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Accurate and prompt monitoring of brown planthopper (BPH) infestation is

crucial for rice production stability. The unique advantages of remote sensing

in mapping the location and severity of pest damage are widely acknowledged.

However, the crypticity of BPH early damage complicates the identification of

infested areas. This study aims to detect BPH early infestation in paddy fields

using an unmanned aerial vehicle (UAV) hyperspectral imaging system. Two data

acquisition campaigns were conducted during the BPH early infestation stage.

Considering the dynamic spatial distribution of BPH, the pest population density

records were averaged to indicate infestation severity during the investigation

period. Three novel indices were designed to detect the BPH early damage.

Specifically, the Dual-temporal Stressed Canopy Spectral Relative Difference

Index (DSRI) and the Dual-temporal Stressed Canopy Spectral Direct

Difference Index (DSDI) were proposed based on the dual-temporal spectral

changes of rice canopy. Furthermore, an opposite trend of DSDI in the short-

wavelength (399–750 nm) and long-wavelength (750–1006 nm) spectral regions

was observed for samples with varying BPH severity. Thus, the DSDI-SL was

further proposed. The optimal feature combination of DSRIs, DSDIs and DSDI-

SLs was selected using Lasso regularization and recursive feature elimination

(RFE). An XGBoost classifier was applied to establish the BPH early detection

model, which achieved an overall accuracy (OA) of over 85%, outperforming the

model established by mono-temporal collected data. In the context of global

climate change and escalating challenges to food security, our research

introduces a novel framework for the efficient detection and quantitative

description of early-stage BPH damage.
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1 Introduction

Rice accounts for 26.2% of the global yield of grain and oil

crops, serving as the primary dietary staple for over half of the

global population. China, as the world’s largest producer of rice,

contributes approximately 30% to the global annual rice production

(Fao, 2024). The brown planthopper (Nilaparvata lugens Stål, BPH)

is one of the most destructive pests to rice, infesting nearly 26.6 ×

104 km2 of paddy fields annually in China (Guo et al., 2023). BPH

infestation substantially reduces grain weight, causing yield losses of

10%-80% and even total crop failure (Liu and Sun, 2016;

Balachiranjeevi et al., 2019; Satturu et al., 2020; Jeevanandham

et al., 2023). Therefore, there is an urgent need to establish a robust

monitoring system for BPH infestation to facilitate early warning

and control efforts.

The BPH is a typical phloem-feeding insect, making it highly

cryptic as its feeding sites are normally located on the stems of rice

plants (Sriram et al., 2024). When visible degeneration of the rice

phenotype occurs, it usually signifies that the BPH population density

has already surpassed the warning threshold for pest control (Yu

et al., 2022; Choi et al., 2025). Accurately and promptly locating BPH

occurrences and assessing their severity are fundamental for

implementing targeted control measures. Currently, the assessment

of BPH damage still primarily relies on manual field surveys. This

approach is time-consuming and labor-intensive, permitting only the

collection of sampling statistics from small areas. Pest forecasting

lamps can provide information on the timing of outbreaks and the

relative population density of BPH, but fails to delineate the precise

locations and severity of infestations (Zhang and Cheng, 2013; Wan

et al., 2016). In contrast, remote sensing provides spatiotemporally

continuous observations of paddy fields, showing great potential for

detecting BPH infestations (Bai et al., 2023; Xia et al., 2024; Yuan

et al., 2025; Zhang et al., 2025).

Generally, imaging data from aerial or satellite remote sensing

platforms are unable to directly capture insect information. Instead,

the spatial distribution and pest severity are indirectly detected

through phenotypic changes in the host plants (Zhang et al., 2019).

BPH pierces the phloem of rice plants with its stylet (a needle-like

mouthpart) to suck sap, leaving a hollow stylet sheath in situ after

feeding, which obstructs nutrient transport within the rice plants

(Zhao et al., 2023; Hu et al., 2024). The deficiency of water and

inorganic salts hampers the ability of rice plants to synthesize

photosynthesis-required pigments, leading to symptoms such as

yellowing and wilting, and increasing the risk of secondary disasters

(Zheng et al., 2023). Most current research predominantly focuses

on the mechanisms of resistance in rice involving endogenous

hormones and genes under BPH infestation (Lu et al., 2022; Chen

et al., 2023; Xu et al., 2024). Findings regarding the use of rice

canopy phenotypic traits to detect the spatial distribution of BPH

are limited. Several studies have investigated the detectability of

BPH damage using remote sensing techniques through controlled

experiments. For instance (Xiong et al., 2024), demonstrated that

near-infrared (NIR) reflectance of the rice canopy, temperature

differences between the canopy and air, and leaf chlorophyll content

are significantly negatively correlated with BPH population density.
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(Tan et al., 2019) established that the ratio index derived from the

red-edge spectral region can serve as a reliable indicator for both the

physiological compensation and the subsequent stress responses of

rice plants to BPH infestation. However, the complex paddy habitat,

coupled with the crypticity of BPH damage, complicates the direct

application of these findings to field conditions (Zhang et al., 2023;

Mochizuki et al., 2024).

A few studies have endeavored to detect BPH damage utilizing

medium-resolution satellite optical imagery, e.g., Landsat, SPOT

(Ghobadifar et al., 2016a, b). Nonetheless, the challenges posed by

the long revisit cycles of satellites and frequent cloud cover limit the

usability of optical satellite data for monitoring BPH damage during

critical periods. Additionally, the relatively coarse spatial and

spectral resolutions may dilute the signals from host plants,

potentially leading to the omission of crucial features associated

with rice plants under mild BPH stress, e.g., low pest densities, the

early stages of infestation (Chen et al., 2024). Unmanned aerial

vehicle (UAV) enhance flexibility in data acquisition timing.

Equipped with high-throughput imaging sensors, UAV-based

data are capable of delivering detailed phenotypic information on

host plants during critical pest infestation stages, thereby offering

valuable insights for pest localization and damage severity

assessment (Hongo et al., 2024; Xia et al., 2024). Yet, to our

knowledge, no prior studies have utilized UAV data specifically

for detecting BPH early damage.

Since BPH does not directly attack the leaves, the phenotypic

traits of the rice canopy change marginally during the early stages of

BPH infestation (Yang et al., 2024). It has been revealed that the

physiological characteristics of rice exhibit delayed response to BPH

damage (Chen and Liu, 2023). Therefore, it is essential to capture the

optical signals of rice plants under mild stress conditions. Otherwise,

the practical applicability of monitoring results could be notably

diminished. Another challenge arises from the dynamic spatial

distribution of BPH populations in field conditions. In controlled

experiments, BPH density within each rice cluster is typically

consistent. In contrast, BPH populations exhibit considerable

spatiotemporal variability in paddy field due to various driving

factors, e.g., habitat diversity, reproductive dynamics (Rashid et al.,

2016, 2017). This implies that the phenotypic traits of infested rice

canopies might not accurately correlate with the BPH damaged

severity recorded concurrently. Consequently, the impact of the

dynamic changes in pest population densities should be considered

when remotely detecting BPH damage.

Although previous studies have explored the detectability of

remote sensing for monitoring BPH infestation at different scales,

its effectiveness in identifying this pest at early stages under field

conditions remains uncertain. To address this issue, we propose a

novel method for detecting BPH during the early infestation period

using dual-temporal hyperspectral UAV images. Specifically, we (1)

assess the uncertainty of remotely detected results of BPH

infestation using mono-temporal spectral-based features; (2)

propose a novel method for detecting BPH infestation based on

dual-temporal spectral differences of the rice canopy; (3) evaluate

the applicability of the proposed method in identifying varying

degrees of BPH severity at the early stage of infestation.
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2 Materials and methods

2.1 Study area

The research paddy field is located at the Baiyun Experimental

Base, Guangdong Academy of Agricultural Sciences (23°39’ N, 113°

42’ E, Figure 1). The area has a warm and humid climate, with an

annual average temperature of about 23°C, relative humidity of

approximately 74.8%, and about 1906 hours of sunshine annually.

The average annual precipitation is approximately 1700 mm. The

research paddy field spans an area of approximately 1135 m², and

the rice variety used in the experiment is ‘Nanjing Xiang Zhan’.
2.2 Data collection and processing

2.2.1 Field investigation
The observational experiment was conducted during the late rice

planting season on September 30 (T1) and October 8 (T2), 2024,

when the rice was at the heading stage. To minimize interference

from other pests and diseases, targeted control measures were

consistently implemented within the research paddy field. A total

of 52 observation plots, each measuring 1m × 1m, were distributed

throughout the field (Figure 2). Based on alerts from the pest

forecasting lamp at the experimental base, the investigation was

conducted during the early stage of BPH infestation. No visible

phenotypic degradation of the rice was observed during this period.

Five clumps of rice located at the four corner points and the

center of each observation plot were selected as sampling targets.

The number of BPH in each clump was counted, and the average

was calculated to represent the BPH population in the plot.

Comprehensively referencing the “Rules of investigation and

forecast for the rice planthopper (Nilaparvata lugens Stål and
Frontiers in Plant Science 03
Sogatalla furcifera Horváth) (GB/T 15794-2009)” and the

“Technical regulations for comprehensive control of major pests

affecting high quality rice in Guangdong (DB44/T 2212-2019)”, the

averaged BPH population was classified into three levels: mild

infestation (< 5 individuals per clump), moderate infestation (5–

10 individuals per clump), and severe infestation (> 10 individuals

per clump).

2.2.2 UAV hyperspectral images collection and
preprocessing

The UAV hyperspectral data collection was conducted

simultaneously with the ground-based field survey. Flight times

ranged from 11:00 AM to 2:00 PM under sunny conditions. A 300

TC hyperspectral camera (Yiruisi Remote Sensing Technology Co.,

Ltd., Beijing, China) was mounted on a DJI M300 quadcopter

platform (DJI Technology Co., Ltd., Shenzhen, China) to capture

hyperspectral imagery of the paddy field. The 300 TC camera

comprises 304 bands, providing spectral information ranging

from 399–1006 nm, with a spectral resolution of 2 nm. The UAV

flew at an altitude of 50 m above ground level, producing an image

spatial resolution of approximately 5 cm. The lateral and heading

spatial overlaps of 70%. A standard whiteboard was placed at the

edge of the paddy field during the flight for reflectance calibration.

Additionally, a UAV multispectral orthophoto was captured as

reference data for geographic registration and localization of the

observation plots.

The hyperspectral raw data were radiometrically calibrated

using the calibration files provided by MegaCube 2.14.0 (Yiruisi

Remote Sensing Technology Co., Ltd., Beijing, China). Based on the

multispectral reference orthophoto, the hyperspectral images were

registered and mosaicked in ArcMap 10.4 and ENVI 5.3.1. The

mosaicked images were then imported into MegaCube software to

generate a hyperspectral hypercube. Finally, the digital number
FIGURE 1

(A) Experimental location and (B) research paddy field.
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(DN) values of the hyperspectral images were converted to

reflectance using the ground-based standard whiteboard.

Based on the positions of the observation plots provided by the

orthophoto, the vector files (1m × 1m square, 441 pixels) of each

plot were delineated on the hyperspectral images. Pixels within

these vector files were extracted as analysis samples, with their labels

corresponding to the BPH infestation severity of each plot.
2.3 Mono-temporal spectral-based BPH
identification features

Since BPH infestation can induce physiological changes in rice,

24 vegetation indices (VIs) associated with vegetation biochemical

components and structural characteristic were selected to assess the

effectiveness of mono-temporal spectral-based features in detecting

BPH infestation severity recorded concurrently (Table 1).
2.4 Dual-temporal spectral difference-
based BPH identification features

2.4.1 Construction of dual-temporal spectral
difference-based indices

Considering the spatial dynamic variability of BPH distribution,

the pest population counts from two separate investigation dates

were averaged to denote the infestation degree during this period.

These averaged counts were then classified into three levels based

on the criteria for BPH infestation severity outlined in section 2.2.1.
Frontiers in Plant Science 04
The development of the indices was guided by two assumptions:

(1) the spectral changes of healthy rice during growth follow

predictable trends, whereas BPH infestation alters the magnitude

of such changes; (2) if rice is damaged by BPH (i.e., its nutrient

transport system is impaired), its spectral variation patterns are

expected to differ from those of healthy rice. For example, suppose

the NIR reflectance of a rice clump is 0.25 at T1. Under healthy

growth conditions (before maturity), it would normally increase to

0.30 at T2 (Prabhakar et al., 2024). However, whether a BPH

infestation occurred during the subsequent growth period or was

already present before T1, the NIR reflectance of damaged rice at T2

may increase only to 0.28 or even decrease. Thus, the spectral

differences between T1 and T2 provide a basis for detecting

BPH infestation.

To comprehensively characterize the reflectance changes in

the rice canopy caused by BPH infestation, the Dual-temporal

Stressed Canopy Spectral Relative Difference Index (DSRI) and

the Dual-temporal Stressed Canopy Spectral Direct Difference

Index (DSDI) were proposed. DSRI emphasizes the relative

spectral changes of the damaged rice canopy, which can reduce

the impact of varying environmental illumination on detection

results. In contrast, DSDI emphasizes the magnitude of direct

spectral changes in damaged rice canopy, allowing sensitive

detection of BPH-induced spectral variations. When calculating

DSDI, it is important to note that the reflectance of shaded and

sunlit leaves differs considerably. Directly using the dual-temporal

reflectance differences as indicators for BPH identification can

introduce substantial uncertainty. To mitigate this effect, each

pixel’s difference spectrum is normalized to the range [0, 1] using
FIGURE 2

(A) Location of the plots within the paddy field. The southwest corner was reserved for other experiments, and no observation plots were
established there. (B) Rice morphology during field survey (no visible symptoms in damaged rice). (C) Weather conditions during UAV hyperspectral
image acquisition.
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min-max normalization. The formulas for calculating DSRI and

DSDI are as follows (Equations 1, 2):

DSRI   =   (Rlate − Rearly)=(Rlate + Rearly) (1)

DSDI   =  Normmin−max(Rlate − Rearly) (2)

where Rearly and Rlate denote the reflectance of rice canopy

collected at T1 and T2, respectively. Normmin-max denotes the min-

max normalization. Calculation examples of these two indices are

provided as follows. Assuming that the rice canopy reflectance at

800 nm is 0.25 at T1 and 0.30 at T2, DSRI for this band is calculated

as (0.3 - 0.25)/(0.3 + 0.25) = 0.09. For DSDI, the reflectance

difference between T1 and T2 is first calculated (e.g., 0.3 - 0.25 =

0.05), and then a min-max normalization is performed on the

difference spectrum of each pixel.
Frontiers in Plant Science 05
Distinctly opposite trends in the DSDI were observed across

different BPH infestation severity in the short-wavelength (399–750

nm) and long-wavelength (750–1006 nm) spectral regions (refer to

Section 3.1 for details). Based on these observations, the DSDI-SL

was further developed. The construction process is as follows:
1. Linear Discriminant Analysis (LDA), SHapley Additive

Explanations (SHAP), and Analysis of Variance

(ANOVA) were collectively employed to select DSDI

from representative bands as candidate factors for the

construction of DSDI-SL. LDA selects the most

discriminative factors for BPH severity identification by

maximizing the ratio of between-class variance to within-

class variance (Fisher, 1936). SHAP provides feature

importance explanations by quantifying the contribution

of each factor to model predictions, which is particularly
TABLE 1 Details of the vegetation indices used for BPH monitoring in mono-temporal scenario.

Vegetation indices abbr. Formula References

Photochemical Reflectance Index, PRI (R531 − R570)=(R531 + R570) (Penuelas et al., 1994)

Normalized Green-Red Difference Index, NGRDI (R550 − R665)=(R550 + R665)   (Tucker, 1979)

Green Leaf Index, GLI (R550 − R665) + (R550 − R490)
(R550 + R665) + (R550 + R490)

(Louhaichi et al., 2001)

Chlorophyll Index Green, CIG R865=R550 − 1 (Gitelson et al., 2003)

Normalized Difference Vegetation Index, NDVI (R865 − R680)=(R865 + R680) (Rouse et al., 1973)

Chlorophyll Vegetation Index, CVI (R865 � R705)=(R550 � R550) (Vincini et al., 2008)

Anthocyanin Reflectance Index, ARI1 1=R550 − 1=R700 (Gitelson et al., 2001)

Anthocyanin Reflectance Index, ARI2 R800 � (1=R550 − 1=R700) (Gitelson et al., 2001)

Green Normalized Difference Vegetation, GNDVI (R780 − R550)=(R780 + R550) (Gitelson and Merzlyak, 1998)

Normalized Difference Red Edge Index, NDRE (R790 − R720)=(R790 + R720) (Cao et al., 2019)

Red Edge Inflection Point, REIP 700 + 40� ½0:5� (R720 + R720) − 700�
R740 − R700

(Curran et al., 1995)

Modified Chlorophyll Absorption Ratio Index, MCARI ½R700 − R670 − 0:2� (R700 − R550)� � R700

R670

(Daughtry et al., 2000)

Modified Red Edge Normalized Difference Vegetation Index, MRENDVI (R750 − R705)=(R750 + R705 − 2� R445) (Sims and Gamon, 2002)

Modified Red Edge Simple Ratio, MRESR (R750 − R445)=(R705 − R445) (Sims and Gamon, 2002)

Modified Triangular Vegetation Index, MTVI 1:2� ½1:2� (R800 − R550) − 2:5� (R670 − R550)� (Haboudane et al., 2004)

Triangular Vegetation Index, TVI 60� (R750 − R550) − 100� (R670 − R550) (Broge and Leblanc, 2001)

Vogelmann Red Edge Index 1, VERI1 R740=R720 (Vogelmann et al., 1993)

Vogelmann Red Edge Index 2, VERI2 (R734 − R747)=(R715 + R726) (Vogelmann et al., 1993)

Structure Insensitive Pigment Index, SIPI (R800 − R445)=(R800 − R680) (Penuelas et al., 1995)

Plant Senescence Reflectance Index, PSRI (R680 − R500)=R750 (Merzlyak et al., 1999)

Carotenoid Reflectance Index 1, CRI1 1=R510 − 1=R550 (Gitelson et al., 2002)

Carotenoid Reflectance Index 2, CRI2 1=R510 − 1=R700 (Gitelson et al., 2002)

Chlorophyll Sensitive Index, CSI
2:5� R490

R705
� R865 − R705

R865 + R705

(Zhang et al., 2022)

LAI-insensitive Chlorophyll Index, LICI R735

R720
−
R573 − R680

R573 + R680

(Li et al., 2020)
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Fron
useful for handling nonlinear relationships and high-

dimensional data (Lundberg and Lee, 2017). ANOVA

statistically evaluates the significance of variance in each

factor across different BPH infestation severity levels

(Fisher, 1954). The integration of these three methods

combines linear and nonlinear strengths to ensure a

reliable and optimal selection outcome. Specifically, the

evaluation scores from LDA, SHAP, and ANOVA were

individually normalized and then averaged to form a joint

determination indicator, which was used to assess the

effectiveness of DSDI at various bands in differentiating

BPH infestation severity.

2. The short-wavelength spectral region (399–750 nm) was

divided into six subintervals, including violet (399–450

nm), blue (450–520 nm), green (520–580 nm), yellow-

orange (580–630 nm), red (630–680 nm), and short-

wavelength side of red-edge (680–750 nm). According to

the peak positions of the joint assessment score, the most

representative bands of DSDI were selected within the six

short-wavelength spectral intervals and within the long-

wavelength spectral region (750–1006 nm).
Based on the selected DSDI bands, the DSDI-SL were

constructed via the normalized difference formula (Equation 3):

DSDI� SL =  
Dlong�wave �Dshort�wave

Dlong�wave + Dshort�wave
(3)

where Dlong-wave refers to the DSDI value corresponding to the

selected band within the long-wavelength spectral region; Dshort-

wave refers to the DSDI value corresponding to the selected band

within the short-wavelength spectral region. Thus, a set of

candidates based on dual-temporal spectral differences of rice

canopy was constructed.

2.4.2 Feature selections
Hyperspectral remote sensing data provides an abundance of

spectral information, thus introducing considerable redundancy. To

enhance computational efficiency and mitigate the risk of

overfitting problem, the candidate features were optimized and

screened through a two-step process to ascertain the optimal feature

combination for identifying BPH infestation:
1. Lasso regularization for feature reduction (Li et al., 2010). An

L1 regularization term was incorporated into the objective
tiers in Plant Science 06
function of logistic regression to shrink the coefficients of

collinear features to zero. The optimal regularization

parameter was identified via grid search, enabling the

identification of the most informative features.

2. Recursive feature elimination (RFE) for feature optimization

(Yan and Zhang, 2015): The fundamental concept of RFE

involves iteratively modeling each input feature to assess its

contribution and sequentially eliminating the least

significant features based on their importance scores. The

selection process was set to halt when no further significant

improvement in model accuracy was observed, i.e., at a

saturation point where the accuracy increase was less than

1%, thereby identifying the current set as the optimal

feature combination.
2.5 BPH early infestation severity modeling
and assessment

Three experimental scenarios were designed (Table 2). Specifically,

a BPH early detection model was constructed using the proposed dual-

temporal spectral difference-based features (i.e., DSRIs, DSDIs, and

DSDI-SLs) in conjunction with pest severity labels derived from the

averaged BPH population counts. For comparison, a mono-temporal

spectral-based BPH early detection model was developed based on field

records and hyperspectral imagery collected simultaneously.

Since the experiment was conducted during the early stage of BPH

infestation, plots exhibiting moderate infestation severity predominated,

leading to a significant class imbalance. Addressing this imbalance

during the training phase is crucial to prevent the model from skewing

towards classifying test samples into the majority class. There are two

approaches to address this issue, including data augmentation for the

minority class and downsampling for the majority class. Since pest

infestation severity was assessed via a five-point sampling method in

each plot, considerable pixel-level noise was already present under each

label. Augmenting the minority class could potentially amplify this

noise, adversely impacting model performance. Therefore, we adopted a

ClusterCentroids downsampling approach for managing the majority

class samples to balance the sample classes.

The samples were randomly split into independent training-

and test-sets at a ratio of 7:3. The training-set was served for feature

selection and the fine-tuning of model hyperparameters. XGBoost

(extreme gradient boosting) was selected as the classifier for
TABLE 2 The designed experimental scenarios.

Scenario Input features
Plot counts under different severity of BPH infestation

Mild Moderate Severe

Mono-0930 VIs calculated from hyperspectral images collected on Sep. 30, 2024 4 (1764 pixles) 45 (19845 pixles) 3 (1323 pixles)

Mono-1008 VIs calculated from hyperspectral images collected on Oct. 08, 2024 14 (6174 pixles) 33 (14553 pixles) 5 (2205 pixles)

Dual-DF Proposed DSRIs, DSDIs, and DSDI-SLs 6 (2646 pixles) 42 (18522 pixles) 4 (1764 pixles)
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modeling BPH infestation severity. As an ensemble algorithm,

XGBoost optimizes its objective function by sequentially

incorporating weak learners (e.g., decision trees), iteratively

correcting residual errors of previous models until reaching

optimal performance. The grid search strategy is uniformly

employed to determine the hyperparameters of XGBoost in each

experimental scenario, including learning rate (LR), number of

estimators (NE), maximum depth (MD), minimum child weight

(MCW), and gamma (GAM). Subsequently, the model’s training

performance was assessed using 10-fold cross-validation. The test-

set was employed to evaluate the model’s generalization capabilities.

Based on the confusion matrix from test-set results, the model’s

ability to detect BPH infestation severity was evaluated using overall

accuracy (OA), user accuracy (UA), and producer accuracy (PA).

The aforementioned process was carried out using Python 3.9.19.
3 Results

3.1 Spectral characteristics of the rice
canopy under BPH infestation

The spectral differences of rice canopy across varying BPH

infestation severities were first compared at T1 and T2

(Figures 3A, B). The spectrum curves of the three severity groups

maintain typical peak-valley spectral features of vegetation.

However, no consistent trend in reflectance was observed as

infestation severity deteriorated. According to the spectral data

collected at T1, the samples with mild infestation exhibited the

lowest reflectance in the visible spectrum (399–680 nm), while the

reflectance of moderate and severe infestation samples in this range

was relatively similar. In the spectral region from 740 to 1006 nm,

severe infestation samples showed the highest reflectance, whereas

the mild and moderate infestation samples had comparable

reflectance values. Regarding the data collected at T2, in the

visible spectrum, the reflectance of the moderate infestation

samples was the highest among the three groups, with the mild

and severe infestation samples showing similar reflectance. In the
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NIR region, the reflectance of the mild infestation samples was

generally lower than that of the moderate and severe

infestation samples.

In contrast, the DSRIs and DSDIs values derived from the dual-

temporal spectral differences of rice canopy were more sensitive to

changes in BPH infestation severity (Figures 3C, D). For DSRIs, the

mild infestation plots had the highest values, followed by the

moderate infestation plots, and the values of severe infestation

plots is the lowest. For DSDIs, the index values of infested rice

increased with the severity of the infestation within the 399–750 nm

spectral region. However, in the red-edge to NIR band range

towards the long-wavelength direction (750–1006 nm), the DSDIs

decreased as the infestation severity increased.

Based on the peak positions of the joint assessment scores, the

representative bands of DSDI for constructing the DSDI-SL were

selected (Figure 4). For the six subintervals in the short-wavelength

spectral region, the selected DSDI were located at 399 nm, 463 nm,

529 nm, 607 nm, 639 nm, and 707 nm. In the long-wavelength

spectral range, four representative DSDIs were selected,

corresponding to the wavelengths of 763 nm, 817 nm, 898 nm,

and 1006 nm. Using the formula for constructing DSDI-SL, a total

of 24 candidates were developed. As shown in Figure 5, the values of

these indices all exhibited an increasing trend with the deterioration

of infestation severity.
3.2 Feature selection results

A total of 632 dual-temporal spectral difference-based

candidates were constructed (DSRIs: 304, DSDIs: 304, DSDI-SLs:

24). Among them, 499 candidates exhibiting high collinearity, i.e.,

with a Lasso coefficient equal to 0, were eliminated (Figure 6).

Following regularization, the selected DSRIs are mainly distributed

in the violet, blue, red-edge, and long-wavelength side of the NIR

region. Representative DSDIs are mostly located in the yellow-

orange, red, and the red-edge to NIR regions. For the selected

DSDI-SLs, the construction formula that incorporate DSDIs from

the violet, blue, and green bands exhibited the highest selection rate.
FIGURE 3

Optical characteristics of rice canopy under different BPH infestation severity: (A) reflectance data collected at T1; (B) reflectance data collected at
T2; (C) the values of DSRIs; (D) the values of DSDIs.
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The optimal features combination for BPH identification was

further determined through RFE. According to the iterative results,

the model’s accuracy saturated when the number of selected

features exceeded 60 (Figure 7). The selected DSRIs constituted

one-third of the total features, with over 70% found in the violet,

blue, and green spectral regions. The remaining four DSRI features

are distributed across the red-edge and NIR bands. The selected

DSDIs accounted for more than half of all features, predominantly

in the red-edge and NIR regions, with counts of 11 and 23,

respectively. Four DSDI-SL were selected, three of which were

constructed using DSDIs from the near-infrared and violet-blue

regions, and the other one was constructed with two DSDI from the

red-edge region (Table 3).
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3.3 BPH infestation severity models and
accuracies

The model hyperparameters and OA values for the three

scenarios were determined during the training process (Table 4).

The OA values for both the training- and test-sets across the three

scenarios were similar, indicating that the model did not overfit.

From the training results, the Dual-DF scenario achieved the

highest accuracy, with OA values surpassing 85% for both sets.

The Mono-0930 scenario followed, with an OA approaching 80%,

whereas the Mono-1010 scenario recorded an OA of about 75%.

The detection accuracy of both dual- and mono-temporal

scenarios for different BPH infestation severity was further assessed
FIGURE 5

Variations of DSDI-SLs under different severities of BPH infestation.
FIGURE 4

Selected bands through joint assessment for constructing DSDI-SL.
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using the test-set results (Figure 8). All three scenarios performed well

in identifying samples with mild infestation, with both PA and UA

exceeding 80% for the Dual-DF and Mono-0930 scenarios. The

Mono-1008 scenario achieved a PA close to 90% for mild

infestation but had a UA below 78%. For samples with moderate
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and severe infestations, the performance of the mono-temporal feature

models was less satisfactory. The accuracy for moderate infestation

samples was below 80% for Mono-0930 and below 70% for Mono-

1008. The PA of Mono-1008 dropped below 50%. Although the

mono-temporal feature models performed slightly better when
FIGURE 7

The selection results of RFE.
FIGURE 6

Results of collinearity removal for (A) DSRI, (B) DSDI, and (C) DSDI-SL using Lasso.
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identifying severe infestation samples, both their PA and UA

remained consistently lower than those achieved by the Dual-

DF scenario.

We further examined the misclassification rates across different

BPH severities for the three scenarios (Figure 9). Overall, all three

scenarios exhibited relatively low misclassification rates for samples

with mild infestation. The primary sources of model error arose

from the identification results of the moderate and severe

infestation severity groups. For Dual-DF, there was a tendency to

misclassify moderate and severe infestation samples as mild. For

Mono-0930, the highest misclassification rate was for moderate

infestation samples, with 14.2% incorrectly identified as mild and

another 13% misclassified as severe. For Mono-1008, its

performance on moderate and severe samples was suboptimal,

with the model misclassifying 40% of moderate infestation

samples and 30% of severe infestation samples as mild.
4 Discussion

4.1 Uncertainty in mono-temporal spectral
features for monitoring early BPH
infestation

Capturing the degradation signals of host physiological traits

and canopy morphology is fundamental for remote sensing

monitoring of insect disturbances. The prevailing consensus

suggests that spectral information spanning from the visible to

the red-edge spectrum can be utilized to detect alterations in host

pigment content, whereas signals in the NIR and shortwave infrared
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(SWIR) regions are particularly responsive to changes in host

structure and moisture levels (Zhang et al., 2019; Zheng et al.,

2023). By selecting specific spectral features aligned with the feeding

behaviors of insects, e.g., folivores, xylophages, and mucivores, it

becomes possible to quickly diagnose both the location of

infestation and the severity of stress caused by the target pest.

Some researchers have conducted controlled experiments with pest

populations to elucidate the physiological responses of rice to BPH

infestation (Chen and Liu, 2023; Zhao et al., 2023).

Compared to the stable conditions of controlled indoor

experiments, pest monitoring studies in paddy fields are subject to

numerous interfering factors. The population density of BPH per unit

area is profoundly influenced by multiple factors, e.g., field migration

and reproductive behavior of BPH (Mochizuki et al., 2024). In mono-

temporal scenarios, the rice spectra in areas with high BPH population

density may not display marked changes. This is because BPH

abundance may changes sharply within a short period, while the

rice canopy has not yet exhibited notable distortion (Table 5).

Meanwhile, in manually sown paddy fields, variations in planting

density across locations may result in differences in canopy spectral

characteristics, as remote sensing pixels in sparsely planted areas are

more likely to include background signals from soil or water.

Consequently, a BPH identification model derived from mono-

temporal spectral features introduces considerable uncertainty.

According to the modeling results using mono-temporal

spectral features, the identification accuracy of model is relatively

higher when the investigation date of input features is earlier. This

could be attributed to the fact that the earlier the investigation time,

the smaller the change in pest population density per unit area. As

BPH infestation progresses dynamically, the likelihood of changes

in pest population density within each plot increases. The

cumulative pest stress on rice exhibits greater spatial variability,

which reduces the pest identification accuracy of the mono-

temporal spectral-based model.
4.2 Detectability of dual-temporal spectral
features in early BPH infestation
monitoring

From the perspective of agricultural production, the timely

identification of paddy areas under mild stress (i.e., low

population density, in the initial stage of infestation) is a

prerequisite for the precise control of BPH damage. However,

given that BPH do not directly attack the leaves, the degree of

spectral changes in the rice canopy is marginal during the early
TABLE 4 The calibrated hyper-parameters and accuracy of each scenario.

Scenario
Hyper-parameters OA (%)

LR NE MD MCW GAM Training-set Test-set

Mono-0930 0.35 200 6 1 0 79.53 ± 0.38 79.89

Mono-1008 0.3 370 6 2 0 74.45 ± 0.48 75.91

Dual-DF 0.28 340 6 1 0 85.15 ± 0.61 85.10
Bold values represent the hyperparameters and identification accuracy of the two-phase model constructed in this study.
TABLE 3 The 60 selected dual-temporal spectral differences-based
features.

Features type Selected features

DSRI

DSRI399, DSRI401, DSRI403, DSRI405, DSRI407, DSRI409,
DSRI411, DSRI413, DSRI417, DSRI425, DSRI433, DSRI437,
DSRI525, DSRI553, DSRI579, DSRI697, DSRI699, DSRI727,
DSRI753, DSRI803, DSRI932

DSDI

DSDI399, DSDI709, DSDI729, DSDI739, DSDI741, DSDI751,
DSDI753, DSDI761, DSDI763, DSDI765, DSDI771, DSDI783,
DSDI803, DSDI807, DSDI856, DSDI896, DSDI902, DSDI922,
DSDI928, DSDI932, DSDI952, DSDI954, DSDI958, DSDI960,
DSDI968, DSDI974, DSDI976, DSDI978, DSDI984, DSDI986,
DSDI990, DSDI992, DSDI996, DSDI1004, DSDI1006

DSDI-SL
DSDI-SL399-817, DSDI-SL399-1006, DSDI-SL465-1006, DSDI-
SL707-763
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stages of infestation, i.e., the phenotype of rice shows no visible

signs of deterioration, and its spectrum retains the typical

characteristics of healthy green vegetation. Interestingly, in the

NIR region, which is typically an important indicator of

vegetation health, samples with severe infestation even exhibited

slightly higher reflectance than those with milder infestations.

Evidently, this result is inconsistent with previous research (Liao

et al., 2024; Yang et al., 2024).

As mentioned in Section 4.1, mono-temporal spectral features are

susceptible to multiple sources of field noise when monitoring BPH

infestation. To address this issue, we propose a novel method for

monitoring BPH early infestation that uses dual-temporal spectral

difference features to mitigate such interference. Specifically, we

focused on the following two aspects during construction process:

(1) Considering the uncertainty of using single-time BPH population

data as training labels, we used the average of BPH population counts

from two sampling dates instead. Since the interval between the two

sampling dates was relatively short (8 days), this approach provides a

more reliable assessment of BPH damage severity during this period

and reduces the randomness inherent in single-time counts. (2) A set
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of feature indices (i.e., DSRIs, DSDIs, DSDI-SLs) was proposed to

detect early BPH infestation based on dual-temporal spectral

differences in rice canopies. By treating inherent variations (e.g.,

rice growth, background flooding, planting density difference) as a

baseline, these indices effectively highlight spectral anomalies induced

by BPH infestation, thereby reducing the interference of non-BPH

factors on identification results.

According to the “Rules of investigation and forecast for the rice

planthopper (Nilaparvata lugens Stål and Sogatalla furcifera Horváth)

(GB/T 15794-2009)” and the “Technical regulations for

comprehensive control of major pests affecting high quality rice in

Guangdong (DB44/T 2212-2019)”, control measures should be

implemented when the BPH counts per rice clump exceed 10. Since

the training labels used in the proposed model were derived from the

average of two field surveys, an extreme case may arise (i.e., when the

BPH population is 0 in one survey but exceeds 10 individuals per rice

clump in another). Therefore, in practical applications, control

measures are recommended for areas identified by the proposed

model to have moderate-to-severe BPH damage. The experimental

results demonstrated that the proposed model achieved an accuracy of
FIGURE 9

Misclassification rate of scenarios: (A) Dual-DF; (B) Mono-0930; (C) Mono-1008.
FIGURE 8

User’s (UA) and producer’s (PA) accuracy of the test-set: (A) Dual-DF; (B) Mono-0930; (C) Mono-1008.
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at least 83% for samples with moderate and severe damage, indicating

its potential for practical application.
4.3 Limitations and further studies

Overall, the proposed BPH early detection model has achieved

promising results. However, it still has certain limitations that merit

consideration in further studies:
1. In this study, the proposed dual-temporal spectral indices

(i.e., DSRI, DSDI, and DSDI-SL) were confirmed to

effectively monitor early BPH damage, but uncertainties

regarding the occurrence timing remain due to the

migratory behavior of BPH. Since the nutrient content of

rice varies across different growth stages, its physiological

responses to BPH infestation differ accordingly (Zhao et al.,

2023; Yang et al., 2024). Therefore, the detectability of

DSRI, DSDI, and DSDI-SL for early BPH infestation

across different rice growth stages will be further

evaluated, aiming to enhance their practical applicability.

2. According to the distribution map of early BPH infestation

generated by the proposed model (Figure 10), the areas

severely infested by BPH were primarily located on the

southwestern side of paddy field. The rice lodging event

caused by BPH was observed about 25 days later in this

area, thereby demonstrating the effectiveness of the

proposed model. Moreover, this finding also reflects the
FIGURE 10

The spatial distribution of BPH infestation in paddy field.
TABLE 5 A portion of the recorded BPH population counts.

Plot ID
BPH population (individuals per clump)

T1 T2

1 6 3.8

2 7.6 7

3 9.2 7.2

4 10.2 8.8

5 10.4 7.4

… … …

26 7 24.8

27 7.2 13.2

28 6.8 12

29 7 4.6

30 11.4 9.2

31 9.2 14.2

… … …

48 5.8 5.8

49 6 8.8

50 5.8 4.6

51 5.6 4.4

52 5.8 4.6
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influence of the rice sub-canopy environment on BPH

aggregation. The terrain in the southwestern part of the

paddy field is lower, which results in a wetter and cooler

sub-canopy environment, potentially facilitating the

aggregation of BPH (Mochizuki et al., 2024). Therefore,

auxiliary habitat features (e.g., soil moisture, temperature,

and elevation) will be incorporated to further explore how

habitat heterogeneity impacts the population density of

BPH within the paddy field.

3. The sap-sucking feeding behavior of BPH primarily affects

the nutrient transport system of rice, the variation in water

content of infested rice is theoretically a critical indicator

for evaluating BPH infestation severity (Chen and Liu,

2023; Xiong et al., 2024; Yue et al., 2024). However, the

spectral range of the hyperspectral imaging system used in

this study was limited to 399–1006 nm, we were unable to

evaluate the effectiveness of water content in monitoring

BPH infestation due to the lack of SWIR information. To

gain a more comprehensive understanding of the capability

of remote sensing for early BPH infestation detection, the

potential contribution of high-resolution SWIR data will be

further investigated in future studies.
5 Conclusions

This study successfully identified early BPH infestation using

UAV hyperspectral observation data. Considering the dynamic

spatial distribution of BPH and the reflectance changes in infested

rice, three novel dual-temporal spectral indices, i.e., DSRI, DSDI,

and DSDI-SL, were proposed. By integrating Lasso regularization

and RFE (for optimal feature selection) with XGBoost (for

classifying BPH infestation severity), a model for BPH early

detection was developed. The model achieved an OA of over 85%.

It’s PA and UA for samples across varying BPH severity at least

83%, notably outperforming models derived from mono-temporal

spectral-based features. In contrast, mono-temporal spectral-based

model is susceptible to dynamic changes in BPH population density

per unit area and other inherent factors (e.g., rice growth,

background flooding, differences in planting density), leading to

considerable uncertainty in the detection outcomes.
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