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The canopy volume of fruit trees is an important basis for precise orchard

management. However, current methods for predicting canopy volume

cannot accurately identify and exclude canopy porosity, resulting in a larger

prediction than the actual volume. To address this issue, this study proposes a

calculation method of canopy effective volume (EV) for fruit tree based on LiDAR

point cloud data. In this method, the fruit tree canopymodel is first reconstructed

using an improved alpha-shape algorithm, and its volume is calculated. Then, the

canopy effective volume coefficient was constructed, and the product of the two

was used as the canopy effective volume. To evaluate the accuracy and

applicability of the proposed method, both simulated fruit tree and orchard

experiments were conducted and compared with the prediction results of alpha-

shape by slices (ASBS), convex hull by slices (CHBS), and voxel-based (VB)

methods. The results show that the best model prediction performance is

achieved when the voxel size is the average nearest neighbor distance of the

point cloud and the partition size is five times the voxel size. The method

achieved an R² of 0.9720, an RMSE of 0.0203 m3, and an MAE of 0.0192.

Compared with the prediction results of the ASBS, CHBS, and VB methods, the

volume reduction rates were 0.5101, 0.6953, and 0.6213, respectively. The EV

method can accurately quantify the canopy effective volume after removal of

canopy porosity and provide decision support for precise orchard management.
KEYWORDS

fruit tree, canopy effective volume, LiDAR, improved alpha-shape algorithm, effective
volume coefficient
1 Introduction

In the full cycle of orchard management, diseases and pests control constitutes

approximately 30% of the overall workload. Spraying chemical pesticides is the primary

method of controlling diseases and pests in orchards. However, under conventional spray

methods, the actual pesticide utilization rate is less than 40%. It not only wastes resources
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but also poses a threat to the ecological environment and food safety

(Guo et al., 2025; Meshram et al., 2022). In this background, the

precise variable spray technology has become a significant

breakthrough in sustainable diseases and pests management in

orchards. The decision-making core of this technology relies on

the precise sensing of fruit tree canopy characteristics (Salcedo et al.,

2020). In fact, canopy volume serves as a key indicator of fruit tree

growth status, and its precise measurement extends beyond variable

spray. For example, the dynamic changes in canopy volume is an

important basis for fruit tree yield estimation (Underwood et al.,

2016). Precise three-dimensional canopy volume data provides the

scientific basis for determining pruning levels and guiding precise

pruning operations (Johansen et al., 2018). Therefore, precise

measurement of canopy volume is crucial for achieving precision

production management and enhancing quality and efficiency in

orchards (Sun H. et al., 2024; Gu et al., 2021).

In the current study, the methods for calculating canopy volume

based on LiDAR data include voxel-based (VB), convex hull (CH),

alpha-shape (AS), convex hull by slicing (CHBS), and alpha-shape

by slicing (ASBS) algorithms (Dong et al., 2024; Colaço et al., 2017;

Gao et al., 2021; Sun D. et al., 2024). The VB algorithm works by

discretizing the 3D point cloud space into a regular grid (voxels),

counting the number of voxels occupied by the point cloud, and

multiplying the volume of a single voxel to estimate the total

volume. Bienert et al. (2014) proposed an improved VB algorithm

for estimating canopy volume, which improves the problem of

overestimation of canopy volume. However, the method’s accuracy

is highly dependent on the voxel size; too large voxels can contain a

large amount of porosity not occupied by the point cloud, resulting

in a significant overestimation of the volume; too small voxels

significantly increase the computational burden. More importantly,

even for smaller voxels, the method essentially calculates the volume

of the voxel containing the point cloud, rather than the actual

canopy volume of the point cloud itself (Vonderach et al., 2012;

Hosoi et al., 2013). Spaces within the voxel that are not filled by the

point cloud, as well as the complex porosity structure within the

canopy, are accounted for, which is the root cause of its large

estimated volume. The CH algorithm estimates the volume of an

object by connecting the outermost points and constructing the

smallest convex polyhedron that encloses all the point clouds,

forming a geometry without depressions. Cheein and Guivant

(2014) used this algorithm to estimate the volume of tree tops

from 3D laser data. Qi et al. (2021) applied the CH algorithm to

calculate the volume of citrus canopy, achieving an R² of 0.8215 and

an RMSE of 0.3186 m³. The main limitation of this algorithm lies in

its “convexity constraint”, which forces the surface of the generated

polyhedron to be convex outward. This constraint prevents it from

accurately fitting the naturally occurring concave structures of the

canopy. Additionally, it completely ignores the porosity structure

within the canopy and considers the entire inner space of the

convex hull as the canopy volume (Chakraborty et al., 2019).

Therefore, the volume calculated by this method is generally

significantly larger than the actual volume of the canopy. The AS

algorithm is an optimized version of the CH algorithm, where the

boundary tightness can be controlled by adjusting the a parameter.
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A smaller a allows the boundary to more closely follow the contours

of the point cloud, preserving the concave structures, while a larger

a results in a surface that approximates the CH algorithm. Hadas

et al. (2017) combined the AS algorithm with principal components

analysis and proposed a method for automatically estimating olive

tree shape parameters using airborne laser scanning data. Wang

et al. (2021) developed a mobile scanning system based on 3D

simultaneous localization and mapping to acquire 3D data from

orchards. The system calculates the height and canopy volume of

fruit trees using point cloud statistical methods and the 3D AS

algorithm. The surface generated by the AS algorithm also encloses

a closed space containing all areas within the outer boundary

defined by the canopy’s point cloud. However, like the CH

algorithm, the AS algorithm does not differentiate between the

internal porosity and the actual canopy (Wang et al., 2024),

resulting in an overestimation of the actual canopy volume.

Considering that the CH and AS algorithms neglect the internal

structure of the canopy, often resulting in overestimated volumes,

they have been combined with slicing methods to improve

reconstruction accuracy by better capturing internal canopy

features (Siebers et al., 2024). The CHBS algorithm operates by

vertically slicing the point cloud into layers, applying the CH

algorithm to each layer independently, and summing the volumes

of all layers to obtain the total canopy volume. Researchers have

used this approach to estimate canopy volume and surface area,

reducing computational errors associated with complex canopy

structures (Xu et al., 2014; Fernández-Sarrı ́a et al., 2019).

Although applying convex hulls in layers enables better fitting of

external canopy contours in horizontal cross-sections, each layer

still inherits the limitations of the CH algorithm. As a result, the

total volume calculated remains significantly overestimated (Zhou

et al., 2021). The ASBS algorithm follows a similar approach, but

uses the AS algorithm for each layer of point cloud data. Yan et al.

(2019) proposed a method using this algorithm to accurately

compute the volume of a single tree canopy based on vehicle-

mounted LiDAR data, mitigating the influence of porosity being

mistaken for actual canopy volume. Dong et al. (2021) utilized the

ASBS method to accurately estimate apple tree volume from UAV

multi-view 3D data, achieving an MAPE of 8.07% and an RMSE of

0.55 m³, respectively. Compared to the CHBS algorithm, the ASBS

algorithm more effectively captures the non-convex canopy

boundaries in horizontal sections. However, for each layer, the AS

algorithm calculates the volume of the area enclosed by the

boundary of the point cloud for that layer, which contains the

porosity within the boundary of that layer. When these layer

volumes are summed, all intra-layer porosity is included.

Furthermore, the algorithm is unable to identify and deduce

which of the large canopy internal porosity run through multiple

layers (Liu et al., 2021). Therefore, although the ASBS algorithm

offers improvements over the CH or AS algorithms, it still

inherently includes internal canopy porosity, leading to

overestimated volume. The fundamental limitation of all methods

mentioned above is that they compute the spatial envelope volume

defined by the point cloud—essentially the minimum enclosed

spatial extent of the point distribution—rather than the actual
frontiersin.org
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volume of the canopy. None of these approaches can effectively

identify and remove the internal porosity of the canopy. As a result,

the calculated volume includes all porosity between branches and

leaves, leading to large predictions. If management decisions are

based on this volume containing porosity, it will inevitably lead to

issues such as over-spraying, yield prediction model distortion, and

pruning plan inaccuracies, making it difficult to meet the demands

of precision management in modern orchards (Wang et al., 2023;

Liu et al., 2024; Huang et al., 2020; Liu et al., 2022).

In summary, in this study, to solve the problem of volume

overestimation due to internal canopy porosity, a method for

calculating the canopy effective volume of fruit tree based on

LiDAR point cloud data was proposed. Canopy effective volume

coefficient was developed to quantify the impact of canopy porosity.

Orchard test was conducted, and compared and analyzed with

current canopy volume prediction methods. The results of the study

can effectively remove the influence of canopy porosity and provide

reliable decision support for precise spray, yield estimation, and

pruning management in orchards (Qiu et al., 2019; Walter

et al., 2019).
2 Materials and methods

2.1 Experimental area

The experiment was conducted in October 2024 in a

standardized apple orchard in Luoning County (34°21′N, 111°15′
E), Luoyang City. The experiment apple variety was Cripps Pink.

The experiment orchard was planted in a tall spindle shape, with a

row spacing of 3.5 m, plant spacing of 1.0 m, and an average tree

height of approximately 3.5 m. The main trunk of the tree was erect

and firm, with a spindle-like extension. Lateral branches were

uniformly distributed around the trunk in a spiral layered

arrangement, with branch angles ranging from 70° to 90°,

forming a spindle-shaped canopy that was narrower at the top

and broader at the base. The canopy between the rows was closely

connected, forming a continuous “tree wall”. The canopy diameter

of a single tree within a row ranged from 1.0 to 1.5 m. A total of 73

apple trees across three rows were selected as experimental subjects,

and the experiment area and site layout are shown in Figure 1.
2.2 Point cloud acquisition equipment and
methods

In this study, an inspection trolley (Yuhesen, Shenzhen, China)

was used to collect point cloud data of the fruit tree canopy. The

inspection trolley comprises a mobile platform, a 3D LiDAR, an

industrial computer, an IMU, and other components (Figure 2a).

The mobile platform is the Yuhesen FR-07 Pro, powered by a 48V/

20AH Li-ion battery, offering a range of 20 km. The 3D LiDAR has

a range of 150 m, with a range accuracy of 2 cm, and a 16-wire

harness. Its horizontal field of view (FOV) is 360°, and the vertical

FOV spans from -15° to 15°. The depth camera has a resolution of
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640x480 and a depth range of 0.2 to 4 m. The industrial computer is

powered by an Intel Core i5-8265U CPU, with a base frequency of

1.6 GHz. The GNSS module can receive GPS signals, achieving a

horizontal positioning accuracy of ±3 cm in RTK mode. The IMU

has a measurement range of ±2000°/s, with a resolution of 0.01°/s.

The experimental part of this study included simulated fruit tree

experiment and orchard experiment, and their point cloud data

were collected respectively. In order to reduce errors, data

acquisition was performed under clear, breezy conditions(wind

speeds below 1.5 m/s). The experimenter controlled the

inspection trolley to acquire the point cloud data in a closed loop

around the experiment site line by line. Figure 2b shows the orchard

experiment area, delineated using the point cloud cropping function

in CloudCompare (v2.13.2) point cloud processing software. The

data processing steps for both simulated fruit tree and orchard point

clouds are consistent, and the subsequent processing is introduced

as an example of orchard experiment area point cloud data.
2.3 Measurement method of canopy
effective volume

The manual measurement of the canopy effective volume of

fruit trees includes two main steps: firstly, measure the volume of

the fruit tree canopy, and then use the projection method to

measure the effective volume percentage. These two values are

multiplied to obtain the canopy effective volume. When

measuring the canopy volume, the fruit tree canopy was divided

into three equal parts along the height: upper, middle, and lower

sections (Figure 3a). The volume of the middle and lower sections

was calculated using the circular table model, while the volume of

the upper section was calculated using the conical model. The final

canopy volume was the sum of the volumes of the three sections.

The schematic diagram for using the projection method to

measure the effective volume percentage is shown in Figure 3b. A

point light source and a projection screen were placed on both sides

of the fruit tree. Under the illumination of the point light source,

projection images of the canopy were sequentially captured from

three orthogonal views: frontal, lateral, and top. An image

processing method was then employed to calculate the ratio of

the shaded area in each projection image to the total area of its outer

contour. This ratio was defined as the effective coefficient in that

projection plane. The plane effective coefficient quantifies the

canopy’s effectiveness in that direction. However, projections in a

single direction may misclassify porosity as effective volume due to

occlusion. If it is porosity in another orthogonal direction, the

effective coefficient for that direction will capture it. Therefore, the

product of the effective coefficients in three orthogonal directions is

used as the effective volume coefficient. This ensures that only

canopy areas identified as effective in multiple directions are

included in the final canopy volume. The multiplication rule

ensures that porosity in any single direction reduces the overall

effective volume coefficient, preventing misclassification due to

occlusion. Additionally, to minimize measurement error, each

fruit tree is measured three times, with a different projection
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FIGURE 1

Experiment area.
FIGURE 2

Point cloud acquisition equipment and the collected point cloud data. (a) An inspection trolley. (b) Point cloud data of the orchard experiment area.
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angle selected for each measurement. The final result is the average

of these three measurements.
2.4 Data preprocessing

2.4.1 Removing noise points and ground filtering
The raw point cloud data acquired from LiDAR scanning in the

orchard often contains outlier noise points and ground points,

which can result from sensor errors, environmental interference,

and other factors. These noise points can negatively impact the

calculation of the canopy effective volume of fruit trees, introducing
Frontiers in Plant Science 05
errors in the results. In order to reduce the error, a four-step

preprocessing procedure was developed for this study (Figure 4).

The Radius Outlier Removal (ROR) algorithm is used to

eliminate outlier noise caused by sensor errors and environmental

disturbances. This algorithm is a widely adopted denoising method

in point cloud data processing (Cao et al., 2025). Its core principle is

to remove points that do not meet predefined criteria by analyzing

the point density in the neighborhood of each point. Compared to

other noise reduction algorithms, this method is computationally

simple, efficient, and suitable for processing large-scale point cloud

data. Moreover, it effectively removes noise while preserving the

overall structure of the point cloud, thus preventing excessive
FIGURE 3

Manual measurement process of fruit tree canopy effective volume. (a) Manual measurement of canopy volume. (b) Measurement of effective
volume percentage using the projection method.
FIGURE 4

Workflow of point cloud preprocessing.
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smoothing that could lead to the loss of important details. In this

study, the search radius was set to 0.2 m, and the minimum number

of neighborhood points threshold was set to 20.

During the traveling of the inspection trolley, ground bumps,

undulations, and other factors can lead to a certain slope in the

acquired point cloud relative to the actual scene. This is not

conducive to the subsequent removal of the ground points, so it

is necessary to calibrate the horizontal plane. The ground plane is

roughly extracted using a random sampling consistency algorithm,

and the normal vector of the fitted plane is calculated. The point

cloud was then rotated to align the normal vector with the Z-axis.

After the horizontal plane is calibrated, the ground point cloud

is separated using the Cloth Simulation Filtering (CSF) algorithm,

which is a point cloud filtering method based on physical

simulation. The core idea of this algorithm is to simulate a virtual

fabric covering the inverted terrain surface under the effect of

gravity, distinguishing between the ground and non-ground

features through the settlement process of the fabric nodes.

Compared with other ground filtering algorithms, the CSF

algorithm can be adapted to various complex terrains without the

need for a preset model and has high noise immunity (Li et al.,

2024). In this study, the CSF package in Python was used to

implement ground point removal. The algorithm involves six key

parameters. The BSloopSmooth parameter determines whether to

smooth the slope of the fabric nodes. Enabling this parameter for

terrains with slopes greater than 30° significantly reduces

misclassification. The class_threshold parameter sets a threshold

for the maximum distance from the point cloud to the fabric nodes,

with points within this threshold classified as ground points. The

class_resolution parameter controls the cell size of the fabric grid;

smaller values result in a finer map model. The iterations parameter

determines the maximum number of iterations for fabric settling,

with higher values improving precision but increasing computation

time. The rigidity parameter reflects the fabric’s resistance to

deformation, and a lower value makes the fabric softer, which

better adapts to rugged terrain, but requires more iterations and

slower settling speed. Lastly, the time_step parameter controls the

time increment of the simulated physical process, which in turn

affects the settling speed. The values of the parameters in this study

are False, 0.3, 0.1, 500, 3, and 0.65, respectively.

After filtering with the CSF algorithm, some scattered weeds or

ground points may remain and not be fully removed. To address

this, we again used the ROR algorithm to eliminate local outlier

points and provide accurate fruit tree canopy point cloud data for

canopy effective volume calculation.

2.4.2 Dividing the area for 3D reconstruction
To ensure the accuracy of the 3D reconstruction of the fruit tree

canopy, it is necessary to perform 3D reconstruction area

segmentation of the fruit tree canopy point cloud data. The first

step is to segment the rows of fruit trees and extract the 3D point

cloud data for each row within the study area. Since the

experimental orchard is planted in a standardized manner with

neatly arranged rows and columns of fruit trees, a row detection

method based on probability density estimation of point cloud
Frontiers in Plant Science 06
coordinates was used for segmentation. The probability density

distribution of Y coordinates was calculated using Gaussian kernel

density estimation, and fruit tree row segmentation was performed

based on the trough locations and boundary points in this

distribution (Figure 5a).

The second step was to divide the fruit trees into columns.

However, due to the tall spindle planting in the experimental

orchard, the canopies between adjacent trees are closely

connected, forming a continuous “tree wall,” which makes it

difficult to segment individual fruit trees effectively. Additionally,

directly reconstructing the entire row of fruit trees yields significant

errors. To address this, a method is proposed in this study to divide

the 3D reconstruction area based on the distribution of height

troughs within the tree wall. The specific process is as follows:
i. Height distribution extraction: The point cloud data is

divided into multiple partitions along the X-axis. In each

partition, the maximum Z-value (that is, the highest point

of the canopy) is computed, and a sequence of maximum

Z-values is formed based on the order of the X-

axis partitions.

ii. Trough detection: The troughs in the sequence of

maximum Z-values are identified.

iii. Valid trough screening: A threshold is set for the minimum

Z-value difference between a trough and its adjacent peaks.

If the Z-value difference between a trough and any of its

neighboring peaks is less than this threshold, it is classified

as a pseudo-trough and removed. This step filters out

invalid troughs with smooth height changes.

iv. Trough spacing constraint: A horizontal distance threshold

is set between adjacent troughs. If the distance between two

troughs is less than the threshold, the trough with the lower

Z-value is retained. This ensures that the segmentation

regions maintain a reasonable horizontal scale.

v. Supplementary significant trough: A Z-value difference

threshold is set between a trough and its neighboring

peaks. If this difference exceeds the threshold, the trough

is considered significant and retained. This step is intended

to supplement the valid troughs with substantial

differences in height that may have been removed during

step 4.

vi. Segmentation point determination and column

segmentation: All troughs retained after steps 3, 4, and 5

are merged and used as the final segmentation points for

dividing fruit tree columns. Based on these points, fruit tree

column segmentation is completed (Figure 5b).
2.5 Calculation of canopy effective volume
of fruit trees

First, the point cloud data of the fruit trees were reconstructed

using the AS algorithm with dynamic parameter optimization, and

the volume of the reconstructed model was calculated as Vm.
frontiersin.org
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Then, to quantify the proportion of the actual canopy volume

within the reconstructed model volume, an effective volume

coefficient EVC was introduced. Finally, the canopy effective

volume (Ve) was defined as the product of the reconstructed

model volume (Vm) and the effective volume coefficient (EVC).

The mathematical expression is as follows:

Ve = Vm · EVC (1)
2.5.1 Canopy reconstruction and reconstruction
model volume calculation

The AS algorithm is a surface reconstruction method based on

computational geometry, capable of extracting 3D surface models

with complex topology from discrete point cloud data. The core

idea is to control the fineness of surface details through an
Frontiers in Plant Science 07
adjustable parameter a. However, when a is too small, the

reconstruction tends to include more detailed features but may

result in surface fragmentation. Conversely, when a is too large, the

reconstructed surface appears overly smooth and loses fine details.

Therefore, selecting an appropriate a value is critical. However, the

traditional AS algorithm uses a globally fixed a value, which is

difficult to adapt to the density inhomogeneity of fruit tree canopy

point cloud data.

Therefore, this study proposes an AS algorithm based on

dynamic parameter optimization. By introducing a parameter-

adaptive adjustment mechanism, the applicability and

reconstruction quality of the AS algorithm in complex canopy

scenarios are significantly enhanced. Specifically, smaller a values

are selected in dense regions of the point cloud to preserve details,

while larger a values are used in sparse regions to prevent surface
FIGURE 5

Schematic diagram of 3D reconstruction area division. (a) Fruit tree Y coordinate probability density distribution and row divide point. (b) Tree wall
height distribution and column divide points.
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fragmentation. This adaptive adjustment mechanism is

implemented through a density-aware baseline a calculation

combined with an iteratively optimized a incremental strategy.

Define a baseline a value based on the average nearest neighbor

distance of the point cloud, calculated as shown in Equation 2:

abase = k� davg (2)

Where davg is the average point distance, k is an empirical

scaling factor initially set to 5.

The goal of the iterative optimization strategy is to gradually

increase the value of a starting from the baseline value until a closed

mesh is generated. The mathematical description of this process is

shown in Equation 3:

ai+1 = ai + Da

ai=0 = abase

Da = astep � davg

8>><
>>:

(3)

Where ai+1 is the value of a for this iteration, ai is the value

from the previous iteration, Da is the increment of each iteration,

and astep is the step coefficient that controls the magnitude of

adjustment, set to 0.5 in this study.

When applying this method to canopy reconstruction, an

appropriate a value is first calculated for the designated 3D

reconstruction area. Surface reconstruction is then performed

using this a value (Figure 6). Finally, the volume Vm of the closed

mesh of the reconstructed model is calculated as follows:

Vm = o
Ng

n=1
(
1
6

V
→

0 ·( V1
→ � V2

→
)

���
���) (4)

Where Ng is the number of triangle meshes in the reconstructed

model, V0, V1, and V2 are the vertex vectors of each triangle in the

mesh, respectively.

2.5.2 Calculation of effective volume coefficient
The effective volume coefficient EVC constructed in this study

consists of the effective coefficients of the fruit tree canopy point
Frontiers in Plant Science 08
cloud in the three orthogonal projection planes xoy, xoz, and yoz

(Figure 7a), calculated as follows:

EVC = ECxoz � ECxoy � ECyoz (5)

Where ECxoy, ECxoz, and ECyoz represent the effective

coefficients of the xoy, xoz, and yoz projection planes, respectively.

The effective coefficients ECxoy, ECxoz, and ECyoz are calculated

using a similar approach. In this study, the yoz projection plane is

used as an example to illustrate the calculation of ECyoz.

(1) Projected point cloud voxelization.

First, the 3D point cloud data of the fruit tree canopy was

projected onto the yoz plane. This dimensionality reduction was

achieved by ignoring the x-axis coordinates while preserving the

spatial distribution characteristics of the point cloud in the

horizontal (y) and vertical (z) directions. Next, the projected

point cloud was voxelized to discretize the data spatially. During

the voxelization process, the yoz plane was divided into uniform

square voxels, and the voxels containing projected point cloud data

were marked as effective voxels (red), forming a spatial

representation of the discretized point clouds (Figure 7b). In this

study, the average nearest neighbor distance of the projected point

cloud was used as the optimal voxel size, VS, a key parameter for

voxelization. Finally, the AS algorithm was used to reconstruct the

2D boundary contour of the projected point cloud and extract all

voxels enclosed within this contour.

(2) Projected point cloud partition weighting.

Square grids with sides equal to five times the voxel size (VS)

were used to partition the projected point cloud (Figure 7c). This

grid size was designed to ensure that the voxels generated in the

previous step could be fully encompassed within each partition. For

each partition, the polar deviation in the x-axis direction of the

projected point cloud it contains, that is the canopy thickness of

the canopy reconstructed model in that partition, was calculated as

the weight W of the partition. The calculation method is shown in

Equation 6:

W = xmax − xmin (6)
FIGURE 6

3D reconstruction canopy model of fruit trees.
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Where W is the partition weight, xmax is the maximum x-

coordinate value of the point cloud within the partition, and xmin is

the minimum.

During the weight calculation process, some partitions within

the projected point cloud contour may have a weight value of zero

because the point cloud data is absent. This contradicts the physical

meaning that the reconstructed canopy model should have a non-

zero thickness within the contour-enclosed partitions. To address

this, an iterative interpolation strategy based on eight neighborhood

averaging was proposed. For each zero-weight partition, its eight

surrounding neighboring partitions were retrieved, and the

arithmetic mean of the non-zero weight partitions was computed

and assigned as the current partition weight. This process was
Frontiers in Plant Science 09
iteratively repeated until all zero-weight partitions within the

contour were eliminated.

(3) Calculate the effective coefficient of the projection plane.

All voxels contained within the boundary contour of the

projected point cloud were mapped to the corresponding

partitions (Figure 7d). For each partition, the total number of

voxels (nav) and the number of effective voxels (nev) were

computed. The projection plane effective coefficient (ECyoz) is the

ratio of the cumulative sum of the product of the number of effective

voxels (nev) in all partitions and the partition weight W to the

cumulative sum of the product of the total number of voxels (nav) in

all partitions and the partition weight W. The mathematical

expression is as follows:
FIGURE 7

Schematic diagram of the effective volume coefficient calculation. (a) Three orthogonal projection planes for fruit tree canopy point clouds. (b)
Projected point cloud voxelization. (c) Projected point cloud partitioning and weighting. (d) Schematic diagram of the calculation of the plane
effective coefficient.
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ECyoz =
o
Nyoz

i=1
Wiyoz � nievyoz

o
Nyoz

i=1
Wiyoz � niavyoz

(7)

Where nyoz is the total number of partitions in the yoz

projection plane, Wiyoz is the weight of the ith partition, nievyoz is

the number of effective voxels in the ith partition, and niavyoz is the

total number of voxels in the ith partition.

Following the same approach, ECxoy and ECxoz can be computed

as:

ECxoy =
o
Nxoy

i=1
Wixoy � nievxoy

o
Nxoy

i=1
Wixoy � niavxoy

ECxoz =
o
Nxoz

i=1
Wixoz � nievxoz

o
Nxoz

i=1
Wixoz � niavxoz

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(8)

In summary, combining Equations 1, 4, 5, 7, and 8, the

mathematical expression for the method of calculating the canopy

effective volume of fruit trees is:

Ve = o
Ng

n=1
(
1
6

V
→

0 ·( V1
→ � V2

→
)

���
���)� (

o
Nxoy

i=1
Wixoy � nievxoy

o
Nxoy

i=1
Wixoy � niavxoy

�
o
Nxoz

i=1
Wixoz � nievxoz

o
Nxoz

i=1
Wixoz � niavxoz

�
o
Nyoz

i=1
Wiyoz � nievyoz

o
Nyoz

i=1
Wiyoz � niavyoz

) (9)
2.6 Calculation model construction of
canopy effective volume of fruit trees

The canopy effective volume calculation method proposed in

this study for fruit trees has been implemented as an automated

computational model, which transforms the theoretical model into

an executable program through a modular architecture. The model

is developed in Python and integrates several key libraries,

including the Open3D point cloud processing library, the NumPy

scientific computing library, the alphashape library for boundary

computation of point sets, the shapely.geometry library for planar

geometric object processing, and the matplotlib library for scientific

visualization. Together, these tools support a complete

computational workflow from the input of fruit tree canopy point

cloud data to the output of the final canopy effective volume. The

overall computational flow of the model is illustrated in Figure 8.

The core workflow is as follows:
Fron
i. Data input: Load fruit tree canopy point cloud data.
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ii. Dynamic reconstruction and volume calculation: The

Alpha Shape algorithm with dynamic parameter

optimization is used for 3D reconstruction of the canopy.

The algorithm calculates the baseline a value through the

density-aware mechanism and dynamically adjusts the

parameters based on the iterative optimization strategy

until a closed grid is generated. After reconstruction, the

reconstructed model volume Vm is computed (Equation 4).

iii. Calculation of effective volume coefficient: The system projects

the point cloud to the xoy, xoz, and yoz planes for parallel

processing. Each projection plane performs voxelization,

partition weighting, and weight optimization. The effective

coefficients for each plane are then computed based on the

weighted effective ratio (Equation 7) and synthesized into a 3D

effective volume coefficient EVC (Equation 5).

iv. Result output: The model automatically calculates the fruit tree

canopy effective volumeVe (Equation 9) and outputs the result.
2.7 Experimental validation design

In orchards, the canopy effective volume of fruit trees cannot be

measured using the projection method due to orchard planting

patterns and field conditions. However, simulated fruit trees can

measure canopy effective volume in the laboratory. Therefore, this

study conducted both a simulated fruit tree experiment and an

orchard experiment. The simulated fruit tree experiment was used

to verify the feasibility and accuracy of the method and to evaluate

its effectiveness in removing canopy porosity by comparing it with

current approaches. The orchard experiment was conducted to

assess the applicability of the method in complex environments.

Six simulated fruit trees with removable branches were used as

experiment subjects to simulate canopy volume changes by varying

the number of branches. Each simulated fruit tree was designed with

four different branch combinations, and the experiment was repeated

4 times, resulting in a total of 24 tree samples. The experimental

procedure included the following steps: (1) operating the inspection

trolley to acquire point cloud data (Figure 9a); (2) measuring canopy

effective volume in the laboratory environment (Figure 9b); (3) using

the EVmethod to predict the canopy effective volume, and evaluating

its performance through the metrics of the coefficient of

determination (R2), the root mean square error (RMSE), and the

mean absolute error (MAE); and (4) comparing the prediction results

with those obtained from the ASBS, CHBS, and VB method, while

quantifying the porosity removal effect using the volume reduction

rate. The volume reduction rate can be calculated using Equation 10:

VRR =
Vcm − VEV

Vcm
(10)

Where VRR is volume reduction ratio, Vcm is the calculation

result of the current method, and VEV is the calculation result of the

EV method.

During the experiment, the number of slices used in both the ASBS

and CHBS algorithms was set to 10; that is, the canopy point cloud data
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were divided into 10 equal layers along the Z-axis for volume

calculation (Yan et al., 2019). The voxel size parameter of the VB

algorithm was set to 1/15 of the canopy diameter (Lecigne et al., 2018).

The collected orchard point cloud data also employed the EV,

ASBS, CHBS, and VB methods to predict canopy volume. The volume
Frontiers in Plant Science 11
reduction rate of the EV method was then calculated relative to the

other methods. The results were compared with those obtained in the

simulated fruit tree experiment to determine whether consistent trends

were observed, thereby assessing the stability and applicability of the

EV method in complex orchard environments.
FIGURE 8

Workflow of the fruit tree canopy effective volume calculation model.
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3 Results

3.1 Simulated fruit tree experiment results
and analysis

3.1.1 EV algorithm predicted results compared to
measured values

The predicted values of canopy effective volume calculated by

the EV method were analyzed in comparison with the manual

measurements (Figure 10a). In the figure, black lines represent the

measured values, while red lines denote the predicted values from

the model. The results demonstrate that the proposed method can

accurately predict the canopy effective volume of fruit trees with

varying canopy sizes, showing a high degree of consistency between

the predicted and measured values. Evaluation metrics for the EV

method’s prediction performance: R2 is 0.9720, RMSE is 0.0203 m3,

andMAE is 0.0191. These evaluation metrics fully confirm that this

method achieves high accuracy in predicting the canopy effective

volume of fruit trees.

Figure 10b showed that the measured values were generally

slightly higher than the predicted values. This phenomenon can be

attributed to the measurement principle of the projection method,
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which utilizes a point light source to illuminate the fruit tree

canopy, thereby generating a projection. The divergent nature of

the light leads to an amplification effect, resulting in a projection

size larger than the actual size of the canopy. Specifically, the

projected size of the leaf near the light source side is larger than

the leaf itself when projected onto the rear canopy, thus obscuring

some of the rear porosity. This results in a high calculation of the

effective coefficient, which ultimately leads to a systematic

overestimation of the measured canopy effective volume.

3.1.2 Comparison of EV method predictions with
current methods

In this study, the proposed EV algorithm was compared and

analyzed with current canopy volume estimation methods,

including the ASBS, CHBS, and VB algorithms. The 3D

reconstruction models of the fruit tree canopy, generated using

the four algorithms, are illustrated in Figure 11, and their

corresponding volume calculations are presented in Figure 12a.

The volume relationship among the methods is as follows: VCHBS >

VVB > VASBS > VEV.

The CHBS algorithm reconstructs the canopy by slicing the

point cloud along the vertical direction and treating each slice as a
FIGURE 9

Simulated fruit tree experiment. (a) Point cloud data acquisition. (b) Projection-based measurement method.
FIGURE 10

EV method predictions and canopy effective volume measurements.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1679027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1679027
convex polyhedron (Figure 11c). This method encompasses a

significant amount of canopy porosity and surface concavity

within each convex hull, resulting in a reconstructed model that

exceeds the actual canopy boundary and, thus, produces the largest

volume estimate among the four methods. The ASBS algorithm also

employs a slicing approach but constructs non-convex boundaries

for each layer of the point cloud by defining the radius parameter a
(Figure 11b). This allows the algorithm to capture depressions and

some internal porosity on the canopy surface. Since these regions

are preserved rather than filled, the estimated volume is relatively

lower and closer to the actual volume of the canopy. The VB

algorithm divides the 3D space into uniform cubic voxels

(Figure 11d) and estimates volume by checking whether point

cloud data occupies the voxels. While it can identify porosity

larger than the voxel edge length, it fails to resolve fine-scale

surface depressions or internal porosity smaller than the voxel
Frontiers in Plant Science 13
size. Therefore, its calculation results are intermediate between

the CHBS and ASBS algorithms. The EV algorithm first

reconstructs the canopy using the AS algorithm (Figure 11a),

preserving surface depressions, and then applies an effective

volume coefficient to remove internal porosity from the

reconstructed model. Consequently, the EV algorithm yields the

smallest volume estimate, which most closely reflects the accurate

effective volume of the canopy.

To evaluate the effectiveness of the EV method in calculating

canopy effective volume, the volume reduction rates of its results

were computed relative to those of the ASBS, CHBS, and VB

methods. The distribution characteristics of these reduction rates

are illustrated in Figure 12b. The results show that the average

volume reduction rates of the EV method compared to the ASBS,

CHBS, and VB methods were 0.5101, 0.6953, and 0.6213,

respectively. The distribution of the volume reduction rates
FIGURE 11

Canopy reconstruction results using different algorithms. (a) EV. (b) ASBS. (c) CHBS. (d) VB.
FIGURE 12

Comparison of predicted results with current methods for simulated fruit trees. (a) Comparison of results from different methods. (b) Volume
reduction rate of the EV method relative to other methods.
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conformed to a normal distribution as a whole. These results

indicate that the EV method has high stability in calculating the

canopy effective volume and can effectively remove canopy porosity.
3.2 Orchard experiment results and
analysis

The point cloud data in the orchard environment was collected

and preprocessed to extract the fruit tree canopy point cloud data in

the reconstructed area. Four algorithms, the EV, ASBS, CHBS, and

VB methods, were used to calculate the canopy volume,

respectively, and the results are presented in Figure 13a. The

volume relationship measured by the four algorithms is VCHBS >

VVB > VASBS > VEV, consistent with the results of the simulated fruit

tree experiments. Furthermore, the volume reduction rate of the EV

algorithm relative to the other three methods was calculated, and

the distribution characteristics is shown in Figure 13b. The average

volume reduction rates of the EV algorithm compared with the
Frontiers in Plant Science 14
ASBS, CHBS, and VB algorithms were 0.4261, 0.6584, and 0.5581,

respectively. The distribution of the volume reduction rates also

aligns with the results observed in the simulated fruit tree

experiments. These findings indicate that the EV algorithm

performs well in the complex orchard environment and effectively

addresses the overestimation of canopy volume caused by the

inclusion of internal porosity in current prediction methods.
3.3 Prediction results using different voxel
sizes

Table 1 lists the mean values of canopy effective volume calculated

by the EV method, along with the performance evaluation metrics (R2,

RMSE, andMAE), under different voxel sizes expressed as multiples of

the average nearest neighbor distance (davg) of the projected point

cloud. The result showed that voxel size had a significant impact on the

results of canopy effective volume calculation.When the voxel size is set

to 0.8×davg, the calculated average effective volume is 0.1813, which is
TABLE 1 Predicted results for different voxel sizes.

Algorithm Voxel size Average of volume predictions Average of volume measurements R2 RMSE MAE

EV

0.8×davg 0.1813 0.3422 -0.9977 0.1710 0.1609

0.85×davg 0.2151 0.3422 -0.2455 0.1350 0.1271

0.9×davg 0.2508 0.3422 0.3665 0.0963 0.0913

0.95×davg 0.2899 0.3422 0.7902 0.0554 0.0522

1×davg 0.3231 0.3422 0.9720 0.0203 0.0191

1.05×davg 0.3603 0.3422 0.9661 0.0223 0.0184

1.1×davg 0.3962 0.3422 0.7526 0.0602 0.0540

1.15×davg 0.4340 0.3422 0.3401 0.0983 0.0919

1.2×davg 0.4690 0.3422 -0.2795 0.1368 0.1268
frontie
FIGURE 13

Comparison of predicted results with current methods for fruit trees. (a) Comparison of results from different methods. (b) Volume reduction rate of
the EV method relative to other methods.
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only about 40% of the value obtained with a voxel size of 1.2×davg. By

comparing the results in Table 2 and meeting the requirement that the

predicted value should be less than themeasured value, it is evident that

the effective volume calculated with a voxel size of 1×davg is closest to

the measured value. Under this condition, the EV method achieves an

R² of 0.9720, an RMSE of 0.0203 m3, and an MAE of 0.0191. These

results consistently demonstrate that the EV method yields the lowest

prediction error and best overall fit when the voxel size is set to 1×davg.
3.4 Prediction results using different
partition sizes

Table 2 lists the mean values of canopy effective volume calculated

by the EV method, along with the performance evaluation metrics (R2,

RMSE, andMAE), under different partition sizes expressed as multiples

of the voxel sizes(VS) of the projected point cloud. The result showed

that the partition size also had a significant effect on the effective volume

calculation results. By comparing the data in Table 2 and meeting the

requirement that the predicted values should be less than the measured

value, it can be determined that the effective volume calculated by the

EV method is closest to the measured value when the partition size is

set to 5 × VS. Under these conditions, the method achieves the lowest

prediction error (RMSE = 0.0203m3,MAE = 0.0191) and demonstrates

the best overall stability (R² = 0.9720).
4 Discussion

Currently, common methods for calculating the canopy volume of

fruit trees (such as ASBS, CHBS, and VB algorithms) usually treat the

canopy as a solid object and calculate the volume by reconstructing its

surface model (Zhu et al., 2021). However, the fruit tree canopy is not a

solid body and contains a substantial amount of internal porosity. If the

variable spray decision is based on the volume of the canopy containing

porosity, it can lead to over-spraying, making it difficult to achieve truly

precise spray. In contrast, the EV method proposed in this study

effectively addresses the problem of volume overestimation caused by

internal porosity in current methods by introducing the canopy
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effective volume coefficient, which quantifies the influence of porosity

on canopy volume calculations.
4.1 Discussion on key parameters of the EV
method

4.1.1 Voxel size
Figure 14 presents the results of processing the fruit tree canopy

point cloud data in the yoz projection plane using different voxel sizes.

It can be observed that as the voxel size increases, the percentage of the

effective voxel area also increases. This phenomenon highlights the

critical impact of voxel size selection on the performance of the EV

algorithm.When the voxel size is set too small (Figure 14a), the effective

voxels may fail to fully cover the actual effective canopy area due to the

insufficient density of the point cloud data. This leads to an

underestimation of the calculated planar effective coefficients, which

in turn will result in a small effective volume in the final calculation.

Conversely, when the voxel size is set too large (Figure 14c), the actual

spatial extent represented by a single point cloud data point becomes

exaggerated. This causes an overestimation of the planar effective

coefficient, ultimately leading to an inflated effective volume calculation.

4.1.2 Partition size
Figure 15 illustrates the distribution of weights for each partition

computed from the fruit tree canopy point cloud data in the yoz

projection plane using different partition sizes. The weights are

determined by the canopy thickness of the reconstruction model in

the projection direction of the corresponding partition. The choice of

partition size has a significant impact on the accuracy of weight

calculation and the final estimation of canopy effective volume. When

the partition size is set too small (Figure 15a), the weights obtained from

the pointless cloud partitioning calculation tend to be smaller than the

actual weights, leading to the overestimation of the planar effective

coefficients and, consequently, a calculated effective volume that is too

large. Conversely, when the partition size is set too large (Figure 15c),

each partition usually contains a large amount of point cloud data and

covers a wide area. In such cases, some voxels within the partition that

lack point cloud data may be assigned higher weights than they should,
TABLE 2 Prediction results for different partition sizes.

Algorithm Voxel size Average of volume predictions Average of volume measurements R2 RMSE MAE

EV

2×VS 0.3892 0.3422 0.8175 0.0517 0.0471

3×VS 0.3715 0.3422 0.9308 0.0318 0.0293

4×VS 0.3588 0.3422 0.9782 0.0179 0.0167

5×VS 0.3231 0.3422 0.9720 0.0203 0.0191

6×VS 0.3108 0.3422 0.9237 0.0334 0.0313

7×VS 0.3006 0.3422 0.8658 0.0443 0.0416

8×VS 0.2940 0.3422 0.8246 0.0507 0.0481

9×VS 0.2856 0.3422 0.7564 0.0597 0.0566

10×VS 0.2805 0.3422 0.7074 0.0654 0.0617
frontie
rsin.org

https://doi.org/10.3389/fpls.2025.1679027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1679027
which results in an underestimation of the planar effective coefficient

and, ultimately, a lower calculated canopy effective volume.
4.2 The difference in predictive
performance between simulated and
actual fruit trees for each method

Differences in canopy structure result in different prediction

performances between simulated and actual fruit trees for each

method. Simulated fruit trees are artificially constructed with dense

branches, smaller internal porosity, smoother surfaces, and relatively

fewer surface depressions. In contrast, actual fruit trees grow naturally

with sparser branches, larger internal porosity, and relatively more

surface depressions. The complex, non-convex structure of actual fruit
Frontiers in Plant Science 16
trees is precisely what the ASBS method excels at handling when

predicting their volume. Furthermore, during the slicing process, larger

porosity sizes within actual fruit trees are better identified and removed,

thereby improving the prediction performance of the ASBS method in

real fruit trees. When predicting actual fruit trees, the CHBS method

contains more surface depressions in its reconstructedmodel due to the

complex, non-convex structure of real trees. However, during the

slicing process, internal porosity within the trees is better identified

and removed. With the combined effect of these two factors, the

prediction performance of the CHBS method also improves for actual

fruit trees, though not as significantly as that of the ASBS method. The

VB method can only identify porosity larger than its voxel size. The

larger internal porosity in actual fruit trees compared to simulated

results allows the VB method to better demonstrate its identification

capabilities, thereby improving prediction accuracy. the EV method,
FIGURE 14

Effect of different voxel sizes. (a) 0.8×davg. (b) 1×davg. (c) 1.2×davg.
FIGURE 15

Effect of different partition sizes. (a) 2×VS. (b) 5×VS. (c) 10×VS.
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benefiting from the effective volume coefficient, can precisely quantify

the effective volume after removing canopy porosity, resulting in

relatively stable prediction performance for both simulated and

actual fruit trees.

The results of simulated fruit tree experiments showed that the

volume reduction rates for the EV method compared to the ASBS,

CHBS, and VB methods were 0.5101, 0.6953, and 0.6213, respectively.

In actual orchard experiments, these values were 0.4261, 0.6584, and

0.5581, respectively. The ASBS, CHBS, and VB methods have

improved prediction performance in actual fruit trees due to their

better handling of large-size porosity, reducing the gap with the EV

method’s predictions. This corresponds with our experimental data

and indirectly confirms the EV method’s stability when applied to

canopy structures containing porosity at different sizes.
4.3 Discussion on further research

This study proposes a method for calculating the canopy effective

volume of fruit trees. By introducing an effective volume coefficient, it

enables precisely quantify the effective volume after removing canopy

porosity. However, there are still some shortcomings:
Fron
1. This study used the projection method to measure the actual

values of canopy effective volume in fruit trees. However, this

method is influenced by factors such as the divergent nature of

light source, leading to systematic error that causes

overestimation of results. Therefore, the results measured by

the projection method can serve as a relatively conservative

reference standard, but precise measurement methods for

actual canopy effective volume still require further research.

2. In this study, when discussing the optimal values of the key

parameters voxel size and partition size, the accuracy of the

distribution of their values is not refined enough. In future

work, more precise optimal parameter values could be

determined by combining deep learning with other

advanced methods to enhance prediction accuracy further.
5 Conclusion

This study aims to accurately quantify the canopy effective volume

after removing canopy porosity and provides a method for calculating

the canopy effective volume of fruit trees based on LiDAR point cloud

data. First, a data preprocessing approach was developed specifically for

the standardized tall spindle orchard point cloud data, enabling the

effective extraction of fruit tree canopy point clouds and the

segmentation of 3D reconstruction areas. Based on this, an alpha-

shape canopy reconstruction method based on dynamic parameter

optimization was developed for reconstructing canopy regions, and an

effective volume coefficient calculation model was constructed. The

study analyzed and clarified the influence of core parameters voxel size

and partition size on the performance of the method. The method was

validated through both simulated fruit tree and orchard experiments.
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Results demonstrate that the EV method can accurately measure the

canopy volume of fruit trees, providing the basis for precise spray

technology in orchards. The main conclusions are as follows:
1. A pre-processing procedure of canopy extraction and 3D

reconstruction area segmentation for standardized tall spindle

orchard point cloud data was developed. An alpha-shape

canopy reconstruction method based on dynamic parameter

optimization was developed, and the canopy effective volume

coefficient was constructed. The effects of voxel size and

partition size on the calculation of the effective volume

coefficient were analyzed. The optimal parameter values were

determined to be the average nearest neighbor distance of the

point cloud and five times the voxel size, respectively, based on

the density of the canopy point cloud data.

2. The simulated fruit tree experiment results show that the

canopy effective volume predicted by the EV method has high

accuracy and stability, with evaluation metrics R², RMSE, and

MAE values of 0.9720, 0.0203 m3, and 0.0191, respectively.

Compared with the prediction results of the ASBS, CHBS, and

VB methods, the volume reduction rates were 0.5101, 0.6953,

and 0.6213, respectively. The influence of canopy porosity on

the volume prediction could be effectively removed. In

addition, the orchard experiment results followed a similar

trend to the simulated fruit tree experiment results, confirming

the method’s applicability in complex orchard environments.
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