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Rice origin traceability using
mid-infrared and fluorescence
spectral data fusion
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Zhong Lv1, Hongchen Zhang2 and Yong Zhang2

1School of Physics, Changchun University of Science and Technology, Changchun, China,
2Engineering Tech, R&D Center Changchun Guanghua College, Changchun, China
This study overcomes the limitations of traditional single-spectroscopy

techniques by constructing an intelligent discrimination system for rice

geographic origin that integrates mid-infrared (MIR) and fluorescence (FLU)

spectral feature fusion with machine learning. Using the “Zhongke Fa 5” rice

variety from eight major production regions in Jilin Province, China, as the

research object, spectral data were acquired using Fourier transform infrared

(FTIR) and fluorescence spectrometers. A “Normalization-Smoothing-

Multiplicative Scatter Correction” preprocessing framework was proposed,

significantly enhancing the signal-to-noise ratio and separability of the spectral

features. The complementary characteristics of the multispectral data were

elucidated: MIR spectra (500–3750 cm-1) accurately represented molecular

vibration features of key components such as starch, protein, and lipids, while

FLU spectra (450–850 nm) effectively captured the fluorescence characteristics

of phenolic compounds and protein-pigment complexes. The successive

projections algorithm (SPA) was employed to extract 286–310 highly

discriminative features from the original 7625-dimensional data, effectively

mitigating the overfitting problem associated with high-dimensional data. The

performance differences between data-level and feature-level fusion strategies

were compared. The feature-level fusion model optimized by SPA demonstrated

significant advantages, achieving a test set accuracy of 95.55%. Regarding

algorithm performance, the logistic regression (LR) model combined with

enhanced spectral features (LR-SPA) significantly outperformed support vector

machine (SVM, 83.17%) and gradient boosting algorithms in terms of both

precision (93.05%) and robustness. This study provides a revolutionary

technical approach for agricultural product quality and safety supervision,

holding substantial theoretical innovation and practical application value. As a

primary goal, the abstract should render the general significance and conceptual

advance of the work clearly accessible to a broad readership. References should

not be cited in the abstract. Leave the Abstract empty if your article does not

require one – please see the “Article types” on every Frontiers journal page for

full details.
KEYWORDS

spectrometry, data preprocessing, origin discrimination, machine learning, data fusion
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1679754/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1679754/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1679754/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1679754&domain=pdf&date_stamp=2025-11-18
mailto:tanyong@cust.edu.cn
https://doi.org/10.3389/fpls.2025.1679754
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1679754
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2025.1679754
1 Introduction

Rice, as one of the world’s most crucial staple crops, has its

quality highly scrutinized. Rapid identification of rice origin

remains a focal and challenging point for both consumers and

researchers. In recent years, spectroscopic techniques have gained

widespread recognition and application in the field of agricultural

product origin identification due to their non-destructive nature.

Spectral information can precisely reflect the composition and

content of organic compounds in rice, making it a vital technical

means for rice origin traceability. Rice from different regions

exhibits internal compositional differences due to multiple factors

such as climate, environment, and soil, leading to diverse

spectral characteristics.

Compared to the drawbacks of traditional detection methods

(e.g., High-Performance Liquid Chromatography, HPLC; Gas

Chromatography, GC), such as low detection efficiency, expensive

equipment, and complex sample preparation (requiring sample

destruction) (Coronel-Reyes et al., 2018; Wang et al., 2019; Men

et al., 2020), non-destructive testing techniques are superior due to

their high efficiency, accuracy, and potential for real-time detection.

It should be noted that although methods like HPLC/GC are time-

consuming, their high accuracy and repeatability have been

validated by extensive research (Berrueta et al., 2007; Azmi

N, Kamarudin et al., 2021; Zhang et al., 2023a) and they remain

the gold standard for compositional analysis. Wang M summarized

the major technical methods for detecting aromas in agricultural

products, with a focused analysis on the advantages and limitations

of techniques such as chemical sensors, gas chromatography–mass

spectrometry (GC–MS), and electronic noses. The review further

explores the application prospects of these technologies in smart

agriculture and their integration trends with the Internet of Things

(Wang et al., 2024).Traditional rice identification methods (e.g.,

morphological observation, biochemical detection) are typically

labor-intensive, time-consuming, and complex (Gong et al.,

2023), unsuitable for batch analysis and non-destructive

testing requirements.

Previous studies have extensively explored the application of

spectroscopic techniques in agricultural product identification.

Specific achievements include: Sheng Gong et al. using MIR

spectroscopy and random forest algorithms to trace the origin of

medicinal materials (Liu et al., 2024); Bing Liu et al. constructing a

Partial Least Squares-Neural Network (PLS-NN) model for efficient

and accurate identification of Cornus officinalis origin based on

MIR data (Luan et al., 2023); Luan Xinxin et al. effectively

discriminating rice origin by combining multiple spectroscopic

methods with chemometric analysis (Xiao et al., 2024); Xiao

Yuhui et al. proposing spectral augmentation techniques

combined with IR spectroscopy and machine learning to improve

soybean identification accuracy (Jin et al., 2022); Baichuan Jin et al.

employing near-infrared (NIR) hyperspectral technology and

various machine learning methods to build a rice seed variety

identification model (Lei et al., 2022). Furthermore, Lei

Yuanxiong et al. preprocessed transgenic soybean spectral data

and established Partial Least Squares - Discriminant Analysis
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(PLS-DA) and Backpropagation (Artificial) Neural Network(BP-

ANN) models, models, finding the BP-ANN model achieved 100%

discrimination accuracy (Teye et al., 2019); Teye et al. collected rice

spectral data from different origins, established K-Nearest Neighbor

models after preprocessing, achieving best recognition rates of

90.84% and 90.64% for the training and prediction sets,

respectively (Zhang et al., 2015). These studies have not only

achieved discrimination between different rice types (Chen and

Huang, 2010; Chen et al., 2018) but also involved rice quality

measurement (Li et al., 2016), cultivar classification, and

applications in rice authenticity testing (Siriphollakul et al., 2017),

protein and starch content prediction, waxy rice detection, and

edible quality prediction (Hao et al., 2024).

Data fusion techniques have been widely applied to enhance the

accuracy of spectral analysis. Nan Hao et al. successfully identified

the origin of Lonicerae japonicae flos using a data fusion strategy

combining NIR and MIR spectroscopy (Robert et al., 2021); Robert

et al. explored data fusion methods combining Raman and IR

spectroscopy for predicting red meat parameters (Dai et al., 2023);

Dai et al. studied the use of NIR and Raman spectroscopy to

distinguish rice from similar origins (Vitelli et al., 2021); Michael

Vitelli et al. utilized multiple spectroscopic techniques combined

with data fusion to analyze the main components of potato flour

samples (Wang et al., 2023). Additionally, Wang Zhiqiang et al.

discussed the application of spectral data fusion technology for

rapid detection of rice protein content (Song et al., 2024); while

Chenxuan Song et al. developed a novel method for identifying

contaminated rice through data fusion of NIR spectroscopy and

machine vision (Cui et al., 2007).Recent research also indicates that

metabolomics methods based on chromatography-mass

spectrometry can provide more refined origin characteristic

markers, but their cost and complexity limit large-scale application.

However, constructing universal origin discrimination models

still faces challenges such as high sample diversity and numerous

background interference factors. It is difficult for models to

distinguish whether spectral signals originate from genetic varietal

differences, climatic conditions, or specific local environmental

factors. Addressing this challenge, this study proposes a new

research path: during the initial method development phase, first

deeply validate the resolution sensitivity of the traceability

technology at a “controlled variable” micro-geographical scale,

thereby laying the foundation for large-scale application.

Consequently, the core objective of this study is to verify the

ultimate resolution capability of the spectral data fusion strategy

for rice origin traceability at a micro-geographical scale.

To achieve this goal, we selected eight major production areas

within Jilin Province, China, as the study region. Significant

gradients in topsoil pH and soil nutrient content exist within the

province, while the main planting areas predominantly use the

“Zhongke Fa 5” variety. This provides an ideal scenario for precisely

parsing the impact of micro-environments on elemental

fingerprints while controlling for cultivar variables.

This research focuses on characteristic japonica rice from Jilin

Province, integrating MIR and FLU spectroscopy. By systematically

optimizing spectral preprocessing methods (including
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normalization, Savitzky-Golay smoothing, and multiplicative

scatter correction) and combining them with machine learning

algorithms, an efficient and accurate novel method for origin

discrimination was constructed. This study not only provides a

reliable traceability tool for Jilin rice but also its methodology—

validating model sensitivity through micro-geographical scale case

studies—offers a theoretical basis and practical foundation for

future expansion of the technical framework to broader

geographical regions.
2 Experimental section

2.1 Samples

2.1.1 Sample source and preparation
Samples were collected during the rice maturity period in mid-

to-late September 2024, covering the central and western main rice

production areas of Jilin Province. A total of 120 rice samples were

obtained from 8 different origins (Dehui DH, Gongzhuling GZL,

Huadian HD, Shulan SL, Taoer River TRH, Yitong YT, Yushu YS,

Zhenlai ZL). The detailed information on average temperature,

accumulated temperature, precipitation, average relative humidity,

and climatic characteristics for each production region during May

to September 2024 is provided in Table 1. Three representative

paddy fields were selected from each origin as biological replicates.

Five sampling points were set along the diagonal in each field, and

the samples were mixed to form one representative sample per field,

with each sample weighing approximately 1.0 kg. All samples were

from the same batch of the “Zhongke Fa 5” variety to control for the

effects of varietal variation.

Agronomic information obtained through field interviews

indicated consistent cultivation management practices across
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sampling sites: sowing in early May, maturation in late

September, irrigation primarily using groundwater, and

fertilization rates of 140 kg/ha nitrogen (N), 75 kg/ha phosphorus

(P2O5), and 80kg/ha potassium (K2O). Samples were delivered to

the laboratory within 24 hours after harvest on October 20, 2024,

and stored temporarily under constant temperature conditions.

Sample pretreatment followed a standard procedure: Paddy rice

was equilibrated for 72 hours at a temperature of (25 ± 2)°C and

relative humidity of (60 ± 5)%. After dehulling using a husker, 100

intact, plump, and disease-free brown rice grains were randomly

selected, ground using a dedicated mill, and passed through a 100-

mesh (150 mm) metal sieve (according to GB/T 6003.1-2012) to

ultimately obtain powdered samples with uniform particle size

(Figure 1). This treatment effectively reduced spectral

measurement errors caused by differences in sample

physical properties.
2.2 Experimental instruments and data
acquisition

2.2.1 Experimental instruments
This experiment utilized two advanced spectroscopic analysis

devices for sample detection: an ATP2400 fiber optic spectrometer

from Optosky (Xiamen) Photonics Inc. (Xiamen, China), and a

Nicolet™ iS50 Fourier Transform Infrared (FTIR) spectrometer

from Thermo Fisher Scientific (Waltham, MA, USA). The ATP2400

spectrometer has a broad spectral detection range of 350–800 nm,

uses a 405 nm excitation light source, and employs 5 repeated scan

averages to improve the signal-to-noise ratio (SNR). Its probe

features a vertical detection design, maintaining a fixed 100 mm

detection distance and a 20°field of view, connected via an SMA905

standard interface to a UV600-1.0 quartz optical fiber, and is
TABLE 1 Climatic characteristics of production regions including average temperature, accumulated temperature, precipitation, and mean relative
humidity.

Production
region

Mean temp.
(May-Sept) (°C)

Accumulated
temp. (°C)

Precipitation
(mm)

Mean relative
humidity (%)

Climatic characteristics

DH 18.2-22.1 2800-2900 380-420 72-76
Temperate semi-humid climate with
synchronous rain and heat periods

GZL 19.0-22.8 2900-3000 400-450 70-74
Black soil region with precipitation
concentrated from June to August

HD 17.5-21.3 2700-2800 500-550 78-82
Mountain climate characterized by significant

diurnal temperature variation

SL 17.8-21.9 2750-2850 450-500 75-79
Short frost-free period with rapid temperature

drop in autumn

TRH 18.5-23.2 2950-3050 300-350 62-66 Semi-arid climate with abundant sunshine

YT 18.8-22.5 2850-2950 420-470 71-75
Sufficient accumulated temperature but high

interannual precipitation variability

YS 18.0-22.0 2800-2900 390-440 70-74
Chernozem region prone to strong spring

winds

ZL 19.2-23.8 3000-3100 280-330 58-63
Eastern fringe of the Horqin Sandy Land with

intense evaporation
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equipped with a USB data transmission interface. The Nicolet™

iS50 FTIR spectrometer utilizes a 24-bit 500 kHz high-speed A/D

converter, is equipped with a Polaris™ long-life dual IR source (15-

27,000 cm-1), and supports adjustable scanning rates from 0.158 to

6.28 cm/s at a high resolution of 0.09 cm-1.
2.2.2 Data acquisition
For MIR analysis, potassium bromide (KBr) was selected as the

window and sample matrix material, primarily due to its excellent

infrared transmission properties and chemical stability. During

sample preparation, rice powder samples were precisely mixed

with dry KBr powder at a mass ratio of 1:100, thoroughly ground

to a fine and uniform consistency, and then pressed into uniform,

crack-free semi-transparent pellets under a pressure of 10 T·cm⁻²
using a hydraulic press. For each origin, 100 spectra were collected.

After quality assessment, 60 optimal spectra with higher SNR and

stable signals were selected for subsequent analysis. Each spectrum

represented the average result of 3 repeated scans per sample to

enhance data reliability.

The KBr pellet method, through fine grinding and high-pressure

forming, effectively ensured sample homogeneity and particle size

consistency, significantly reducing light scattering interference,

making it particularly suitable for quantitative analysis. Although

Attenuated Total Reflectance (ATR) technology offers more

convenient sample preparation, its signal intensity is susceptible to

variations in sample-crystal contact conditions, potentially

introducing variability. To maintain consistency and comparability

with historical data, the classical KBr pellet method was chosen for

this study. Subsequent research could consider introducing ATR

technology and establishing corresponding spectral conversion

models for method interoperability.

For FLU measurement, the light source was positioned 300 mm

directly above the sample center, with the emission direction at a

45° angle to the horizontal plane to minimize surface reflection

interference and optimize excitation efficiency. Each sample was

measured 100 times in parallel. Strict screening based on SNR and

signal intensity consistency was performed, ultimately retaining 60

representative spectra for statistical analysis, ensuring data quality

met modeling requirements.
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2.3 Spectral data processing methods

2.3.1 Preprocessing methods
Factors such as instrument noise, baseline drift, and light

scattering effects during spectral acquisition can significantly

impact data quality. To improve model stability and reliability,

this study employed a multi-step preprocessing approach to

optimize MIR and FLU spectral data. Firstly, all raw spectral data

underwent normalization (Normalization), linearly transforming

spectral intensity values to the standard [0, 1] interval to eliminate

effects from differences in sample concentration and measurement

conditions (Flores-Morales et al., 2012).

To address random noise, the Savitzky-Golay (SG) convolution

smoothing algorithm was applied. This algorithm effectively

suppresses high-frequency noise while preserving spectral feature

peak shapes. To eliminate light scattering effects, Multiplicative

Scatter Correction (MSC) was specifically introduced. This method

corrects for light scattering interference caused by uneven sample

particles by establishing an ideal scatter model (Ye et al., 2018). The

aforementioned preprocessing workflow significantly enhanced the

SNR of the spectral data, providing a high-quality data foundation

for subsequent modeling analysis.

2.3.2 Feature selection method based on SPA
To address the susceptibility of high-dimensional spectral data

to overfitting, this study adopted a systematic feature selection

strategy. The feature wavelength screening method based on the

Successive Projections Algorithm (SPA) employs vector projection

principles for iterative calculation, progressively eliminating

redundant and collinear wavelength variables, ultimately

screening out a feature wavelength combination with minimal

redundancy and maximum information content (Soares

et al., 2013).

Regarding sample partitioning, the Kennard-Stone (KS)

algorithm was used to achieve uniform distribution of the sample

space. The dataset was divided into a training set (70%), a validation

set (20%), and a test set (10%). The training set was used for model

construction, the validation set for parameter tuning, and the test

set for final performance evaluation.
FIGURE 1

Images of samples to be tested (Rice origins from left to right: Dehui, Gongzhuling, Huadian, Shulan, Taoer River, Yitong, Yushu, Zhenlai).
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2.4 Classification model methods

For classification model construction, this study employed three

machine learning algorithms: Support Vector Machine (SVM),

Gradient Boosting Decision Tree (GBDT), and Logistic

Regression (LR) for model training and optimization.

2.4.1 Model selection and parameter settings
Fron
1. The SVM model utilized the Radial Basis Function (RBF)

kernel. Key parameters were optimized via grid search to

balance model complexity and generalization capability.

2. The GBDT model was configured with a maximum

decision tree depth of 5, a learning rate of 0.1, and 100

iterations. An early stopping mechanism was incorporated

to prevent overfitting.

3. The LR model employed L2 regularization. The

regularization coefficient C was determined through 5-

fold cross-validation to ensure model stability.
2.4.2 Model performance evaluation metrics
Accuracy, Precision, Recall, and F1-score were adopted as

evaluation metrics for model performance. Given that this study

involves a multi-class classification task (distinguishing 8 different

origins), these metrics were calculated based on a “One-vs-Rest”

(OvR) strategy. Specifically, for each origin, it was treated

individually as the “positive class,” while samples from all other

origins were collectively considered the “negative class.”

Corresponding True Positives (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN) were calculated for

each class. The final reported Precision, Recall, and F1-score are

Macro-average values, meaning the average of the individually

calculated metric values for all 8 classes (Soares et al., 2013),

ensuring equal weight for each origin regardless of sample

size differences.

Four metrics were selected for comprehensive model

performance evaluation:
1. Precision: Accuracy of positive predictions.

2. Recall: Identification rate of positive samples.

3. F1-score: Harmonic mean of Precision and Recall.
Model performance was comprehensively assessed using these

four metrics. Calculation formulas are as follows:

Accuracy = (TP + TN)=(TP + FP + TN + FN);

Precision = TP=(TP + FP);

Recall = TP=(TP + FN);

F1 − score = 2� (Precision � Recall)=(Precision + Recall):
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2.5 Data fusion technology

This study proposed an analysis method based on multi-source

spectral data fusion, achieving synergistic analysis of MIR and FLU

data through two technical routes: data-level fusion and feature-

level fusion. Addressing the technical challenges of multi-

instrument data integration, a preprocessing pipeline was

established: Min-Max normalization was used to standardize

spectral intensities to the [0,1] interval, eliminating the effects of

concentration differences and measurement conditions.

In the data-level fusion strategy, the preprocessed MIR and FLU

spectral matrices were concatenated along the wavelength

dimension to construct a joint feature matrix [n × (p_MIR +

p_FLU)], and the SPA was used to (screen for) the optimal

feature combination. In the feature-level fusion strategy, SPA

feature selection was first performed separately on the two types

of spectra, and then the selected feature variables were concatenated

to form a fused feature vector.
3 Results and discussion

Spectral image analysis revealed that although the overall

spectral characteristics of rice from different origins were highly

similar, significant differences emerged in specific wavelength

regions. These differences reflect subtle variations in the structure

and content of rice chemical components. Given that mid-infrared

(MIR) spectroscopy excels at characterizing the molecular structure

and abundance of major chemical components in rice, while

fluorescence (FLU) spectroscopy provides precise insights into the

electronic structure and concentration of specific fluorophores,

their integration significantly enhances the accuracy of rice

geographical origin traceability through a complementary

analytical strategy.
3.1 Mid-infrared spectral data

3.1.1 MIR spectral data preprocessing
To visually display the differences in rice spectral data from

different origins, the average spectral data for rice samples from

each origin were calculated, and a comparison chart of average

spectral data between regions was plotted (see Figure 2). (Figure 2a)

shows the raw MIR spectra of the samples, generated by molecular

vibrational transitions. Given the significant noise in spectral data

below 500 cm-1 and above 3750 cm-1, this study specifically selected

the 500–3750 cm-1 band as effective spectral data for analysis, as

detailed in Figure 2. Due to the complexity and severe overlap of

bands in the IR region, preprocessing methods were employed to

effectively extract sample information. Specific results are shown in

(Figure 2b) Normalization, (Figure 2c) Normalization-SG

smoothing filter, and (Figure 2d) Normalization-MSC scatter
frontiersin.org
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correction. Comparing (Figure 2b) with (Figures 2c, d), it can be

observed that the spectra processed with smoothing and scatter

correction are smoother than the original spectra, and the

differences between the spectral curves are significantly reduced.

This indicates that MSC preprocessing effectively corrected spectral

errors caused by scattering phenomena during spectral acquisition.

3.1.2 MIR Spectral analysis
FTIR analysis indicated that rice powder displayed characteristic

absorption peaks within the 500–3750 cm-1 range, closely related to

molecular vibrations of its main components (starch, protein, lipids,

and water molecules) (Figure 3). The specific assignments of the

absorption peaks are as follows: The broad and strong absorption

band observed in the 3700–3000 cm-1 range (centered around 3500

cm-1) is primarily attributed to the O-H stretching vibration of water

molecules and the N-H stretching vibration of the protein amide A

band. The characteristic peaks in the 3000–2800 cm-1 range (around

2900 cm-1) correspond to the asymmetric and symmetric C-H
Frontiers in Plant Science 06
stretching vibrations of methylene (CH2) groups in lipids,

indicating the presence of long-chain fatty acids. The characteristic

peaks observed around 1600–1700 cm-1 and 1490–1450 cm-1

correspond to the protein amide I band (C=O stretching vibration)

and amide II band (N-H bending vibration/C-N stretching vibration)

(Zhang et al., 2023b), respectively. These peaks may overlap with the

O-H bending vibration of starch. The strong absorption band in the

1190–950 cm-1 range is characteristic of starch, where the peak

around 1150 cm-1 is assigned to C-O-C stretching vibration, and

the multiple peaks in the 1000–1090 cm-1 range correspond to C-O-

H stretching vibrations. These characteristic peaks are closely related

to the crystallinity and molecular structure of starch (Lian et al.,

2013). In the 900–500 cm-1 range, the characteristic peak around

950–910 cm-1 can be attributed to the ring vibration of the a-1,4
glycosidic bond in starch, while the weak peak around 760–700 cm-1

may be related to the skeletal vibrations of polysaccharides. Table 2

summarizes the assignment results of the key absorption peaks in the

mid-infrared spectrum of rice powder.
FIGURE 2

Average spectral preprocessing plots of rice powder MIR spectra. (a) Raw MIR spectra of rice powder; (b) Normalized MIR spectra of rice powder;
(c) Normalization-SG processed MIR spectra of rice powder; (d) Normalization-MSC processed MIR spectra of rice powder.
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3.2 Fluorescence spectral data

3.2.1 FLU spectral data preprocessing
To accurately characterize the spectral properties of rice,

spectral data from rice of different origins were collected, and the

characteristic spectral curve of rice was constructed based on the
Frontiers in Plant Science 07
mean of these 100 data points. To improve data quality, denoising

was performed, removing bands with significant noise such as 350–

379 nm, and retaining the effective band from 433 nm to 800 nm, as

shown in (Figure 4a). The intensity values of the F LU spectra were

much greater than those of the MIR spectra. To eliminate the

magnitude differences between the data, the FLU spectral data were

normalized, as shown in (Figure 4b). Through MSC and SG

preprocessing, data interference was significantly reduced,

ensuring the accuracy of subsequent analysis. The results are

shown in (Figures 4c, d).

The main components of rice, such as starch and protein,

exhibit different vibrational spectral characteristics due to

differences in chemical composition, content, and structure.

Significant fluorescence characteristic peaks were observed

particularly in the wavelength intervals of 475–525 nm, 550–600

nm, and 650–690 nm. During analysis, it cannot be assumed that a

FLU spectral peak originates from a single substance solely based on

its position, as some peaks may result from mixtures of

multiple substances.

3.2.2 FLU spectral analysis
Under a 405 nm excitation wavelength, the FLU spectra (450–

850 nm) of rice powder displayed typical fluorescence

characteristics (Figure 5). The strong fluorescence emission peak

in the 460–490 nm range (maximum emission ~495 nm) is

primarily attributed to phenolic compounds in rice. The FLU

signal detected in the 660–690 nm range may originate from

protein-pigment complexes or lipid oxidation products.
TABLE 2 Assignment of key absorption peaks in the MIR spectra of rice
powder.

Wavenumber
range (cm⁻¹)

Vibration
type

Assigned compound/
functional group

3700–3000
O-H stretching

vibration
Water

3000–2800
C-H stretching

vibration
Lipids

1600–1700
C=O stretching

vibration
Proteins

1490–1450
C-H bending
vibration

Lipids and proteins

1190–950
C-O-C/C-O
stretching
vibration

Starch

950–910 Ring vibration Starch

880–820
C-C stretching

vibration
Starch

760–700 Skeletal vibration Polysaccharide ring structures
FIGURE 3

Assignment diagram of rice powder MIR spectra.
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3.2.3 Feature band selection results
The modeling in this study is based on a total of 480 spectral

samples covering 8 different origins. To address the high-

dimensional data with up to 7,625 bands, the authors employed

the Successive Projections Algorithm (SPA) for feature wavelength

selection, with key parameters set as follows: minimum variables

(MinVariable) = 200, maximum variables (MaxVariable) = 500, and

cross-validation was used for evaluation.

Processing the spectral data through SPA error analysis and

feature selection distribution yielded the following results: In data-

level fusion, the Normalization-SG preprocessing method selected

286 features (Figure 6), and the Normalization-MSC method selected

290 features (Figure 7). In feature-level fusion, the Normalization-SG

method selected a total of 310 features [168 FLU features (Figure 8a)

and 142 MIR features (Figure 8b)], while the Normalization-MSC

method selected 302 features [138 FLU features (Figure 9a) and 164

MIR features (Figure 9b)]. Compared to the original unprocessed
Frontiers in Plant Science 08
spectra dimensionality of 7625 (None), this method achieved

significant data dimensionality reduction. As shown in Table 3, this

feature selection strategy not only effectively reduced data

dimensionality but also significantly improved the model’s

generalization performance, providing an optimized feature

selection solution for both data-level and feature-level fusion.

3.2.4 Selection of processing methods
This study systematically compared the effects of the

Normalization, Normalization-SG (Savitzky-Golay smoothing

normalization), and Normalization-MSC (multiplicative scatter

correction normalization) preprocessing methods on fused rice

spectral data across two dimensions: data-level fusion and

feature-level fusion. By comprehensively evaluating the

performance of each preprocessing method, the optimal

preprocessing scheme was screened out for constructing efficient

origin discrimination models.
FIGURE 4

Preprocessing plots of rice powder FLU spectra. (a) Raw FLU spectra of rice powder; (b) Normalized FLU spectra of rice powder; (c) Normalization-
SG processed FLU spectra of rice powder; (d) Normalization-MSC processed FLU spectra of rice powder.
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During the model building process, the preprocessed spectral

data served as input features for a Random Forest (RF) classifier.

Simultaneously, a multi-dimensional model performance

evaluation system was constructed using three metrics: Precision,

Recall, and F1-score. The increase in evaluation metric values

showed a significant positive correlation with the optimization of

preprocessing effects; that is, higher metric values indicated more

reasonable preprocessing method selection and superior

performance of the constructed origin discrimination model.

Experimental results revealed notable differences in optimal

preprocessing methods under different fusion strategies (Table 4).
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For data-level fusion, both Normalization-SG and Normalization-

MSC achieved excellent training performance (Precision > 0.99).

However, on the test set, Normalization-SG significantly

outperformed Normalization-MSC across all metrics (Precision:

0.9095 vs. 0.8832; Recall: 0.9062 vs. 0.8750; F1-score: 0.9064

vs. 0.8730).

This advantage was even more pronounced in feature-level

fusion. The performance metrics of Normalization-SG on the test

set (Precision: 0.9527, Recall: 0.9479, F1-score: 0.9470) were

approximately 2.6%–2.9% higher than those of Normalization-

MSC (Precision: 0.9268, Recall: 0.9270, F1-score: 0.9244).
FIGURE 5

Assignment diagram of rice powder FLU spectra.
FIGURE 6

SPA error analysis and feature selection distribution for data-level fusion with Normalization-SG preprocessing.
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FIGURE 7

SPA error analysis and feature selection distribution for data-level fusion with Normalization-MSC preprocessing.
FIGURE 8

SPA error analysis and feature selection distribution for feature-level fusion with Normalization-SG preprocessing. (a) Fluorescence spectra; (b) Mid-
infrared spectra.
Frontiers in Plant Science frontiersin.org10

https://doi.org/10.3389/fpls.2025.1679754
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1679754
Notably, Normalization-SG demonstrated stronger generalization

capability on the test set while maintaining high accuracy on the

training set (Data-level: 0.9820; Feature-level: 0.9950), indicating

that its preprocessing strategy more effectively preserves the

discriminative features of the data, thereby significantly

enhancing model robustness across different fusion scenario.
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3.3 Establishment and analysis of the data
fusion discrimination model

This study systematically compared the performance of

different data fusion strategies combined with machine learning

algorithms for the rice origin discrimination task. The experiment

employed two fusion strategies: feature-level fusion and data-level

fusion, uniformly applying the Normalization-SG method for

spectral data preprocessing. Evaluated algorithms included

Support Vector Machine (SVM), Gradient Boosting Decision

Tree (GBDT), and Logistic Regression (LR).

The specific parameter configurations for each model were as

follows. For the SVMmodel, the Radial Basis Function (RBF) kernel

was utilized, with the gamma parameter set to ‘scale’ and the

regularization parameter C set to 1.0. This configuration adheres

to the default settings in scikit-learn and, although not

systematically optimized, provides a balance of good generality

and reproducibility. In the case of the GBDT model, the number

of estimators (n_estimators) was set to 80 and the learning rate to

0.1, a configuration determined through preliminary experiments to
FIGURE 9

SPA error analysis and feature selection distribution for feature-level fusion with Normalization-MSC preprocessing. (a) Fluorescence spectra;
(b) Mid-infrared spectra.
TABLE 3 Comparison of feature selection results for data-level and
feature-level fusion based on the SPA algorithm.

Fusion
strategy

Preprocessing method

Normalization-SG Normalization-MSC

None 7625 7625

Data-Level Fusion
Feature-Level

Fusion
286 290

Data-Level Fusion
Feature-Level

Fusion
310 302
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achieve an effective trade-off between predictive performance and

computational efficiency. Early stopping was enabled during

training with n_iter_no_change = 10 and tol = 1×10⁻4, which
resulted in the actual training terminating early at the 72nd

iteration. For the LR model, the maximum number of iterations

(max_iter) was set to 100, with the ‘saga’ solver selected and elastic

net regularization (l1_ratio = 0.5) applied. This setup integrates the

benefits of both L1 and L2 regularization, facilitating feature

selection and improving handling of multicollinearity, while the

chosen solver and iteration count ensured stable convergence

during optimization.

The performance of different fusion strategy and algorithm

combinations is comprehensively compared in Table 5, while the

classification results of the Logistic Regression (LR) model on the

test set are further illustrated via the confusion matrix in

Figure 10. The main findings indicate that under data-level
Frontiers in Plant Science 12
fusion, the LR model integrated with Normalization-SG

preprocessing achieved the highest average classification

accuracy of 91.45%. Similarly, under feature-level fusion, the

same preprocessing approach combined with LR again delivered

optimal performance, attaining an average accuracy of 95.55%,

significantly surpassing other algorithms. Overall, feature-level

fusion consistently exceeded data-level fusion across most

evaluation metrics, demonstrating its enhanced capability to

retain discriminative features and minimize information

redundancy. Although the Gradient Boosting Decision Tree

(GBDT) model reached 100% accuracy on the training set,

evident overfitt ing led to its exclusion from primary

comparative analysis. The Support Vector Machine (SVM)

exhibited consistent performance under both fusion strategies,

yet was consistently outperformed by LR. These outcomes

underscore the crucial impact of fusion strategy and algorithm
TABLE 4 Comparison of Random Forest modeling results under data-level and feature-level fusion.

No.
Fusion
strategy

Preprocessing
method

Training set Test set

Precision Recall F1-Score Precision Recall F1-Score

1 Data-level fusion

Normalization-SG 0.9820 0.9817 0.9818 0.9095 0.9062 0.9064

Normalization-MSC 0.9654 0.9635 0.9631 0.8832 0.8750 0.8730

Normalization 0.9818 0.9817 0.9817 0.9392 0.9375 0.9370

2 Feature-level Fusion

Normalization-SG 0.9950 0.9947 0.9947 0.9527 0.9479 0.9470

Normalization-MSC 0.9926 0.9921 0.9922 0.9268 0.9270 0.9244

Normalization 0.9923 0.9921 0.9921 0.9431 0.9375 0.9366
f

TABLE 5 Comparison of modeling results for data-level and feature-level fusion strategies.

No.
Fusion
strategy

Spectral
dimension

Modeling
method

Training set Test set

Precision Recall F1-Score Precision Recall F1-Score

1 Feature-Level 310

Logistic Regression 0.9555 0.9531 0.9529 0.9305 0.9166 0.9181

SVM 0.8015 0.7812 0.7798 0.8317 0.8125 0.8093

Gradient Boosting 1 1 1 0.9615 0.9583 0.9586

2 Data-Level Fusion 286

Logistic Regression 0.9145 0.9140 0.9134 0.8884 0.8750 0.8755

SVM 0.8348 0.8072 0.7971 0.8014 0.7604 0.7409

Gradient Boosting 1 1 1 0.9546 0.9479 0.9476

3
Fusion without
feature selection

7625

Logistic Regression 1 1 1 0.9694 0.9687 0.9686

SVM 0.8381 0.8385 0.8360 0.8044 0.7812 0.7757

Gradient Boosting 1 1 1 0.9267 0.9270 0.9261

4
Mid-Infrared
Spectroscopy

6742

Logistic Regression 1 1 1 0.9694 0.9687 0.9686

SVM 0.8527 0.8359 0.8338 0.8044 0.78125 0.775

Gradient Boosting 1 1 1 0.9151 0.9062 0.9044

5
Fluorescence
Spectroscopy

883

Logistic Regression 0.9948 0.9947 0.9947 0.9149 0.9166 0.9132

SVM 0.8835 0.8906 0.8760 0.8721 0.875 0.8681

Gradient Boosting 1 1 1 0.8268 0.8020 0.7968
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selection on the efficacy of spectral data-based origin

identification, with the combination of feature-level fusion and

LR emerging as the most promising approach.
3.4 Discussion

Based on the experimental results, the following analyses can

be drawn:

3.4.1 Effectiveness of feature-level fusion
Feature-level fusion generally performed better than data-level

fusion, consistent with conclusions from existing multi-source

spectral data fusion research. This indicates that fusion at the

feature extraction stage is more conducive to extracting cross-

source discriminant features.

Importance of Preprocessing Methods: The effectiveness of the

Normalization-SG method in processing spectral data was

validated. It significantly enhanced model generalization ability,

aligning with conclusions from preprocessing strategies in related

Raman spectroscopy studies.

3.4.2 Overfitting issue
GBDT’s perfect performance on the training set but fluctuating

performance on the test set indicated overfitting. Therefore, complex

ensemble methods should be used cautiously, or stronger regularization

should be introduced when emphasizing generalization capability.

Potential of High-Dimensional Fusion: Although the “Fusion

(No Feature Selection)” approach had an extremely high

dimensionality (7625), LR still performed well, suggesting the raw

data contains substantial effective information. This implies that

combining dynamic feature selection could further enhance model

performance and efficiency.
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3.4.3 Model robustness comparison
LR demonstrated robustness and accurate classification in both

fusion modes, making it particularly suitable for medium-to-low

dimensional spectral data. SVM was more sensitive to parameters

and feature scaling, and its performance was not fully realized

without parameter tuning.

The results of this study indicate that strategies based on

spectral data fusion can be effectively used for rice origin

discrimination. Among them, the combination of feature-level

fusion, LR, and Normalization-SG preprocessing constituted the

optimal model configuration under the experimental conditions of

this study, offering both high classification accuracy and good

stability. Future research could introduce dynamic feature

selection and weighted fusion strategies to further improve model

performance and generalization capability in complex origin

discrimination tasks.
4 Conclusions

This study systematically established a rice origin identification

method based on multispectral fusion, yielding the following

conclusions: (1) The feature-level fusion strategy outperforms data-

level fusion, achieving a classification accuracy of 95.55%, indicating

that the approach of feature selection followed by fusion better

preserves effective information; (2) The Normalization-SG

preprocessing combination performed best, with a test set F1 score

of 0.9470, confirming its advantages in feature retention and noise

suppression; (3) The logistic regression algorithm achieved the best

balance between accuracy (93.05%) and robustness, making it

suitable for practical applications; (4) SPA feature selection reduced

data dimensionality by over 96%, significantly improving model

efficiency. The innovation of this study lies in establishing a
FIGURE 10

Shows the confusion matrix results of the test set: (a) classification performance of the logistic regression (LR) model under data-level fusion mode;
(b) classification performance of the logistic regression (LR) model under feature-level fusion mode.
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standardized multispectral fusion analysis process, addressing

technical challenges in data integration.

Experimental results demonstrate that mid-infrared

spectroscopy (500–3750 cm-1) and fluorescence spectroscopy

(450–850 nm) exhibit significant complementarity, and their

synergistic analysis can comprehensively characterize the

chemical composition characteristics of rice. This method not

only achieves high classification accuracy but also is simple to

operate, reproducible, and has promising prospects for promotion

and application.

Although this study focused on specific rice varieties, the

established analytical framework demonstrates strong

generalizability and extensibility. Future work will validate its

applicability to a wider range of cultivars and geographical

regions. The proposed methodology can also serve as a technical

paradigm and successful practice for traceability studies of other

high-value agricultural products.
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recognition in food analysis, J. Chromatogr. A 1158, 196–214. doi: 10.1016/
j.chroma.2007.05.024

Chen, K. J., and Huang, M. (2010). Prediction of milled rice grades using Fourier
transform near-infrared spectroscopy and artificial neural networks. J. Cereal Sci. 52,
221–226. doi: 10.1016/j.jcs.2010.05.010

Chen, H., Tan, C., and Lin, Z. (2018). Authenticity detection of black rice by near-
infrared spectroscopy and support vector data description. Int. J. Analytical Chem.
2018, 1–8. doi: 10.1155/2018/8032831

Coronel-Reyes, J., Ramirez-Morales, I., Fernandez-Blanco, E., Rivero, D., and Pazos,
A. (2018). Determination of egg storage time at room temperature using a low-cost NIR
spectrometer and machine learning techniques. Comput. Electron. Agric. 145, 1–10.
doi: 10.1016/j.compag.2017.12.030

Cui, S. W., Liu, Q., and Xie, X. (2007). Studies on the granular structure of resistant
starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Res.
Int. 39 (03), 332–341. doi: 10.1016/j.foodres.2005.08.004

Dai, Y., Dai, Z., Guo, G., and Wang, B. (2023). Nondestructive identification of rice
varieties by the data fusion of Raman and near-infrared (NIR) spectroscopies.
Analytical Lett. 56, 730–743. doi: 10.1080/00032719.2022.2101060
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