zn content decreased by 34.5% - 76.61%
across all treatment groups compared to CK, the magnitude of VOC
reduction did not exhibit a linear relationship with Zn loss. This
observation implied that Zn influences metabolic pathways
primarily through the regulation of enzyme activity rather than
solely via concentration-dependent mechanisms. The overall
volatile content decreased significantly by 7.27% - 58.29% in the
treated groups compared to CK. Aldehydes decreased by 1.40% -
60.08%, with specific aldehydes like Hexanal and Nonanal showing
significant reductions of 2.45% - 61.46%. Alcohol content also
decreased by 14.80%- 77.32%, while the total ester content
declined by 14.31% - 59.47%.

®) [ JCK[ | Others

4

Cluster analysis of VOCs in Korla fragrant pears (A), Venn Diagram (B) and Correlation Analysis (C). Data are presented as mean + standard deviation
(n = 3), with a significance level of P = 0.05. Different lowercase letters in the same column indicate significant differences (P< 0.05).
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4 Discussion

4.1 Soil physicochemical properties in
Korla fragrant pear orchards

Organic fertilizers, particularly microbial fertilizers and green
manures, play a crucial role in improving orchard soil
physicochemical properties. This is achieved primarily through the
microbially mediated humification of their organic matter, which
enhances nutrient availability, improves pore structure, and increases
aeration and water permeability. Notably, both microbial fertilizer
and green manure applications also demonstrated significant effects
in reducing soil pH and electrical conductivity (EC).

Both types of organic fertilizers lowered orchard soil pH
(Table 2). This phenomenon is closely associated with the acid-
base neutralization effects triggered by the microorganisms in
microbial fertilizers and the secretion of high concentrations of
oxalic and citric acids from green manure roots (Liu et al., 2021;
Saeed et al., 2021). This observation aligns with findings by Li et al.
(2024b) in their study on different fertilizer management practices
in a green manure-maize rotation system (Li et al.,, 2024). The CM1
and DK1 treatments exhibited the greatest reduction in soil pH,
likely attributable to the expanded root distribution and enhanced
acidification zone associated with their lower green manure
planting densities. Meanwhile, soil EC was also significantly
reduced following the application of microbial fertilizer and green
manure treatments (Table 2). This reduction is primarily attributed
to functional microorganisms in microbial fertilizers accelerating
the biotransformation of salt ions, reducing NO3™ accumulation
through pathways like dissimilatory nitrate reduction. Additionally,
the organic matter released during green manure decomposition
can fix and chelate salt ions in the soil (Zhou et al., 2023; Zhang
et al,, 2024), thereby decreasing free salt concentrations. Low-
density sweet clover proved most effective in lowering soil EC,
while both microbial fertilizer and green manure applications led to
a significant increase in soil organic matter (SOM) content.
(Table 2). The core mechanism involves green manure
incorporation providing soil microorganisms with abundant,
readily available carbon sources, greatly stimulating the microbe-
mediated humification process of organic matter (Hu et al., 2023).

Both microbial fertilizers and green manures enhanced the
content of soil available nutrients (Table 2). Microorganisms in
microbial fertilizers and nitrogen-containing precursor substances
secreted by green manure roots can stimulate microbial
mineralization processes, thereby increasing soil alkali-
hydrolyzable nitrogen (AN) content (Pu et al., 2022; Wei et al,
2025). Available phosphorus (AP) showed a significant increase
across all treatments. This improvement can be attributed to
organic colloids present in microbial fertilizer secretions, which
bind with cations such as iron, aluminum, and calcium in the soil,
thereby reducing the phosphate ion adsorption capacity of soil
colloids. The increase in soil AP is also directly related to the higher
acidic phosphatase activity in green manure roots. This enzyme
catalyzes the hydrolysis of organic phosphorus, increasing available
phosphorus supply (Hummel et al., 2021). Regarding available
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potassium (AK), all treatments showed significant increases
compared to CK. This stems from organic acids produced by
microbial fertilizers lowering the microenvironmental pH and
disrupting the crystal structure of potassium-containing minerals
in the soil, thereby enhancing available potassium content. Green
manure facilitates the biological cycling and mobilization of
potassium (He et al., 2020). These changes in available nutrients
are consistent with the nutrient activation theory proposed for
green manures by Amede et al. (2021) (Amede et al., 2021). Low-
density sweet clover and oil sunflower showed particularly
significant improvements in available nutrients. In summary,
planting low-density sweet clover effectively improves the soil
physicochemical properties in Korla fragrant pear orchards.

4.2 Mineral elements in Korla fragrant
pears

Different organic fertilizers exerted varied regulatory effects on
the mineral element content of Korla Fragrant Pears (Figure 1).
Potassium (K) dynamics showed that compared to CK, the JF
treatment reduced fruit K content by 2.7%, while the CM1 and DK1
treatments significantly increased it by 12.6% and 16.8%,
respectively. This trend exhibited a positive correlation with
changes in soil available potassium, indicating a preferential
allocation of minerals from green manure to the fruit via xylem
transport. Regarding phosphorus (P), however, the JF treatment
significantly decreased its content, whereas the DK1 treatment led
to a substantial increase (Figure 1A). The lack of significant
difference in other treatments may be related to the adsorption
and fixation characteristics of soil available phosphorus (Shen et al.,
2011), highlighting the specificity of P availability influenced by
green manure type.

At the trace element level (Figure 1B), the CM1 treatment
increased manganese (Mn) content. This was attributed to oxalic
acid produced during green manure decomposition forming mobile
complexes with Mn (Chen et al., 2013). The increase in iron (Fe)
content involved green manure residues providing carbon sources
for iron-reducing bacteria, promoting the reduction of Fe,O; to
bioavailable Fe*™ (Lyu et al., 2025). By contrast, copper (Cu) levels
exhibited minimal variation across the treatments, possibly because
acidification promoted the formation of Cu-organic complexes,
which in turn constrained its bioavailability (Hu et al., 2024; Li
et al,, 2024). All treatments significantly reduced zinc (Zn) content
(by 34.5-61.9%), with the JF treatment exhibiting the strongest
inhibition. Two main factors contribute to this, competitive uptake
of Zn by green manure crop roots and fixation through humic acid
chelation (Klinkert and Comans, 2020). Griter et al. (2017) found
that long-term combined application of farmyard manure and
green manure effectively increased soil zinc concentration. While
the application of green manure enhanced wheat yield, the zinc
concentration in the grains was not notably improved (Griiter et al.,
2017). This suggests that applying green manure alone does not
necessarily increase zinc content in all crops; the specific effect
depends on the crop species and fertilization practices.
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4.3 Secondary metabolites

Fruit flavor is closely associated with monosaccharide content.
Monosaccharides such as glucose and fructose are primary
contributors to the sweetness of fruits, and their levels directly
influence the perceived freshness and sweetness of the fruit
(Nookaraju et al., 2010). Both microbial fertilizer and green
manure applications increased the monosaccharide content in
Korla Fragrant Pears, with microbial fertilizer demonstrating a
more pronounced effect on fruit monosaccharide accumulation.
This enhancement can be attributed to photosynthetic bacteria
present in microbial fertilizers, which form symbiotic associations
with plant roots. By generating reducing hydrogen and ATP
through their own photosynthesis, they indirectly enhance the
light reaction efficiency in plant leaves, promoting carbon dioxide
fixation and carbohydrate synthesis (van der Heijden et al., 2016).
The effect of green manure is closely linked to the restructuring of
root-nutrient interaction networks. Green manure treatment
increases root biomass and expands the active root absorption
zone (Wang et al,, 2023), significantly improving nitrogen uptake
efficiency and water use efficiency, thereby providing sufficient
carbon and nitrogen substrates for sugar metabolism (Wei et al,
2024). Green manure treatment significantly enhances the net
photosynthetic rate (Pn) by improving soil aggregate structure,
nutrient availability, root development, and chlorophyll synthesis,
thereby strengthening the coupling between photosynthesis and
sugar transport (Wang et al., 2024). Zhang et al.(2024b) found in
studies on tomato fruit nutritional quality that the efficiency of
photosynthate transport to the fruit via the apoplastic pathway is
enhanced (Zhang et al., 2024) driving up the expression of plasma
membrane sucrose transporters (SUT1) (Leister, 2023) ultimately
promoting monosaccharide accumulation in sink organs.

Free amino acids, as crucial nitrogen metabolites in plants, play
key roles in physiological processes including protein synthesis,
regulation of secondary metabolism, and stress response (Galili
etal., 2016). Their content directly determines fruit flavor, taste, and
nutritional value (Silva et al., 2004). Regarding soil nitrogen
bioavailability, enzymes secreted by microorganisms in microbial
fertilizers accelerate the decomposition of organic nitrogen,
converting it to ammonium or nitrate nitrogen, while promoting
nitrogen absorption and transport in the pear roots (Sieradzki et al.,
2023). Among green manure treatments, low-density sweet clover
and high-density oil sunflower significantly enhanced free amino
acid content. The incorporated green manure residues, with their
suitable carbon-to-nitrogen (C/N) ratio, activate microbial activity,
accelerating the mineralization of organic nitrogen into nitrate and
ammonium nitrogen (Mooshammer et al., 2014). Duan et al. (2024)
long-term field trial demonstrated that intercropping green manure
in tea plantations increased soil ammonium nitrogen, nitrate
nitrogen, and available nitrogen by 25.04%, 77.84%, and 48.90%,
respectively (Duan et al., 2024). Inorganic nitrogen absorbed
through green manure roots is converted to amino acid
precursors via the glutamine synthetase (GS) pathway (Xing et al,
2023). Glucose in Korla Fragrant Pears serves as the carbon skeleton
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for amino acid synthesis. Through the Embden-Meyerhof-Parnas
(EMP) pathway and the tricarboxylic acid (TCA) cycle, it generates
intermediates such as o-ketoglutarate and oxaloacetate (Guo et al.,
2023). These intermediates are direct precursors for synthesizing
amino acids like glutamate and aspartate (Liu et al., 2020), further
driving the synthesis and accumulation of free amino acids.

Fruit fatty acids act as precursors for aroma compounds and
play a critical role in pear flavor formation (Song and Bangerth,
2003). Although esters and aldehydes constitute the primary
contributors to pear flavor, fatty acids play a pivotal role in
shaping its complexity and uniqueness by modulating the
oxidative modification pathways of volatile compounds (Maire
et al., 2013). This study found that different microbial fertilizer
and green manure treatments significantly modulated the fatty acid
composition in Korla Fragrant Pear fruit. Green manure,
particularly low-density sweet clover and high-density oil
sunflower, significantly enhanced fruit fatty acids. This effect
correlates with the capacity of photosynthetic bacteria present in
microbial fertilizers to enhance leaf chlorophyll content and
photosynthetic enzyme activity in pear trees. This enhancement
improves carbon fixation efficiency, thereby generating increased
levels of photosynthetic assimilates, such as glucose. Glucose is
converted via glycolysis to pyruvate, which is then transformed into
acetyl-CoA, the fundamental precursor for fatty acid synthesis (Shi
and Tu, 2015). Sieradzki et al. (2023) found in studies on chickpea
growth and yield under drought that applying microbial fertilizer
containing plant growth-promoting rhizobacteria, including
photosynthetic bacteria, significantly increased leaf chlorophyll
content (Sieradzki et al., 2023). Green manure input is associated
with the upregulation of fatty acid desaturase FAD2/3 activity (Jin
et al,, 2024). From a metabolic source perspective, plant fatty acid
synthesis predominantly depends on the acetyl-CoA carboxylase
(ACCase) system localized within chloroplasts and plastids (Zhou
et al., 2024). Furthermore, green manure cultivation significantly
increases photosynthetic carbon assimilation efficiency in pear tree
leaves by enhancing soil nutrient availability and soil B-glucosidase
activity (Khan et al., 2025). The increase in photosynthates not only
provides ample acetyl-CoA substrate for fatty acid synthesis (van
Rossum et al.,, 2016) but also upregulates the expression of the
BnFAXG6 gene via sugar signaling pathways, thereby promoting lipid
synthesis (Huang et al., 2021).

4.4 Volatile organic compounds

Zinc (Zn) deficiency disrupts volatile organic compound (VOC)
synthesis through a dual mechanism. Firstly, as an essential cofactor
for numerous enzymes such as alcohol dehydrogenase (ADH, EC
1.1.1.1), Zn deficiency likely directly reduces enzymatic activity
(Dalziel, 1963). Compared to the CK treatment, all organic fertilizer
treatments (JF, CM1, CM2, DK1, DK2) resulted in a significant
reduction in total volatile content in Korla Fragrant Pears, with
aldehydes decreasing by 1.40-60.08%. Reduced Zn content in pears
diminished ADH activity, thereby impairing the oxidation of
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alcohols to aldehydes. Consequently, the conversion of 1-hexanol to
hexanal was inefficient, leading to significant reductions (ranging
from 2.45% to 61.46%) in aldehydes such as hexanal and nonanal.
ADH is intrinsically reversible, catalyzing both the oxidation of
alcohols to aldehydes (forward reaction) and the reduction of
aldehydes to alcohols (reverse reaction) (Ratautas et al, 2017).
When Zn>" deficiency lowers ADH activity, the reverse reaction
efficiency decreases more significantly, hindering the conversion of
aldehydes to alcohols and resulting in a 14.80-77.32% decrease in
alcohol content.

Secondly, Zn is an integral component of the active site of
copper-zinc superoxide dismutase (Cu/Zn SOD, EC 1.15.1.1)
(Wada et al, 2013). Tts deficiency reduces Cu/Zn SOD activity,
leading to reactive oxygen species (ROS) accumulation (Tian et al.,
2021). Additionally, arginine (Arg) deficiency (measured via HPLC-
UV; content reduced by 14.29-28.57%) leads to ROS accumulation.
This occurs because Arg is converted by arginine decarboxylase
(ADC) into putrescine and subsequently polyamines, which
function as ROS scavengers. Consequently, ROS accumulation
inhibits lipoxygenase (LOX)-catalyzed oxidation of linoleic acid,
thereby reducing the production of aldehydic flavor compounds
such as decanal (Pasquariello et al., 2015). On the other hand, ROS
may accelerate the non-enzymatic peroxidation of residual
aldehydes (e.g., decanal) to carboxylic acids (e.g., decanoic acid),
exacerbating flavor loss. Studies in apricots have confirmed that
increased LOX activity promotes the accumulation of C6/C9
aldehydes, enhancing “green aroma” (Sun et al.,, 2024).
Conversely, attenuated LOX activity weakens the linoleic/linolenic
acid oxidation pathway, reducing the generation of green leaf
volatiles like 2-hexenal (decrease of 7.03-55.59%) (Chen et al.,
2020), and causing the accumulation of linoleic and linolenic
acids (increases of 86.5% and 162.5%).

When Zn is deficient in the fruit, mitochondrial membrane
disorganization leads to reduced electron transport chain (ETC)
efficiency and increased electron leakage. This results in massive
accumulation of ROS such as superoxide anion (O,) and hydrogen
peroxide (H,0,), triggering oxidative stress (Gupta et al., 2024).
Elevated ROS levels directly target key functional domains of the
pyruvate dehydrogenase (PDH) complex, with the lipoic acid
cofactor being a primary site of oxidative attack. This results in
the oxidative inactivation of lipoic acid (Lee and Kim, 2024) and
impairing PDH’s ability to catalyze the conversion of pyruvate to
acetyl-CoA (Lei et al,, 2024). Acetyl-CoA is an essential precursor
for ester synthesis (Shi et al., 2021). Its deficiency directly limits the
biosynthesis of esters (e.g., butyl acetate, isoamyl levulinate), leading
to a 14.31-59.47% decrease in total ester content.

Pearson correlation analysis revealed an inverse relationship to
the promoting effect of Zn on VOCs. Manganese (Mn) and iron
(Fe) elements showed significant negative correlations with most
volatile compounds (r = -0.34 to -0.98). Mn excess competitively
inhibits ZIP family transporters, reducing Zn bioavailability
(Shanmugam et al., 2011). Under Fe** overload and H,0,
accumulation, excessive -OH radicals are generated through the
Fenton reaction within fruit tissues, inducing oxidative damage to
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aroma precursors (Yin et al., 2024). The interaction of these two
elements may also interfere with the jasmonic acid (JA) signaling
pathway, subsequently downregulating the expression of LOX and
alcohol acyltransferase (AAT) genes.

The significant reduction in fucose content in Korla Fragrant
Pears amplified the negative effects of Zn deficiency. As a core
component of pectic polysaccharide rhamnogalacturonan II (RG-
II) (Waszczak et al., 2024), a concurrent 20% decrease in tyrosine
(Tyr) levels interferes with phenylalanine hydroxylase activity,
indirectly affecting the generation of lignin precursors like
coumaric acid (Zhou et al., 2021). Deficiencies in fucose and
tyrosine (Tyr) compromise cell wall integrity, resulting in
widened escape channels for volatile compounds. This structural
alteration increases the susceptibility of aldehydes and esters to both
volatilization and enzymatic degradation by oxidative enzymes
(Muller et al., 2009). Together, these factors constitute a cascade
regulatory network described as “Zn deficiency - metabolic
imbalance - oxidative stress - weakened defense”.

In conclusion, the decline in soil Zn availability induced by
microbial fertilizer application and green manure cultivation is a
key limiting factor responsible for the reduced synthesis of
characteristic VOCs (particularly aldehydes, alcohols, and esters)
in Korla Fragrant Pears. The underlying mechanism likely involves
the inhibition of key enzyme activities such as ADH and SOD,
consequently affecting metabolic pathways including fatty acid
oxidation, alcohol-aldehyde conversion, antioxidant balance, and
acetyl-CoA supply.

5 Conclusion

Organic fertilizers synergistically improve the core nutritional
parameters of Korla Fragrant Pears by optimizing the soil
microenvironment and regulating metabolic networks. Specifically,
the application of microbial fertilizers combined with green manure
cultivation significantly lowered orchard soil pH, increased soil
organic matter content, and enhanced soil electrical conductivity,
collectively reshaping soil physicochemical properties. These
practices also significantly promoted the accumulation of
monosaccharides, fatty acids, and free amino acids in the fruit.
Microbial fertilizer application was particularly effective in
enhancing fruit monosaccharide content, while low-density sweet
clover (CM1) and high-density oil sunflower (DK2) treatments were
most effective in increasing fruit fatty acid and free amino acid
content. However, green manure cultivation induced a decrease in
soil zinc (Zn) availability. This initiated a cascade effect that
suppressed key flavor-related metabolic pathways, markedly
hindering the biosynthesis of volatile alcohols, aldehydes, and
esters. Consequently, the overall concentration of volatile organic
compounds (VOCs) declined, ultimately attenuating the fruit’s
signature aromatic profile. In summary, to fundamentally enhance
the core nutritional quality of Korla Fragrant Pears and improve soil
fertility, the optimized sweet clover (CM1) green manure strategy is
recommended. Nevertheless, to balance the improvement in basic
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nutritional quality with the maintenance of characteristic flavor
(compromised due to inhibited VOC synthesis), it is imperative to
concurrently strengthen Zn nutrition management when
implementing green manure cultivation. This integrated approach
is essential for effectively promoting the sustainable development of
the Korla fragrant pear industry.
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