
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Zhenghong Yu,
Guangdong Polytechnic of Science and
Technology, China

REVIEWED BY

Guoxu Liu,
Weifang University, China
Ruiheng Zhang,
Beijing Institute of Technology, China

*CORRESPONDENCE

Wen Peng

pwen1117@163.com

RECEIVED 05 August 2025
ACCEPTED 28 September 2025

PUBLISHED 22 October 2025

CITATION

Huang X, Song F, Feng T, Zhou Y and Peng W
(2025) DFMA-DETR: a pomegranate maturity
detection algorithm based on dual-domain
feature modulation and enhanced attention.
Front. Plant Sci. 16:1680299.
doi: 10.3389/fpls.2025.1680299

COPYRIGHT

© 2025 Huang, Song, Feng, Zhou and Peng.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 22 October 2025

DOI 10.3389/fpls.2025.1680299
DFMA-DETR: a pomegranate
maturity detection algorithm
based on dual-domain
feature modulation and
enhanced attention
Xinyue Huang1, Feng Song2, Tanglong Feng1, Yao Zhou1

and Wen Peng1*

1School of Software Engineering, Jiangxi University of Science and Technology, Nanchang, China,
2International College, Nanchang Hangkong University, Nanchang, China
Accurate detection of pomegranate maturity plays a crucial role in optimizing

harvesting decisions and enhancing economic benefits. Conventional

approaches encounter significant challenges in complex agricultural scenarios,

including limited feature representation capabilities, singular attention

mechanisms, and insufficient multi-scale information fusion. This study

presents the DFMA-DETR algorithm, which establishes an end-to-end

detection framework through dual-domain feature modulation and enhanced

attention mechanisms. The core contributions include: (1) Development of the

DFMB-Net backbone network that employs spatial-frequency collaborative

processing to model pomegranate surface textures, color variations, and

morphological characteristics. (2) Construction of the EAFF enhanced attention

feature fusion module that integrates adaptive sparse attention mechanisms with

multi-scale feature adapters, effectively addressing feature representation

challenges under complex background interference; (3) Introduction of the

AIUP adaptive interpolation upsampling processor and MFCM multi-branch

feature convolution module, substantially improving feature alignment

accuracy and multi-scale representation performance. Experimental validation

on the constructed PGSD-5K dataset demonstrates that DFMA-DETR achieves

detection accuracies of 90.23% mAP@50 and 76.40% mAP@50-95, representing

improvements of 3.13% and 3.06% respectively over the baseline RT-DETR

model, while maintaining relatively low model complexity. Cross-dataset

validation further confirms the superior generalization performance of the

proposed approach. This research provides an effective solution for advancing

intelligent detection technologies in precision agriculture.
KEYWORDS

pomegranate maturity detection, RT-DETR, attention mechanism, object detection,
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1 Introduction

Pomegranate, one of the healthiest and most widely eaten fruits

globally, has significant repercussions for agricultural production,

post-harvest management, and food production through the precise

detection of maturity (Magwaza and Opara, 2015; Okere et al.,

2022). The precise determination of maturity not only has direct

repercussions on nutrition quality, taste characteristics, and storage

life of the fruit but also serves as a significant determinant for

determining optimal harvesting time, reducing post-harvest losses,

and increasing economic yield. As consumer demand for high-

quality pomegranates continues to grow and agricultural

intelligence develops at a faster speed, there is a need to establish

effective and accurate pomegranate maturity detection systems as

an imperative for the innovative development of modern

agricultural technology (Zhang et al., 2025a).

Traditional pomegranate maturity detection methods

predominantly rely on destructive physicochemical analysis such

as colorimetry, near-infrared spectroscopy, and sensory evaluation.

Nicolaï et al (Nicolai et al., 2007)presented a comprehensive

discussion of the application of near-infrared spectroscopy in

non-destructive measurement of fruit quality in their review,

demonstrating that the technology accurately measures soluble

solid content but is limited by spectral penetration depth

restraints and fruit peel interference issues. Traditional

colorimeter methods, although capable of providing objective

color measurement data, are only reflections of fruit appearance

characteristics and do not thoroughly examine inherent quality

differences (Beghi et al., 2017; Zhang et al., 2021). Although these

methods are somewhat effective for pomegranate maturity

assessment, they are operationally complex, inefficient, and

unsuitable for large-scale automatic applications.

The recent years have witnessed significant progress in deep

learning technologies applied in agricultural sectors, opening up

new solutions for detecting pomegranate maturity. Aherwadi et al.

(2022) employed convolutional neural network (CNN) technology

to classify banana maturity with 81.96% accuracy and demonstrated

the feasibility of fruit maturity detection using deep learning. CNN-

based methods of detecting fruits have exhibited excellent

performance in determining maturity in fruits like apples and

mangoes (Lu et al., 2022; Zhang et al., 2025b). But these deep

learning approaches based on classification primarily solve for

discrimination of single fruit maturity, and the real-time detection

capability in dense agricultural environments must be enhanced.

Over the past few years, computer vision domains have

witnessed remarkable advancements in object detection

methodologies, whose accuracy and real-time performance

strengths have made them some of the leading contenders for

applications in agricultural intelligence. Out of fruit maturity

detection researches employing object detection architectures,

algorithms from the YOLO series have been widely utilized due

to their best-in-class speed-accuracy trade-off. Tian et al (Tian et al.,

2019)constructed an improved YOLOv3-based apple detection

algorithm for processing low-resolution feature layers in networks

with significantly improved detection performance under heavy
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orchard scenes. Cao and Yuan (2022) constructed an improved

YOLOv4 algorithm for real-time mango detection with CBAM

attention mechanisms to improve small target detection efficiency

and detection speed. As far as pomegranate detection is concerned,

Yu et al. (2022) constructed a pomegranate fruit localization and

detection system with RGB-D feature fusion in a Mask R-CNN

framework, even though the approach has extremely high

computational cost and is difficult to satisfy real-time detection

requirements. Apart from this, SSD algorithms have also been

employed for the detection of fruits, with Vasconez et al. (2020)

showing that SSD is capable of higher detection accuracy at the

expense of faster detection rates. Despite these object detection

methods having good performance detecting fruit, they tend to be

non-maximum suppression (NMS) based, which affects detection

speed and accuracy.

Given the maturity and strong real-time performance of

Transformer architecture-based methods in recent years, we

adopt Transformer-based object detection approaches. With the

successful application of Transformer architectures in computer

vision domains, attention mechanism-based object detection

methods have demonstrated powerful feature representation

capabilities and global modeling advantages, providing novel

technical pathways for real-time object detection. DETR

(Detection Transformer), as the first end-to-end Transformer

object detector, simplified detection processes by eliminating

manually designed components. Carion et al . (2020)

demonstrated the effectiveness of Transformer architectures in

object detection tasks within the original DETR paper, achieving

performance comparable to Faster R-CNN on the COCO dataset.

However, DETR’s high computational cost limits its real-time

applications. To address this limitation, Zhao et al. (2024) proposed

RT-DETR (Real-Time Detection Transformer), achieving 53.1% AP

and 108 FPS with RT-DETR-R50 on the COCO dataset through

efficient hybrid encoder design and IoU-aware query selection

mechanisms, surpassing equivalent-scale YOLO detectors. Recent

years have witnessed rapid emergence of RT-DETR-based

agricultural application research. Wang S. et al. (2024) proposed a

lightweight tomato maturity detection algorithm PDSI-RTDETR,

reducing parameters and computational costs by 30.8% and 17.6%

respectively while maintaining high accuracy. Zhang Y. et al. (2025)

constructed a WMC-RTDETR lightweight tea disease detection

model, effectively improving detection robustness under complex

environments. Nevertheless, RT-DETR application research

specifically targeting pomegranate maturity detection remains

relatively limited.

Although object detection methodologies have achieved relative

maturity in fruit detection domains, specific applications in

pomegranate maturity detection still face numerous difficulties

and challenges. Firstly, traditional convolutional neural network

backbone structures can only capture local spatial features,

struggling to establish long-range dependencies while lacking

effective utilization of frequency domain information, making

them unable to adequately model complex textural and periodic

characteristic variations on pomegranate surfaces. Secondly,

existing attention mechanisms demonstrate insufficient precision
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in weight allocation under complex agricultural environments, with

singular feature fusion strategies and lack of multi-scale spatial

context awareness capabilities, resulting in difficulties accurately

capturing key visual features of pomegranate maturity.

Furthermore, nearest neighbor interpolation upsampling methods

in traditional feature pyramid networks easily generate feature

misalignment and information loss, while standard convolution

operations are limited to single receptive fields, making efficient

multi-scale feature expression challenging.

Therefore, addressing the aforementioned issues, we propose a

pomegranate maturity detection algorithm named DFMA-DETR.

The contributions of this work are as follows:
Fron
1. We constructed the PGSD-5K dataset specifically designed

for pomegranate maturity detection, containing 5,855 high-

quality images covering five critical stages throughout plant

growth processes. All images were precisely annotated

using LabelImg annotation tools and converted to

standard formats. The dataset encompasses plant images

under different illumination conditions, shooting angles,

and background environments, demonstrating excellent

diversity and representativeness, providing reliable data

foundations for pomegranate maturity detection model

training and evaluation.

2. We designed DFMB-Net (Dual-domain Feature

Modulation Backbone Network), innovatively extending

traditional single spatial domain feature extraction to

spatial-frequency domain collaborative processing modes.

This network achieves multi-domain deep modeling of

pomegranate surface textures, color variations, and

morphologica l character is t ics through organic

combinations of HFCA (Hierarchical Feature Cascade

Aggregator) modules, MDFP (Multi-Domain Feature

Processor) modules, and MSRU and FTEU sub-modules,

effectively addressing insufficient feature representation

capabilities of traditional backbone networks.

3. We constructed EAFF (Enhanced Attention Feature

Fusion) enhanced attention feature fusion modules

through integrating DASA (Dynamic Adaptive Sparse

Attention) adaptive sparse attention mechanisms, SPFN

(Spatial-Paral le l Feedforward Network) spatia l
tiers in Plant Science 03
enhancement feedforward networks, and MASR (Multi-

scale Adaptive Scale Regulator) multi-scale feature

adapters, achieving precise modeling of pomegranate

surface textures, colors, and morphological features,

effectively addressing insufficient feature expression and

inaccurate attention focusing issues of traditional attention

methods under complex background interference.

4. We proposed AIUP (Adaptive Interpolation Upsampling

Processor) adaptive interpolation upsampling processors

and MFCM multi-branch feature convolution modules.

AIUP effectively addresses feature mismatch and

information loss issues in traditional upsampling

processes through soft neighborhood interpolation

strategies and adaptive weight decay mechanisms. MFCM

employs dual-branch heterogeneous architectures,

significantly enhancing multi-scale feature representation

capabilities while maintaining lightweight design through

collaborative actions of standard convolution branches and

depth enhancement branches.
2 Materials and methods

2.1 Dataset

This study constructed the PGSD-5K dataset, specifically

designed for plant growth stage object detection tasks, comprising

5,855 high-quality images. Dataset images were collected from

various online data sources, encompassing five critical stages

throughout plant growth processes: Bud, Early-Fruit, Flower,

Mid-Growth, and Ripe, as illustrated in Figure 1. To ensure data

quality and effective model training, all images were precisely

annotated using the LabelImg annotation tool and converted to

YOLOv8 standard format. During data preprocessing, automatic

orientation correction was applied to each image, with all images

uniformly resized to 640×640 pixel resolution using stretching

methods to meet model input requirements. To guarantee

training data authenticity and realism, this research employed no

data augmentation techniques.
FIGURE 1

Sample images from different categories in the PGSD-5K dataset, where (A) Represents bud, (B) Represents early-fruit, (C) Represents flower,
(D) Represents mid-growth, and (E) Represents ripe.
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Following standard practices for deep learning model training,

the dataset was partitioned into training, validation, and test sets

using a 7:2:1 ratio, containing 4,098, 1,171, and 586 images

respectively, ensuring independence and reliability for

model training, validation, and testing procedures. Statistical

analysis revealed that the entire dataset contains 8,021 annotated

targets distributed across five maturity stages as follows: Bud (1,456

targets, 18.2%), Early-Fruit (1,632 targets, 20.4%), Flower

(1,589 targets, 19.8%), Mid-Growth (1,678 targets, 20.9%), and

Ripe (1,666 targets, 20.8%), demonstrating a balanced distribution

across categories and providing sufficient sample foundations for

effective model learning. The detailed class distribution statistics are

presented in Table 1. The dataset encompasses plant images

captured under diverse illumination conditions, shooting angles,

and background environments, demonstrating excellent diversity

and representativeness to effectively support training and evaluation

of plant growth stage detection models.
2.2 RT-DETR

RT-DETR (Real-Time Detection Transformer) serves as the

first real-time end-to-end object detector, employing convolutional

neural networks as backbone networks for feature extraction. The

backbone network typically adopts classical residual network

architectures such as ResNet-18 or ResNet-50, which effectively

address gradient vanishing problems in deep networks through

residual connections, enabling training of deeper network

structures. RT-DETR selects feature outputs from the final three

stages of the backbone network as encoder inputs, with this multi-

scale feature extraction strategy facilitating capture of semantic

information and spatial details across different hierarchical levels.

The core innovation of RT-DETR lies in its efficient hybrid

encoder design, comprising Attention-based Intra-scale Feature

Interaction (AIFI) modules and CNN-based Cross-scale Feature

Fusion (CCFF) modules. AIFI modules specifically process high-

level features from the S5 stage of the backbone network, utilizing

multi-head self-attention mechanisms to capture associations

between semantic conceptual entities, thereby promoting object

localization and recognition. CCFF modules integrate feature

information across different scales, effectively fusing features from
Frontiers in Plant Science 04
S3, S4, and S5 stages through cross-scale fusion strategies,

enhancing the model’s detection capabilities for targets of varying

sizes. In the decoder section, RT-DETR employs a transformer

decoder architecture combined with auxiliary prediction heads for

iterative optimization, providing high-quality initial target queries

for the decoder through uncertainty minimization query selection

strategies. The decoder progressively optimizes target queries

through multi-layer transformer blocks, ultimately generating

target category and bounding box prediction results.
2.3 DFMA-DETR algorithm

This paper proposes a pomegranate maturity detection

algorithm named DFMA-DETR, whose architecture is illustrated

in Figure 2. This algorithm addresses the limitations of traditional

detection methods in complex agricultural scenarios. These

limitations include insufficient feature representation capabilities,

singular attention mechanisms, and limited multi-scale feature

fusion effectiveness. Our solution constructs an end-to-end

detection framework integrating dual-domain feature modulation

and enhanced attention mechanisms. The algorithm employs

DFMB-Net (Dual-domain Feature Modulation Backbone

Network) as the backbone network, effectively resolving feature

representation limitations of traditional networks in complex

illumination conditions and multi-scale target detection through

fusion of spatial-frequency dual-channel feature processing

mechanisms and adaptive gated attention modules.

In the encoder section, the algorithm introduces EAFF

(Enhanced Attention Feature Fusion) enhanced attention feature

fusion modules, achieving precise modeling of pomegranate surface

textures, colors, and morphological features through integration of

adaptive sparse attention mechanisms, spatial enhancement

feedforward networks, and multi-scale feature adapters.

Additionally, the algorithm designs AIUP (Adaptive Interpolation

Upsampling Processor) adaptive interpolation upsampling

processors and MFCM multi-branch feature convolution

modules, significantly improving feature alignment accuracy and

multi-scale representation capabilities through soft neighborhood

interpolation strategies and multi-branch collaborative

processing mechanisms.
TABLE 1 PGSD-5K dataset class distribution statistics.

Maturity
stage

Images Targets Percentage Train Val Test

Bud 1168 1456 18.2% 818 234 116

Early-Fruit 1306 1632 20.4% 914 261 131

Flower 1271 1589 19.8% 890 254 127

Mid-Growth 1342 1678 20.9% 939 268 135

Ripe 1331 1666 20.8% 927 265 139

Total 5855 8021 100.0% 4098 1171 586
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2.4 DFMB-Net backbone network

Traditional convolutional neural network backbone structures

exhibit significant limitations in complex agricultural scenarios.

Standard convolution operations capture only local spatial features

and struggle to establish long-range dependencies. Additionally,

traditional networks lack multi-scale adaptive perception,

performing poorly in tasks requiring precise identification of

subtle texture variations. Therefore, we propose DFMB-Net

(Dual-domain Feature Modulation Backbone Network), whose

structure is shown in Figure 3. This network addresses feature

representation limitations through spatial-frequency dual-channel

processing and adaptive gated attention modules, significantly

improving pomegranate maturity recognition accuracy and

environmental adaptability.

DFMB-Net backbone network innovatively extends traditional

single spatial domain feature extraction to spatial-frequency

collaborative processing modes, achieving adaptive feature

selection and enhancement through HFCA (Hierarchical Feature

Cascade Aggregator) modules. The network architecture

employs progressive feature abstraction design, with each stage

dynamically adjusting weights of different feature channels through

gating mechanisms while introducing fractional-order

transform theory to process frequency domain features, thereby

maximizing feature representation capabilities while maintaining

computational efficiency.

HFCA modules serve as core components of the DFMB-Net

network, employing hierarchical feature fusion strategies to process
Frontiers in Plant Science 05
multi-scale information. These modules first decompose input

features into two parallel branches through 1×1 convolution, then

utilize cascaded AGFB (Attention-Guided Feature Block) units for

progressive feature extraction. The forward propagation process of

the module can be expressed as:

Y = Conv1�1(Concat(½Y0, Y1,…, Yn�)),  whereYi = GAGFB(Yi−1)

Where Y0 and Y1 represent decomposition results of input

feature X through initial 1×1 convolution, GAGFB represents AGFB

transformation, and n denotes the number of repetitive units within

the module. This formula describes how features are progressively

enhanced through recursive processing, with each Yi containing

information from previous layers while incorporating new

feature representations, ultimately achieving effective integration

of multi-level information through feature concatenation and

convolution fusion.

AGFB modules implement spatial-frequency feature selection

and fusion based on gating mechanisms. These modules adopt

structures similar to GLU (Gated Linear Unit) (Shazeer, 2020),

decomposing features into gating signals, identity mapping, and

convolution processing components through grouped convolution.

The core computational process is expressed as:

G, I, C = Split(FC1(Norm(X)), ½h, h − c, c�)

Y = FC2(s (G)⊙Concat(½I, FMDFP(C)�)) + X

Where G, I, and C represent gating features, identity features,

and convolution features respectively, h denotes hidden layer
FIGURE 2

Network architecture diagram of the DFMA-DETR algorithm.
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dimensions, c represents convolution channel numbers, s denotes

activation functions, ȯ represents element-wise multiplication, and

F_MDFP represents MDFP transformation. This gating mechanism

allows networks to adaptively select important features while

suppressing redundant information, ensuring effective gradient

propagation through residual connections.

MDFP (Multi-Domain Feature Processor) modules represent

key innovative components of the network, implementing

collaborative processing of spatial and frequency domain features,

with workflow illustrated in Figure 4. These modules separately

input features into MSRU (Multi-Scale Receptive Unit) and FTEU

(Frequency Texture Enhancement Unit) for parallel processing,

then integrate information from both domains through adaptive

weight fusion mechanisms. The mathematical expression is:

Fout = PWCo(A(Fspa)⊙ Fspa + A(Ffre)⊙ Ffre)

Where Fspa¼ MSRU(PWC0(X)) and Ffre¼ FTEU(PWC1(X))

represent spatial and frequency domain processing results

respectively, A( · )¼ Softmax(AdapAvgPool( · ))denotes adaptive

attention weight computation, and PWC represents pointwise

convolution operations. This design captures global periodic

features through frequency domain transformation while
Frontiers in Plant Science 06
combining local detail information from spatial domains,

achieving effective fusion of multi-scale, multi-domain features

particularly suitable for capturing complex texture and color

variation patterns on pomegranate surfaces.

MSRU employs multi-scale receptive field adaptive adjustment

mechanisms, achieving precise perception of different-scale

pomegranate fruits through dynamic convolution kernels. MSRU

divides input features into different channel groups, and each group

adopts differently sized convolution kernels (3×3, 5×5, 7×7) for

feature extraction while expanding receptive field ranges through

hierarchical residual connections. The basic computation process is

presented as:

Ys
g =

Xs
g*Kg , g = 1

(Xs
g + Ys

g−1)*Kg , 1 < g ≤ n

(

Where Xs
g represents the g-th group input features, Kg denotes

corresponding convolution kernels, Ys
g represents output features,

and n denotes group numbers. This recursive processing

mechanism ensures each Ys
gcontains information from preceding

hierarchical levels while incorporating new multi-scale feature

representations, ultimately achieving simultaneous capture of
FIGURE 3

DFMB-Net network structure diagram, where ⊗ denotes element-wise addition and ⊗ denotes element-wise multiplication.
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pomegranate fruit local texture details and global shape features

through feature concatenation.

FTEU, which originates from Fractional Gabor Transform

theory, is particularly adept at extracting high-frequency texture

patterns and directionality of pomegranate surfaces. FTEU first

applies fractional-order Fourier transforms to the input features,

converting spatial domain information to frequency domain space,

and then extracts texture patterns along different orientations and

scales through multi-directional Gabor filter banks. The

mathematical expression is:

Kv
i,u = Ki,o*G

a (u, v)

Where Ki;o represents learned k×k convolution kernels, Ga(u; v)

denotes fractional-order Gabor filter banks with different orientations

and scales, a represents transform angle parameters, and u,v

represent orientation and scale indices respectively. This frequency

domain analysis method effectively suppresses image noise while

highlighting subtle variations in surface textures during pomegranate

maturation, providing crucial frequency domain feature information

for accurate maturity grade discrimination.

Through the use of the DFMB-Net backbone network, this

study innovatively comes up with a multi-domain feature

collaborative extraction network structure, with efficient solutions

to the critical problems of deficiency of feature representation

capabilities of traditional detection algorithms in complex

agricultural scenes. It achieves deep merging of spatial-frequency

characteristics through HFCA modules, gated attention

mechanisms suitably choosing and assigning weights to salient

features, as hierarchical progressive feature processing methods

allow for sufficient merging and efficient utilization of multi-scale

information. This new architecture not only significantly enhances

network capability for pomegranate fruit maturity characteristic

extraction and representation, but also significantly boosts model

robustness and generalization capability under different light

conditions, shooting angles, and interference scenes, bringing new

theoretical foundations and technical means to intelligent detection

technologies in precision agriculture.
Frontiers in Plant Science 07
2.5 EAFF module

Traditional AIFI modules exhibit significant limitations in

complex agricultural scenarios: insufficient precision in attention

weight allocation, singular feature fusion mechanisms, and lack of

multi-scale spatial context awareness. These limitations result in

difficulties capturing key visual features for pomegranate maturity

detection. Therefore, we propose an enhanced encoder module

named EAFF (Enhanced Attention Feature Fusion), whose

structure is shown in Figure 5. This module achieves precise

modeling of pomegranate surface textures, colors, and

morphological features through integration of adaptive sparse

attention mechanisms, spatial enhancement feedforward networks,

and multi-scale feature adapters, effectively addressing insufficient

feature expression and inaccurate attention focusing issues of

traditional methods under complex background interference.

EAFF modules employ deep learning architectures combining

residual connections with layer normalization, achieving

progressive feature optimization through collaborative work of

three core sub-modules. DASA (Dynamic Adaptive Sparse

Attention) implements sparse attention computation to improve

computational efficiency, SPFN (Spatial-Parallel Feedforward

Network) enhances spatial context awareness through dual-path

parallel processing, while MASR (Multi-scale Adaptive Scale

Regulator) modules achieve adaptive feature adjustment through

multi-scale convolution operations. This design innovatively

combines sparse attention mechanisms with spatial enhancement

techniques, constructing an efficient and precise feature

expression framework.

Initially, input feature maps undergo adaptive sparse attention

computation through DASA modules, with this process combining

layer normalization and feature adjustment from the first MASR

module, expressible as:

Z1 = MASR1 LN X + DASA Xð Þð Þð Þ
Where X ∈ RBñCñHñW represents input feature maps, with B

denoting batch size, C representing channel numbers, and H andW
FIGURE 4

MDFP network workflow diagram.
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representing feature map height and width respectively; LN(·)

denotes layer normalization operations for stabilizing training

processes and accelerating convergence; DASA(·) represents

adaptive sparse attention computation functions, achieving

dynamic balance between sparse and dense attention through

dual-branch parallel processing; MASR1(·) represents the first

multi-scale adaptive feature adjustment module, implementing

refined feature processing through parallel multi-kernel

convolution and gating mechanisms.

Subsequently, preliminarily processed features enter SPFN

modules for spatially enhanced feedforward processing, with this

stage similarly combining layer normalization and adaptive

adjustment from the second MASR module:

Z2 = MASR LN Z1 + SPFNð Þð Þ
Where Z1 represents intermediate feature representations after

first-stage processing; SPFN(·,·) represents spatial enhancement

feedforward network functions employing dual-path parallel

processing mechanisms, with the first parameter representing

current feature states and the second parameter representing

original input features, achieving multi-dimensional feature

optimization through collaborative action of spatial enhancement

paths and main feature processing paths; MASR2(·) represents the

second multi-scale adaptive feature adjustment module responsible

for final refined adjustment of fused features; Z2 represents final

output feature representations of the module.

DASA modules, based on core concepts of adaptive sparsity

adjustment, implement dynamic balance between sparse and dense

attention through dual-branch parallel processing architectures.

Upon receiving windowed input features, these modules first

generate query Q ∈ RNñd, key K ∈ RNñd, and value V ∈ RNñd
Frontiers in Plant Science 08
matrices through linear transformations, where N=W² represents

token numbers within each window and d denotes head

dimensions. Sparse branches employ squared ReLU activation

functions to filter attention weights with negative correlations,

effectively eliminating interference from irrelevant regions; dense

branches maintain traditional softmax normalization mechanisms,

ensuring probabilistic properties of attention distributions.

Adaptive weighted fusion processes of both branches achieve

dynamic adjustment through learnable parameters, with

mathematical formulation as:

AASSA =
ea1

ea1 + ea2
· ReLU2 QKTffiffiffi

d
p + B

� �
+

ea2

ea1 + ea2

· Softmax
QKTffiffiffi

d
p + B

� �

Where a1 and a2 represent learnable branch weight parameters

initialized to 1 for ensuring training stability during initial phases;

B ∈ RNñN represents relative position bias matrices achieving

position awareness through two-dimensional coordinate

encoding. This adaptive weight mechanism enables modules to

dynamically adjust sparsity levels according to input feature

complexity and task requirements, ensuring both computational

efficiency improvements and maintaining integrity of key

feature information.

SPFN modules follow double-path parallel processing design

principles to achieve multi-dimensional optimization of input

features from cooperative operation of main feature processing

paths and spatial enhancement paths. Spatial enhancement paths

construct global receptive field spatial context representations as a

sequence of average pooling downsampling, multi-layer
FIGURE 5

EAFF module network structure diagram.
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convolution processing, and bilinear upsampling operations of

input spatial reference features. Main processing streams conduct

local refinement on existing features using depthwise separable

convolution and gating mechanisms. Essential computation

workflows of such modules are representable as:

XSPFN = GELU(Conv(DW(Fusion(DW(Fmain), Fspatial))))⊙DW(Fmain)

Where Fspatial¼ Upsample(Convseq(AvgPool(Xspatial))) represents
spatial enhancement features, with Convseq denoting two consecutive

3×3 standard convolution layers, each followed by layer normalization

and ReLU activation functions. Fmain represents main path features

processed through layer normalization and 1×1 convolution. Fusion(·,·)

represents feature fusion operations, ȯ denotes element-wise products,

and DW(·) represents processing through 3×3 depthwise separable

convolution operations. This design effectively combines global

spatial context information with local detail features, enhancing

network modeling capabilities for complex texture patterns on

pomegranate surfaces.

MASR modules, based on basic rules of multi-scale adaptive

feature adaptation, perform enhanced feature processing in parallel

multi-kernel convolution and gating operations. Such modules first

carry out adaptive normalization processing on input feature maps,

adaptively scaling feature distributions using learnable scaling

parameters, followed by utilizing multi-branch parallel

convolution architectures to obtain spatial context information

from different receptive fields. With input feature maps X ∈
RCñHñW, complete transformation processes of MASR modules

are expressible through the following composite functions:

FMASR(X) = X

+Fup(GELU(Dropout(Ams(Fdown(Nadapt(X))))))
Where Nadapt(X)¼ LayerNorm(X) ȯ g þ X o ̇ gx r epre sent s

adaptive normalization operations, with g ; gx ∈ RCñ1ñ1 denoting

learnable scaling parameters; Fdown and Fup represent

dimensionality reduction and expansion through 1×1 convolution

transformations respectively; Ams defines multi-scale adaptive

aggregation operators that capture spatial features across different

granularities through parallel multi-scale depthwise convolution

branches while employing adaptive weight fusion strategies for

effective feature integration:

Ams(F) = F +
1
Kj j ok∈K

DWConvk(F;Wk) +Fproj(Fms)

Where K={3,5,7} represents multi-scale convolution kernel

sets, DWConvkdenotes depthwise separable convolution

operations with kernel sizes k×k, and Fprojrepresents feature

projection functions. Employment of depthwise separable

convolution not only reduces computational complexity but also

enhances model spatial locality modeling capabilities, particularly

suitable for processing irregular shapes and complex textures in

agricultural scenarios.

The proposed EAFF module constructs an efficient and precise

feature expression framework through organic fusion of adaptive
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sparse attention mechanisms, spatial enhancement feedforward

networks, and multi-scale feature adaptation techniques.

Innovation of this module lies in introducing dual-branch parallel

sparse attention mechanisms, achieving optimal balance between

computational efficiency and feature representation capabilities

through dynamic weight adjustment, while designing spatially

enhanced feedforward network architectures that effectively

combine global spatial context information with local

detail features.
2.6 AIUP and MFCM modules

Traditional nearest neighbor interpolation upsampling

methods in feature pyramid networks easily generate feature

misalignment and information loss issues, while standard

convolution downsampling operations are often limited to single

receptive fields, making effective capture of multi-scale texture

features and spatial context information challenging. Therefore,

we propose AIUP (Adaptive Interpolation Upsampling Processor)

and MFCM (Multi-branch Feature Convolution Module). AIUP

modules implement soft feature alignment through introduction of

adaptive scaling factors, effectively alleviating feature mismatch

problems during upsampling processes; MFCM modules generate

diverse receptive fields and rich texture feature representations

within single modules through multi-branch convolution

structures and channel shuffling mechanisms, significantly

enhancing network feature representation capabilities.

Core innovations of AIUP and MFCM modules lie in

transforming traditional hard interpolation and single

convolution operations into adaptive soft interpolation and multi-

branch collaborative processing mechanisms. AIUP modules

achieve progressive feature alignment through soft neighborhood

interpolation strategies, while MFCM modules significantly

enhance feature diversity and expressiveness while maintaining

computational efficiency through organic combination of grouped

convolution, depthwise convolution, and channel shuffling,

providing more precise and robust feature representations for

pomegranate maturity detection.

AIUP modules employ soft neighborhood interpolation

strategies, optimizing traditional upsampling processes through

introduction of adaptive weight decay mechanisms, with

workflows illustrated in Figure 6. These modules first perform

nearest neighbor interpolation operations on input feature maps,

then apply adaptive scaling factors related to upsampling multiples

for feature modulation, thereby achieving soft feature alignment.

Mathematical expressions are:

FSNI =
1
f 2

·Unearest(X)⊙Wadaptive(X, f )

Where X ∈ RBñCñHñW represents input feature maps, f denotes

upsampling multiples, Unearest( · ) represents nearest neighbor

interpolation operators, Wadaptive( · )represents adaptive weight

functions, and ȯ denotes element-wise multiplication operations.

This design effectively suppresses feature distortion and noise
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amplification effects in traditional hard interpolation processes

while maintaining computational efficiency through dynamic

interpolation weight adjustment. Introduction of adaptive weight

functions enables networks to automatically adjust interpolation

intensities according to feature map contents, achieving smoother

and more accurate feature transmission across different scales.

MFCMmodules employ innovative dual-branch heterogeneous

architectures, achieving efficient multi-scale feature representation

learning through collaborative action of standard convolution

branches and depth enhancement branches, with structures

shown in Figure 7. Module designs fully consider balance

between computational efficiency and feature richness,

significantly enhancing feature extraction capabilities while

maintaining lightweight characteristics through strategies of

channel splitting, parallel processing, and feature reorganization.
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Overall transformation processes of modules are expressible

through the following composite functions:

YGSConvE = Schannel GGELU(DW3�3(C3�3(Bstandard(X)))), Bstandard(X)

" # !

In this expression, Bstandard(X)¼ s(BN(Convkñk(X))) represents
basic feature extraction processes of standard convolution branches,

including composite operations of convolution, batch

normalization, and activation functions. C3ñ3 and DW3ñ3

represent 3×3 standard convolution and 3×3 depthwise separable

convolution operations respectively, GGELU represents GELU

activation functions, ½·, ·�represents feature concatenation

operations along channel dimensions, and Schannel represents

channel shuffling transformations. Channel shuffling operations

achieve deep information interaction between different branch
FIGURE 6

AIUP module workflow diagram.
FIGURE 7

MFCM module network structure.
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features through tensor rearrangement, with transformation

matrices expressible as Pshuffle ∈ 0; 1CoutñCout , ensuring uniform

distribution and effective fusion among feature channels.

Cooperative design of AIUP and MFCM modules contributes

significantly to feature alignment precision and multi-scale

representation capability of RT-DETR networks. AIUP modules

effectively handle feature mismatch issues in traditional upsampling

processes by adaptive soft interpolation mechanisms, significantly

improving feature alignment quality with different scales; MFCM

modules significantly enhance the network feature capture

performance and expression richness with lightweight design

ensured by multi-branch cooperative processing and intelligent

channel shuffling strategies. Organic combination of the two

modules ensures enhanced detection networks to be more robust

and accurate in confronting complex light conditions and varying

pomegranate morphologies, having good technical basis for correct

pomegranate maturity determination.
3 Experiments

3.1 Experimental environment and
parameter settings

Experiments were conducted on a server equipped with Intel(R)

Xeon(R) CPU E5–2680 v4 @ 2.40GHz 7-core processor and 64GB

DDR4 memory. Deep learning training utilized NVIDIA GeForce

RTX 4090 GPU (24GB VRAM) for accelerated computation. The

experimental environment was based on Ubuntu 20.04.6 LTS

operating system, with CUDA version 11.8 and cuDNN version

8.6.0. The deep learning framework employed PyTorch 2.0.1 in

conjunction with torchvision 0.15.2 for model construction and

training. Additionally, experiments utilized Python 3.9.16 as the

programming language, integrating OpenCV 4.7.1 for image

preprocessing, NumPy 1.24.3 for numerical computation, along

with other essential scientific computing libraries.

Throughout model training, batch size was configured to 8, with

input image dimensions uniformly adjusted to 640×640 pixels. The

optimizer employed AdamW with initial learning rate set to 0.0001,

momentum parameter configured to 0.9, and weight decay set to

0.0001. Total training epochs were established at 300 rounds. All

remaining configurations followed RT-DETR default settings.
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3.2 Evaluation metrics

This research employed the standard evaluation indexes in the

object detection task to test the performance of the improved RT-

DETR algorithm from various perspectives. Precision (P) refers to

the proportion of correctly predicted positive samples among all

predicted positive samples, and Recall (R) is the proportion of

correctly predicted samples among all positive samples. mAP@0.5

(mean Average Precision at IoU=0.5) calculates the mean AP values

over categories at IoU threshold 0.5, the most commonly used

metric for object detection evaluation. mAP@0.5:0.95 is the mean

AP values over a range of thresholds from 0.5 to 0.95 with 0.05

increments, providing more comprehensive evaluation of model

detection precision. Furthermore, to determine model

computational complexity and viability, GFLOPS (Giga Floating

Point Operations Per Second) estimates computation load and

Params (Parameters) tallies total model parameters. The metrics

enable multifaceted performance evaluation of the improved

algorithm regarding detection accuracy, computational efficiency,

and model complexity, respectively, to guarantee practicability for

real-world usage and enhance detection accuracy.
3.3 Ablation studies

3.3.1 DFMB-Net backbone network ablation
study

In order to prove the effectiveness of our proposed DFMB-Net

backbone network, ablation experiments were conducted whose

results are presented in Table 2. The experiments had rigorously

tested the contribution of each element towards overall detection

performance by removing HFCA modules, AGFB modules, and

MDFP modules individually. All experiments were performed

under identical experimental conditions and hyperparameters in

order to ensure fairness and comparability of results.

Experimental results demonstrate that each module makes

important contributions to detection performance with synergistic

effects evident. Removing the MDFP module resulted in 0.48% and

0.72% decreases in mAP50 and mAP@50–95 respectively,

validating the crucial role of multi-domain feature processing

mechanisms in spatial-frequency collaborative modeling. AGFB

module removal caused 0.72% and 1.04% decreases in mAP@50
TABLE 2 AVN backbone network ablation study results.

Model HFCA AGFB MDFP mAP@50 mAP@P50-95 FLOPs Parameters

RT-DETR × × × 87.10% 73.34% 57.0G 19.8M

w/o MDFP ✓ ✓ × 87.45% 74.21% 48.7G 13.9M

w/o AGFB ✓ × ✓ 87.21% 73.89% 49.8G 14.2M

w/o HFCA × ✓ ✓ 86.98% 73.67% 51.1G 15.1M

DFMB-Net ✓ ✓ ✓ 87.93% 74.93% 50.3G 14.7M
“✓” indicates applicable, “×” indicates not applicable.
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and mAP@50–95 respectively, confirming the importance of

attention-guided gating mechanisms in complex texture feature

extraction. HFCA module removal yielded the most significant

performance degradation, with mAP@50 and mAP@50–95

decreasing by 0.95% and 1.26% respectively, indicating that

hierarchical feature cascade aggregation mechanisms constitute

core components of the entire architecture.

To more intuitively demonstrate the contribution of each

module to detection performance, specific performance of the

DFMA-DETR algorithm under different configurations on the

mAP@50 metric is illustrated in Figure 8A. Notably, the complete

DFMB-Net backbone network not only significantly improved

detection accuracy compared to the original RT-DETR baseline

but also effectively reduced computational complexity and model

parameters, fully validating the effectiveness of our proposed

lightweight design strategy and excellent synergistic effects

among modules.

3.3.2 EAFF module ablation study
To validate the effectiveness of our proposed EAFF module, we

conducted ablation experiments on the EAFF module, with results

shown in Table 3. These experiments employed module

replacement strategies, substituting the original AIFI modules in
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the RT-DETR encoder with our proposed EAFF modules. To

analyze the contributions of various EAFF components in depth,

we designed progressive validation experiments, sequentially

verifying the independent effects of DASA adaptive sparse

attention mechanisms, SPFN spatial parallel feedforward

networks, and MASR multi-scale adaptive regulators.

Experimental results prove that introducing DASA mechanism

alone to replace existing attention computation improved mAP50

and mAP@50–95 by 0.33% and 0.55% respectively, validating the

effectiveness of adaptive sparse attention in pomegranate maturity

feature capture. To more intuitively demonstrate the progressive

performance enhancement effects of EAFF module components,

comparison results of mAP@50 metrics under different

configurations are shown in Figure 8B. Further integration of the

SPFN module significantly improved performance, with mAP@50

and mAP@50–95 reaching 88.01% and 74.76% respectively,

proving the important role of spatial parallel processing strategies

in complex texture feature modeling. The complete EAFF module

achieved 88.52% mAP@50 and 75.61% mAP@50–95 through

multi-scale adaptive adjustment of MASR components.

Compared to the original AIFI module, the EAFF module

improved mAP@50 and mAP@50–95 by 1.42% and 2.27%

respectively, with Recall increasing by 1.27%, fully validating that
FIGURE 8

Bar charts of different experimental results, where (A) Shows DFMB-Net backbone network ablation study mAP@50 bar chart, and (B) Shows EAFF
module ablation study mAP@50 bar chart.
TABLE 3 EAFF module ablation study results.

Method DASA SPFN MASR mAP@50 mAP@P50-95 FLOPs Parameters

AIFI × × × 87.10 73.34 57.0 19.8

w/DASA only ✓ × × 87.43 73.89 57.8 20.3

w/DASA + SPFN ✓ ✓ × 88.01 74.76 58.9 21.6

w/EAFF ✓ ✓ ✓ 88.52 75.61 60.0 22.5
“✓” indicates applicable, “×” indicates not applicable.
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the proposed enhanced attention feature fusion module can

significantly improve overall pomegranate maturity detection

performance after replacing traditional AIFI.

3.3.3 DFMA-DETR algorithm ablation study
To validate the effectiveness of our proposed DFMA-DETR

algorithm, we designed comprehensive ablation experiments to

analyze the contribution of each innovative module to detection

performance, with results presented in Table 4. Ablation

experiments were conducted on the PGSD-5K dataset, evaluating

the impact on pomegranate maturity detection accuracy through

progressive addition and combination of different innovative

modules, where A, B, and C represent DFMB-Net dual-domain

feature modulation backbone network, EAFF enhanced attention

feature fusion module, and AIUP adaptive interpolation
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upsampling processor with MFCM multi-branch feature

convolution module respectively.

Experimental results indicate that each innovative module

significantly improves detection performance. The DFMB-Net

backbone network improved mAP@50 from baseline 87.10% to 87.93%

while reducing parameters from 19.8M to 14.7M, validating the

effectiveness of dual-domain feature modulation mechanisms in

enhancing feature representation capabilities while achieving model

lightweighting. The EAFF module improved mAP@50 to 88.52%,

proving the advantages of enhanced attention mechanisms in feature

fusion within complex agricultural scenarios. AIUP andMFCMmodules

achieved 91.77% precision, demonstrating outstanding effectiveness of

adaptive upsampling and multi-branch convolution in feature alignment.

To comprehensively evaluate the overall performance of

different module combinations in detection accuracy and
TABLE 4 DFMA-DETR algorithm ablation study results.

Model mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters

Base 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M

A 87.93% 74.93% 90.80% 80.32% 50.3G 14.7M

B 88.52% 75.61% 91.61% 80.55% 60.0G 22.5M

C 88.21% 75.04% 91.77% 80.59% 58.1G 19.9M

A+B 89.07% 76.75% 91.28% 81.34% 51.7G 17.1M

B+C 89.35% 76.88% 92.19% 81.53% 59.4G 22.2M

A+C 88.82% 76.29% 91.41% 81.37% 52.8G 16.0M

A+B+C 90.23% 76.40% 91.63% 82.39% 51.1G 16.8M
FIGURE 9

Radar chart of ablation study results.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1680299
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2025.1680299
computational efficiency, Figure 9 presents radar chart comparative

analysis of various configurations across five key metrics: mAP@50,

mAP@50-95, Recall, FLOPs, and Parameters. The radar chart

intuitively reveals that the complete DFMA-DETR algorithm not

only excels in detection accuracy metrics but also demonstrates

excellent optimization effects in computational efficiency, with

overall radar chart contours exhibiting ideal distribution

characteristics of high accuracy and superior efficiency. When

three modules work collaboratively, mAP@50, mAP@50-95, and

recall reached 90.23%, 76.40%, and 82.39% respectively,

representing improvements of 3.13%, 3.06%, and 3.11% over

baseline while maintaining relatively low computational

complexity and parameter count, fully validating the effectiveness

and practicality of the proposed method.
3.4 Comparative experiments

3.4.1 Stage-wise performance analysis
To provide comprehensive insights into algorithm effectiveness

across different growth phases and address potential performance

disparities that may be masked by averaged metrics, we conducted

detailed stage-wise performance analysis on the PGSD-5K dataset.

Tables 5 and 6 present the detection performance of baseline RT-

DETR and the proposed DFMA-DETR across all five pomegranate

maturity stages respectively. This fine-grained evaluation reveals

significant variations in detection accuracy among different

growth phases, demonstrating the critical importance of

stage-specific analysis in agricultural object detection tasks where

morphological characteristics vary substantially throughout the

maturation process.

Comparative analysis between Tables 5 and 6 reveals that

DFMA-DETR achieves notable improvements across most

maturity stages, with particularly pronounced enhancements in

challenging detection scenarios. The Bud stage exhibits the most

significant improvement in Recall metric, increasing from 73.58%

to 78.26%, addressing the baseline model’s limitations in detecting

small, morphologically indistinct early-stage features. The Mid-

Growth stage, which represents a critical transitional phase with

complex visual characteristics, demonstrates substantial

performance gains with mAP@50–95 improving from 76.17% to

77.94% and Recall increasing by 2.90% from 78.99% to 81.89%.

While slight decreases are observed in certain metrics for Flower

and Ripe stages, these represent acceptable trade-offs that
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contribute to overall balanced performance across the complete

maturation spectrum, validating the algorithm’s robustness in

handling diverse pomegranate growth characteristics and

confirming its practical applicability for comprehensive maturity

assessment systems.

3.4.2 Different backbone network comparison
To validate the effectiveness of our proposed DFMB-Net

backbone network, we designed ablation experiments comparing

different backbone networks. Experiments employed identical

detection frameworks and training strategies, utilizing RT-DETR-

R18 as the baseline model alongside advanced backbone networks

including CSwinTransformer, VanillaNet, and RMT for

comparative analysis. All models were trained and tested on

identical datasets to ensure fairness and comparability of

experimental results. Results are presented in Table 7.
TABLE 5 Stage-wise detection performance of baseline RT-DETR across
five pomegranate maturity stages.

Class mAP@50 mAP@50-95 Precision Recall

Average 87.10% 73.34% 91.05% 79.28%

Bud 86.88% 67.60% 92.03% 73.58%

Early-
Fruit

89.71% 80.00% 89.68% 84.38%

Flower 91.50% 77.75% 93.90% 80.33%

Mid-
Growth

90.76% 76.17% 93.42% 78.99%

Ripe 96.93% 88.09% 96.16% 90.76%
fron
TABLE 6 Stage-wise detection performance of proposed DFMA-DETR
across five pomegranate maturity stages.

Class mAP@50 mAP@50-95 Precision Recall

Average 90.23% 76.40% 91.63% 82.39%

Bud 88.42% 70.15% 91.34% 78.26%

Early-Fruit 91.18% 81.22% 90.17% 85.74%

Flower 90.89% 78.31% 93.02% 82.15%

Mid-Growth 91.67% 77.94% 92.51% 81.89%

Ripe 95.99% 86.38% 95.11% 83.91%
TABLE 7 Comparison results of different backbone networks.

Model mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters

Resnet-18 (He et al., 2016) 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M

CSwinTransformer (Dong et al., 2022) 86.80% 73.10% 89.20% 81.80% 91.3G 30.7M

VanillaNet (Chen et al., 2023) 85.40% 71.80% 88.60% 78.20% 166.2G 27.8M

RMT (Fan et al., 2024) 87.50% 74.20% 90.30% 81.90% 61.5G 21.4M

DFMB-Net 87.93% 74.93% 90.80% 80.32% 50.3G 14.7M
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Experimental results demonstrate that the proposed DFMB-Net

backbone network exhibits excellent performance in both detection

accuracy and computational efficiency. Compared to baseline model

RT-DETR-R18, DFMB-Net achieved 0.83% improvement in mAP@

50 metric and obtained 1.59% significant enhancement in mAP@50–

95 metric. When compared with other advanced backbone networks,

DFMB-Net not only surpassed CSwinTransformer and VanillaNet in

detection accuracy but also demonstrated superior computational

efficiency advantages: parameter count was only 14.7M, representing

52.1% and 47.1% reductions compared to CSwinTransformer and

VanillaNet respectively; computational complexity was 50.3G FLOPs,

representing 69.7% reduction compared to VanillaNet. These results

fully validate the effectiveness of DFMB-Net backbone network

design, demonstrating its capability to achieve higher detection

accuracy while maintaining lower computational costs.

To further intuitively demonstrate differences in feature

extraction capabilities among various backbone networks, we

employed Grad-CAM techniques to generate feature activation

heat maps for each backbone network, with results shown in

Figure 10. Visualization results reveal that the proposed DFMB-

Net can more precisely focus on key regions of pomegranate fruits,

with concentrated activation areas and high response intensities,

particularly in critical areas for maturity discrimination such as

pomegranate surface texture variations and color transitions. In

contrast, ResNet-18 shows relatively dispersed activation regions,

CSwinTransformer and VanillaNet exhibit discontinuous activation

when processing local texture details, while RMT network’s feature

focusing capability also significantly falls short of DFMB-Net. These

visualization results are highly consistent with quantitative

experimental data, validating the effectiveness of DFMB-Net dual-
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domain feature modulation mechanisms in pomegranate maturity

feature extraction.

3.4.3 Public dataset comparison experiments
To validate the generalization capability and cross-domain

adaptability of our proposed DFMA-DETR algorithm, we

conducted public dataset comparison experiments to evaluate

algorithm detection performance under different data distributions.

Experiments employed the Pomegranate-rjwdq public dataset

(Projects Team, 2024) from the Roboflow Universe platform,

containing 2,390 high-quality pomegranate images covering various

illumination conditions, shooting perspectives, and complex

background environments. This dataset exhibits significant

differences from our constructed PGSD-5K dataset in image

diversity and scene complexity, with experimental results presented

in Table 8.

Experimental results fully demonstrate the excellent

performance and superior generalization capability of the DFMA-

DETR algorithm on public datasets. Compared to baseline model

RT-DETR, DFMA-DETR achieved 1.13% significant improvement

in mAP@50 metric and obtained 1.88% performance enhancement

in mAP@50–95 metric, while achieving 0.67% and 1.08%

improvements in Precision and Recall metrics respectively,

validating the feature representation advantages of dual-domain

feature modulation backbone networks when processing different

data distributions and the precise modeling capabilities of enhanced

attention feature fusion modules in complex scenarios. Most

importantly, DFMA-DETR demonstrated stable high-precision

detection performance on the pomegranate-rjwdq public dataset,

not only confirming the technical effectiveness of the proposed
FIGURE 10

Heat map results of different backbone networks.
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innovative architecture but also highlighting the algorithm’s strong

robustness when facing cross-domain scene variations and

data distribution differences, establishing solid technical

foundations for practical engineering applications of pomegranate

maturity detection.

3.4.4 Different model comparison experiments
To validate the effectiveness of our proposed DFMA-DETR

algorithm, we conducted comparison experiments with mainstream

object detection models on the PGSD-5K dataset, with results

presented in Table 9. Comparison models included traditional

two-stage detectors, single-stage detectors, Transformer-based

detectors, and RT-DETR series models.

Experimental results indicate that DFMA-DETR achieved

significant performance improvements across multiple key

metrics. In detection accuracy, DFMA-DETR realized 90.23%

mAP@50 and 76.40% mAP@50-95, representing 1.50% and

1.42% improvements over baseline model RT-DETR-L

respectively, and 2.00% and 3.28% improvements over the

closest-performing YOLOv11m respectively. In computational
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efficiency, DFMA-DETR achieved optimal accuracy-efficiency

balance with only 16.8M parameters and 51.1G computational

complexity, reducing parameters by 49.1% compared to RT-

DETR-L while maintaining higher detection accuracy.

Through multi-dimensional performance comparison analysis, the

radar chart shown in Figure 11 clearly demonstrates the

comprehensive advantages of DFMA-DETR over mainstream

detection models in core metrics including detection accuracy and

computational efficiency. Radar chart results reveal that DFMA-DETR

maintains high-precision detection capabilities while performing

exceptionally well in model lightweighting, with radar chart contours

matching optimal models in accuracy metrics while significantly

outperforming other comparison models in efficiency metrics,

demonstrating the significant advantages of the proposed algorithm

in practical applications. Particularly noteworthy is that DFMA-DETR

achieved 91.63% in the Precision metric, exhibiting excellent detection

accuracy. These results fully validate the effectiveness of our proposed

innovative designs including dual-domain feature modulation

backbone networks, enhanced attention feature fusion modules, and

adaptive interpolation upsampling processors.
TABLE 8 Results of different dataset experiments.

Dataset Model mAP@50 mAP@P50-95 Precision Recall

Pomegranate-rjwdq
RT-DETR 95.73% 68.15% 94.02% 92.76%

DFMA-DETR 96.86% 70.03% 94.69% 93.84%

PGSD-5K
RT-DETR 87.10% 73.34% 91.05% 79.28%

DFMA-DETR 90.23% 76.40% 91.63% 82.39%
TABLE 9 Comparison results of different models.

Model mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters

Faster-RCNN (Ren et al., 2016) 85.45% 69.23% 88.21% 81.56% 208.1G 41.4M

Cascade-RCNN (Cai and Vasconcelos,
2018)

86.34% 70.82% 88.97% 82.45% 206.2G 32.3M

YOLOV8m (Sohan et al., 2024) 86.79% 71.56% 89.34% 82.91% 78.7G 28.9M

YOLOV10m (Wang A. et al., 2024) 87.45% 72.34% 90.12% 83.67% 58.9G 15.3M

YOLOV11m (Khanam and Hussain,
2024)

88.23% 73.12% 90.89% 84.34% 67.7G 20.1M

YOLOV12m (Tian et al., 2025) 88.01% 72.89% 90.67% 84.12% 67.2G 20.0M

D-Fine-M (Peng et al., 2024) 87.12% 71.89% 89.56% 83.23% 56.4G 19.2M

DEIM-D-Fine-M (Huang et al., 2025) 87.98% 72.67% 90.45% 83.89% 56.4G 19.2M

RT-DETR-R18 (Zhao et al., 2024) 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M

RT-DETR-R50-tiny (Zhao et al., 2024) 88.56% 74.45% 91.34% 84.78% 134.8G 42.9M

RT-DETR-L (Zhao et al., 2024) 88.73% 74.98% 91.67% 85.12% 108.3G 33.0M

DFMA-DETR 90.23% 76.40% 91.63% 82.39% 51.1G 16.8M
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3.5 Model experimental results
visualization

To intuitively evaluate performance differences among various

detection models in pomegranate maturity recognition tasks, we

selected representative test samples from the PGSD-5K dataset

covering four key maturity stages: Early-Fruit, Bud&Flower, Ripe,

and Mid-Growth, presenting comparative detection results of

Faster-RCNN, YOLOv12m, DEIM-D-Fine-M, RT-DETR-R18,

and our proposed DFMA-DETR algorithm, as illustrated in

Figure 12. Visualization experiments employed identical input

images and detection threshold settings, ensuring fairness among

different model comparisons. Each detection result displays

predicted bounding boxes, category labels, and corresponding

confidence scores, providing intuitive visual evidence for

quantitative analysis of detection accuracy and stability

across models.

From visualization results, the proposed DFMA-DETR

algorithm demonstrates excellent detection performance and

higher prediction confidence across all maturity stages.

Specifically, DFMA-DETR achieved high confidence of 0.97 in the

Early-Fruit stage, significantly surpassing other models; maintained

stable confidence levels of 90–94 in the Bud&Flower stage; realized

excellent performance of 0.89-0.90 in the Ripe stage; and achieved

reliable detection accuracy of 0.70-0.93 in the Mid-Growth stage. In

contrast, while traditional algorithms can accomplish basic

detection tasks, they clearly fall short of DFMA-DETR in

confidence stability. These visualization results fully validate the

effectiveness of dual-domain feature modulation backbone

networks and enhanced attention feature fusion modules in

improving pomegranate maturity detection accuracy and
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robustness, providing powerful visual evidence for the superiority

of the proposed algorithm.

Here’s the English translation of the conclusion section at SCI

Q1 level:
4 Conclusion

This study addresses critical limitations inherent in conventional

pomegranate maturity detection approaches, particularly their

inadequate feature representation capabilities, monolithic attention

mechanisms, and constrained multi-scale feature fusion performance

within complex agricultural environments. We introduce DFMA-

DETR, a novel pomegranate maturity detection algorithm that

incorporates several key innovations: the DFMB-Net dual-domain

feature modulation backbone network, the EAFF enhanced attention

feature fusion module, and the AIUP and MFCM optimization

components. These elements collectively establish an end-to-end

detection framework that integrates spatial-frequency domain

collaborative processing, adaptive sparse attention mechanisms, and

multi-scale feature adaptation.

Experimental validation demonstrates that DFMA-DETR

achieves remarkable performance on the PGSD-5K dataset,

attaining 90.23% mAP@50 and 76.40% mAP@50-95, representing

improvements of 3.13% and 3.06% respectively over baseline

models. Furthermore, the algorithm exhibits excellent

generalization capabilities and cross-domain adaptability when

evaluated on the publicly available Pomegranate-rjwdq dataset.

Aside from showing improved dramatic detection accuracy, the

proposed algorithm is also able to perform an effective trade-off

between computational efficiency and detection performance. With
FIGURE 11

Radar chart of different model comparison experiment results.
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only 16.8M parameters and 51.1G FLOPs computational

complexity, it provides a solid technical foundation for

engineering application in pomegranate maturity assessment.

Systematic ablation tests and visual analysis also more effectively

promote the effectiveness and cooperative performance of each new
Frontiers in Plant Science 18
module, confirming the advantage of the dual-domain feature

modulation mechanism in finding complex surface textures and

periodic feature change of pomegranates, and the enhanced

attention mechanism’s ability for precise feature localization in

cluttered interference background.
FIGURE 12

Visualization of different model experimental results, where (A) Shows faster-RCNN detection results, (B) Shows YOLOV12m, (C) Shows DEIM-D-
fine-M detection results, (D) Shows RT-DETR-R18 detection results, and (E) Shows DFMA-DETR detection results.
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This research creates new theoretical foundations and

engineering references for intelligent detection technologies in

precision agriculture, offering tremendous academic value and

prospect application value for pushing forward agricultural

modernization and intelligentization.
5 Discussion

The DFMA-DETR algorithm, which was recently proposed,

shows better performance improvements in pomegranate maturity

detection, whose major breakthrough is constructed on the

designing of a dual-domain feature modulation mechanism for

enabling spatial-frequency collaborative processing with an

adaptive sparse attention fusion framework. Compared to

traditional single-domain feature extraction-based approaches,

our DFMB-Net dual-domain feature modulation backbone

network captures pomegranate surface spatial texture details and

frequency-domain periodic features simultaneously. This

innovation adequately addresses the inherent issue of lacking

feature representation capability of traditional convolutional

neural networks in coping with complex agricultural scenarios.

The dynamic adaptive sparse attention mechanism of the EAFF

module achieves optimal trade-off among computational overhead

and feature representation capability by dynamic weight

adjustment. In contrast to traditional dense attention

mechanisms, it lowers computational complexity significantly

without sacrificing much accuracy. These findings not only

encourage the application of Transformer-based object detection

technology in agricultural applications but also create new

theoretical models and technical paths for multi-domain feature

fusion in severe environments.

Regarding real-time performance capabilities, our DFMA-

DETR demonstrates superior inference efficiency in practical

deployment scenarios. Performance evaluation on NVIDIA T4

GPU infrastructure reveals that DFMA-DETR achieves

approximately 118 FPS during inference, representing a 9.3%

improvement over the baseline RT-DETR’s 108 FPS. This

enhancement directly results from our optimized architecture

design, particularly the reduced computational complexity (51.1G

FLOPs compared to 57.0G baseline) and streamlined parameter

count (16.8M versus 19.8M parameters).

For edge computing deployment scenarios critical to precision

agriculture, DFMA-DETR maintains robust real-time capabilities

across constrained computational environments. Testing on

NVIDIA Jetson AGX Orin devices demonstrates inference rates

of 32–35 FPS, while deployment on resource-limited Jetson Orin

Nano platforms achieves stable performance at 16–18 FPS. These

metrics enable practical field deployment for autonomous

agricultural monitoring systems, where immediate decision-

making capabilities are essential for timely intervention in

pomegranate cultivation management.

Despite significant achievements, several limitations warrant

attention and improvement in future work. First, while the current
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PGSD-5K dataset encompasses five critical stages of pomegranate

growth, samples under extreme illumination conditions, severe

occlusions, and dense multi-target scenarios remain relatively

limited, potentially affecting model generalization capabilities in

more complex and diverse agricultural environments. Second,

although the frequency-domain feature processing module FTEU,

based on fractional Fourier transform theory, exhibits excellent

performance in texture feature extraction, its relatively high

computational complexity poses challenges for deployment on

resource-constrained edge devices. Additionally, this research

primarily focuses on maturity detection for a single pomegranate

variety, with insufficient consideration of morphological, color, and

textural variations across different cultivars, thereby limiting

algorithm universality. Future research should expand dataset

scale and diversity, optimize computational efficiency of

frequency-domain processing modules, and explore universal

pomegranate maturity detection models across varieties

and regions.

Looking forward, the dual-domain feature modulation and

enhanced attention fusion framework established in this study

holds promise for further expansion and deepening across

multiple directions. First, this framework could be extended to

maturity detection tasks for other fruit crops, utilizing transfer

learning and domain adaptation techniques to develop universal

detection models across crop species, providing broader technical

support for precision agriculture intelligentization. Second,

integration with multimodal sensing technologies, including near-

infrared spectroscopy, hyperspectral imaging, and three-

dimensional point cloud data, could establish comprehensive

detection systems based on multi-source information fusion,

potentially enabling holistic assessment of both internal and

external fruit quality. Furthermore, with rapid developments in

edge computing and model compression technologies, future

research could explore lightweight dual-domain feature

modulation network designs, developing real-time detection

systems suitable for mobile platforms such as unmanned aerial

vehicles and robots. Finally, incorporating reinforcement learning

and active learning strategies could construct adaptive online

learning frameworks, enabling detection models to continuously

optimize and improve during practical applications, providing

essential technical foundations for achieving truly intelligent

agricultural production.
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