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Accurate detection of pomegranate maturity plays a crucial role in optimizing
harvesting decisions and enhancing economic benefits. Conventional
approaches encounter significant challenges in complex agricultural scenarios,
including limited feature representation capabilities, singular attention
mechanisms, and insufficient multi-scale information fusion. This study
presents the DFMA-DETR algorithm, which establishes an end-to-end
detection framework through dual-domain feature modulation and enhanced
attention mechanisms. The core contributions include: (1) Development of the
DFMB-Net backbone network that employs spatial-frequency collaborative
processing to model pomegranate surface textures, color variations, and
morphological characteristics. (2) Construction of the EAFF enhanced attention
feature fusion module that integrates adaptive sparse attention mechanisms with
multi-scale feature adapters, effectively addressing feature representation
challenges under complex background interference; (3) Introduction of the
AIUP adaptive interpolation upsampling processor and MFCM multi-branch
feature convolution module, substantially improving feature alignment
accuracy and multi-scale representation performance. Experimental validation
on the constructed PGSD-5K dataset demonstrates that DFMA-DETR achieves
detection accuracies of 90.23% mAP@50 and 76.40% mAP@50-95, representing
improvements of 3.13% and 3.06% respectively over the baseline RT-DETR
model, while maintaining relatively low model complexity. Cross-dataset
validation further confirms the superior generalization performance of the
proposed approach. This research provides an effective solution for advancing
intelligent detection technologies in precision agriculture.

pomegranate maturity detection, RT-DETR, attention mechanism, object detection,
deep learning
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1 Introduction

Pomegranate, one of the healthiest and most widely eaten fruits
globally, has significant repercussions for agricultural production,
post-harvest management, and food production through the precise
detection of maturity (Magwaza and Opara, 2015; Okere et al,
2022). The precise determination of maturity not only has direct
repercussions on nutrition quality, taste characteristics, and storage
life of the fruit but also serves as a significant determinant for
determining optimal harvesting time, reducing post-harvest losses,
and increasing economic yield. As consumer demand for high-
quality pomegranates continues to grow and agricultural
intelligence develops at a faster speed, there is a need to establish
effective and accurate pomegranate maturity detection systems as
an imperative for the innovative development of modern
agricultural technology (Zhang et al., 2025a).

Traditional pomegranate maturity detection methods
predominantly rely on destructive physicochemical analysis such
as colorimetry, near-infrared spectroscopy, and sensory evaluation.
Nicolai et al (Nicolai et al., 2007)presented a comprehensive
discussion of the application of near-infrared spectroscopy in
non-destructive measurement of fruit quality in their review,
demonstrating that the technology accurately measures soluble
solid content but is limited by spectral penetration depth
restraints and fruit peel interference issues. Traditional
colorimeter methods, although capable of providing objective
color measurement data, are only reflections of fruit appearance
characteristics and do not thoroughly examine inherent quality
differences (Beghi et al., 2017; Zhang et al., 2021). Although these
methods are somewhat effective for pomegranate maturity
assessment, they are operationally complex, inefficient, and
unsuitable for large-scale automatic applications.

The recent years have witnessed significant progress in deep
learning technologies applied in agricultural sectors, opening up
new solutions for detecting pomegranate maturity. Aherwadi et al.
(2022) employed convolutional neural network (CNN) technology
to classify banana maturity with 81.96% accuracy and demonstrated
the feasibility of fruit maturity detection using deep learning. CNN-
based methods of detecting fruits have exhibited excellent
performance in determining maturity in fruits like apples and
mangoes (Lu et al, 2022; Zhang et al, 2025b). But these deep
learning approaches based on classification primarily solve for
discrimination of single fruit maturity, and the real-time detection
capability in dense agricultural environments must be enhanced.

Over the past few years, computer vision domains have
witnessed remarkable advancements in object detection
methodologies, whose accuracy and real-time performance
strengths have made them some of the leading contenders for
applications in agricultural intelligence. Out of fruit maturity
detection researches employing object detection architectures,
algorithms from the YOLO series have been widely utilized due
to their best-in-class speed-accuracy trade-off. Tian et al (Tian et al,
2019)constructed an improved YOLOv3-based apple detection
algorithm for processing low-resolution feature layers in networks
with significantly improved detection performance under heavy
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orchard scenes. Cao and Yuan (2022) constructed an improved
YOLOv4 algorithm for real-time mango detection with CBAM
attention mechanisms to improve small target detection efficiency
and detection speed. As far as pomegranate detection is concerned,
Yu et al. (2022) constructed a pomegranate fruit localization and
detection system with RGB-D feature fusion in a Mask R-CNN
framework, even though the approach has extremely high
computational cost and is difficult to satisfy real-time detection
requirements. Apart from this, SSD algorithms have also been
employed for the detection of fruits, with Vasconez et al. (2020)
showing that SSD is capable of higher detection accuracy at the
expense of faster detection rates. Despite these object detection
methods having good performance detecting fruit, they tend to be
non-maximum suppression (NMS) based, which affects detection
speed and accuracy.

Given the maturity and strong real-time performance of
Transformer architecture-based methods in recent years, we
adopt Transformer-based object detection approaches. With the
successful application of Transformer architectures in computer
vision domains, attention mechanism-based object detection
methods have demonstrated powerful feature representation
capabilities and global modeling advantages, providing novel
technical pathways for real-time object detection. DETR
(Detection Transformer), as the first end-to-end Transformer
object detector, simplified detection processes by eliminating
manually designed components. Carion et al. (2020)
demonstrated the effectiveness of Transformer architectures in
object detection tasks within the original DETR paper, achieving
performance comparable to Faster R-CNN on the COCO dataset.

However, DETR’s high computational cost limits its real-time
applications. To address this limitation, Zhao et al. (2024) proposed
RT-DETR (Real-Time Detection Transformer), achieving 53.1% AP
and 108 FPS with RT-DETR-R50 on the COCO dataset through
efficient hybrid encoder design and IoU-aware query selection
mechanisms, surpassing equivalent-scale YOLO detectors. Recent
years have witnessed rapid emergence of RT-DETR-based
agricultural application research. Wang S. et al. (2024) proposed a
lightweight tomato maturity detection algorithm PDSI-RTDETR,
reducing parameters and computational costs by 30.8% and 17.6%
respectively while maintaining high accuracy. Zhang Y. et al. (2025)
constructed a WMC-RTDETR lightweight tea disease detection
model, effectively improving detection robustness under complex
environments. Nevertheless, RT-DETR application research
specifically targeting pomegranate maturity detection remains
relatively limited.

Although object detection methodologies have achieved relative
maturity in fruit detection domains, specific applications in
pomegranate maturity detection still face numerous difficulties
and challenges. Firstly, traditional convolutional neural network
backbone structures can only capture local spatial features,
struggling to establish long-range dependencies while lacking
effective utilization of frequency domain information, making
them unable to adequately model complex textural and periodic
characteristic variations on pomegranate surfaces. Secondly,
existing attention mechanisms demonstrate insufficient precision
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in weight allocation under complex agricultural environments, with
singular feature fusion strategies and lack of multi-scale spatial
context awareness capabilities, resulting in difficulties accurately
capturing key visual features of pomegranate maturity.
Furthermore, nearest neighbor interpolation upsampling methods
in traditional feature pyramid networks easily generate feature
misalignment and information loss, while standard convolution
operations are limited to single receptive fields, making efficient
multi-scale feature expression challenging.

Therefore, addressing the aforementioned issues, we propose a
pomegranate maturity detection algorithm named DFMA-DETR.
The contributions of this work are as follows:

1. We constructed the PGSD-5K dataset specifically designed
for pomegranate maturity detection, containing 5,855 high-
quality images covering five critical stages throughout plant
growth processes. All images were precisely annotated
using Labellmg annotation tools and converted to
standard formats. The dataset encompasses plant images
under different illumination conditions, shooting angles,
and background environments, demonstrating excellent
diversity and representativeness, providing reliable data
foundations for pomegranate maturity detection model
training and evaluation.

. We designed DFMB-Net (Dual-domain Feature
Modulation Backbone Network), innovatively extending
traditional single spatial domain feature extraction to
spatial-frequency domain collaborative processing modes.
This network achieves multi-domain deep modeling of
pomegranate surface textures, color variations, and
morphological characteristics through organic
combinations of HFCA (Hierarchical Feature Cascade
Aggregator) modules, MDFP (Multi-Domain Feature
Processor) modules, and MSRU and FTEU sub-modules,
effectively addressing insufficient feature representation
capabilities of traditional backbone networks.

. We constructed EAFF (Enhanced Attention Feature
Fusion) enhanced attention feature fusion modules
through integrating DASA (Dynamic Adaptive Sparse
Attention) adaptive sparse attention mechanisms, SPEN
(Spatial-Parallel Feedforward Network) spatial
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enhancement feedforward networks, and MASR (Multi-
scale Adaptive Scale Regulator) multi-scale feature
adapters, achieving precise modeling of pomegranate
surface textures, colors, and morphological features,
effectively addressing insufficient feature expression and
inaccurate attention focusing issues of traditional attention
methods under complex background interference.

. We proposed AIUP (Adaptive Interpolation Upsampling
Processor) adaptive interpolation upsampling processors
and MFCM multi-branch feature convolution modules.
ATUP effectively addresses feature mismatch and
information loss issues in traditional upsampling
processes through soft neighborhood interpolation
strategies and adaptive weight decay mechanisms. MFCM
employs dual-branch heterogeneous architectures,
significantly enhancing multi-scale feature representation
capabilities while maintaining lightweight design through
collaborative actions of standard convolution branches and
depth enhancement branches.

2 Materials and methods

2.1 Dataset

This study constructed the PGSD-5K dataset, specifically
designed for plant growth stage object detection tasks, comprising
5,855 high-quality images. Dataset images were collected from
various online data sources, encompassing five critical stages
throughout plant growth processes: Bud, Early-Fruit, Flower,
Mid-Growth, and Ripe, as illustrated in Figure 1. To ensure data
quality and effective model training, all images were precisely
annotated using the Labellmg annotation tool and converted to
YOLOV8 standard format. During data preprocessing, automatic
orientation correction was applied to each image, with all images
uniformly resized to 640x640 pixel resolution using stretching
methods to meet model input requirements. To guarantee
training data authenticity and realism, this research employed no
data augmentation techniques.

FIGURE 1

Sample images from different categories in the PGSD-5K dataset, where (A) Represents bud, (B) Represents early-fruit, (C) Represents flower,

(D) Represents mid-growth, and (E) Represents ripe.
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TABLE 1 PGSD-5K dataset class distribution statistics.

Maturity

10.3389/fpls.2025.1680299

stage Targets Percentage Train

Bud 1168 1456 18.2% 818 234 116
Early-Fruit 1306 1632 20.4% 914 261 131
Flower 1271 1589 19.8% 890 254 127
Mid-Growth 1342 1678 20.9% 939 268 135
Ripe 1331 1666 20.8% 927 265 139
Total 5855 8021 100.0% 4098 1171 586

Following standard practices for deep learning model training,
the dataset was partitioned into training, validation, and test sets
using a 7:2:1 ratio, containing 4,098, 1,171, and 586 images
respectively, ensuring independence and reliability for
model training, validation, and testing procedures. Statistical
analysis revealed that the entire dataset contains 8,021 annotated
targets distributed across five maturity stages as follows: Bud (1,456
targets, 18.2%), Early-Fruit (1,632 targets, 20.4%), Flower
(1,589 targets, 19.8%), Mid-Growth (1,678 targets, 20.9%), and
Ripe (1,666 targets, 20.8%), demonstrating a balanced distribution
across categories and providing sufficient sample foundations for
effective model learning. The detailed class distribution statistics are
presented in Table 1. The dataset encompasses plant images
captured under diverse illumination conditions, shooting angles,
and background environments, demonstrating excellent diversity
and representativeness to effectively support training and evaluation
of plant growth stage detection models.

2.2 RT-DETR

RT-DETR (Real-Time Detection Transformer) serves as the
first real-time end-to-end object detector, employing convolutional
neural networks as backbone networks for feature extraction. The
backbone network typically adopts classical residual network
architectures such as ResNet-18 or ResNet-50, which effectively
address gradient vanishing problems in deep networks through
residual connections, enabling training of deeper network
structures. RT-DETR selects feature outputs from the final three
stages of the backbone network as encoder inputs, with this multi-
scale feature extraction strategy facilitating capture of semantic
information and spatial details across different hierarchical levels.

The core innovation of RT-DETR lies in its efficient hybrid
encoder design, comprising Attention-based Intra-scale Feature
Interaction (AIFI) modules and CNN-based Cross-scale Feature
Fusion (CCFF) modules. AIFI modules specifically process high-
level features from the S5 stage of the backbone network, utilizing
multi-head self-attention mechanisms to capture associations
between semantic conceptual entities, thereby promoting object
localization and recognition. CCFF modules integrate feature
information across different scales, effectively fusing features from
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S3, S4, and S5 stages through cross-scale fusion strategies,
enhancing the model’s detection capabilities for targets of varying
sizes. In the decoder section, RT-DETR employs a transformer
decoder architecture combined with auxiliary prediction heads for
iterative optimization, providing high-quality initial target queries
for the decoder through uncertainty minimization query selection
strategies. The decoder progressively optimizes target queries
through multi-layer transformer blocks, ultimately generating
target category and bounding box prediction results.

2.3 DFMA-DETR algorithm

This paper proposes a pomegranate maturity detection
algorithm named DFMA-DETR, whose architecture is illustrated
in Figure 2. This algorithm addresses the limitations of traditional
detection methods in complex agricultural scenarios. These
limitations include insufficient feature representation capabilities,
singular attention mechanisms, and limited multi-scale feature
fusion effectiveness. Our solution constructs an end-to-end
detection framework integrating dual-domain feature modulation
and enhanced attention mechanisms. The algorithm employs
DFMB-Net (Dual-domain Feature Modulation Backbone
Network) as the backbone network, effectively resolving feature
representation limitations of traditional networks in complex
illumination conditions and multi-scale target detection through
fusion of spatial-frequency dual-channel feature processing
mechanisms and adaptive gated attention modules.

In the encoder section, the algorithm introduces EAFF
(Enhanced Attention Feature Fusion) enhanced attention feature
fusion modules, achieving precise modeling of pomegranate surface
textures, colors, and morphological features through integration of
adaptive sparse attention mechanisms, spatial enhancement
feedforward networks, and multi-scale feature adapters.
Additionally, the algorithm designs AIUP (Adaptive Interpolation
Upsampling Processor) adaptive interpolation upsampling
processors and MFCM multi-branch feature convolution
modules, significantly improving feature alignment accuracy and
multi-scale representation capabilities through soft neighborhood
interpolation strategies and multi-branch collaborative

processing mechanisms.
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FIGURE 2
Network architecture diagram of the DFMA-DETR algorithm.

2.4 DFMB-Net backbone network

Traditional convolutional neural network backbone structures
exhibit significant limitations in complex agricultural scenarios.
Standard convolution operations capture only local spatial features
and struggle to establish long-range dependencies. Additionally,
traditional networks lack multi-scale adaptive perception,
performing poorly in tasks requiring precise identification of
subtle texture variations. Therefore, we propose DFMB-Net
(Dual-domain Feature Modulation Backbone Network), whose
structure is shown in Figure 3. This network addresses feature
representation limitations through spatial-frequency dual-channel
processing and adaptive gated attention modules, significantly
improving pomegranate maturity recognition accuracy and
environmental adaptability.

DFMB-Net backbone network innovatively extends traditional
single spatial domain feature extraction to spatial-frequency
collaborative processing modes, achieving adaptive feature
selection and enhancement through HFCA (Hierarchical Feature
Cascade Aggregator) modules. The network architecture
employs progressive feature abstraction design, with each stage
dynamically adjusting weights of different feature channels through
gating mechanisms while introducing fractional-order
transform theory to process frequency domain features, thereby
maximizing feature representation capabilities while maintaining
computational efficiency.

HFCA modules serve as core components of the DFMB-Net
network, employing hierarchical feature fusion strategies to process
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multi-scale information. These modules first decompose input
features into two parallel branches through 1x1 convolution, then
utilize cascaded AGFB (Attention-Guided Feature Block) units for
progressive feature extraction. The forward propagation process of
the module can be expressed as:

Y = Conv,(Concat([Yy, Yy5..., Y,])), whereY; = Gugrp(Yii1)

Where Y, and Y, represent decomposition results of input
feature X through initial 1x1 convolution, Ggpp represents AGFB
transformation, and n denotes the number of repetitive units within
the module. This formula describes how features are progressively
enhanced through recursive processing, with each Y; containing
information from previous layers while incorporating new
feature representations, ultimately achieving effective integration
of multi-level information through feature concatenation and
convolution fusion.

AGFB modules implement spatial-frequency feature selection
and fusion based on gating mechanisms. These modules adopt
structures similar to GLU (Gated Linear Unit) (Shazeer, 2020),
decomposing features into gating signals, identity mapping, and
convolution processing components through grouped convolution.
The core computational process is expressed as:

G, I, C = Split(FC, (Norm(X)), [h, h — ¢, ¢])

Y = FC,(0(G) ® Concat([L, Fyppp(C)])) + X

Where G, I, and C represent gating features, identity features,
and convolution features respectively, h denotes hidden layer
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FIGURE 3

DFMB-Net network structure diagram, where ® denotes element-wise addition and ® denotes element-wise multiplication.

dimensions, ¢ represents convolution channel numbers, ¢ denotes
activation functions, 0 represents element-wise multiplication, and
F_MDEFP represents MDFP transformation. This gating mechanism
allows networks to adaptively select important features while
suppressing redundant information, ensuring effective gradient
propagation through residual connections.

MDEFP (Multi-Domain Feature Processor) modules represent
key innovative components of the network, implementing
collaborative processing of spatial and frequency domain features,
with workflow illustrated in Figure 4. These modules separately
input features into MSRU (Multi-Scale Receptive Unit) and FTEU
(Frequency Texture Enhancement Unit) for parallel processing,
then integrate information from both domains through adaptive
weight fusion mechanisms. The mathematical expression is:

Four = PWCD(A(Fspa) 0} Fspa + A(Fﬁe) O Ffre)

Where F,,,= MSRU(PWC,(X)) and Fg.= FTEU(PWC, (X))
represent spatial and frequency domain processing results
respectively, A(-)= Softmax(AdapAvgPool( - ))denotes adaptive
attention weight computation, and PWC represents pointwise
convolution operations. This design captures global periodic
features through frequency domain transformation while
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combining local detail information from spatial domains,
achieving effective fusion of multi-scale, multi-domain features
particularly suitable for capturing complex texture and color
variation patterns on pomegranate surfaces.

MSRU employs multi-scale receptive field adaptive adjustment
mechanisms, achieving precise perception of different-scale
pomegranate fruits through dynamic convolution kernels. MSRU
divides input features into different channel groups, and each group
adopts differently sized convolution kernels (3x3, 5x5, 7x7) for
feature extraction while expanding receptive field ranges through
hierarchical residual connections. The basic computation process is

o Xg*Kg, g=1
¢ (X5 + Y5 K, 1<g<n

presented as:

Where X; represents the g-th group input features, K, denotes
corresponding convolution kernels, Y, represents output features,
and n denotes group numbers. This recursive processing
mechanism ensures each Ygcontains information from preceding
hierarchical levels while incorporating new multi-scale feature
representations, ultimately achieving simultaneous capture of
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FIGURE 4
MDFP network workflow diagram.

pomegranate fruit local texture details and global shape features
through feature concatenation.

FTEU, which originates from Fractional Gabor Transform
theory, is particularly adept at extracting high-frequency texture
patterns and directionality of pomegranate surfaces. FTEU first
applies fractional-order Fourier transforms to the input features,
converting spatial domain information to frequency domain space,
and then extracts texture patterns along different orientations and
scales through multi-directional Gabor filter banks. The
mathematical expression is:

K}, = K;oxG* (4, v)

Where K, represents learned kxk convolution kernels, G*(u, v)
denotes fractional-order Gabor filter banks with different orientations
and scales, o represents transform angle parameters, and u,v
represent orientation and scale indices respectively. This frequency
domain analysis method effectively suppresses image noise while
highlighting subtle variations in surface textures during pomegranate
maturation, providing crucial frequency domain feature information
for accurate maturity grade discrimination.

Through the use of the DFMB-Net backbone network, this
study innovatively comes up with a multi-domain feature
collaborative extraction network structure, with efficient solutions
to the critical problems of deficiency of feature representation
capabilities of traditional detection algorithms in complex
agricultural scenes. It achieves deep merging of spatial-frequency
characteristics through HFCA modules, gated attention
mechanisms suitably choosing and assigning weights to salient
features, as hierarchical progressive feature processing methods
allow for sufficient merging and efficient utilization of multi-scale
information. This new architecture not only significantly enhances
network capability for pomegranate fruit maturity characteristic
extraction and representation, but also significantly boosts model
robustness and generalization capability under different light
conditions, shooting angles, and interference scenes, bringing new
theoretical foundations and technical means to intelligent detection
technologies in precision agriculture.
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2.5 EAFF module

Traditional AIFI modules exhibit significant limitations in
complex agricultural scenarios: insufficient precision in attention
weight allocation, singular feature fusion mechanisms, and lack of
multi-scale spatial context awareness. These limitations result in
difficulties capturing key visual features for pomegranate maturity
detection. Therefore, we propose an enhanced encoder module
named EAFF (Enhanced Attention Feature Fusion), whose
structure is shown in Figure 5. This module achieves precise
modeling of pomegranate surface textures, colors, and
morphological features through integration of adaptive sparse
attention mechanisms, spatial enhancement feedforward networks,
and multi-scale feature adapters, effectively addressing insufficient
feature expression and inaccurate attention focusing issues of
traditional methods under complex background interference.

EAFF modules employ deep learning architectures combining
residual connections with layer normalization, achieving
progressive feature optimization through collaborative work of
three core sub-modules. DASA (Dynamic Adaptive Sparse
Attention) implements sparse attention computation to improve
computational efficiency, SPEN (Spatial-Parallel Feedforward
Network) enhances spatial context awareness through dual-path
parallel processing, while MASR (Multi-scale Adaptive Scale
Regulator) modules achieve adaptive feature adjustment through
multi-scale convolution operations. This design innovatively
combines sparse attention mechanisms with spatial enhancement
techniques, constructing an efficient and precise feature
expression framework.

Initially, input feature maps undergo adaptive sparse attention
computation through DASA modules, with this process combining
layer normalization and feature adjustment from the first MASR
module, expressible as:

Z, = MASR, (LN(X + DASA(X)))

Where X € RBICHHIW represents input feature maps, with B
denoting batch size, C representing channel numbers, and H and W
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FIGURE 5
EAFF module network structure diagram.

representing feature map height and width respectively; LN(-)
denotes layer normalization operations for stabilizing training
processes and accelerating convergence; DASA(-) represents
adaptive sparse attention computation functions, achieving
dynamic balance between sparse and dense attention through
dual-branch parallel processing; MASR,(-) represents the first
multi-scale adaptive feature adjustment module, implementing
refined feature processing through parallel multi-kernel
convolution and gating mechanisms.

Subsequently, preliminarily processed features enter SPFN
modules for spatially enhanced feedforward processing, with this
stage similarly combining layer normalization and adaptive
adjustment from the second MASR module:

Z, = MASR(LN(Z, + SPFN))

Where Z, represents intermediate feature representations after
first-stage processing; SPEN(.,) represents spatial enhancement
feedforward network functions employing dual-path parallel
processing mechanisms, with the first parameter representing
current feature states and the second parameter representing
original input features, achieving multi-dimensional feature
optimization through collaborative action of spatial enhancement
paths and main feature processing paths; MASR,(-) represents the
second multi-scale adaptive feature adjustment module responsible
for final refined adjustment of fused features; Z, represents final
output feature representations of the module.

DASA modules, based on core concepts of adaptive sparsity
adjustment, implement dynamic balance between sparse and dense
attention through dual-branch parallel processing architectures.
Upon receiving windowed input features, these modules first
generate query Q € RN, key K &€ RN, and value V & RNM

Frontiers in Plant Science

- @ Element-wise Multiplication
@ Element-wise Addition EB
@ Average

® Matrix Multiplication

Residual Connection

Depthwise Convolution

matrices through linear transformations, where N=W? represents
token numbers within each window and d denotes head
dimensions. Sparse branches employ squared ReLU activation
functions to filter attention weights with negative correlations,
effectively eliminating interference from irrelevant regions; dense
branches maintain traditional softmax normalization mechanisms,
ensuring probabilistic properties of attention distributions.
Adaptive weighted fusion processes of both branches achieve
dynamic adjustment through learnable parameters, with
mathematical formulation as:

o KT (073
¢ -ReLUZ(Q +B>+ ¢

Aussa = o o
e + e Vd e + e

T
- Softmax (Q% + B)

Where a; and o, represent learnable branch weight parameters
initialized to 1 for ensuring training stability during initial phases;
B € RV represents relative position bias matrices achieving
position awareness through two-dimensional coordinate
encoding. This adaptive weight mechanism enables modules to
dynamically adjust sparsity levels according to input feature
complexity and task requirements, ensuring both computational
efficiency improvements and maintaining integrity of key
feature information.

SPEN modules follow double-path parallel processing design
principles to achieve multi-dimensional optimization of input
features from cooperative operation of main feature processing
paths and spatial enhancement paths. Spatial enhancement paths
construct global receptive field spatial context representations as a
sequence of average pooling downsampling, multi-layer
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convolution processing, and bilinear upsampling operations of
input spatial reference features. Main processing streams conduct
local refinement on existing features using depthwise separable
convolution and gating mechanisms. Essential computation
workflows of such modules are representable as:

Xeppx = GELU(Conv(DW(Fusion(DW(me), ) ) ) © DW(E, )

Where Fy,i= Upsample ( Conv, (Angool(XSPaﬁal ) ) ) represents
spatial enhancement features, with ConvSeq denoting two consecutive
3x3 standard convolution layers, each followed by layer normalization
and ReLU activation functions. F,;, represents main path features
processed through layer normalization and 1x1 convolution. Fusion(-,-)
represents feature fusion operations, 6 denotes element-wise products,
and DW(-) represents processing through 3x3 depthwise separable
convolution operations. This design effectively combines global
spatial context information with local detail features, enhancing
network modeling capabilities for complex texture patterns on
pomegranate surfaces.

MASR modules, based on basic rules of multi-scale adaptive
feature adaptation, perform enhanced feature processing in parallel
multi-kernel convolution and gating operations. Such modules first
carry out adaptive normalization processing on input feature maps,
adaptively scaling feature distributions using learnable scaling
parameters, followed by utilizing multi-branch parallel
convolution architectures to obtain spatial context information
from different receptive fields. With input feature maps X €
REMHRW - complete transformation processes of MASR modules
are expressible through the following composite functions:

Fpasr(X) = X

+@,, (GELU ( Dropout(AmS (chuwn (Nadapt (X)) ) ) ) )

Where Ny (X)= LayerNorm(X) 6y + X0y, represents
adaptive normalization operations, with y,v, € R*8 denoting
learnable scaling parameters; ®g,,, and @, represent
dimensionality reduction and expansion through 1x1 convolution
transformations respectively; A, defines multi-scale adaptive
aggregation operators that capture spatial features across different
granularities through parallel multi-scale depthwise convolution
branches while employing adaptive weight fusion strategies for
effective feature integration:

1

Ap(F) = F+— S DWConvy(F; Wy) + @pyoi(F)

| kEK
Where K={3,5,7} represents multi-scale convolution kernel
sets, DWConv,denotes depthwise separable convolution

operations with kernel sizes kxk, and @, represents feature

0]
projection functions. Employment of é’eﬁ)thwise separable
convolution not only reduces computational complexity but also
enhances model spatial locality modeling capabilities, particularly
suitable for processing irregular shapes and complex textures in
agricultural scenarios.

The proposed EAFF module constructs an efficient and precise

feature expression framework through organic fusion of adaptive
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sparse attention mechanisms, spatial enhancement feedforward
networks, and multi-scale feature adaptation techniques.
Innovation of this module lies in introducing dual-branch parallel
sparse attention mechanisms, achieving optimal balance between
computational efficiency and feature representation capabilities
through dynamic weight adjustment, while designing spatially
enhanced feedforward network architectures that effectively
combine global spatial context information with local
detail features.

2.6 AIUP and MFCM modules

Traditional nearest neighbor interpolation upsampling
methods in feature pyramid networks easily generate feature
misalignment and information loss issues, while standard
convolution downsampling operations are often limited to single
receptive fields, making effective capture of multi-scale texture
features and spatial context information challenging. Therefore,
we propose AIUP (Adaptive Interpolation Upsampling Processor)
and MFCM (Multi-branch Feature Convolution Module). AIUP
modules implement soft feature alignment through introduction of
adaptive scaling factors, effectively alleviating feature mismatch
problems during upsampling processes; MFCM modules generate
diverse receptive fields and rich texture feature representations
within single modules through multi-branch convolution
structures and channel shuffling mechanisms, significantly
enhancing network feature representation capabilities.

Core innovations of AIUP and MFCM modules lie in
transforming traditional hard interpolation and single
convolution operations into adaptive soft interpolation and multi-
branch collaborative processing mechanisms. AIUP modules
achieve progressive feature alignment through soft neighborhood
interpolation strategies, while MFCM modules significantly
enhance feature diversity and expressiveness while maintaining
computational efficiency through organic combination of grouped
convolution, depthwise convolution, and channel shuffling,
providing more precise and robust feature representations for
pomegranate maturity detection.

ATUP modules employ soft neighborhood interpolation
strategies, optimizing traditional upsampling processes through
introduction of adaptive weight decay mechanisms, with
workflows illustrated in Figure 6. These modules first perform
nearest neighbor interpolation operations on input feature maps,
then apply adaptive scaling factors related to upsampling multiples
for feature modulation, thereby achieving soft feature alignment.
Mathematical expressions are:

1
FSNI = F : Uneurest (X) © Wadaptive(xrf)

Where X & REICHHIW ropresents input feature maps, f denotes
upsampling multiples, U esc(-) represents nearest neighbor
interpolation operators, Wgapive( - )represents adaptive weight
functions, and 0 denotes element-wise multiplication operations.
This design effectively suppresses feature distortion and noise
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AIUP module workflow diagram.
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FIGURE 7
MFCM module network structure.

amplification effects in traditional hard interpolation processes
while maintaining computational efficiency through dynamic
interpolation weight adjustment. Introduction of adaptive weight
functions enables networks to automatically adjust interpolation
intensities according to feature map contents, achieving smoother
and more accurate feature transmission across different scales.
MFCM modules employ innovative dual-branch heterogeneous
architectures, achieving efficient multi-scale feature representation
learning through collaborative action of standard convolution
branches and depth enhancement branches, with structures
shown in Figure 7. Module designs fully consider balance
between computational efficiency and feature richness,
significantly enhancing feature extraction capabilities while
maintaining lightweight characteristics through strategies of
channel splitting, parallel processing, and feature reorganization.

Frontiers in Plant Science

HxWxC/2

b
[

HxWxC

oy

Output

\ HxWxC/2 MFCM ,

v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|
'
'
'
'
'
]
|
'
'

i

Overall transformation processes of modules are expressible
through the following composite functions:

GGELU ( DW3 X3 ( C3 x3 (Bstandard (X) ) ) ) > Bstandard (X)

)

YGscome = Schannel <

In this expression, By,pdard(X)= 6(BN(Convy (X))) represents
basic feature extraction processes of standard convolution branches,
including composite operations of convolution, batch
normalization, and activation functions. Csz; and DWijz;
represent 3x3 standard convolution and 3x3 depthwise separable
convolution operations respectively, Ggpry represents GELU
activation functions, [,-Jrepresents feature concatenation
operations along channel dimensions, and Sg.nn represents
channel shuffling transformations. Channel shuffling operations
achieve deep information interaction between different branch
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features through tensor rearrangement, with transformation
matrices expressible as Pyue € 0, 1%C ensuring uniform
distribution and effective fusion among feature channels.

Cooperative design of AIUP and MFCM modules contributes
significantly to feature alignment precision and multi-scale
representation capability of RT-DETR networks. AIUP modules
effectively handle feature mismatch issues in traditional upsampling
processes by adaptive soft interpolation mechanisms, significantly
improving feature alignment quality with different scales; MFCM
modules significantly enhance the network feature capture
performance and expression richness with lightweight design
ensured by multi-branch cooperative processing and intelligent
channel shuffling strategies. Organic combination of the two
modules ensures enhanced detection networks to be more robust
and accurate in confronting complex light conditions and varying
pomegranate morphologies, having good technical basis for correct
pomegranate maturity determination.

3 Experiments

3.1 Experimental environment and
parameter settings

Experiments were conducted on a server equipped with Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz 7-core processor and 64GB
DDR4 memory. Deep learning training utilized NVIDIA GeForce
RTX 4090 GPU (24GB VRAM) for accelerated computation. The
experimental environment was based on Ubuntu 20.04.6 LTS
operating system, with CUDA version 11.8 and cuDNN version
8.6.0. The deep learning framework employed PyTorch 2.0.1 in
conjunction with torchvision 0.15.2 for model construction and
training. Additionally, experiments utilized Python 3.9.16 as the
programming language, integrating OpenCV 4.7.1 for image
preprocessing, NumPy 1.24.3 for numerical computation, along
with other essential scientific computing libraries.

Throughout model training, batch size was configured to 8, with
input image dimensions uniformly adjusted to 640x640 pixels. The
optimizer employed AdamW with initial learning rate set to 0.0001,
momentum parameter configured to 0.9, and weight decay set to
0.0001. Total training epochs were established at 300 rounds. All
remaining configurations followed RT-DETR default settings.

TABLE 2 AVN backbone network ablation study results.

10.3389/fpls.2025.1680299

3.2 Evaluation metrics

This research employed the standard evaluation indexes in the
object detection task to test the performance of the improved RT-
DETR algorithm from various perspectives. Precision (P) refers to
the proportion of correctly predicted positive samples among all
predicted positive samples, and Recall (R) is the proportion of
correctly predicted samples among all positive samples. mAP@0.5
(mean Average Precision at IoU=0.5) calculates the mean AP values
over categories at IoU threshold 0.5, the most commonly used
metric for object detection evaluation. mAP@0.5:0.95 is the mean
AP values over a range of thresholds from 0.5 to 0.95 with 0.05
increments, providing more comprehensive evaluation of model
detection precision. Furthermore, to determine model
computational complexity and viability, GFLOPS (Giga Floating
Point Operations Per Second) estimates computation load and
Params (Parameters) tallies total model parameters. The metrics
enable multifaceted performance evaluation of the improved
algorithm regarding detection accuracy, computational efficiency,
and model complexity, respectively, to guarantee practicability for
real-world usage and enhance detection accuracy.

3.3 Ablation studies

3.3.1 DFMB-Net backbone network ablation
study

In order to prove the effectiveness of our proposed DFMB-Net
backbone network, ablation experiments were conducted whose
results are presented in Table 2. The experiments had rigorously
tested the contribution of each element towards overall detection
performance by removing HFCA modules, AGFB modules, and
MDFP modules individually. All experiments were performed
under identical experimental conditions and hyperparameters in
order to ensure fairness and comparability of results.

Experimental results demonstrate that each module makes
important contributions to detection performance with synergistic
effects evident. Removing the MDFP module resulted in 0.48% and
0.72% decreases in mAP50 and mAP@50-95 respectively,
validating the crucial role of multi-domain feature processing
mechanisms in spatial-frequency collaborative modeling. AGFB
module removal caused 0.72% and 1.04% decreases in mAP@50

Model HFCA AGFB MDFP mAP@50  mAP@P50-95 FLOPs Parameters
RT-DETR X X x 87.10% 73.34% 57.0G 19.8M
w/o MDFP v v x 87.45% 74.21% 48.7G 13.9M
w/o AGFB v X v 87.21% 73.89% 49.8G 14.2M
w/o HFCA X v v 86.98% 73.67% 51.1G 15.1M
DFMB-Net v v v 87.93% 74.93% 50.3G 14.7M
“v” indicates applicable, “x” indicates not applicable.
Frontiers in Plant Science 11 frontiersin.org
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and mAP@50-95 respectively, confirming the importance of
attention-guided gating mechanisms in complex texture feature
extraction. HFCA module removal yielded the most significant
performance degradation, with mAP@50 and mAP@50-95
decreasing by 0.95% and 1.26% respectively, indicating that
hierarchical feature cascade aggregation mechanisms constitute
core components of the entire architecture.

To more intuitively demonstrate the contribution of each
module to detection performance, specific performance of the
DFMA-DETR algorithm under different configurations on the
mAP@50 metric is illustrated in Figure 8A. Notably, the complete
DEMB-Net backbone network not only significantly improved
detection accuracy compared to the original RT-DETR baseline
but also effectively reduced computational complexity and model
parameters, fully validating the effectiveness of our proposed
lightweight design strategy and excellent synergistic effects
among modules.

3.3.2 EAFF module ablation study

To validate the effectiveness of our proposed EAFF module, we
conducted ablation experiments on the EAFF module, with results
shown in Table 3. These experiments employed module
replacement strategies, substituting the original AIFI modules in

10.3389/fpls.2025.1680299

the RT-DETR encoder with our proposed EAFF modules. To
analyze the contributions of various EAFF components in depth,
we designed progressive validation experiments, sequentially
verifying the independent effects of DASA adaptive sparse
attention mechanisms, SPFN spatial parallel feedforward
networks, and MASR multi-scale adaptive regulators.
Experimental results prove that introducing DASA mechanism
alone to replace existing attention computation improved mAP50
and mAP@50-95 by 0.33% and 0.55% respectively, validating the
effectiveness of adaptive sparse attention in pomegranate maturity
feature capture. To more intuitively demonstrate the progressive
performance enhancement effects of EAFF module components,
comparison results of mAP@50 metrics under different
configurations are shown in Figure 8B. Further integration of the
SPFN module significantly improved performance, with mAP@50
and mAP@50-95 reaching 88.01% and 74.76% respectively,
proving the important role of spatial parallel processing strategies
in complex texture feature modeling. The complete EAFF module
achieved 88.52% mAP@50 and 75.61% mAP@50-95 through
multi-scale adaptive adjustment of MASR components.
Compared to the original AIFI module, the EAFF module
improved mAP@50 and mAP@50-95 by 1.42% and 2.27%
respectively, with Recall increasing by 1.27%, fully validating that

88.0

87.6 1

mAP@/50%
=
o

86.8 4

RT-DETR  w/o MDFP  w/o AGFB  w/o HFCA  DFMB-Net
Model

FIGURE 8

Bar charts of different experimental results, where (A) Shows DFMB-Net backbone network ablation study mAP@50 bar chart, and (B) Shows EAFF

module ablation study mAP@50 bar chart.
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2
(=21

87.2 4

86.8 1

w/ EAFF

AIFI w/ DASA only w/ DASA + SPFN
Model

TABLE 3 EAFF module ablation study results.

Method DASA SPFN MASR mAP@50 mAP@P50-95 FLOPs Parameters
AIFI x X x 87.10 7334 57.0 19.8
w/DASA only v x x 87.43 73.89 57.8 203
w/DASA + SPEN v/ v x 88.01 74.76 58.9 21.6
w/EAFF v/ v v/ 88.52 75.61 60.0 225

“v” indicates applicable, “x” indicates not applicable.
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the proposed enhanced attention feature fusion module can
significantly improve overall pomegranate maturity detection
performance after replacing traditional AIFI.

3.3.3 DFMA-DETR algorithm ablation study

To validate the effectiveness of our proposed DFMA-DETR
algorithm, we designed comprehensive ablation experiments to
analyze the contribution of each innovative module to detection
performance, with results presented in Table 4. Ablation
experiments were conducted on the PGSD-5K dataset, evaluating
the impact on pomegranate maturity detection accuracy through
progressive addition and combination of different innovative
modules, where A, B, and C represent DFMB-Net dual-domain
feature modulation backbone network, EAFF enhanced attention
feature fusion module, and AIUP adaptive interpolation

TABLE 4 DFMA-DETR algorithm ablation study results.

10.3389/fpls.2025.1680299

upsampling processor with MFCM multi-branch feature
convolution module respectively.

Experimental results indicate that each innovative module
significantly improves detection performance. The DFMB-Net
backbone network improved mAP@50 from baseline 87.10% to 87.93%
while reducing parameters from 19.8M to 14.7M, validating the
effectiveness of dual-domain feature modulation mechanisms in
enhancing feature representation capabilities while achieving model
lightweighting. The EAFF module improved mAP@50 to 88.52%,
proving the advantages of enhanced attention mechanisms in feature
fusion within complex agricultural scenarios. AIUP and MFCM modules
achieved 91.77% precision, demonstrating outstanding effectiveness of
adaptive upsampling and multi-branch convolution in feature alignment.

To comprehensively evaluate the overall performance of
different module combinations in detection accuracy and

mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters
Base 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M
A 87.93% 74.93% 90.80% 80.32% 503G 14.7M
B 88.52% 75.61% 91.61% 80.55% 60.0G 225M
C 88.21% 75.04% 91.77% 80.59% 58.1G 19.9M
A+B 89.07% 76.75% 91.28% 81.34% 51.7G 17.1M
B+C 89.35% 76.88% 92.19% 81.53% 594G 222M
A+C 88.82% 76.29% 91.41% 81.37% 52.8G 16.0M
A+B+C 90.23% 76.40% 91.63% 82.39% 511G 16.8M
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FIGURE 9

Radar chart of ablation study results.
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computational efficiency, Figure 9 presents radar chart comparative
analysis of various configurations across five key metrics: mAP@50,
mAP@50-95, Recall, FLOPs, and Parameters. The radar chart
intuitively reveals that the complete DFMA-DETR algorithm not
only excels in detection accuracy metrics but also demonstrates
excellent optimization effects in computational efficiency, with
overall radar chart contours exhibiting ideal distribution
characteristics of high accuracy and superior efficiency. When
three modules work collaboratively, mAP@50, mAP@50-95, and
recall reached 90.23%, 76.40%, and 82.39% respectively,
representing improvements of 3.13%, 3.06%, and 3.11% over
baseline while maintaining relatively low computational
complexity and parameter count, fully validating the effectiveness
and practicality of the proposed method.

3.4 Comparative experiments

3.4.1 Stage-wise performance analysis

To provide comprehensive insights into algorithm effectiveness
across different growth phases and address potential performance
disparities that may be masked by averaged metrics, we conducted
detailed stage-wise performance analysis on the PGSD-5K dataset.
Tables 5 and 6 present the detection performance of baseline RT-
DETR and the proposed DFMA-DETR across all five pomegranate
maturity stages respectively. This fine-grained evaluation reveals
significant variations in detection accuracy among different
growth phases, demonstrating the critical importance of
stage-specific analysis in agricultural object detection tasks where
morphological characteristics vary substantially throughout the
maturation process.

Comparative analysis between Tables 5 and 6 reveals that
DFMA-DETR achieves notable improvements across most
maturity stages, with particularly pronounced enhancements in
challenging detection scenarios. The Bud stage exhibits the most
significant improvement in Recall metric, increasing from 73.58%
to 78.26%, addressing the baseline model’s limitations in detecting
small, morphologically indistinct early-stage features. The Mid-
Growth stage, which represents a critical transitional phase with
complex visual characteristics, demonstrates substantial
performance gains with mAP@50-95 improving from 76.17% to
77.94% and Recall increasing by 2.90% from 78.99% to 81.89%.
While slight decreases are observed in certain metrics for Flower
and Ripe stages, these represent acceptable trade-offs that

TABLE 7 Comparison results of different backbone networks.

10.3389/fpls.2025.1680299

TABLE 5 Stage-wise detection performance of baseline RT-DETR across
five pomegranate maturity stages.

Class mAP@50 mAP@50-95 Precision Recall
Average 87.10% 73.34% 91.05% 79.28%
Bud 86.88% 67.60% 92.03% 73.58%
Early-

k 89.71% 80.00% 89.68% 84.38%
Fruit
Flower 91.50% 77.75% 93.90% 80.33%
Mid-

90.76% 76.17% 93.42% 78.99%

Growth
Ripe 96.93% 88.09% 96.16% 90.76%

TABLE 6 Stage-wise detection performance of proposed DFMA-DETR
across five pomegranate maturity stages.

Class mAP@50 mAP@50-95 Precision Recall
Average 90.23% 76.40% 91.63% 82.39%
Bud 88.42% 70.15% 91.34% 78.26%
Early-Fruit 91.18% 81.22% 90.17% 85.74%
Flower 90.89% 78.31% 93.02% 82.15%
Mid-Growth 91.67% 77.94% 92.51% 81.89%
Ripe 95.99% 86.38% 95.11% 83.91%

contribute to overall balanced performance across the complete
maturation spectrum, validating the algorithm’s robustness in
handling diverse pomegranate growth characteristics and
confirming its practical applicability for comprehensive maturity
assessment systems.

3.4.2 Different backbone network comparison

To validate the effectiveness of our proposed DFMB-Net
backbone network, we designed ablation experiments comparing
different backbone networks. Experiments employed identical
detection frameworks and training strategies, utilizing RT-DETR-
R18 as the baseline model alongside advanced backbone networks
including CSwinTransformer, VanillaNet, and RMT for
comparative analysis. All models were trained and tested on
identical datasets to ensure fairness and comparability of
experimental results. Results are presented in Table 7.

Model mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters
Resnet-18 (He et al., 2016) 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M
CSwinTransformer (Dong et al., 2022) 86.80% 73.10% 89.20% 81.80% 91.3G 30.7M
VanillaNet (Chen et al., 2023) 85.40% 71.80% 88.60% 78.20% 166.2G 27.8M
RMT (Fan et al.,, 2024) 87.50% 74.20% 90.30% 81.90% 61.5G 21.4M
DFMB-Net 87.93% 74.93% 90.80% 80.32% 50.3G 14.7M
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Experimental results demonstrate that the proposed DFMB-Net
backbone network exhibits excellent performance in both detection
accuracy and computational efficiency. Compared to baseline model
RT-DETR-R18, DEMB-Net achieved 0.83% improvement in mAP@
50 metric and obtained 1.59% significant enhancement in mAP@50-
95 metric. When compared with other advanced backbone networks,
DFMB-Net not only surpassed CSwinTransformer and VanillaNet in
detection accuracy but also demonstrated superior computational
efficiency advantages: parameter count was only 14.7M, representing
52.1% and 47.1% reductions compared to CSwinTransformer and
VanillaNet respectively; computational complexity was 50.3G FLOPs,
representing 69.7% reduction compared to VanillaNet. These results
fully validate the effectiveness of DFMB-Net backbone network
design, demonstrating its capability to achieve higher detection
accuracy while maintaining lower computational costs.

To further intuitively demonstrate differences in feature
extraction capabilities among various backbone networks, we
employed Grad-CAM techniques to generate feature activation
heat maps for each backbone network, with results shown in
Figure 10. Visualization results reveal that the proposed DFMB-
Net can more precisely focus on key regions of pomegranate fruits,
with concentrated activation areas and high response intensities,
particularly in critical areas for maturity discrimination such as
pomegranate surface texture variations and color transitions. In
contrast, ResNet-18 shows relatively dispersed activation regions,
CSwinTransformer and VanillaNet exhibit discontinuous activation
when processing local texture details, while RMT network’s feature
focusing capability also significantly falls short of DFMB-Net. These
visualization results are highly consistent with quantitative
experimental data, validating the effectiveness of DFMB-Net dual-

10.3389/fpls.2025.1680299

domain feature modulation mechanisms in pomegranate maturity
feature extraction.

3.4.3 Public dataset comparison experiments

To validate the generalization capability and cross-domain
adaptability of our proposed DFMA-DETR algorithm, we
conducted public dataset comparison experiments to evaluate
algorithm detection performance under different data distributions.
Experiments employed the Pomegranate-rjwdq public dataset
(Projects Team, 2024) from the Roboflow Universe platform,
containing 2,390 high-quality pomegranate images covering various
illumination conditions, shooting perspectives, and complex
background environments. This dataset exhibits significant
differences from our constructed PGSD-5K dataset in image
diversity and scene complexity, with experimental results presented
in Table 8.

Experimental results fully demonstrate the excellent
performance and superior generalization capability of the DFMA-
DETR algorithm on public datasets. Compared to baseline model
RT-DETR, DFMA-DETR achieved 1.13% significant improvement
in mAP@50 metric and obtained 1.88% performance enhancement
in mAP@50-95 metric, while achieving 0.67% and 1.08%
improvements in Precision and Recall metrics respectively,
validating the feature representation advantages of dual-domain
feature modulation backbone networks when processing different
data distributions and the precise modeling capabilities of enhanced
attention feature fusion modules in complex scenarios. Most
importantly, DFMA-DETR demonstrated stable high-precision
detection performance on the pomegranate-rjwdq public dataset,
not only confirming the technical effectiveness of the proposed

Base Image Resnet-18 CSwinTransformer

FIGURE 10
Heat map results of different backbone networks.
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TABLE 8 Results of different dataset experiments.

10.3389/fpls.2025.1680299

Dataset Model mAP@50 mAP@P50-95 Precision Recall
RT-DETR 95.73% 68.15% 94.02% 92.76%
Pomegranate-rjwdq
DFMA-DETR 96.86% 70.03% 94.69% 93.84%
RT-DETR 87.10% 73.34% 91.05% 79.28%
PGSD-5K
DFMA-DETR 90.23% 76.40% 91.63% 82.39%
TABLE 9 Comparison results of different models.
Model mAP@50 mAP@P50-95 Precision Recall FLOPs Parameters
Faster-RCNN (Ren et al, 2016) 85.45% 69.23% 88.21% 81.56% 208.1G 41.4M
Cascade-RCNN (Cai and Vas los,
2;153 ¢ (Cai and Vasconcelos 86.34% 70.82% 88.97% 82.45% 206.2G 323M
YOLOVS8m (Sohan et al., 2024) 86.79% 71.56% 89.34% 82.91% 78.7G 28.9M
YOLOVI10m (Wang A. et al., 2024) 87.45% 72.34% 90.12% 83.67% 589G 153M
YOLOVI1Im (Khanam and Hussain,
88.23% 73.12% 90.89% 84.34% 67.7G 20.1M
2024)
YOLOV12m (Tian et al., 2025) 88.01% 72.89% 90.67% 84.12% 67.2G 20.0M
D-Fine-M (Peng et al., 2024) 87.12% 71.89% 89.56% 83.23% 56.4G 192M
DEIM-D-Fine-M (Huang et al., 2025) 87.98% 72.67% 90.45% 83.89% 56.4G 192M
RT-DETR-R18 (Zhao et al., 2024) 87.10% 73.34% 91.05% 79.28% 57.0G 19.8M
RT-DETR-R50-tiny (Zhao et al., 2024) 88.56% 74.45% 91.34% 84.78% 134.8G 42.9M
RT-DETR-L (Zhao et al., 2024) 88.73% 74.98% 91.67% 85.12% 108.3G 33.0M
DFMA-DETR 90.23% 76.40% 91.63% 82.39% 51.1G 16.8M

innovative architecture but also highlighting the algorithm’s strong
robustness when facing cross-domain scene variations and
data distribution differences, establishing solid technical
foundations for practical engineering applications of pomegranate
maturity detection.

3.4.4 Different model comparison experiments

To validate the effectiveness of our proposed DFMA-DETR
algorithm, we conducted comparison experiments with mainstream
object detection models on the PGSD-5K dataset, with results
presented in Table 9. Comparison models included traditional
two-stage detectors, single-stage detectors, Transformer-based
detectors, and RT-DETR series models.

Experimental results indicate that DFMA-DETR achieved
significant performance improvements across multiple key
metrics. In detection accuracy, DFMA-DETR realized 90.23%
mAP@50 and 76.40% mAP@50-95, representing 1.50% and
1.42% improvements over baseline model RT-DETR-L
respectively, and 2.00% and 3.28% improvements over the
closest-performing YOLOvI1m respectively. In computational
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efficiency, DFMA-DETR achieved optimal accuracy-efficiency
balance with only 16.8M parameters and 51.1G computational
complexity, reducing parameters by 49.1% compared to RT-
DETR-L while maintaining higher detection accuracy.

Through multi-dimensional performance comparison analysis, the
radar chart shown in Figure 11 clearly demonstrates the
comprehensive advantages of DFMA-DETR over mainstream
detection models in core metrics including detection accuracy and
computational efficiency. Radar chart results reveal that DEMA-DETR
maintains high-precision detection capabilities while performing
exceptionally well in model lightweighting, with radar chart contours
matching optimal models in accuracy metrics while significantly
outperforming other comparison models in efficiency metrics,
demonstrating the significant advantages of the proposed algorithm
in practical applications. Particularly noteworthy is that DEMA-DETR
achieved 91.63% in the Precision metric, exhibiting excellent detection
accuracy. These results fully validate the effectiveness of our proposed
innovative designs including dual-domain feature modulation
backbone networks, enhanced attention feature fusion modules, and
adaptive interpolation upsampling processors.
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FIGURE 11
Radar chart of different model comparison experiment results.

3.5 Model experimental results
visualization

To intuitively evaluate performance differences among various
detection models in pomegranate maturity recognition tasks, we
selected representative test samples from the PGSD-5K dataset
covering four key maturity stages: Early-Fruit, Bud&Flower, Ripe,
and Mid-Growth, presenting comparative detection results of
Faster-RCNN, YOLOv12m, DEIM-D-Fine-M, RT-DETR-R18,
and our proposed DFMA-DETR algorithm, as illustrated in
Figure 12. Visualization experiments employed identical input
images and detection threshold settings, ensuring fairness among
different model comparisons. Each detection result displays
predicted bounding boxes, category labels, and corresponding
confidence scores, providing intuitive visual evidence for
quantitative analysis of detection accuracy and stability
across models.

From visualization results, the proposed DFMA-DETR
algorithm demonstrates excellent detection performance and
higher prediction confidence across all maturity stages.
Specifically, DFMA-DETR achieved high confidence of 0.97 in the
Early-Fruit stage, significantly surpassing other models; maintained
stable confidence levels of 90-94 in the Bud&Flower stage; realized
excellent performance of 0.89-0.90 in the Ripe stage; and achieved
reliable detection accuracy of 0.70-0.93 in the Mid-Growth stage. In
contrast, while traditional algorithms can accomplish basic
detection tasks, they clearly fall short of DFMA-DETR in
confidence stability. These visualization results fully validate the
effectiveness of dual-domain feature modulation backbone
networks and enhanced attention feature fusion modules in
improving pomegranate maturity detection accuracy and
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Precision/%

robustness, providing powerful visual evidence for the superiority
of the proposed algorithm.

Here’s the English translation of the conclusion section at SCI
Q1 level:

4 Conclusion

This study addresses critical limitations inherent in conventional
pomegranate maturity detection approaches, particularly their
inadequate feature representation capabilities, monolithic attention
mechanisms, and constrained multi-scale feature fusion performance
within complex agricultural environments. We introduce DFMA-
DETR, a novel pomegranate maturity detection algorithm that
incorporates several key innovations: the DFMB-Net dual-domain
feature modulation backbone network, the EAFF enhanced attention
feature fusion module, and the AIUP and MFCM optimization
components. These elements collectively establish an end-to-end
detection framework that integrates spatial-frequency domain
collaborative processing, adaptive sparse attention mechanisms, and
multi-scale feature adaptation.

Experimental validation demonstrates that DFMA-DETR
achieves remarkable performance on the PGSD-5K dataset,
attaining 90.23% mAP@50 and 76.40% mAP@50-95, representing
improvements of 3.13% and 3.06% respectively over baseline
models. Furthermore, the algorithm exhibits excellent
generalization capabilities and cross-domain adaptability when
evaluated on the publicly available Pomegranate-rjwdq dataset.

Aside from showing improved dramatic detection accuracy, the
proposed algorithm is also able to perform an effective trade-oft
between computational efficiency and detection performance. With
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https://doi.org/10.3389/fpls.2025.1680299
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Huang et al. 10.3389/fpls.2025.1680299

FIGURE 12
Visualization of different model experimental results, where (A) Shows faster-RCNN detection results, (B) Shows YOLOV12m, (C) Shows DEIM-D-
fine-M detection results, (D) Shows RT-DETR-R18 detection results, and (E) Shows DFMA-DETR detection results.

only 16.8M parameters and 51.1G FLOPs computational = module, confirming the advantage of the dual-domain feature
complexity, it provides a solid technical foundation for  modulation mechanism in finding complex surface textures and
engineering application in pomegranate maturity assessment.  periodic feature change of pomegranates, and the enhanced
Systematic ablation tests and visual analysis also more effectively  attention mechanism’s ability for precise feature localization in
promote the effectiveness and cooperative performance of each new  cluttered interference background.
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This research creates new theoretical foundations and
engineering references for intelligent detection technologies in
precision agriculture, offering tremendous academic value and
prospect application value for pushing forward agricultural
modernization and intelligentization.

5 Discussion

The DFMA-DETR algorithm, which was recently proposed,
shows better performance improvements in pomegranate maturity
detection, whose major breakthrough is constructed on the
designing of a dual-domain feature modulation mechanism for
enabling spatial-frequency collaborative processing with an
adaptive sparse attention fusion framework. Compared to
traditional single-domain feature extraction-based approaches,
our DFMB-Net dual-domain feature modulation backbone
network captures pomegranate surface spatial texture details and
frequency-domain periodic features simultaneously. This
innovation adequately addresses the inherent issue of lacking
feature representation capability of traditional convolutional
neural networks in coping with complex agricultural scenarios.
The dynamic adaptive sparse attention mechanism of the EAFF
module achieves optimal trade-off among computational overhead
and feature representation capability by dynamic weight
adjustment. In contrast to traditional dense attention
mechanisms, it lowers computational complexity significantly
without sacrificing much accuracy. These findings not only
encourage the application of Transformer-based object detection
technology in agricultural applications but also create new
theoretical models and technical paths for multi-domain feature
fusion in severe environments.

Regarding real-time performance capabilities, our DFMA-
DETR demonstrates superior inference efficiency in practical
deployment scenarios. Performance evaluation on NVIDIA T4
GPU infrastructure reveals that DFMA-DETR achieves
approximately 118 FPS during inference, representing a 9.3%
improvement over the baseline RT-DETR’s 108 FPS. This
enhancement directly results from our optimized architecture
design, particularly the reduced computational complexity (51.1G
FLOPs compared to 57.0G baseline) and streamlined parameter
count (16.8M versus 19.8M parameters).

For edge computing deployment scenarios critical to precision
agriculture, DFMA-DETR maintains robust real-time capabilities
across constrained computational environments. Testing on
NVIDIA Jetson AGX Orin devices demonstrates inference rates
of 32-35 FPS, while deployment on resource-limited Jetson Orin
Nano platforms achieves stable performance at 16-18 FPS. These
metrics enable practical field deployment for autonomous
agricultural monitoring systems, where immediate decision-
making capabilities are essential for timely intervention in
pomegranate cultivation management.

Despite significant achievements, several limitations warrant
attention and improvement in future work. First, while the current
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PGSD-5K dataset encompasses five critical stages of pomegranate
growth, samples under extreme illumination conditions, severe
occlusions, and dense multi-target scenarios remain relatively
limited, potentially affecting model generalization capabilities in
more complex and diverse agricultural environments. Second,
although the frequency-domain feature processing module FTEU,
based on fractional Fourier transform theory, exhibits excellent
performance in texture feature extraction, its relatively high
computational complexity poses challenges for deployment on
resource-constrained edge devices. Additionally, this research
primarily focuses on maturity detection for a single pomegranate
variety, with insufficient consideration of morphological, color, and
textural variations across different cultivars, thereby limiting
algorithm universality. Future research should expand dataset
scale and diversity, optimize computational efficiency of
frequency-domain processing modules, and explore universal
pomegranate maturity detection models across varieties
and regions.

Looking forward, the dual-domain feature modulation and
enhanced attention fusion framework established in this study
holds promise for further expansion and deepening across
multiple directions. First, this framework could be extended to
maturity detection tasks for other fruit crops, utilizing transfer
learning and domain adaptation techniques to develop universal
detection models across crop species, providing broader technical
support for precision agriculture intelligentization. Second,
integration with multimodal sensing technologies, including near-
infrared spectroscopy, hyperspectral imaging, and three-
dimensional point cloud data, could establish comprehensive
detection systems based on multi-source information fusion,
potentially enabling holistic assessment of both internal and
external fruit quality. Furthermore, with rapid developments in
edge computing and model compression technologies, future
research could explore lightweight dual-domain feature
modulation network designs, developing real-time detection
systems suitable for mobile platforms such as unmanned aerial
vehicles and robots. Finally, incorporating reinforcement learning
and active learning strategies could construct adaptive online
learning frameworks, enabling detection models to continuously
optimize and improve during practical applications, providing
essential technical foundations for achieving truly intelligent
agricultural production.
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