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Accurate and prompt monitoring of brown planthopper (BPH) infestation is
crucial for rice production stability. The unique advantages of remote sensing
in mapping the location and severity of pest damage are widely acknowledged.
However, the crypticity of BPH early damage complicates the identification of
infested areas. This study aims to detect BPH early infestation in paddy fields
using an unmanned aerial vehicle (UAV) hyperspectral imaging system. Two data
acquisition campaigns were conducted during the BPH early infestation stage.
Considering the dynamic spatial distribution of BPH, the pest population density
records were averaged to indicate infestation severity during the investigation
period. Three novel indices were designed to detect the BPH early damage.
Specifically, the Dual-temporal Stressed Canopy Spectral Relative Difference
Index (DSRI) and the Dual-temporal Stressed Canopy Spectral Direct
Difference Index (DSDI) were proposed based on the dual-temporal spectral
changes of rice canopy. Furthermore, an opposite trend of DSDI in the short-
wavelength (399-750 nm) and long-wavelength (750-1006 nm) spectral regions
was observed for samples with varying BPH severity. Thus, the DSDI-SL was
further proposed. The optimal feature combination of DSRIs, DSDIs and DSDI-
SLs was selected using Lasso regularization and recursive feature elimination
(RFE). An XGBoost classifier was applied to establish the BPH early detection
model, which achieved an overall accuracy (OA) of over 85%, outperforming the
model established by mono-temporal collected data. In the context of global
climate change and escalating challenges to food security, our research
introduces a novel framework for the efficient detection and quantitative
description of early-stage BPH damage.
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1 Introduction

Rice accounts for 26.2% of the global yield of grain and oil
crops, serving as the primary dietary staple for over half of the
global population. China, as the world’s largest producer of rice,
contributes approximately 30% to the global annual rice production
(Fao, 2024). The brown planthopper (Nilaparvata lugens Stal, BPH)
is one of the most destructive pests to rice, infesting nearly 26.6 x
10* km? of paddy fields annually in China (Guo et al., 2023). BPH
infestation substantially reduces grain weight, causing yield losses of
10%-80% and even total crop failure (Liu and Sun, 2016;
Balachiranjeevi et al., 2019; Satturu et al,, 2020; Jeevanandham
et al., 2023). Therefore, there is an urgent need to establish a robust
monitoring system for BPH infestation to facilitate early warning
and control efforts.

The BPH is a typical phloem-feeding insect, making it highly
cryptic as its feeding sites are normally located on the stems of rice
plants (Sriram et al., 2024). When visible degeneration of the rice
phenotype occurs, it usually signifies that the BPH population density
has already surpassed the warning threshold for pest control (Yu
etal, 2022; Choi et al.,, 2025). Accurately and promptly locating BPH
occurrences and assessing their severity are fundamental for
implementing targeted control measures. Currently, the assessment
of BPH damage still primarily relies on manual field surveys. This
approach is time-consuming and labor-intensive, permitting only the
collection of sampling statistics from small areas. Pest forecasting
lamps can provide information on the timing of outbreaks and the
relative population density of BPH, but fails to delineate the precise
locations and severity of infestations (Zhang and Cheng, 2013; Wan
et al,, 2016). In contrast, remote sensing provides spatiotemporally
continuous observations of paddy fields, showing great potential for
detecting BPH infestations (Bai et al., 2023; Xia et al., 2024; Yuan
et al,, 2025; Zhang et al., 2025).

Generally, imaging data from aerial or satellite remote sensing
platforms are unable to directly capture insect information. Instead,
the spatial distribution and pest severity are indirectly detected
through phenotypic changes in the host plants (Zhang et al., 2019).
BPH pierces the phloem of rice plants with its stylet (a needle-like
mouthpart) to suck sap, leaving a hollow stylet sheath in situ after
feeding, which obstructs nutrient transport within the rice plants
(Zhao et al,, 2023; Hu et al, 2024). The deficiency of water and
inorganic salts hampers the ability of rice plants to synthesize
photosynthesis-required pigments, leading to symptoms such as
yellowing and wilting, and increasing the risk of secondary disasters
(Zheng et al.,, 2023). Most current research predominantly focuses
on the mechanisms of resistance in rice involving endogenous
hormones and genes under BPH infestation (Lu et al., 2022; Chen
et al, 2023; Xu et al, 2024). Findings regarding the use of rice
canopy phenotypic traits to detect the spatial distribution of BPH
are limited. Several studies have investigated the detectability of
BPH damage using remote sensing techniques through controlled
experiments. For instance (Xiong et al., 2024), demonstrated that
near-infrared (NIR) reflectance of the rice canopy, temperature
differences between the canopy and air, and leaf chlorophyll content
are significantly negatively correlated with BPH population density.
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(Tan et al,, 2019) established that the ratio index derived from the
red-edge spectral region can serve as a reliable indicator for both the
physiological compensation and the subsequent stress responses of
rice plants to BPH infestation. However, the complex paddy habitat,
coupled with the crypticity of BPH damage, complicates the direct
application of these findings to field conditions (Zhang et al., 2023;
Mochizuki et al., 2024).

A few studies have endeavored to detect BPH damage utilizing
medium-resolution satellite optical imagery, e.g., Landsat, SPOT
(Ghobadifar et al., 2016a, b). Nonetheless, the challenges posed by
the long revisit cycles of satellites and frequent cloud cover limit the
usability of optical satellite data for monitoring BPH damage during
critical periods. Additionally, the relatively coarse spatial and
spectral resolutions may dilute the signals from host plants,
potentially leading to the omission of crucial features associated
with rice plants under mild BPH stress, e.g., low pest densities, the
early stages of infestation (Chen et al, 2024). Unmanned aerial
vehicle (UAV) enhance flexibility in data acquisition timing.
Equipped with high-throughput imaging sensors, UAV-based
data are capable of delivering detailed phenotypic information on
host plants during critical pest infestation stages, thereby offering
valuable insights for pest localization and damage severity
assessment (Hongo et al., 2024; Xia et al., 2024). Yet, to our
knowledge, no prior studies have utilized UAV data specifically
for detecting BPH early damage.

Since BPH does not directly attack the leaves, the phenotypic
traits of the rice canopy change marginally during the early stages of
BPH infestation (Yang et al., 2024). It has been revealed that the
physiological characteristics of rice exhibit delayed response to BPH
damage (Chen and Liu, 2023). Therefore, it is essential to capture the
optical signals of rice plants under mild stress conditions. Otherwise,
the practical applicability of monitoring results could be notably
diminished. Another challenge arises from the dynamic spatial
distribution of BPH populations in field conditions. In controlled
experiments, BPH density within each rice cluster is typically
consistent. In contrast, BPH populations exhibit considerable
spatiotemporal variability in paddy field due to various driving
factors, e.g., habitat diversity, reproductive dynamics (Rashid et al,,
2016, 2017). This implies that the phenotypic traits of infested rice
canopies might not accurately correlate with the BPH damaged
severity recorded concurrently. Consequently, the impact of the
dynamic changes in pest population densities should be considered
when remotely detecting BPH damage.

Although previous studies have explored the detectability of
remote sensing for monitoring BPH infestation at different scales,
its effectiveness in identifying this pest at early stages under field
conditions remains uncertain. To address this issue, we propose a
novel method for detecting BPH during the early infestation period
using dual-temporal hyperspectral UAV images. Specifically, we (1)
assess the uncertainty of remotely detected results of BPH
infestation using mono-temporal spectral-based features; (2)
propose a novel method for detecting BPH infestation based on
dual-temporal spectral differences of the rice canopy; (3) evaluate
the applicability of the proposed method in identifying varying
degrees of BPH severity at the early stage of infestation.
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FIGURE 1

(A) Experimental location and (B) research paddy field.

2 Materials and methods

2.1 Study area

The research paddy field is located at the Baiyun Experimental
Base, Guangdong Academy of Agricultural Sciences (23°39° N, 113°
42’ E, Figure 1). The area has a warm and humid climate, with an
annual average temperature of about 23°C, relative humidity of
approximately 74.8%, and about 1906 hours of sunshine annually.
The average annual precipitation is approximately 1700 mm. The
research paddy field spans an area of approximately 1135 m?, and
the rice variety used in the experiment is ‘Nanjing Xiang Zhan’.

2.2 Data collection and processing

2.2.1 Field investigation

The observational experiment was conducted during the late rice
planting season on September 30 (T1) and October 8 (T12), 2024,
when the rice was at the heading stage. To minimize interference
from other pests and diseases, targeted control measures were
consistently implemented within the research paddy field. A total
of 52 observation plots, each measuring Im x 1m, were distributed
throughout the field (Figure 2). Based on alerts from the pest
forecasting lamp at the experimental base, the investigation was
conducted during the early stage of BPH infestation. No visible
phenotypic degradation of the rice was observed during this period.

Five clumps of rice located at the four corner points and the
center of each observation plot were selected as sampling targets.
The number of BPH in each clump was counted, and the average
was calculated to represent the BPH population in the plot.
Comprehensively referencing the “Rules of investigation and
forecast for the rice planthopper (Nilaparvata lugens Stal and
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Sogatalla furcifera Horvath) (GB/T 15794-2009)” and the
“Technical regulations for comprehensive control of major pests
affecting high quality rice in Guangdong (DB44/T 2212-2019)”, the
averaged BPH population was classified into three levels: mild
infestation (< 5 individuals per clump), moderate infestation (5-
10 individuals per clump), and severe infestation (> 10 individuals
per clump).

2.2.2 UAV hyperspectral images collection and
preprocessing

The UAV hyperspectral data collection was conducted
simultaneously with the ground-based field survey. Flight times
ranged from 11:00 AM to 2:00 PM under sunny conditions. A 300
TC hyperspectral camera (Yiruisi Remote Sensing Technology Co.,
Ltd., Beijing, China) was mounted on a DJI M300 quadcopter
platform (D]JI Technology Co., Ltd., Shenzhen, China) to capture
hyperspectral imagery of the paddy field. The 300 TC camera
comprises 304 bands, providing spectral information ranging
from 399-1006 nm, with a spectral resolution of 2 nm. The UAV
flew at an altitude of 50 m above ground level, producing an image
spatial resolution of approximately 5 cm. The lateral and heading
spatial overlaps of 70%. A standard whiteboard was placed at the
edge of the paddy field during the flight for reflectance calibration.
Additionally, a UAV multispectral orthophoto was captured as
reference data for geographic registration and localization of the
observation plots.

The hyperspectral raw data were radiometrically calibrated
using the calibration files provided by MegaCube 2.14.0 (Yiruisi
Remote Sensing Technology Co., Ltd., Beijing, China). Based on the
multispectral reference orthophoto, the hyperspectral images were
registered and mosaicked in ArcMap 10.4 and ENVI 5.3.1. The
mosaicked images were then imported into MegaCube software to
generate a hyperspectral hypercube. Finally, the digital number
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(A) Location of the plots within the paddy field. The southwest corner was reserved for other experiments, and no observation plots were
established there. (B) Rice morphology during field survey (no visible symptoms in damaged rice). (C) Weather conditions during UAV hyperspectral

image acquisition.

(DN) values of the hyperspectral images were converted to
reflectance using the ground-based standard whiteboard.

Based on the positions of the observation plots provided by the
orthophoto, the vector files (Im x 1m square, 441 pixels) of each
plot were delineated on the hyperspectral images. Pixels within
these vector files were extracted as analysis samples, with their labels
corresponding to the BPH infestation severity of each plot.

2.3 Mono-temporal spectral-based BPH
identification features

Since BPH infestation can induce physiological changes in rice,
24 vegetation indices (VIs) associated with vegetation biochemical
components and structural characteristic were selected to assess the
effectiveness of mono-temporal spectral-based features in detecting
BPH infestation severity recorded concurrently (Table 1).

2.4 Dual-temporal spectral difference-
based BPH identification features

2.4.1 Construction of dual-temporal spectral
difference-based indices

Considering the spatial dynamic variability of BPH distribution,
the pest population counts from two separate investigation dates
were averaged to denote the infestation degree during this period.
These averaged counts were then classified into three levels based
on the criteria for BPH infestation severity outlined in section 2.2.1.
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The development of the indices was guided by two assumptions:
(1) the spectral changes of healthy rice during growth follow
predictable trends, whereas BPH infestation alters the magnitude
of such changes; (2) if rice is damaged by BPH (i.e., its nutrient
transport system is impaired), its spectral variation patterns are
expected to differ from those of healthy rice. For example, suppose
the NIR reflectance of a rice clump is 0.25 at T1. Under healthy
growth conditions (before maturity), it would normally increase to
0.30 at T2 (Prabhakar et al., 2024). However, whether a BPH
infestation occurred during the subsequent growth period or was
already present before T1, the NIR reflectance of damaged rice at T2
may increase only to 0.28 or even decrease. Thus, the spectral
differences between T1 and T2 provide a basis for detecting
BPH infestation.

To comprehensively characterize the reflectance changes in
the rice canopy caused by BPH infestation, the Dual-temporal
Stressed Canopy Spectral Relative Difference Index (DSRI) and
the Dual-temporal Stressed Canopy Spectral Direct Difference
Index (DSDI) were proposed. DSRI emphasizes the relative
spectral changes of the damaged rice canopy, which can reduce
the impact of varying environmental illumination on detection
results. In contrast, DSDI emphasizes the magnitude of direct
spectral changes in damaged rice canopy, allowing sensitive
detection of BPH-induced spectral variations. When calculating
DSDI, it is important to note that the reflectance of shaded and
sunlit leaves differs considerably. Directly using the dual-temporal
reflectance differences as indicators for BPH identification can
introduce substantial uncertainty. To mitigate this effect, each
pixel’s difference spectrum is normalized to the range [0, 1] using
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TABLE 1 Details of the vegetation indices used for BPH monitoring in mono-temporal scenario.

Vegetation indices abbr.

Photochemical Reflectance Index, PRI

Formula

(Rs31 = Rsz0)/(Rs31 + Rszo)

10.3389/fpls.2025.1680474

References

(Penuelas et al., 1994)

Normalized Green-Red Difference Index, NGRDI

Green Leaf Index, GLI

Chlorophyll Index Green, CIG

(Rss0 = Regs)/ (Rsso + Regs)

(Rssp = Rees) + (Rsso — Rygp)

(Rsso + Rees) + (Rsso + Rygp)

Rygs /Rsso — 1

(Tucker, 1979)

(Louhaichi et al., 2001)

(Gitelson et al., 2003)

Normalized Difference Vegetation Index, NDVI

(Rges — Rego) / (Rges + Rego)

(Rouse et al., 1973)

Chlorophyll Vegetation Index, CVI

(Rges X Rygs)/(Rssp X Rsso)

(Vincini et al., 2008)

Anthocyanin Reflectance Index, ARI1
Anthocyanin Reflectance Index, ARI2
Green Normalized Difference Vegetation, GNDVI

Normalized Difference Red Edge Index, NDRE

1/Rss0 = 1/Rz0
Rgoo % (1/Rssg = 1/Ryg0)
(R780 = Rss0)/ (Ryso + Rsso)

(R790 = Ry20)/ (Ryg0 + Ry0)

(Gitelson et al., 2001)
(Gitelson et al., 2001)
(Gitelson and Merzlyak, 1998)

(Cao et al., 2019)

Red Edge Inflection Point, REIP

700 + 40 X [0.5 X (Ryz + Ryp0) — 700]

Modified Chlorophyll Absorption Ratio Index, MCARI

R740 = R0

[R700 = Rezo = 0.2 % (Ryo0 = Rss0)] X Rzgo

Modified Red Edge Normalized Difference Vegetation Index, MRENDVI
Modified Red Edge Simple Ratio, MRESR
Modified Triangular Vegetation Index, MTVI

Triangular Vegetation Index, TVI

R670

(R750 = Ryos)/ (Ryso + Rzgs =2 X Ryys)

(R750 - RAAS)/(R705 - RAAS)

1.2 % [1.2 % (Rggp = Rss0) = 2.5 X (Rgz9 — Rsso)]

60 X (Rysp — Rsso) — 100 X (Rg70 — Rss)

(Curran et al., 1995)

(Daughtry et al., 2000)

(Sims and Gamon, 2002)
(Sims and Gamon, 2002)
(Haboudane et al., 2004)

(Broge and Leblanc, 2001)

Vogelmann Red Edge Index 1, VERI1
Vogelmann Red Edge Index 2, VERI2
Structure Insensitive Pigment Index, SIPI

Plant Senescence Reflectance Index, PSRI

Ry40 /Ry
(R734 = Ry47) [ (R15 + Ryag)
(Rs0p = Raus)/ (Roo — Reso)

(R680 - RSOO)/R750

(Vogelmann et al., 1993)
(Vogelmann et al., 1993)
(Penuelas et al., 1995)

(Merzlyak et al., 1999)

Carotenoid Reflectance Index 1, CRI1

Carotenoid Reflectance Index 2, CRI2

1/Rs10 = 1/Rssp

1/Rs19 = 1/Rz0

(Gitelson et al., 2002)

(Gitelson et al., 2002)

Chlorophyll Sensitive Index, CSI

LAlI-insensitive Chlorophyll Index, LICI

min-max normalization. The formulas for calculating DSRI and
DSDI are as follows (Equations 1, 2):

DSRI = (Rlate - Rearly)/(Rlate + Rearly) (1)

DSDI = Normmin—max(Rlute - Rearly) (2)

where R, and Ry, denote the reflectance of rice canopy
collected at T1 and T2, respectively. Nori,,, max denotes the min-
max normalization. Calculation examples of these two indices are
provided as follows. Assuming that the rice canopy reflectance at
800 nm is 0.25 at T1 and 0.30 at T2, DSRI for this band is calculated
as (0.3 - 0.25)/(0.3 + 0.25) = 0.09. For DSDI, the reflectance
difference between T1 and T2 is first calculated (e.g., 0.3 - 0.25 =
0.05), and then a min-max normalization is performed on the
difference spectrum of each pixel.

Frontiers in Plant Science

25 x Ry « Rgs5 — Ryos
Rygs  Rges + Ryos

Ryss _ Rsz3 — Reso

(Zhang et al., 2022)

(Li et al., 2020)

R720  Rsz3 + Rego

Distinctly opposite trends in the DSDI were observed across
different BPH infestation severity in the short-wavelength (399-750
nm) and long-wavelength (750-1006 nm) spectral regions (refer to
Section 3.1 for details). Based on these observations, the DSDI-SL
was further developed. The construction process is as follows:

1. Linear Discriminant Analysis (LDA), SHapley Additive
Explanations (SHAP), and Analysis of Variance
(ANOVA) were collectively employed to select DSDI
from representative bands as candidate factors for the
construction of DSDI-SL. LDA selects the most
discriminative factors for BPH severity identification by
maximizing the ratio of between-class variance to within-
class variance (Fisher, 1936). SHAP provides feature
importance explanations by quantifying the contribution
of each factor to model predictions, which is particularly
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TABLE 2 The designed experimental scenarios.

Scenario Input features

10.3389/fpls.2025.1680474

Plot counts under different severity of BPH infestation

Mild Moderate Severe

Mono-0930 VIs calculated from hyperspectral images collected on Sep. 30, 2024
Mono-1008 VIs calculated from hyperspectral images collected on Oct. 08, 2024
Dual-DF Proposed DSRIs, DSDIs, and DSDI-SLs

4 (1764 pixles) 45 (19845 pixles) ‘ 3 (1323 pixles)

14 (6174 pixles) 33 (14553 pixles) ‘ 5 (2205 pixles)

6 (2646 pixles) 42 (18522 pixles) ‘ 4 (1764 pixles)

useful for handling nonlinear relationships and high-
dimensional data (Lundberg and Lee, 2017). ANOVA
statistically evaluates the significance of variance in each
factor across different BPH infestation severity levels
(Fisher, 1954). The integration of these three methods
combines linear and nonlinear strengths to ensure a
reliable and optimal selection outcome. Specifically, the
evaluation scores from LDA, SHAP, and ANOVA were
individually normalized and then averaged to form a joint
determination indicator, which was used to assess the
effectiveness of DSDI at various bands in differentiating
BPH infestation severity.

2. The short-wavelength spectral region (399-750 nm) was
divided into six subintervals, including violet (399-450
nm), blue (450-520 nm), green (520-580 nm), yellow-
orange (580-630 nm), red (630-680 nm), and short-
wavelength side of red-edge (680-750 nm). According to
the peak positions of the joint assessment score, the most
representative bands of DSDI were selected within the six
short-wavelength spectral intervals and within the long-
wavelength spectral region (750-1006 nm).

Based on the selected DSDI bands, the DSDI-SL were
constructed via the normalized difference formula (Equation 3):

D

Dlong —wave

DSDI —SL =

short — wave ( 3)
Dlong ~wave T Dshort — wave

where Digng_yave refers to the DSDI value corresponding to the
selected band within the long-wavelength spectral region; Dgport-
wave refers to the DSDI value corresponding to the selected band
within the short-wavelength spectral region. Thus, a set of
candidates based on dual-temporal spectral differences of rice
canopy was constructed.

2.4.2 Feature selections

Hyperspectral remote sensing data provides an abundance of
spectral information, thus introducing considerable redundancy. To
enhance computational efficiency and mitigate the risk of
overfitting problem, the candidate features were optimized and
screened through a two-step process to ascertain the optimal feature
combination for identifying BPH infestation:

1. Lasso regularization for feature reduction (Li et al., 2010). An
L1 regularization term was incorporated into the objective
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function of logistic regression to shrink the coefficients of
collinear features to zero. The optimal regularization
parameter was identified via grid search, enabling the
identification of the most informative features.

2. Recursive feature elimination (RFE) for feature optimization
(Yan and Zhang, 2015): The fundamental concept of RFE
involves iteratively modeling each input feature to assess its
contribution and sequentially eliminating the least
significant features based on their importance scores. The
selection process was set to halt when no further significant
improvement in model accuracy was observed, i.e., at a
saturation point where the accuracy increase was less than
1%, thereby identifying the current set as the optimal
feature combination.

2.5 BPH early infestation severity modeling
and assessment

Three experimental scenarios were designed (Table 2). Specifically,
a BPH early detection model was constructed using the proposed dual-
temporal spectral difference-based features (i.e., DSRIs, DSDIs, and
DSDI-SLs) in conjunction with pest severity labels derived from the
averaged BPH population counts. For comparison, a mono-temporal
spectral-based BPH early detection model was developed based on field
records and hyperspectral imagery collected simultaneously.

Since the experiment was conducted during the early stage of BPH
infestation, plots exhibiting moderate infestation severity predominated,
leading to a significant class imbalance. Addressing this imbalance
during the training phase is crucial to prevent the model from skewing
towards classifying test samples into the majority class. There are two
approaches to address this issue, including data augmentation for the
minority class and downsampling for the majority class. Since pest
infestation severity was assessed via a five-point sampling method in
each plot, considerable pixel-level noise was already present under each
label. Augmenting the minority class could potentially amplify this
noise, adversely impacting model performance. Therefore, we adopted a
ClusterCentroids downsampling approach for managing the majority
class samples to balance the sample classes.

The samples were randomly split into independent training-
and test-sets at a ratio of 7:3. The training-set was served for feature
selection and the fine-tuning of model hyperparameters. XGBoost
(extreme gradient boosting) was selected as the classifier for
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modeling BPH infestation severity. As an ensemble algorithm,
XGBoost optimizes its objective function by sequentially
incorporating weak learners (e.g., decision trees), iteratively
correcting residual errors of previous models until reaching
optimal performance. The grid search strategy is uniformly
employed to determine the hyperparameters of XGBoost in each
experimental scenario, including learning rate (LR), number of
estimators (NE), maximum depth (MD), minimum child weight
(MCW), and gamma (GAM). Subsequently, the model’s training
performance was assessed using 10-fold cross-validation. The test-
set was employed to evaluate the model’s generalization capabilities.
Based on the confusion matrix from test-set results, the model’s
ability to detect BPH infestation severity was evaluated using overall
accuracy (OA), user accuracy (UA), and producer accuracy (PA).
The aforementioned process was carried out using Python 3.9.19.

3 Results

3.1 Spectral characteristics of the rice
canopy under BPH infestation

The spectral differences of rice canopy across varying BPH
infestation severities were first compared at T1 and T2
(Figures 3A, B). The spectrum curves of the three severity groups
maintain typical peak-valley spectral features of vegetation.
However, no consistent trend in reflectance was observed as
infestation severity deteriorated. According to the spectral data
collected at T1, the samples with mild infestation exhibited the
lowest reflectance in the visible spectrum (399-680 nm), while the
reflectance of moderate and severe infestation samples in this range
was relatively similar. In the spectral region from 740 to 1006 nm,
severe infestation samples showed the highest reflectance, whereas
the mild and moderate infestation samples had comparable
reflectance values. Regarding the data collected at T2, in the
visible spectrum, the reflectance of the moderate infestation
samples was the highest among the three groups, with the mild
and severe infestation samples showing similar reflectance. In the
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NIR region, the reflectance of the mild infestation samples was
generally lower than that of the moderate and severe
infestation samples.

In contrast, the DSRIs and DSDIs values derived from the dual-
temporal spectral differences of rice canopy were more sensitive to
changes in BPH infestation severity (Figures 3C, D). For DSRIs, the
mild infestation plots had the highest values, followed by the
moderate infestation plots, and the values of severe infestation
plots is the lowest. For DSDIs, the index values of infested rice
increased with the severity of the infestation within the 399-750 nm
spectral region. However, in the red-edge to NIR band range
towards the long-wavelength direction (750-1006 nm), the DSDIs
decreased as the infestation severity increased.

Based on the peak positions of the joint assessment scores, the
representative bands of DSDI for constructing the DSDI-SL were
selected (Figure 4). For the six subintervals in the short-wavelength
spectral region, the selected DSDI were located at 399 nm, 463 nm,
529 nm, 607 nm, 639 nm, and 707 nm. In the long-wavelength
spectral range, four representative DSDIs were selected,
corresponding to the wavelengths of 763 nm, 817 nm, 898 nm,
and 1006 nm. Using the formula for constructing DSDI-SL, a total
of 24 candidates were developed. As shown in Figure 5, the values of
these indices all exhibited an increasing trend with the deterioration
of infestation severity.

3.2 Feature selection results

A total of 632 dual-temporal spectral difference-based
candidates were constructed (DSRIs: 304, DSDIs: 304, DSDI-SLs:
24). Among them, 499 candidates exhibiting high collinearity, i.e.,
with a Lasso coefficient equal to 0, were eliminated (Figure 6).
Following regularization, the selected DSRIs are mainly distributed
in the violet, blue, red-edge, and long-wavelength side of the NIR
region. Representative DSDIs are mostly located in the yellow-
orange, red, and the red-edge to NIR regions. For the selected
DSDI-SLs, the construction formula that incorporate DSDIs from
the violet, blue, and green bands exhibited the highest selection rate.
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Optical characteristics of rice canopy under different BPH infestation severity: (A) reflectance data collected at T1; (B) reflectance data collected at

T2; (C) the values of DSRIs; (D) the values of DSDIs.
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Selected bands through joint assessment for constructing DSDI-SL.

The optimal features combination for BPH identification was
further determined through RFE. According to the iterative results,
the model’s accuracy saturated when the number of selected
features exceeded 60 (Figure 7). The selected DSRIs constituted
one-third of the total features, with over 70% found in the violet,
blue, and green spectral regions. The remaining four DSRI features
are distributed across the red-edge and NIR bands. The selected
DSDIs accounted for more than half of all features, predominantly
in the red-edge and NIR regions, with counts of 11 and 23,
respectively. Four DSDI-SL were selected, three of which were
constructed using DSDIs from the near-infrared and violet-blue
regions, and the other one was constructed with two DSDI from the

red-edge region (Table 3).
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3.3 BPH infestation severity models and
accuracies

The model hyperparameters and OA values for the three
scenarios were determined during the training process (Table 4).
The OA values for both the training- and test-sets across the three
scenarios were similar, indicating that the model did not overfit.
From the training results, the Dual-DF scenario achieved the
highest accuracy, with OA values surpassing 85% for both sets.
The Mono-0930 scenario followed, with an OA approaching 80%,
whereas the Mono-1010 scenario recorded an OA of about 75%.

The detection accuracy of both dual- and mono-temporal
scenarios for different BPH infestation severity was further assessed
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using the test-set results (Figure 8). All three scenarios performed well
in identifying samples with mild infestation, with both PA and UA
exceeding 80% for the Dual-DF and Mono-0930 scenarios. The
Mono-1008 scenario achieved a PA close to 90% for mild

infestation but had a UA below 78%. For samples with moderate
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and severe infestations, the performance of the mono-temporal feature
models was less satisfactory. The accuracy for moderate infestation
samples was below 80% for Mono-0930 and below 70% for Mono-
1008. The PA of Mono-1008 dropped below 50%. Although the
mono-temporal feature models performed slightly better when
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TABLE 3 The 60 selected dual-temporal spectral differences-based
features.

Features type Selected features

DSR1I590, DSRL401, DSRI 03, DSRLy0s, DSRI07, DSRLyg0,
DSRI,,;, DSRLyy3, DSRI4;5, DSRIys, DSRI4s3, DSRI,s7
DSRIs,s, DSRIss3, DSRIs;6, DSRIges, DSRIgg9, DSRI;57
DSRIs3, DSRIgg3, DSRIgs,

DSRI

DSDI399, DSDLg9, DSDI, 59, DSDI, 3, DSDI4;, DSDL51,
DSDI,s3, DSDlg,, DSDI3, DSDlgs, DSDI,5;, DSDlg3,
DSDIgys, DSDlgq7, DSDIgse, DSDIgos, DSDIggs, DSDlos,
DSDIgs5, DSDlgss, DSDIgs,, DSDlgss, DSDIgss, DSDlogo,
DSDlggs, DSDlyy4, DSDIgs6, DSDIgys, DSDIggy, DSDloge,
DSDIgsg, DSDlogs, DSDIgeg, DSDI 004 DSDI ;006

DSDI

DSDI-SL3g9 817, DSDI-SL3gg 1006: DSDI-SLygs- 1006, DSDI-

DSDI-SL
SL707.763

identifying severe infestation samples, both their PA and UA
remained consistently lower than those achieved by the Dual-
DF scenario.

We further examined the misclassification rates across different
BPH severities for the three scenarios (Figure 9). Overall, all three
scenarios exhibited relatively low misclassification rates for samples
with mild infestation. The primary sources of model error arose
from the identification results of the moderate and severe
infestation severity groups. For Dual-DF, there was a tendency to
misclassify moderate and severe infestation samples as mild. For
Mono-0930, the highest misclassification rate was for moderate
infestation samples, with 14.2% incorrectly identified as mild and
another 13% misclassified as severe. For Mono-1008, its
performance on moderate and severe samples was suboptimal,
with the model misclassifying 40% of moderate infestation
samples and 30% of severe infestation samples as mild.

4 Discussion

4.1 Uncertainty in mono-temporal spectral
features for monitoring early BPH
infestation

Capturing the degradation signals of host physiological traits
and canopy morphology is fundamental for remote sensing
monitoring of insect disturbances. The prevailing consensus
suggests that spectral information spanning from the visible to
the red-edge spectrum can be utilized to detect alterations in host
pigment content, whereas signals in the NIR and shortwave infrared

TABLE 4 The calibrated hyper-parameters and accuracy of each scenario.

10.3389/fpls.2025.1680474

(SWIR) regions are particularly responsive to changes in host
structure and moisture levels (Zhang et al, 2019; Zheng et al,
2023). By selecting specific spectral features aligned with the feeding
behaviors of insects, e.g., folivores, xylophages, and mucivores, it
becomes possible to quickly diagnose both the location of
infestation and the severity of stress caused by the target pest.
Some researchers have conducted controlled experiments with pest
populations to elucidate the physiological responses of rice to BPH
infestation (Chen and Liu, 2023; Zhao et al., 2023).

Compared to the stable conditions of controlled indoor
experiments, pest monitoring studies in paddy fields are subject to
numerous interfering factors. The population density of BPH per unit
area is profoundly influenced by multiple factors, e.g., field migration
and reproductive behavior of BPH (Mochizuki et al., 2024). In mono-
temporal scenarios, the rice spectra in areas with high BPH population
density may not display marked changes. This is because BPH
abundance may changes sharply within a short period, while the
rice canopy has not yet exhibited notable distortion (Table 5).
Meanwhile, in manually sown paddy fields, variations in planting
density across locations may result in differences in canopy spectral
characteristics, as remote sensing pixels in sparsely planted areas are
more likely to include background signals from soil or water.
Consequently, a BPH identification model derived from mono-
temporal spectral features introduces considerable uncertainty.

According to the modeling results using mono-temporal
spectral features, the identification accuracy of model is relatively
higher when the investigation date of input features is earlier. This
could be attributed to the fact that the earlier the investigation time,
the smaller the change in pest population density per unit area. As
BPH infestation progresses dynamically, the likelihood of changes
in pest population density within each plot increases. The
cumulative pest stress on rice exhibits greater spatial variability,
which reduces the pest identification accuracy of the mono-
temporal spectral-based model.

4.2 Detectability of dual-temporal spectral
features in early BPH infestation
monitoring

From the perspective of agricultural production, the timely
identification of paddy areas under mild stress (i.e., low
population density, in the initial stage of infestation) is a
prerequisite for the precise control of BPH damage. However,
given that BPH do not directly attack the leaves, the degree of
spectral changes in the rice canopy is marginal during the early

Hyper-parameters OA (%)
Scenario
Training-set Test-set
Mono-0930 035 ‘ 200 ‘ 6 ‘ 1 0 79.53 + 0.38 79.89
Mono-1008 03 ‘ 370 ‘ 6 ‘ 2 0 74.45 + 0.48 7591
Dual-DF 0.28 340 6 1 0 85.15 + 0.61 85.10

Bold values represent the hyperparameters and identification accuracy of the two-phase model constructed in this study.
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FIGURE 8

User’s (UA) and producer’s (PA) accuracy of the test-set: (A) Dual-DF; (B) Mono-0930; (C) Mono-1008.

stages of infestation, i.e., the phenotype of rice shows no visible
signs of deterioration, and its spectrum retains the typical
characteristics of healthy green vegetation. Interestingly, in the
NIR region, which is typically an important indicator of
vegetation health, samples with severe infestation even exhibited
slightly higher reflectance than those with milder infestations.
Evidently, this result is inconsistent with previous research (Liao
et al,, 2024; Yang et al., 2024).

As mentioned in Section 4.1, mono-temporal spectral features are
susceptible to multiple sources of field noise when monitoring BPH
infestation. To address this issue, we propose a novel method for
monitoring BPH early infestation that uses dual-temporal spectral
difference features to mitigate such interference. Specifically, we
focused on the following two aspects during construction process:
(1) Considering the uncertainty of using single-time BPH population
data as training labels, we used the average of BPH population counts
from two sampling dates instead. Since the interval between the two
sampling dates was relatively short (8 days), this approach provides a
more reliable assessment of BPH damage severity during this period
and reduces the randomness inherent in single-time counts. (2) A set

of feature indices (i.e., DSRIs, DSDIs, DSDI-SLs) was proposed to
detect early BPH infestation based on dual-temporal spectral
differences in rice canopies. By treating inherent variations (e.g.,
rice growth, background flooding, planting density difference) as a
baseline, these indices effectively highlight spectral anomalies induced
by BPH infestation, thereby reducing the interference of non-BPH
factors on identification results.

According to the “Rules of investigation and forecast for the rice
planthopper (Nilaparvata lugens Stdl and Sogatalla furcifera Horvath)
(GB/T 15794-2009)” and the “Technical regulations for
comprehensive control of major pests affecting high quality rice in
Guangdong (DB44/T 2212-2019)”, control measures should be
implemented when the BPH counts per rice clump exceed 10. Since
the training labels used in the proposed model were derived from the
average of two field surveys, an extreme case may arise (i.e., when the
BPH population is 0 in one survey but exceeds 10 individuals per rice
clump in another). Therefore, in practical applications, control
measures are recommended for areas identified by the proposed
model to have moderate-to-severe BPH damage. The experimental
results demonstrated that the proposed model achieved an accuracy of
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TABLE 5 A portion of the recorded BPH population counts. at least 83% for samples with moderate and severe damage, indicating

its potential for practical application.

BPH population (individuals per clump)

Plot ID
T1 T2
4.3 Limitations and further studies
2 7.6 7
Overall, the proposed BPH early detection model has achieved
3 92 72 promising results. However, it still has certain limitations that merit
4 102 8.8 consideration in further studies:
5 10.4 7.4
1. In this study, the proposed dual-temporal spectral indices
(i.e., DSRI, DSDI, and DSDI-SL) were confirmed to
26 7 24.8 effectively monitor early BPH damage, but uncertainties
- 75 132 regarding the occurrence timing remain due to the
migratory behavior of BPH. Since the nutrient content of
28 68 12 rice varies across different growth stages, its physiological
29 7 4.6 responses to BPH infestation differ accordingly (Zhao et al.,
30 114 9s 2023; Yang et al, 2024). Therefore, the detectability of
DSRI, DSDI, and DSDI-SL for early BPH infestation
31 o2 14.2 across different rice growth stages will be further
evaluated, aiming to enhance their practical applicability.
48 58 58 2. According to the distribution map of early BPH infestation
© . o8 generated by the proposed model (Figure 10), the areas
severely infested by BPH were primarily located on the
50 58 46 southwestern side of paddy field. The rice lodging event
51 56 4.4 caused by BPH was observed about 25 days later in this
o o5 P area, thereby demonstrating the effectiveness of the
proposed model. Moreover, this finding also reflects the

Mild infestation
Moderate infestation
B Severe infestation

FIGURE 10
The spatial distribution of BPH infestation in paddy field.
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influence of the rice sub-canopy environment on BPH
aggregation. The terrain in the southwestern part of the
paddy field is lower, which results in a wetter and cooler
sub-canopy environment, potentially facilitating the
aggregation of BPH (Mochizuki et al., 2024). Therefore,
auxiliary habitat features (e.g., soil moisture, temperature,
and elevation) will be incorporated to further explore how
habitat heterogeneity impacts the population density of
BPH within the paddy field.

3. The sap-sucking feeding behavior of BPH primarily affects
the nutrient transport system of rice, the variation in water
content of infested rice is theoretically a critical indicator
for evaluating BPH infestation severity (Chen and Liu,
2023; Xiong et al., 2024; Yue et al., 2024). However, the
spectral range of the hyperspectral imaging system used in
this study was limited to 399-1006 nm, we were unable to
evaluate the effectiveness of water content in monitoring
BPH infestation due to the lack of SWIR information. To
gain a more comprehensive understanding of the capability
of remote sensing for early BPH infestation detection, the
potential contribution of high-resolution SWIR data will be
further investigated in future studies.

5 Conclusions

This study successfully identified early BPH infestation using
UAV hyperspectral observation data. Considering the dynamic
spatial distribution of BPH and the reflectance changes in infested
rice, three novel dual-temporal spectral indices, i.e., DSRI, DSDI,
and DSDI-SL, were proposed. By integrating Lasso regularization
and RFE (for optimal feature selection) with XGBoost (for
classifying BPH infestation severity), a model for BPH early
detection was developed. The model achieved an OA of over 85%.
I's PA and UA for samples across varying BPH severity at least
83%, notably outperforming models derived from mono-temporal
spectral-based features. In contrast, mono-temporal spectral-based
model is susceptible to dynamic changes in BPH population density
per unit area and other inherent factors (e.g., rice growth,
background flooding, differences in planting density), leading to
considerable uncertainty in the detection outcomes.
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