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Rice origin traceability using
mid-infrared and fluorescence
spectral data fusion
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This study overcomes the limitations of traditional single-spectroscopy
techniques by constructing an intelligent discrimination system for rice
geographic origin that integrates mid-infrared (MIR) and fluorescence (FLU)
spectral feature fusion with machine learning. Using the “Zhongke Fa 5" rice
variety from eight major production regions in Jilin Province, China, as the
research object, spectral data were acquired using Fourier transform infrared
(FTIR) and fluorescence spectrometers. A "Normalization-Smoothing-
Multiplicative Scatter Correction” preprocessing framework was proposed,
significantly enhancing the signal-to-noise ratio and separability of the spectral
features. The complementary characteristics of the multispectral data were
elucidated: MIR spectra (500-3750 cm™) accurately represented molecular
vibration features of key components such as starch, protein, and lipids, while
FLU spectra (450-850 nm) effectively captured the fluorescence characteristics
of phenolic compounds and protein-pigment complexes. The successive
projections algorithm (SPA) was employed to extract 286-310 highly
discriminative features from the original 7625-dimensional data, effectively
mitigating the overfitting problem associated with high-dimensional data. The
performance differences between data-level and feature-level fusion strategies
were compared. The feature-level fusion model optimized by SPA demonstrated
significant advantages, achieving a test set accuracy of 95.55%. Regarding
algorithm performance, the logistic regression (LR) model combined with
enhanced spectral features (LR-SPA) significantly outperformed support vector
machine (SVM, 83.17%) and gradient boosting algorithms in terms of both
precision (93.05%) and robustness. This study provides a revolutionary
technical approach for agricultural product quality and safety supervision,
holding substantial theoretical innovation and practical application value. As a
primary goal, the abstract should render the general significance and conceptual
advance of the work clearly accessible to a broad readership. References should
not be cited in the abstract. Leave the Abstract empty if your article does not
require one — please see the "Article types” on every Frontiers journal page for
full details.
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1 Introduction

Rice, as one of the world’s most crucial staple crops, has its
quality highly scrutinized. Rapid identification of rice origin
remains a focal and challenging point for both consumers and
researchers. In recent years, spectroscopic techniques have gained
widespread recognition and application in the field of agricultural
product origin identification due to their non-destructive nature.
Spectral information can precisely reflect the composition and
content of organic compounds in rice, making it a vital technical
means for rice origin traceability. Rice from different regions
exhibits internal compositional differences due to multiple factors
such as climate, environment, and soil, leading to diverse
spectral characteristics.

Compared to the drawbacks of traditional detection methods
(e.g., High-Performance Liquid Chromatography, HPLC; Gas
Chromatography, GC), such as low detection efficiency, expensive
equipment, and complex sample preparation (requiring sample
destruction) (Coronel-Reyes et al., 2018; Wang et al., 2019; Men
et al., 2020), non-destructive testing techniques are superior due to
their high efficiency, accuracy, and potential for real-time detection.
It should be noted that although methods like HPLC/GC are time-
consuming, their high accuracy and repeatability have been
validated by extensive research (Berrueta et al, 2007; Azmi
N, Kamarudin et al., 2021; Zhang et al.,, 2023a) and they remain
the gold standard for compositional analysis. Wang M summarized
the major technical methods for detecting aromas in agricultural
products, with a focused analysis on the advantages and limitations
of techniques such as chemical sensors, gas chromatography—mass
spectrometry (GC-MS), and electronic noses. The review further
explores the application prospects of these technologies in smart
agriculture and their integration trends with the Internet of Things
(Wang et al., 2024).Traditional rice identification methods (e.g.,
morphological observation, biochemical detection) are typically
labor-intensive, time-consuming, and complex (Gong et al,
2023), unsuitable for batch analysis and non-destructive
testing requirements.

Previous studies have extensively explored the application of
spectroscopic techniques in agricultural product identification.
Specific achievements include: Sheng Gong et al. using MIR
spectroscopy and random forest algorithms to trace the origin of
medicinal materials (Liu et al., 2024); Bing Liu et al. constructing a
Partial Least Squares-Neural Network (PLS-NN) model for efficient
and accurate identification of Cornus officinalis origin based on
MIR data (Luan et al., 2023); Luan Xinxin et al. effectively
discriminating rice origin by combining multiple spectroscopic
methods with chemometric analysis (Xiao et al, 2024); Xiao
Yuhui et al. proposing spectral augmentation techniques
combined with IR spectroscopy and machine learning to improve
soybean identification accuracy (Jin et al., 2022); Baichuan Jin et al.
employing near-infrared (NIR) hyperspectral technology and
various machine learning methods to build a rice seed variety
identification model (Lei et al., 2022). Furthermore, Lei
Yuanxiong et al. preprocessed transgenic soybean spectral data
and established Partial Least Squares - Discriminant Analysis
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(PLS-DA) and Backpropagation (Artificial) Neural Network(BP-
ANN) models, models, finding the BP-ANN model achieved 100%
discrimination accuracy (Teye et al., 2019); Teye et al. collected rice
spectral data from different origins, established K-Nearest Neighbor
models after preprocessing, achieving best recognition rates of
90.84% and 90.64% for the training and prediction sets,
respectively (Zhang et al, 2015). These studies have not only
achieved discrimination between different rice types (Chen and
Huang, 2010; Chen et al, 2018) but also involved rice quality
measurement (Li et al., 2016), cultivar classification, and
applications in rice authenticity testing (Siriphollakul et al., 2017),
protein and starch content prediction, waxy rice detection, and
edible quality prediction (Hao et al., 2024).

Data fusion techniques have been widely applied to enhance the
accuracy of spectral analysis. Nan Hao et al. successfully identified
the origin of Lonicerae japonicae flos using a data fusion strategy
combining NIR and MIR spectroscopy (Robert et al., 2021); Robert
et al. explored data fusion methods combining Raman and IR
spectroscopy for predicting red meat parameters (Dai et al., 2023);
Dai et al. studied the use of NIR and Raman spectroscopy to
distinguish rice from similar origins (Vitelli et al., 2021); Michael
Vitelli et al. utilized multiple spectroscopic techniques combined
with data fusion to analyze the main components of potato flour
samples (Wang et al, 2023). Additionally, Wang Zhiqiang et al.
discussed the application of spectral data fusion technology for
rapid detection of rice protein content (Song et al., 2024); while
Chenxuan Song et al. developed a novel method for identifying
contaminated rice through data fusion of NIR spectroscopy and
machine vision (Cui et al., 2007).Recent research also indicates that
metabolomics methods based on chromatography-mass
spectrometry can provide more refined origin characteristic
markers, but their cost and complexity limit large-scale application.

However, constructing universal origin discrimination models
still faces challenges such as high sample diversity and numerous
background interference factors. It is difficult for models to
distinguish whether spectral signals originate from genetic varietal
differences, climatic conditions, or specific local environmental
factors. Addressing this challenge, this study proposes a new
research path: during the initial method development phase, first
deeply validate the resolution sensitivity of the traceability
technology at a “controlled variable” micro-geographical scale,
thereby laying the foundation for large-scale application.
Consequently, the core objective of this study is to verify the
ultimate resolution capability of the spectral data fusion strategy
for rice origin traceability at a micro-geographical scale.

To achieve this goal, we selected eight major production areas
within Jilin Province, China, as the study region. Significant
gradients in topsoil pH and soil nutrient content exist within the
province, while the main planting areas predominantly use the
“Zhongke Fa 5” variety. This provides an ideal scenario for precisely
parsing the impact of micro-environments on elemental
fingerprints while controlling for cultivar variables.

This research focuses on characteristic japonica rice from Jilin
Province, integrating MIR and FLU spectroscopy. By systematically
optimizing spectral preprocessing methods (including

frontiersin.org


https://doi.org/10.3389/fpls.2025.1679754
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

normalization, Savitzky-Golay smoothing, and multiplicative
scatter correction) and combining them with machine learning
algorithms, an efficient and accurate novel method for origin
discrimination was constructed. This study not only provides a
reliable traceability tool for Jilin rice but also its methodology—
validating model sensitivity through micro-geographical scale case
studies—offers a theoretical basis and practical foundation for
future expansion of the technical framework to broader
geographical regions.

2 Experimental section
2.1 Samples

2.1.1 Sample source and preparation

Samples were collected during the rice maturity period in mid-
to-late September 2024, covering the central and western main rice
production areas of Jilin Province. A total of 120 rice samples were
obtained from 8 different origins (Dehui DH, Gongzhuling GZL,
Huadian HD, Shulan SL, Taoer River TRH, Yitong YT, Yushu YS,
Zhenlai ZL). The detailed information on average temperature,
accumulated temperature, precipitation, average relative humidity,
and climatic characteristics for each production region during May
to September 2024 is provided in Table 1. Three representative
paddy fields were selected from each origin as biological replicates.
Five sampling points were set along the diagonal in each field, and
the samples were mixed to form one representative sample per field,
with each sample weighing approximately 1.0 kg. All samples were
from the same batch of the “Zhongke Fa 5” variety to control for the
effects of varietal variation.

Agronomic information obtained through field interviews
indicated consistent cultivation management practices across

10.3389/fpls.2025.1679754

sampling sites: sowing in early May, maturation in late
September, irrigation primarily using groundwater, and
fertilization rates of 140 kg/ha nitrogen (N), 75 kg/ha phosphorus
(P,0s), and 80kg/ha potassium (K,O). Samples were delivered to
the laboratory within 24 hours after harvest on October 20, 2024,
and stored temporarily under constant temperature conditions.

Sample pretreatment followed a standard procedure: Paddy rice
was equilibrated for 72 hours at a temperature of (25 + 2)°C and
relative humidity of (60 + 5)%. After dehulling using a husker, 100
intact, plump, and disease-free brown rice grains were randomly
selected, ground using a dedicated mill, and passed through a 100-
mesh (150 wm) metal sieve (according to GB/T 6003.1-2012) to
ultimately obtain powdered samples with uniform particle size
(Figure 1). This treatment effectively reduced spectral
measurement errors caused by differences in sample
physical properties.

2.2 Experimental instruments and data
acquisition

2.2.1 Experimental instruments

This experiment utilized two advanced spectroscopic analysis
devices for sample detection: an ATP2400 fiber optic spectrometer
from Optosky (Xiamen) Photonics Inc. (Xiamen, China), and a
Nicolet™ iS50 Fourier Transform Infrared (FTIR) spectrometer
from Thermo Fisher Scientific (Waltham, MA, USA). The ATP2400
spectrometer has a broad spectral detection range of 350-800 nm,
uses a 405 nm excitation light source, and employs 5 repeated scan
averages to improve the signal-to-noise ratio (SNR). Its probe
features a vertical detection design, maintaining a fixed 100 mm
detection distance and a 20°field of view, connected via an SMA905
standard interface to a UV600-1.0 quartz optical fiber, and is

TABLE 1 Climatic characteristics of production regions including average temperature, accumulated temperature, precipitation, and mean relative

humidity.
Production Mean temp. Accumulated  Precipitation = Mean relative o o
: E o P S o Climatic characteristics
region (May-Sept) (°C) temp. (°C) (mm) humidity (%)
Temperate semi-humid climate with
DH 18.2-22.1 2800-2900 380-420 72-76 . .
synchronous rain and heat periods
Black soil regi ith ipitati
GZL 19.0-22.8 2900-3000 400-450 70-74 ack sott reglon wirh precipitation
concentrated from June to August
Mountain climate characterized by significant
HD 17.5-21.3 2700-2800 500-550 78-82 . L
diurnal temperature variation
Short frost-free period with rapid temperature
SL 17.8-21.9 2750-2850 450-500 75-79 R
drop in autumn
TRH 18.5-23.2 2950-3050 300-350 62-66 Semi-arid climate with abundant sunshine
Sufficient accumulated temperature but high
YT 18.8-22.5 2850-2950 420-470 71-75 . L. .
interannual precipitation variability
Chy i to st i
Ys 18.0-22.0 2800-2900 390-440 70-74 crnozem region prone fo srong spring
winds
Eastern fringe of the Horqin Sandy Land with
ZL 19.2-23.8 3000-3100 280-330 58-63 . .
intense evaporation
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FIGURE 1

Images of samples to be tested (Rice origins from left to right: Dehui, Gongzhuling, Huadian, Shulan, Taoer River, Yitong, Yushu, Zhenlai).

equipped with a USB data transmission interface. The Nicolet' ™
iS50 FTIR spectrometer utilizes a 24-bit 500 kHz high-speed A/D
converter, is equipped with a Polaris long-life dual IR source (15-
27,000 cm™), and supports adjustable scanning rates from 0.158 to
6.28 cm/s at a high resolution of 0.09 cm™.

2.2.2 Data acquisition

For MIR analysis, potassium bromide (KBr) was selected as the
window and sample matrix material, primarily due to its excellent
infrared transmission properties and chemical stability. During
sample preparation, rice powder samples were precisely mixed
with dry KBr powder at a mass ratio of 1:100, thoroughly ground
to a fine and uniform consistency, and then pressed into uniform,
crack-free semi-transparent pellets under a pressure of 10 T-cm™
using a hydraulic press. For each origin, 100 spectra were collected.
After quality assessment, 60 optimal spectra with higher SNR and
stable signals were selected for subsequent analysis. Each spectrum
represented the average result of 3 repeated scans per sample to
enhance data reliability.

The KBr pellet method, through fine grinding and high-pressure
forming, effectively ensured sample homogeneity and particle size
consistency, significantly reducing light scattering interference,
making it particularly suitable for quantitative analysis. Although
Attenuated Total Reflectance (ATR) technology offers more
convenient sample preparation, its signal intensity is susceptible to
variations in sample-crystal contact conditions, potentially
introducing variability. To maintain consistency and comparability
with historical data, the classical KBr pellet method was chosen for
this study. Subsequent research could consider introducing ATR
technology and establishing corresponding spectral conversion
models for method interoperability.

For FLU measurement, the light source was positioned 300 mm
directly above the sample center, with the emission direction at a
45° angle to the horizontal plane to minimize surface reflection
interference and optimize excitation efficiency. Each sample was
measured 100 times in parallel. Strict screening based on SNR and
signal intensity consistency was performed, ultimately retaining 60
representative spectra for statistical analysis, ensuring data quality
met modeling requirements.

Frontiers in Plant Science

2.3 Spectral data processing methods

2.3.1 Preprocessing methods

Factors such as instrument noise, baseline drift, and light
scattering effects during spectral acquisition can significantly
impact data quality. To improve model stability and reliability,
this study employed a multi-step preprocessing approach to
optimize MIR and FLU spectral data. Firstly, all raw spectral data
underwent normalization (Normalization), linearly transforming
spectral intensity values to the standard [0, 1] interval to eliminate
effects from differences in sample concentration and measurement
conditions (Flores-Morales et al., 2012).

To address random noise, the Savitzky-Golay (SG) convolution
smoothing algorithm was applied. This algorithm effectively
suppresses high-frequency noise while preserving spectral feature
peak shapes. To eliminate light scattering effects, Multiplicative
Scatter Correction (MSC) was specifically introduced. This method
corrects for light scattering interference caused by uneven sample
particles by establishing an ideal scatter model (Ye et al., 2018). The
aforementioned preprocessing workflow significantly enhanced the
SNR of the spectral data, providing a high-quality data foundation
for subsequent modeling analysis.

2.3.2 Feature selection method based on SPA

To address the susceptibility of high-dimensional spectral data
to overfitting, this study adopted a systematic feature selection
strategy. The feature wavelength screening method based on the
Successive Projections Algorithm (SPA) employs vector projection
principles for iterative calculation, progressively eliminating
redundant and collinear wavelength variables, ultimately
screening out a feature wavelength combination with minimal
redundancy and maximum information content (Soares
et al., 2013).

Regarding sample partitioning, the Kennard-Stone (KS)
algorithm was used to achieve uniform distribution of the sample
space. The dataset was divided into a training set (70%), a validation
set (20%), and a test set (10%). The training set was used for model
construction, the validation set for parameter tuning, and the test
set for final performance evaluation.
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2.4 Classification model methods

For classification model construction, this study employed three
machine learning algorithms: Support Vector Machine (SVM),
Gradient Boosting Decision Tree (GBDT), and Logistic
Regression (LR) for model training and optimization.

2.4.1 Model selection and parameter settings

1. The SVM model utilized the Radial Basis Function (RBF)
kernel. Key parameters were optimized via grid search to
balance model complexity and generalization capability.

2. The GBDT model was configured with a maximum
decision tree depth of 5, a learning rate of 0.1, and 100
iterations. An early stopping mechanism was incorporated
to prevent overfitting.

3. The LR model employed L2 regularization. The
regularization coefficient C was determined through 5-
fold cross-validation to ensure model stability.

2.4.2 Model performance evaluation metrics

Accuracy, Precision, Recall, and Fl-score were adopted as
evaluation metrics for model performance. Given that this study
involves a multi-class classification task (distinguishing 8 different
origins), these metrics were calculated based on a “One-vs-Rest”
(OvVR) strategy. Specifically, for each origin, it was treated
individually as the “positive class,” while samples from all other
origins were collectively considered the “negative class.”
Corresponding True Positives (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN) were calculated for
each class. The final reported Precision, Recall, and F1-score are
Macro-average values, meaning the average of the individually
calculated metric values for all 8 classes (Soares et al., 2013),
ensuring equal weight for each origin regardless of sample
size differences.

Four metrics were selected for comprehensive model
performance evaluation:

1. Precision: Accuracy of positive predictions.
2. Recall: Identification rate of positive samples.

3. Fl-score: Harmonic mean of Precision and Recall.

Model performance was comprehensively assessed using these
four metrics. Calculation formulas are as follows:

Accuracy = (TP + TN) /(TP + FP + TN + FN);
Precision = TP/(TP + FP);
Recall = TP/(TP + FN);

F1 — score = 2 x (Precision x Recall)/(Precision + Recall).
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2.5 Data fusion technology

This study proposed an analysis method based on multi-source
spectral data fusion, achieving synergistic analysis of MIR and FLU
data through two technical routes: data-level fusion and feature-
level fusion. Addressing the technical challenges of multi-
instrument data integration, a preprocessing pipeline was
established: Min-Max normalization was used to standardize
spectral intensities to the [0,1] interval, eliminating the effects of
concentration differences and measurement conditions.

In the data-level fusion strategy, the preprocessed MIR and FLU
spectral matrices were concatenated along the wavelength
dimension to construct a joint feature matrix [n x (p_MIR +
p_FLU)], and the SPA was used to (screen for) the optimal
feature combination. In the feature-level fusion strategy, SPA
feature selection was first performed separately on the two types
of spectra, and then the selected feature variables were concatenated
to form a fused feature vector.

3 Results and discussion

Spectral image analysis revealed that although the overall
spectral characteristics of rice from different origins were highly
similar, significant differences emerged in specific wavelength
regions. These differences reflect subtle variations in the structure
and content of rice chemical components. Given that mid-infrared
(MIR) spectroscopy excels at characterizing the molecular structure
and abundance of major chemical components in rice, while
fluorescence (FLU) spectroscopy provides precise insights into the
electronic structure and concentration of specific fluorophores,
their integration significantly enhances the accuracy of rice
geographical origin traceability through a complementary
analytical strategy.

3.1 Mid-infrared spectral data

3.1.1 MIR spectral data preprocessing

To visually display the differences in rice spectral data from
different origins, the average spectral data for rice samples from
each origin were calculated, and a comparison chart of average
spectral data between regions was plotted (see Figure 2). (Figure 2a)
shows the raw MIR spectra of the samples, generated by molecular
vibrational transitions. Given the significant noise in spectral data
below 500 cm™* and above 3750 cm™, this study specifically selected
the 500-3750 cm™ band as effective spectral data for analysis, as
detailed in Figure 2. Due to the complexity and severe overlap of
bands in the IR region, preprocessing methods were employed to
effectively extract sample information. Specific results are shown in
(Figure 2b) Normalization, (Figure 2c¢) Normalization-SG
smoothing filter, and (Figure 2d) Normalization-MSC scatter

frontiersin.org


https://doi.org/10.3389/fpls.2025.1679754
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

10.3389/fpls.2025.1679754

A
1.2
[—DH—GZL—HD——SL—— TEH—— YT—— Ys——ZL]
1.0
;\; 0.8
@
e
8 0.6
g
c 0.4+
o
'_
0.2/
0.0
T T T T T T
3500 3000 2500 2000 1500 1000 500
Wavenumber(cm™)
C
10 [—DH—GZL—HD——SL—— TEH—— YT—— Ys——2Zl]

Transmittance(%)
o o
[} (o]
1 1

o
i
|

0.2

0.0

T
3000

T
3500

T T
2000 1500 1000

Wavenumber(cm™)

FIGURE 2

[—DH—GZL—HD——SL—— TEH—— YT—— YS——ZL|

0.8 4

0.6 4

Transmittance(%)

0.4l

0.2 4

0.0 T
2500 2000

Wavenumber(cm™)

T T
3500 3000 1500 1000 500

12 [—DH——GZL—HD——SL—— TEH—— YT—— YS——ZL|

Transmittance(%)

0.4 fi

0.2 4/

0.0

T m— T T
3000 250 2000 1500 1000

Wavenumber(cm™)

T
3500

Average spectral preprocessing plots of rice powder MIR spectra. (@) Raw MIR spectra of rice powder; (b) Normalized MIR spectra of rice powder;
(c) Normalization-SG processed MIR spectra of rice powder; (d) Normalization-MSC processed MIR spectra of rice powder.

correction. Comparing (Figure 2b) with (Figures 2c, d), it can be
observed that the spectra processed with smoothing and scatter
correction are smoother than the original spectra, and the
differences between the spectral curves are significantly reduced.
This indicates that MSC preprocessing effectively corrected spectral
errors caused by scattering phenomena during spectral acquisition.

3.1.2 MIR Spectral analysis

FTIR analysis indicated that rice powder displayed characteristic
absorption peaks within the 500-3750 cm™ range, closely related to
molecular vibrations of its main components (starch, protein, lipids,
and water molecules) (Figure 3). The specific assignments of the
absorption peaks are as follows: The broad and strong absorption
band observed in the 3700-3000 cm™ range (centered around 3500
cm™) is primarily attributed to the O-H stretching vibration of water
molecules and the N-H stretching vibration of the protein amide A
band. The characteristic peaks in the 3000-2800 cm™* range (around
2900 cm™) correspond to the asymmetric and symmetric C-H

Frontiers in Plant Science 06

stretching vibrations of methylene (CH,) groups in lipids,
indicating the presence of long-chain fatty acids. The characteristic
peaks observed around 1600-1700 cm™ and 1490-1450 cm’
correspond to the protein amide I band (C=0 stretching vibration)
and amide IT band (N-H bending vibration/C-N stretching vibration)
(Zhang et al., 2023b), respectively. These peaks may overlap with the
O-H bending vibration of starch. The strong absorption band in the
1190-950 cm™ range is characteristic of starch, where the peak
around 1150 cm™ is assigned to C-O-C stretching vibration, and
the multiple peaks in the 1000-1090 cm™' range correspond to C-O-
H stretching vibrations. These characteristic peaks are closely related
to the crystallinity and molecular structure of starch (Lian et al,
2013). In the 900-500 cm™ range, the characteristic peak around
950-910 cm™ can be attributed to the ring vibration of the o.-1,4
glycosidic bond in starch, while the weak peak around 760-700 cm™
may be related to the skeletal vibrations of polysaccharides. Table 2
summarizes the assignment results of the key absorption peaks in the
mid-infrared spectrum of rice powder.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1679754
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

10.3389/fpls.2025.1679754

50
4.5 _M
s T e AT
35 'WW
SR
8 304 TEH
c
£ ] s 850
€ 2.5+ 3500 2000 1650 1470 1100 g i s
2 'M
= HD
©
1.5 4
] GZL
1.0 S
0.5 1 DH
0.0 T T T T T T T T T T T T
3500 3000 2500 2000 1500 1000

500

Wavenumber(cm™)

FIGURE 3
Assignment diagram of rice powder MIR spectra.

3.2 Fluorescence spectral data

3.2.1 FLU spectral data preprocessing

To accurately characterize the spectral properties of rice,
spectral data from rice of different origins were collected, and the
characteristic spectral curve of rice was constructed based on the

TABLE 2 Assignment of key absorption peaks in the MIR spectra of rice
powder.

Wavenumber Vibration Assigned compound/
range (cm™) type functional group
O-H stretching
3700-3000 . . Water
vibration
C-H stretchi
3000-2800  stretcung Lipids
vibration
C=0 stretching i
1600-1700 . Proteins
vibration
“H i
1490-1450 ¢ . ber}dmg Lipids and proteins
vibration
C-0-C/C-O
1190-950 stretching Starch
vibration
950-910 Ring vibration Starch
880-820 C-C stretching Starch
vibration
760-700 Skeletal vibration Polysaccharide ring structures
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mean of these 100 data points. To improve data quality, denoising
was performed, removing bands with significant noise such as 350-
379 nm, and retaining the effective band from 433 nm to 800 nm, as
shown in (Figure 4a). The intensity values of the F LU spectra were
much greater than those of the MIR spectra. To eliminate the
magnitude differences between the data, the FLU spectral data were
normalized, as shown in (Figure 4b). Through MSC and SG
preprocessing, data interference was significantly reduced,
ensuring the accuracy of subsequent analysis. The results are
shown in (Figures 4c, d).

The main components of rice, such as starch and protein,
exhibit different vibrational spectral characteristics due to
differences in chemical composition, content, and structure.
Significant fluorescence characteristic peaks were observed
particularly in the wavelength intervals of 475-525 nm, 550-600
nm, and 650-690 nm. During analysis, it cannot be assumed that a
FLU spectral peak originates from a single substance solely based on
its position, as some peaks may result from mixtures of
multiple substances.

3.2.2 FLU spectral analysis

Under a 405 nm excitation wavelength, the FLU spectra (450-
850 nm) of rice powder displayed typical fluorescence
characteristics (Figure 5). The strong fluorescence emission peak
in the 460-490 nm range (maximum emission ~495 nm) is
primarily attributed to phenolic compounds in rice. The FLU
signal detected in the 660-690 nm range may originate from
protein-pigment complexes or lipid oxidation products.
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Preprocessing plots of rice powder FLU spectra. (a) Raw FLU spectra of rice powder; (b) Normalized FLU spectra of rice powder; (c) Normalization-
SG processed FLU spectra of rice powder; (d) Normalization-MSC processed FLU spectra of rice powder.

3.2.3 Feature band selection results

The modeling in this study is based on a total of 480 spectral
samples covering 8 different origins. To address the high-
dimensional data with up to 7,625 bands, the authors employed
the Successive Projections Algorithm (SPA) for feature wavelength
selection, with key parameters set as follows: minimum variables
(MinVariable) = 200, maximum variables (MaxVariable) = 500, and
cross-validation was used for evaluation.

Processing the spectral data through SPA error analysis and
feature selection distribution yielded the following results: In data-
level fusion, the Normalization-SG preprocessing method selected
286 features (Figure 6), and the Normalization-MSC method selected
290 features (Figure 7). In feature-level fusion, the Normalization-SG
method selected a total of 310 features [168 FLU features (Figure 8a)
and 142 MIR features (Figure 8b)], while the Normalization-MSC
method selected 302 features [138 FLU features (Figure 9a) and 164
MIR features (Figure 9b)]. Compared to the original unprocessed

Frontiers in Plant Science

spectra dimensionality of 7625 (None), this method achieved
significant data dimensionality reduction. As shown in Table 3, this
feature selection strategy not only effectively reduced data
dimensionality but also significantly improved the model’s
generalization performance, providing an optimized feature
selection solution for both data-level and feature-level fusion.

3.2.4 Selection of processing methods

This study systematically compared the effects of the
Normalization, Normalization-SG (Savitzky-Golay smoothing
normalization), and Normalization-MSC (multiplicative scatter
correction normalization) preprocessing methods on fused rice
spectral data across two dimensions: data-level fusion and
feature-level fusion. By comprehensively evaluating the
performance of each preprocessing method, the optimal
preprocessing scheme was screened out for constructing efficient
origin discrimination models.
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Assignment diagram of rice powder FLU spectra.

During the model building process, the preprocessed spectral
data served as input features for a Random Forest (RF) classifier.
Simultaneously, a multi-dimensional model performance
evaluation system was constructed using three metrics: Precision,
Recall, and Fl-score. The increase in evaluation metric values
showed a significant positive correlation with the optimization of
preprocessing effects; that is, higher metric values indicated more
reasonable preprocessing method selection and superior
performance of the constructed origin discrimination model.

Experimental results revealed notable differences in optimal
preprocessing methods under different fusion strategies (Table 4).
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0.5

]

50

—

100 160 200 250
Number of variables Included in the model

FIGURE 6

For data-level fusion, both Normalization-SG and Normalization-
MSC achieved excellent training performance (Precision > 0.99).
However, on the test set, Normalization-SG significantly
outperformed Normalization-MSC across all metrics (Precision:
0.9095 vs. 0.8832; Recall: 0.9062 vs. 0.8750; Fl-score: 0.9064
vs. 0.8730).

This advantage was even more pronounced in feature-level
fusion. The performance metrics of Normalization-SG on the test
set (Precision: 0.9527, Recall: 0.9479, Fl-score: 0.9470) were
approximately 2.6%-2.9% higher than those of Normalization-
MSC (Precision: 0.9268, Recall: 0.9270, Fl-score: 0.9244).
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Notably, Normalization-SG demonstrated stronger generalization
capability on the test set while maintaining high accuracy on the
training set (Data-level: 0.9820; Feature-level: 0.9950), indicating
that its preprocessing strategy more effectively preserves the
discriminative features of the data, thereby significantly
enhancing model robustness across different fusion scenario.

TABLE 3 Comparison of feature selection results for data-level and
feature-level fusion based on the SPA algorithm.

Preprocessing method

Fusion

strategy Normalization-SG = Normalization-MSC

None 7625 7625
Data-Level Fusion

Feature-Level 286 290

Fusion

Data-Level Fusion

Feature-Level 310 302

Fusion
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3.3 Establishment and analysis of the data
fusion discrimination model

This study systematically compared the performance of
different data fusion strategies combined with machine learning
algorithms for the rice origin discrimination task. The experiment
employed two fusion strategies: feature-level fusion and data-level
fusion, uniformly applying the Normalization-SG method for
spectral data preprocessing. Evaluated algorithms included
Support Vector Machine (SVM), Gradient Boosting Decision
Tree (GBDT), and Logistic Regression (LR).

The specific parameter configurations for each model were as
follows. For the SVM model, the Radial Basis Function (RBF) kernel
was utilized, with the gamma parameter set to ‘scale’ and the
regularization parameter C set to 1.0. This configuration adheres
to the default settings in scikit-learn and, although not
systematically optimized, provides a balance of good generality
and reproducibility. In the case of the GBDT model, the number
of estimators (n_estimators) was set to 80 and the learning rate to
0.1, a configuration determined through preliminary experiments to
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TABLE 4 Comparison of Random Forest modeling results under data-level and feature-level fusion.

Fusfem Preprocessing Training set Test set
R method Precision Recall Fi-Score Precision Recall F1-Score

Normalization-SG 0.9820 0.9817 0.9818 0.9095 0.9062 0.9064

1 Data-level fusion Normalization-MSC 0.9654 0.9635 0.9631 0.8832 0.8750 0.8730
Normalization 0.9818 0.9817 0.9817 0.9392 0.9375 0.9370

Normalization-SG 0.9950 0.9947 0.9947 0.9527 0.9479 0.9470

2 Feature-level Fusion Normalization-MSC 0.9926 0.9921 0.9922 0.9268 0.9270 0.9244
Normalization 0.9923 0.9921 0.9921 0.9431 0.9375 0.9366

achieve an effective trade-oft between predictive performance and
computational efficiency. Early stopping was enabled during
training with n_iter_no_change = 10 and tol = 1x10~* which
resulted in the actual training terminating early at the 72nd
iteration. For the LR model, the maximum number of iterations
(max_iter) was set to 100, with the ‘saga’ solver selected and elastic
net regularization (11_ratio = 0.5) applied. This setup integrates the
benefits of both L1 and L2 regularization, facilitating feature
selection and improving handling of multicollinearity, while the
chosen solver and iteration count ensured stable convergence
during optimization.

The performance of different fusion strategy and algorithm
combinations is comprehensively compared in Table 5, while the
classification results of the Logistic Regression (LR) model on the
test set are further illustrated via the confusion matrix in
Figure 10. The main findings indicate that under data-level

fusion, the LR model integrated with Normalization-SG
preprocessing achieved the highest average classification
accuracy of 91.45%. Similarly, under feature-level fusion, the
same preprocessing approach combined with LR again delivered
optimal performance, attaining an average accuracy of 95.55%,
significantly surpassing other algorithms. Overall, feature-level
fusion consistently exceeded data-level fusion across most
evaluation metrics, demonstrating its enhanced capability to
retain discriminative features and minimize information
redundancy. Although the Gradient Boosting Decision Tree
(GBDT) model reached 100% accuracy on the training set,
evident overfitting led to its exclusion from primary
comparative analysis. The Support Vector Machine (SVM)
exhibited consistent performance under both fusion strategies,
yet was consistently outperformed by LR. These outcomes
underscore the crucial impact of fusion strategy and algorithm

TABLE 5 Comparison of modeling results for data-level and feature-level fusion strategies.

Fusion Spectral Modeling Training set Test set
Sl dimension method Precision Recall F1-Score Precision Recall F1-Score
Logistic Regression 0.9555 0.9531 0.9529 0.9305 0.9166 0.9181
1 Feature-Level 310 SVM 0.8015 0.7812 0.7798 0.8317 0.8125 0.8093
Gradient Boosting 1 1 1 0.9615 0.9583 0.9586
Logistic Regression 0.9145 0.9140 0.9134 0.8884 0.8750 0.8755
2 Data-Level Fusion 286 SVM 0.8348 0.8072 0.7971 0.8014 0.7604 0.7409
Gradient Boosting 1 1 1 0.9546 0.9479 0.9476
Logistic Regression 1 1 1 0.9694 0.9687 0.9686
Fusi ith
3 usion without 7625 SVM 0.8381 0.8385 0.8360 0.8044 0.7812 0.7757
feature selection
Gradient Boosting 1 1 1 0.9267 0.9270 0.9261
Logistic Regression 1 1 1 0.9694 0.9687 0.9686
Mid-Infrared
4 6742 SVM 0.8527 0.8359 0.8338 0.8044 0.78125 0.775
Spectroscopy
Gradient Boosting 1 1 1 0.9151 0.9062 0.9044
Logistic Regression 0.9948 0.9947 0.9947 0.9149 0.9166 0.9132
Fl
5 vorescence 883 SVM 0.8835 0.8906 0.8760 0.8721 0.875 0.8681
Spectroscopy
Gradient Boosting 1 1 1 0.8268 0.8020 0.7968
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Shows the confusion matrix results of the test set: (a) classification performance of the logistic regression (LR) model under data-level fusion mode;
(b) classification performance of the logistic regression (LR) model under feature-level fusion mode.

selection on the efficacy of spectral data-based origin
identification, with the combination of feature-level fusion and
LR emerging as the most promising approach.

3.4 Discussion

Based on the experimental results, the following analyses can
be drawn:

3.4.1 Effectiveness of feature-level fusion

Feature-level fusion generally performed better than data-level
fusion, consistent with conclusions from existing multi-source
spectral data fusion research. This indicates that fusion at the
feature extraction stage is more conducive to extracting cross-
source discriminant features.

Importance of Preprocessing Methods: The effectiveness of the
Normalization-SG method in processing spectral data was
validated. It significantly enhanced model generalization ability,
aligning with conclusions from preprocessing strategies in related
Raman spectroscopy studies.

3.4.2 Overfitting issue

GBDT’s perfect performance on the training set but fluctuating
performance on the test set indicated overfitting. Therefore, complex
ensemble methods should be used cautiously, or stronger regularization
should be introduced when emphasizing generalization capability.

Potential of High-Dimensional Fusion: Although the “Fusion
(No Feature Selection)” approach had an extremely high
dimensionality (7625), LR still performed well, suggesting the raw
data contains substantial effective information. This implies that
combining dynamic feature selection could further enhance model
performance and efficiency.
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3.4.3 Model robustness comparison

LR demonstrated robustness and accurate classification in both
fusion modes, making it particularly suitable for medium-to-low
dimensional spectral data. SVM was more sensitive to parameters
and feature scaling, and its performance was not fully realized
without parameter tuning.

The results of this study indicate that strategies based on
spectral data fusion can be effectively used for rice origin
discrimination. Among them, the combination of feature-level
fusion, LR, and Normalization-SG preprocessing constituted the
optimal model configuration under the experimental conditions of
this study, offering both high classification accuracy and good
stability. Future research could introduce dynamic feature
selection and weighted fusion strategies to further improve model
performance and generalization capability in complex origin
discrimination tasks.

4 Conclusions

This study systematically established a rice origin identification
method based on multispectral fusion, yielding the following
conclusions: (1) The feature-level fusion strategy outperforms data-
level fusion, achieving a classification accuracy of 95.55%, indicating
that the approach of feature selection followed by fusion better
preserves effective information; (2) The Normalization-SG
preprocessing combination performed best, with a test set F1 score
of 0.9470, confirming its advantages in feature retention and noise
suppression; (3) The logistic regression algorithm achieved the best
balance between accuracy (93.05%) and robustness, making it
suitable for practical applications; (4) SPA feature selection reduced
data dimensionality by over 96%, significantly improving model
efficiency. The innovation of this study lies in establishing a
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standardized multispectral fusion analysis process, addressing
technical challenges in data integration.

Experimental results demonstrate that mid-infrared
spectroscopy (500-3750 cm-1) and fluorescence spectroscopy
(450-850 nm) exhibit significant complementarity, and their
synergistic analysis can comprehensively characterize the
chemical composition characteristics of rice. This method not
only achieves high classification accuracy but also is simple to
operate, reproducible, and has promising prospects for promotion
and application.

Although this study focused on specific rice varieties, the
established analytical framework demonstrates strong
generalizability and extensibility. Future work will validate its
applicability to a wider range of cultivars and geographical
regions. The proposed methodology can also serve as a technical
paradigm and successful practice for traceability studies of other
high-value agricultural products.
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