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The canopy volume of fruit trees is an important basis for precise orchard
management. However, current methods for predicting canopy volume
cannot accurately identify and exclude canopy porosity, resulting in a larger
prediction than the actual volume. To address this issue, this study proposes a
calculation method of canopy effective volume (EV) for fruit tree based on LiDAR
point cloud data. In this method, the fruit tree canopy model is first reconstructed
using an improved alpha-shape algorithm, and its volume is calculated. Then, the
canopy effective volume coefficient was constructed, and the product of the two
was used as the canopy effective volume. To evaluate the accuracy and
applicability of the proposed method, both simulated fruit tree and orchard
experiments were conducted and compared with the prediction results of alpha-
shape by slices (ASBS), convex hull by slices (CHBS), and voxel-based (VB)
methods. The results show that the best model prediction performance is
achieved when the voxel size is the average nearest neighbor distance of the
point cloud and the partition size is five times the voxel size. The method
achieved an R? of 0.9720, an RMSE of 0.0203 m® and an MAE of 0.0192.
Compared with the prediction results of the ASBS, CHBS, and VB methods, the
volume reduction rates were 0.5101, 0.6953, and 0.6213, respectively. The EV
method can accurately quantify the canopy effective volume after removal of
canopy porosity and provide decision support for precise orchard management.

KEYWORDS

fruit tree, canopy effective volume, LiDAR, improved alpha-shape algorithm, effective
volume coefficient

1 Introduction

In the full cycle of orchard management, diseases and pests control constitutes
approximately 30% of the overall workload. Spraying chemical pesticides is the primary
method of controlling diseases and pests in orchards. However, under conventional spray
methods, the actual pesticide utilization rate is less than 40%. It not only wastes resources
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but also poses a threat to the ecological environment and food safety
(Guo et al,, 2025; Meshram et al., 2022). In this background, the
precise variable spray technology has become a significant
breakthrough in sustainable diseases and pests management in
orchards. The decision-making core of this technology relies on
the precise sensing of fruit tree canopy characteristics (Salcedo et al.,
2020). In fact, canopy volume serves as a key indicator of fruit tree
growth status, and its precise measurement extends beyond variable
spray. For example, the dynamic changes in canopy volume is an
important basis for fruit tree yield estimation (Underwood et al,
2016). Precise three-dimensional canopy volume data provides the
scientific basis for determining pruning levels and guiding precise
pruning operations (Johansen et al., 2018). Therefore, precise
measurement of canopy volume is crucial for achieving precision
production management and enhancing quality and efficiency in
orchards (Sun H. et al., 2024; Gu et al., 2021).

In the current study, the methods for calculating canopy volume
based on LiDAR data include voxel-based (VB), convex hull (CH),
alpha-shape (AS), convex hull by slicing (CHBS), and alpha-shape
by slicing (ASBS) algorithms (Dong et al., 2024; Colaco et al., 2017;
Gao et al, 2021; Sun D. et al,, 2024). The VB algorithm works by
discretizing the 3D point cloud space into a regular grid (voxels),
counting the number of voxels occupied by the point cloud, and
multiplying the volume of a single voxel to estimate the total
volume. Bienert et al. (2014) proposed an improved VB algorithm
for estimating canopy volume, which improves the problem of
overestimation of canopy volume. However, the method’s accuracy
is highly dependent on the voxel size; too large voxels can contain a
large amount of porosity not occupied by the point cloud, resulting
in a significant overestimation of the volume; too small voxels
significantly increase the computational burden. More importantly,
even for smaller voxels, the method essentially calculates the volume
of the voxel containing the point cloud, rather than the actual
canopy volume of the point cloud itself (Vonderach et al., 2012;
Hosoi et al.,, 2013). Spaces within the voxel that are not filled by the
point cloud, as well as the complex porosity structure within the
canopy, are accounted for, which is the root cause of its large
estimated volume. The CH algorithm estimates the volume of an
object by connecting the outermost points and constructing the
smallest convex polyhedron that encloses all the point clouds,
forming a geometry without depressions. Cheein and Guivant
(2014) used this algorithm to estimate the volume of tree tops
from 3D laser data. Qi et al. (2021) applied the CH algorithm to
calculate the volume of citrus canopy, achieving an R” of 0.8215 and
an RMSE of 0.3186 m®. The main limitation of this algorithm lies in
its “convexity constraint”, which forces the surface of the generated
polyhedron to be convex outward. This constraint prevents it from
accurately fitting the naturally occurring concave structures of the
canopy. Additionally, it completely ignores the porosity structure
within the canopy and considers the entire inner space of the
convex hull as the canopy volume (Chakraborty et al., 2019).
Therefore, the volume calculated by this method is generally
significantly larger than the actual volume of the canopy. The AS
algorithm is an optimized version of the CH algorithm, where the
boundary tightness can be controlled by adjusting the o parameter.
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A smaller o allows the boundary to more closely follow the contours
of the point cloud, preserving the concave structures, while a larger
o results in a surface that approximates the CH algorithm. Hadas
etal. (2017) combined the AS algorithm with principal components
analysis and proposed a method for automatically estimating olive
tree shape parameters using airborne laser scanning data. Wang
et al. (2021) developed a mobile scanning system based on 3D
simultaneous localization and mapping to acquire 3D data from
orchards. The system calculates the height and canopy volume of
fruit trees using point cloud statistical methods and the 3D AS
algorithm. The surface generated by the AS algorithm also encloses
a closed space containing all areas within the outer boundary
defined by the canopy’s point cloud. However, like the CH
algorithm, the AS algorithm does not differentiate between the
internal porosity and the actual canopy (Wang et al., 2024),
resulting in an overestimation of the actual canopy volume.
Considering that the CH and AS algorithms neglect the internal
structure of the canopy, often resulting in overestimated volumes,
they have been combined with slicing methods to improve
reconstruction accuracy by better capturing internal canopy
features (Siebers et al., 2024). The CHBS algorithm operates by
vertically slicing the point cloud into layers, applying the CH
algorithm to each layer independently, and summing the volumes
of all layers to obtain the total canopy volume. Researchers have
used this approach to estimate canopy volume and surface area,
reducing computational errors associated with complex canopy
structures (Xu et al., 2014; Fernandez-Sarria et al., 2019).
Although applying convex hulls in layers enables better fitting of
external canopy contours in horizontal cross-sections, each layer
still inherits the limitations of the CH algorithm. As a result, the
total volume calculated remains significantly overestimated (Zhou
et al, 2021). The ASBS algorithm follows a similar approach, but
uses the AS algorithm for each layer of point cloud data. Yan et al.
(2019) proposed a method using this algorithm to accurately
compute the volume of a single tree canopy based on vehicle-
mounted LiDAR data, mitigating the influence of porosity being
mistaken for actual canopy volume. Dong et al. (2021) utilized the
ASBS method to accurately estimate apple tree volume from UAV
multi-view 3D data, achieving an MAPE of 8.07% and an RMSE of
0.55 m?, respectively. Compared to the CHBS algorithm, the ASBS
algorithm more effectively captures the non-convex canopy
boundaries in horizontal sections. However, for each layer, the AS
algorithm calculates the volume of the area enclosed by the
boundary of the point cloud for that layer, which contains the
porosity within the boundary of that layer. When these layer
volumes are summed, all intra-layer porosity is included.
Furthermore, the algorithm is unable to identify and deduce
which of the large canopy internal porosity run through multiple
layers (Liu et al., 2021). Therefore, although the ASBS algorithm
offers improvements over the CH or AS algorithms, it still
inherently includes internal canopy porosity, leading to
overestimated volume. The fundamental limitation of all methods
mentioned above is that they compute the spatial envelope volume
defined by the point cloud—essentially the minimum enclosed
spatial extent of the point distribution—rather than the actual
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volume of the canopy. None of these approaches can effectively
identify and remove the internal porosity of the canopy. As a result,
the calculated volume includes all porosity between branches and
leaves, leading to large predictions. If management decisions are
based on this volume containing porosity, it will inevitably lead to
issues such as over-spraying, yield prediction model distortion, and
pruning plan inaccuracies, making it difficult to meet the demands
of precision management in modern orchards (Wang et al., 2023;
Liu et al., 2024; Huang et al., 2020; Liu et al., 2022).

In summary, in this study, to solve the problem of volume
overestimation due to internal canopy porosity, a method for
calculating the canopy effective volume of fruit tree based on
LiDAR point cloud data was proposed. Canopy effective volume
coefficient was developed to quantify the impact of canopy porosity.
Orchard test was conducted, and compared and analyzed with
current canopy volume prediction methods. The results of the study
can effectively remove the influence of canopy porosity and provide
reliable decision support for precise spray, yield estimation, and
pruning management in orchards (Qiu et al., 2019; Walter
et al., 2019).

2 Materials and methods
2.1 Experimental area

The experiment was conducted in October 2024 in a
standardized apple orchard in Luoning County (34°21'N, 111°15’
E), Luoyang City. The experiment apple variety was Cripps Pink.
The experiment orchard was planted in a tall spindle shape, with a
row spacing of 3.5 m, plant spacing of 1.0 m, and an average tree
height of approximately 3.5 m. The main trunk of the tree was erect
and firm, with a spindle-like extension. Lateral branches were
uniformly distributed around the trunk in a spiral layered
arrangement, with branch angles ranging from 70° to 90°,
forming a spindle-shaped canopy that was narrower at the top
and broader at the base. The canopy between the rows was closely
connected, forming a continuous “tree wall”. The canopy diameter
of a single tree within a row ranged from 1.0 to 1.5 m. A total of 73
apple trees across three rows were selected as experimental subjects,
and the experiment area and site layout are shown in Figure 1.

2.2 Point cloud acquisition equipment and
methods

In this study, an inspection trolley (Yuhesen, Shenzhen, China)
was used to collect point cloud data of the fruit tree canopy. The
inspection trolley comprises a mobile platform, a 3D LiDAR, an
industrial computer, an IMU, and other components (Figure 2a).
The mobile platform is the Yuhesen FR-07 Pro, powered by a 48V/
20AH Li-ion battery, offering a range of 20 km. The 3D LiDAR has
a range of 150 m, with a range accuracy of 2 cm, and a 16-wire
harness. Its horizontal field of view (FOV) is 360°, and the vertical
FOV spans from -15° to 15°. The depth camera has a resolution of
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640x480 and a depth range of 0.2 to 4 m. The industrial computer is
powered by an Intel Core i5-8265U CPU, with a base frequency of
1.6 GHz. The GNSS module can receive GPS signals, achieving a
horizontal positioning accuracy of 3 cm in RTK mode. The IMU
has a measurement range of £2000°/s, with a resolution of 0.01°/s.

The experimental part of this study included simulated fruit tree
experiment and orchard experiment, and their point cloud data
were collected respectively. In order to reduce errors, data
acquisition was performed under clear, breezy conditions(wind
speeds below 1.5 m/s). The experimenter controlled the
inspection trolley to acquire the point cloud data in a closed loop
around the experiment site line by line. Figure 2b shows the orchard
experiment area, delineated using the point cloud cropping function
in CloudCompare (v2.13.2) point cloud processing software. The
data processing steps for both simulated fruit tree and orchard point
clouds are consistent, and the subsequent processing is introduced
as an example of orchard experiment area point cloud data.

2.3 Measurement method of canopy
effective volume

The manual measurement of the canopy effective volume of
fruit trees includes two main steps: firstly, measure the volume of
the fruit tree canopy, and then use the projection method to
measure the effective volume percentage. These two values are
multiplied to obtain the canopy effective volume. When
measuring the canopy volume, the fruit tree canopy was divided
into three equal parts along the height: upper, middle, and lower
sections (Figure 3a). The volume of the middle and lower sections
was calculated using the circular table model, while the volume of
the upper section was calculated using the conical model. The final
canopy volume was the sum of the volumes of the three sections.

The schematic diagram for using the projection method to
measure the effective volume percentage is shown in Figure 3b. A
point light source and a projection screen were placed on both sides
of the fruit tree. Under the illumination of the point light source,
projection images of the canopy were sequentially captured from
three orthogonal views: frontal, lateral, and top. An image
processing method was then employed to calculate the ratio of
the shaded area in each projection image to the total area of its outer
contour. This ratio was defined as the effective coefficient in that
projection plane. The plane effective coefficient quantifies the
canopy’s effectiveness in that direction. However, projections in a
single direction may misclassify porosity as effective volume due to
occlusion. If it is porosity in another orthogonal direction, the
effective coefficient for that direction will capture it. Therefore, the
product of the effective coefficients in three orthogonal directions is
used as the effective volume coefficient. This ensures that only
canopy areas identified as effective in multiple directions are
included in the final canopy volume. The multiplication rule
ensures that porosity in any single direction reduces the overall
effective volume coefficient, preventing misclassification due to
occlusion. Additionally, to minimize measurement error, each
fruit tree is measured three times, with a different projection
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angle selected for each measurement. The final result is the average
of these three measurements.

2.4 Data preprocessing

2.4.1 Removing noise points and ground filtering
The raw point cloud data acquired from LiDAR scanning in the
orchard often contains outlier noise points and ground points,
which can result from sensor errors, environmental interference,
and other factors. These noise points can negatively impact the
calculation of the canopy effective volume of fruit trees, introducing
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errors in the results. In order to reduce the error, a four-step
preprocessing procedure was developed for this study (Figure 4).
The Radius Outlier Removal (ROR) algorithm is used to
eliminate outlier noise caused by sensor errors and environmental
disturbances. This algorithm is a widely adopted denoising method
in point cloud data processing (Cao et al., 2025). Its core principle is
to remove points that do not meet predefined criteria by analyzing
the point density in the neighborhood of each point. Compared to
other noise reduction algorithms, this method is computationally
simple, efficient, and suitable for processing large-scale point cloud
data. Moreover, it effectively removes noise while preserving the
overall structure of the point cloud, thus preventing excessive
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smoothing that could lead to the loss of important details. In this
study, the search radius was set to 0.2 m, and the minimum number
of neighborhood points threshold was set to 20.

During the traveling of the inspection trolley, ground bumps,
undulations, and other factors can lead to a certain slope in the
acquired point cloud relative to the actual scene. This is not
conducive to the subsequent removal of the ground points, so it
is necessary to calibrate the horizontal plane. The ground plane is
roughly extracted using a random sampling consistency algorithm,
and the normal vector of the fitted plane is calculated. The point
cloud was then rotated to align the normal vector with the Z-axis.

After the horizontal plane is calibrated, the ground point cloud
is separated using the Cloth Simulation Filtering (CSF) algorithm,
which is a point cloud filtering method based on physical
simulation. The core idea of this algorithm is to simulate a virtual
fabric covering the inverted terrain surface under the effect of
gravity, distinguishing between the ground and non-ground
features through the settlement process of the fabric nodes.
Compared with other ground filtering algorithms, the CSF
algorithm can be adapted to various complex terrains without the
need for a preset model and has high noise immunity (Li et al,
2024). In this study, the CSF package in Python was used to
implement ground point removal. The algorithm involves six key
parameters. The BSloopSmooth parameter determines whether to
smooth the slope of the fabric nodes. Enabling this parameter for
terrains with slopes greater than 30° significantly reduces
misclassification. The class_threshold parameter sets a threshold
for the maximum distance from the point cloud to the fabric nodes,
with points within this threshold classified as ground points. The
class_resolution parameter controls the cell size of the fabric grid;
smaller values result in a finer map model. The iterations parameter
determines the maximum number of iterations for fabric settling,
with higher values improving precision but increasing computation
time. The rigidity parameter reflects the fabric’s resistance to
deformation, and a lower value makes the fabric softer, which
better adapts to rugged terrain, but requires more iterations and
slower settling speed. Lastly, the time_step parameter controls the
time increment of the simulated physical process, which in turn
affects the settling speed. The values of the parameters in this study
are False, 0.3, 0.1, 500, 3, and 0.65, respectively.

After filtering with the CSF algorithm, some scattered weeds or
ground points may remain and not be fully removed. To address
this, we again used the ROR algorithm to eliminate local outlier
points and provide accurate fruit tree canopy point cloud data for
canopy effective volume calculation.

2.4.2 Dividing the area for 3D reconstruction

To ensure the accuracy of the 3D reconstruction of the fruit tree
canopy, it is necessary to perform 3D reconstruction area
segmentation of the fruit tree canopy point cloud data. The first
step is to segment the rows of fruit trees and extract the 3D point
cloud data for each row within the study area. Since the
experimental orchard is planted in a standardized manner with
neatly arranged rows and columns of fruit trees, a row detection
method based on probability density estimation of point cloud
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coordinates was used for segmentation. The probability density
distribution of Y coordinates was calculated using Gaussian kernel
density estimation, and fruit tree row segmentation was performed
based on the trough locations and boundary points in this
distribution (Figure 5a).

The second step was to divide the fruit trees into columns.
However, due to the tall spindle planting in the experimental
orchard, the canopies between adjacent trees are closely
connected, forming a continuous “tree wall,” which makes it
difficult to segment individual fruit trees effectively. Additionally,
directly reconstructing the entire row of fruit trees yields significant
errors. To address this, a method is proposed in this study to divide
the 3D reconstruction area based on the distribution of height
troughs within the tree wall. The specific process is as follows:

i. Height distribution extraction: The point cloud data is
divided into multiple partitions along the X-axis. In each
partition, the maximum Z-value (that is, the highest point
of the canopy) is computed, and a sequence of maximum
Z-values is formed based on the order of the X-
axis partitions.

iil. Trough detection: The troughs in the sequence of
maximum Z-values are identified.

iii. Valid trough screening: A threshold is set for the minimum
Z-value difference between a trough and its adjacent peaks.
If the Z-value difference between a trough and any of its
neighboring peaks is less than this threshold, it is classified
as a pseudo-trough and removed. This step filters out
invalid troughs with smooth height changes.

iv. Trough spacing constraint: A horizontal distance threshold
is set between adjacent troughs. If the distance between two
troughs is less than the threshold, the trough with the lower
Z-value is retained. This ensures that the segmentation
regions maintain a reasonable horizontal scale.

v. Supplementary significant trough: A Z-value difference
threshold is set between a trough and its neighboring
peaks. If this difference exceeds the threshold, the trough
is considered significant and retained. This step is intended
to supplement the valid troughs with substantial
differences in height that may have been removed during
step 4.

vi. Segmentation point determination and column
segmentation: All troughs retained after steps 3, 4, and 5
are merged and used as the final segmentation points for
dividing fruit tree columns. Based on these points, fruit tree
column segmentation is completed (Figure 5b).

2.5 Calculation of canopy effective volume
of fruit trees

First, the point cloud data of the fruit trees were reconstructed

using the AS algorithm with dynamic parameter optimization, and
the volume of the reconstructed model was calculated as V,,.
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Then, to quantify the proportion of the actual canopy volume
within the reconstructed model volume, an effective volume
coefficient EVC was introduced. Finally, the canopy effective
volume (V,) was defined as the product of the reconstructed
model volume (V,,) and the effective volume coefficient (EVC).
The mathematical expression is as follows:

V,=V, -EVC (1)

2.5.1 Canopy reconstruction and reconstruction
model volume calculation

The AS algorithm is a surface reconstruction method based on
computational geometry, capable of extracting 3D surface models
with complex topology from discrete point cloud data. The core
idea is to control the fineness of surface details through an
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adjustable parameter o However, when o is too small, the
reconstruction tends to include more detailed features but may
result in surface fragmentation. Conversely, when ¢ is too large, the
reconstructed surface appears overly smooth and loses fine details.
Therefore, selecting an appropriate o value is critical. However, the
traditional AS algorithm uses a globally fixed o value, which is
difficult to adapt to the density inhomogeneity of fruit tree canopy
point cloud data.

Therefore, this study proposes an AS algorithm based on
dynamic parameter optimization. By introducing a parameter-
adaptive adjustment mechanism, the applicability and
reconstruction quality of the AS algorithm in complex canopy
scenarios are significantly enhanced. Specifically, smaller o values
are selected in dense regions of the point cloud to preserve details,
while larger o values are used in sparse regions to prevent surface
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FIGURE 6
3D reconstruction canopy model of fruit trees.

fragmentation. This adaptive adjustment mechanism is
implemented through a density-aware baseline o calculation
combined with an iteratively optimized o incremental strategy.
Define a baseline o value based on the average nearest neighbor
distance of the point cloud, calculated as shown in Equation 2:

Apase = k % davg (2)

Where d,,, is the average point distance, k is an empirical
scaling factor initially set to 5.

The goal of the iterative optimization strategy is to gradually
increase the value of ¢ starting from the baseline value until a closed
mesh is generated. The mathematical description of this process is
shown in Equation 3:

ai, =a;+Aa

Ai=0 = Apase (3)

Ad = Agep X dgyg

Where ¢, ; is the value of o for this iteration, ¢ is the value
from the previous iteration, Ac is the increment of each iteration,
and O, is the step coefficient that controls the magnitude of
adjustment, set to 0.5 in this study.

When applying this method to canopy reconstruction, an
appropriate ¢ value is first calculated for the designated 3D
reconstruction area. Surface reconstruction is then performed
using this o value (Figure 6). Finally, the volume V,, of the closed
mesh of the reconstructed model is calculated as follows:

Ng — — —
V= S [ (Vix V) @
n=1

Where N, is the number of triangle meshes in the reconstructed
model, Vy, V;, and V, are the vertex vectors of each triangle in the
mesh, respectively.

2.5.2 Calculation of effective volume coefficient

The effective volume coefficient EVC constructed in this study
consists of the effective coefficients of the fruit tree canopy point
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cloud in the three orthogonal projection planes xoy, xoz, and yoz
(Figure 7a), calculated as follows:

EVC = ECy,, X ECyyy X EC,, (5)

Where EC,,,, EC,. and EC,,. represent the effective
coefficients of the xoy, xoz, and yoz projection planes, respectively.

The effective coefficients ECy,,, ECy,, and EC,,, are calculated
using a similar approach. In this study, the yoz projection plane is
used as an example to illustrate the calculation of EC,,..

(1) Projected point cloud voxelization.

First, the 3D point cloud data of the fruit tree canopy was
projected onto the yoz plane. This dimensionality reduction was
achieved by ignoring the x-axis coordinates while preserving the
spatial distribution characteristics of the point cloud in the
horizontal (y) and vertical (z) directions. Next, the projected
point cloud was voxelized to discretize the data spatially. During
the voxelization process, the yoz plane was divided into uniform
square voxels, and the voxels containing projected point cloud data
were marked as effective voxels (red), forming a spatial
representation of the discretized point clouds (Figure 7b). In this
study, the average nearest neighbor distance of the projected point
cloud was used as the optimal voxel size, VS, a key parameter for
voxelization. Finally, the AS algorithm was used to reconstruct the
2D boundary contour of the projected point cloud and extract all
voxels enclosed within this contour.

(2) Projected point cloud partition weighting.

Square grids with sides equal to five times the voxel size (VS)
were used to partition the projected point cloud (Figure 7c). This
grid size was designed to ensure that the voxels generated in the
previous step could be fully encompassed within each partition. For
each partition, the polar deviation in the x-axis direction of the
projected point cloud it contains, that is the canopy thickness of
the canopy reconstructed model in that partition, was calculated as
the weight W of the partition. The calculation method is shown in
Equation 6:

= Ximin (6)

xmax
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FIGURE 7

Schematic diagram of the effective volume coefficient calculation. (a) Three orthogonal projection planes for fruit tree canopy point clouds. (b)
Projected point cloud voxelization. (c) Projected point cloud partitioning and weighting. (d) Schematic diagram of the calculation of the plane

effective coefficient.

Where W is the partition weight, X, is the maximum x-
coordinate value of the point cloud within the partition, and x,,;,, is
the minimum.

During the weight calculation process, some partitions within
the projected point cloud contour may have a weight value of zero
because the point cloud data is absent. This contradicts the physical
meaning that the reconstructed canopy model should have a non-
zero thickness within the contour-enclosed partitions. To address
this, an iterative interpolation strategy based on eight neighborhood
averaging was proposed. For each zero-weight partition, its eight
surrounding neighboring partitions were retrieved, and the
arithmetic mean of the non-zero weight partitions was computed
and assigned as the current partition weight. This process was
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iteratively repeated until all zero-weight partitions within the
contour were eliminated.

(3) Calculate the effective coefficient of the projection plane.

All voxels contained within the boundary contour of the
projected point cloud were mapped to the corresponding
partitions (Figure 7d). For each partition, the total number of
voxels (n,,) and the number of effective voxels (n,,) were
computed. The projection plane effective coefficient (EC,,.) is the
ratio of the cumulative sum of the product of the number of effective
voxels (n,,) in all partitions and the partition weight W to the
cumulative sum of the product of the total number of voxels (1,,) in
all partitions and the partition weight W. The mathematical

expression is as follows:
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N,

yoz
2 Wiyaz X nievyuz
i=1

Nyoz

E Wiyoz X niavyoz
i=1

EC,,, = (7)

Where n,,, is the total number of partitions in the yoz
projection plane, Wy, is the weight of the ith partition, #;e,yo is
the number of effective voxels in the ith partition, and 74, is the
total number of voxels in the ith partition.

Following the same approach, EC,,, and EC,,_ can be computed
as:

N,

xoy

2 Wixoy X nievxoy
i=1
N,

xoy

> Wikoy X 1

i=1

EC.

x0y =

iavxoy

Nioz
E Wixoz X Njeyxoz
i=1
N,

xo0z

E Wixoz X Nigyxoz

i=1

EC.

X0z

In summary, combining Equations 1, 4, 5, 7, and 8, the
mathematical expression for the method of calculating the canopy
effective volume of fruit trees is:

Nioy
N, 1 N 21 Wixoy X ”ievxoy
i=
= S [T (Vix V) x (5
=6 Nioy
2 Wixay X niavxuy
i=1
Nioz )oz
2 Wixoz X Nieyxoz 2 1yoz ievyoz
x = x ) ©)

Z
H

N,

'yoz

2 Wiyoz X ”iavyoz

i=1

W ixoz X Miayxoz

Ui
—_

2.6 Calculation model construction of
canopy effective volume of fruit trees

The canopy effective volume calculation method proposed in
this study for fruit trees has been implemented as an automated
computational model, which transforms the theoretical model into
an executable program through a modular architecture. The model
is developed in Python and integrates several key libraries,
including the Open3D point cloud processing library, the NumPy
scientific computing library, the alphashape library for boundary
computation of point sets, the shapely.geometry library for planar
geometric object processing, and the matplotlib library for scientific
visualization. Together, these tools support a complete
computational workflow from the input of fruit tree canopy point
cloud data to the output of the final canopy effective volume. The
overall computational flow of the model is illustrated in Figure 8.
The core workflow is as follows:

i. Data input: Load fruit tree canopy point cloud data.
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ii. Dynamic reconstruction and volume calculation: The
Alpha Shape algorithm with dynamic parameter
optimization is used for 3D reconstruction of the canopy.
The algorithm calculates the baseline o value through the
density-aware mechanism and dynamically adjusts the
parameters based on the iterative optimization strategy
until a closed grid is generated. After reconstruction, the
reconstructed model volume V,, is computed (Equation 4).

iii. Calculation of effective volume coefficient: The system projects

the point cloud to the xoy, xoz, and yoz planes for parallel

processing. Each projection plane performs voxelization,
partition weighting, and weight optimization. The effective
coefficients for each plane are then computed based on the
weighted effective ratio (Equation 7) and synthesized into a 3D

effective volume coefficient EVC (Equation 5).

Result output: The model automatically calculates the fruit tree

canopy effective volume V, (Equation 9) and outputs the result.

iv.

2.7 Experimental validation design

In orchards, the canopy effective volume of fruit trees cannot be
measured using the projection method due to orchard planting
patterns and field conditions. However, simulated fruit trees can
measure canopy effective volume in the laboratory. Therefore, this
study conducted both a simulated fruit tree experiment and an
orchard experiment. The simulated fruit tree experiment was used
to verify the feasibility and accuracy of the method and to evaluate
its effectiveness in removing canopy porosity by comparing it with
current approaches. The orchard experiment was conducted to
assess the applicability of the method in complex environments.

Six simulated fruit trees with removable branches were used as
experiment subjects to simulate canopy volume changes by varying
the number of branches. Each simulated fruit tree was designed with
four different branch combinations, and the experiment was repeated
4 times, resulting in a total of 24 tree samples. The experimental
procedure included the following steps: (1) operating the inspection
trolley to acquire point cloud data (Figure 9a); (2) measuring canopy
effective volume in the laboratory environment (Figure 9b); (3) using
the EV method to predict the canopy effective volume, and evaluating
its performance through the metrics of the coefficient of
determination (R?), the root mean square error (RMSE), and the
mean absolute error (MAE); and (4) comparing the prediction results
with those obtained from the ASBS, CHBS, and VB method, while
quantifying the porosity removal effect using the volume reduction
rate. The volume reduction rate can be calculated using Equation 10:

ch B VEV

VC m

VRR = (10)
Where VRR is volume reduction ratio, V,,, is the calculation
result of the current method, and Vpy is the calculation result of the
EV method.
During the experiment, the number of slices used in both the ASBS
and CHBS algorithms was set to 10; that is, the canopy point cloud data
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FIGURE 8
Workflow of the fruit tree canopy effective volume calculation model.

were divided into 10 equal layers along the Z-axis for volume
calculation (Yan et al, 2019). The voxel size parameter of the VB
algorithm was set to 1/15 of the canopy diameter (Lecigne et al., 2018).

The collected orchard point cloud data also employed the EV,
ASBS, CHBS, and VB methods to predict canopy volume. The volume

Frontiers in Plant Science 11

reduction rate of the EV method was then calculated relative to the
other methods. The results were compared with those obtained in the
simulated fruit tree experiment to determine whether consistent trends
were observed, thereby assessing the stability and applicability of the
EV method in complex orchard environments.
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FIGURE 9

Simulated fruit tree experiment. (a) Point cloud data acquisition. (b) Projection-based measurement method.

3 Results

3.1 Simulated fruit tree experiment results
and analysis

3.1.1 EV algorithm predicted results compared to
measured values

The predicted values of canopy effective volume calculated by
the EV method were analyzed in comparison with the manual
measurements (Figure 10a). In the figure, black lines represent the
measured values, while red lines denote the predicted values from
the model. The results demonstrate that the proposed method can
accurately predict the canopy effective volume of fruit trees with
varying canopy sizes, showing a high degree of consistency between
the predicted and measured values. Evaluation metrics for the EV
method’s prediction performance: R? is 0.9720, RMSE is 0.0203 m”,
and MAE is 0.0191. These evaluation metrics fully confirm that this
method achieves high accuracy in predicting the canopy effective
volume of fruit trees.

Figure 10b showed that the measured values were generally
slightly higher than the predicted values. This phenomenon can be
attributed to the measurement principle of the projection method,
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FIGURE 10
EV method predictions and canopy effective volume measurements.

Frontiers in Plant Science

12

which utilizes a point light source to illuminate the fruit tree
canopy, thereby generating a projection. The divergent nature of
the light leads to an amplification effect, resulting in a projection
size larger than the actual size of the canopy. Specifically, the
projected size of the leaf near the light source side is larger than
the leaf itself when projected onto the rear canopy, thus obscuring
some of the rear porosity. This results in a high calculation of the
effective coefficient, which ultimately leads to a systematic
overestimation of the measured canopy effective volume.

3.1.2 Comparison of EV method predictions with
current methods

In this study, the proposed EV algorithm was compared and
analyzed with current canopy volume estimation methods,
including the ASBS, CHBS, and VB algorithms. The 3D
reconstruction models of the fruit tree canopy, generated using
the four algorithms, are illustrated in Figure 11, and their
corresponding volume calculations are presented in Figure 12a.
The volume relationship among the methods is as follows: Vcgps >
Vve > Vasgs > Vv

The CHBS algorithm reconstructs the canopy by slicing the
point cloud along the vertical direction and treating each slice as a
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FIGURE 11

Canopy reconstruction results using different algorithms. (a) EV. (b) ASBS. (c) CHBS. (d) VB.

——VB

\,o

9 —9. at
12} o /o \‘.. P 3/
LG <o~ N\~ 9—g—9—0—9,
o 3 Do
& o ~a—g-09

99
P A \ o 0 —o— CHBS
4 ~ a4
9 9—Q ] 9—0—0—0—9, "
0/ N7 Ng o 00

—o— ASBS

Canopy Volume(m®)

S © - —~—0 © = =S © — =—

9
9 o~ Q
TN o2~
90— o /g-o\a_o—o\
& 97 T0—9—9—o

—9o—EV

9. 9
-9, 99" Ng—g—9—0—, 9.
o=t 99— 2 7N /0\?,o~o/ No—9~0—g—0—0

0 5 10 15 20 25
Tree Number

S o b o o b o o b

FIGURE 12

0.8 -

e
Q
T

e
=N
T
»

1=}
»n
T
. s

Volume Reduction Rate

N
~
T

03 1 1 1
EV-ASBS EV-CHBS EV-VB

Comparison of predicted results with current methods for simulated fruit trees. (@) Comparison of results from different methods. (b) Volume

reduction rate of the EV method relative to other methods.

convex polyhedron (Figure 11c). This method encompasses a
significant amount of canopy porosity and surface concavity
within each convex hull, resulting in a reconstructed model that
exceeds the actual canopy boundary and, thus, produces the largest
volume estimate among the four methods. The ASBS algorithm also
employs a slicing approach but constructs non-convex boundaries
for each layer of the point cloud by defining the radius parameter o
(Figure 11b). This allows the algorithm to capture depressions and
some internal porosity on the canopy surface. Since these regions
are preserved rather than filled, the estimated volume is relatively
lower and closer to the actual volume of the canopy. The VB
algorithm divides the 3D space into uniform cubic voxels
(Figure 11d) and estimates volume by checking whether point
cloud data occupies the voxels. While it can identify porosity
larger than the voxel edge length, it fails to resolve fine-scale
surface depressions or internal porosity smaller than the voxel
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size. Therefore, its calculation results are intermediate between
the CHBS and ASBS algorithms. The EV algorithm first
reconstructs the canopy using the AS algorithm (Figure 11a),
preserving surface depressions, and then applies an effective
volume coefficient to remove internal porosity from the
reconstructed model. Consequently, the EV algorithm yields the
smallest volume estimate, which most closely reflects the accurate
effective volume of the canopy.

To evaluate the effectiveness of the EV method in calculating
canopy effective volume, the volume reduction rates of its results
were computed relative to those of the ASBS, CHBS, and VB
methods. The distribution characteristics of these reduction rates
are illustrated in Figure 12b. The results show that the average
volume reduction rates of the EV method compared to the ASBS,
CHBS, and VB methods were 0.5101, 0.6953, and 0.6213,
respectively. The distribution of the volume reduction rates
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conformed to a normal distribution as a whole. These results
indicate that the EV method has high stability in calculating the
canopy effective volume and can effectively remove canopy porosity.

3.2 Orchard experiment results and
analysis

The point cloud data in the orchard environment was collected
and preprocessed to extract the fruit tree canopy point cloud data in
the reconstructed area. Four algorithms, the EV, ASBS, CHBS, and
VB methods, were used to calculate the canopy volume,
respectively, and the results are presented in Figure 13a. The
volume relationship measured by the four algorithms is Vigps >
Ve > Vasps > Viy, consistent with the results of the simulated fruit
tree experiments. Furthermore, the volume reduction rate of the EV
algorithm relative to the other three methods was calculated, and
the distribution characteristics is shown in Figure 13b. The average

10.3389/fpls.2025.1679027

ASBS, CHBS, and VB algorithms were 0.4261, 0.6584, and 0.5581,
respectively. The distribution of the volume reduction rates also
aligns with the results observed in the simulated fruit tree
experiments. These findings indicate that the EV algorithm
performs well in the complex orchard environment and effectively
addresses the overestimation of canopy volume caused by the
inclusion of internal porosity in current prediction methods.

3.3 Prediction results using different voxel
sizes

Table 1 lists the mean values of canopy effective volume calculated
by the EV method, along with the performance evaluation metrics (R?,
RMSE, and MAE), under different voxel sizes expressed as multiples of
the average nearest neighbor distance (d,,) of the projected point
cloud. The result showed that voxel size had a significant impact on the
results of canopy effective volume calculation. When the voxel size is set

volume reduction rates of the EV algorithm compared with the  to 0.8xd,,, the calculated average effective volume is 0.1813, which is
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FIGURE 13

Comparison of predicted results with current methods for fruit trees. (a) Comparison of results from different methods. (b) Volume reduction rate of

the EV method relative to other methods.

TABLE 1 Predicted results for different voxel sizes.

Algorithm Voxel size Average of volume predictions
0.8Xdg 0.1813
0.85%Xd, 02151
09X,y 02508
0.95X 1, 0.2899
EV 1X g 03231
1.05Xd, g 03603
11%dg 0.3962
1.15xd 0.4340
1.2%d 0 0.4690
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Average of volume measurements ~ R?

0.3422 20,9977 | 01710 0.1609
03422 -0.2455 | 01350  0.1271
0.3422 03665 | 0.0963 | 0.0913
03422 07902 | 00554  0.0522
0.3422 09720 | 00203  0.0191
03422 09661 | 00223 | 0.0184
0.3422 07526 | 0.0602 | 0.0540
03422 03401 | 0.0983  0.0919
0.3422 0.2795 | 01368  0.1268
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only about 40% of the value obtained with a voxel size of 1.2xd,,.. By
comparing the results in Table 2 and meeting the requirement that the
predicted value should be less than the measured value, it is evident that

the effective volume calculated with a voxel size of 1xd,,, is closest to

ﬂ'l/g
the measured value. Under this condition, the EV method achieves an
R? of 0.9720, an RMSE of 0.0203 m>, and an MAE of 0.0191. These
results consistently demonstrate that the EV method yields the lowest

prediction error and best overall fit when the voxel size is set to 1xd,,.

3.4 Prediction results using different
partition sizes

Table 2 lists the mean values of canopy effective volume calculated
by the EV method, along with the performance evaluation metrics (Rz,
RMSE, and MAE), under different partition sizes expressed as multiples
of the voxel sizes(VS) of the projected point cloud. The result showed
that the partition size also had a significant eftect on the effective volume
calculation results. By comparing the data in Table 2 and meeting the
requirement that the predicted values should be less than the measured
value, it can be determined that the effective volume calculated by the
EV method is closest to the measured value when the partition size is
set to 5 x VS. Under these conditions, the method achieves the lowest
prediction error (RMSE = 0.0203 m>, MAE = 0.0191) and demonstrates
the best overall stability (R* = 0.9720).

4 Discussion

Currently, common methods for calculating the canopy volume of
fruit trees (such as ASBS, CHBS, and VB algorithms) usually treat the
canopy as a solid object and calculate the volume by reconstructing its
surface model (Zhu et al., 2021). However, the fruit tree canopy is not a
solid body and contains a substantial amount of internal porosity. If the
variable spray decision is based on the volume of the canopy containing
porosity, it can lead to over-spraying, making it difficult to achieve truly
precise spray. In contrast, the EV method proposed in this study
effectively addresses the problem of volume overestimation caused by
internal porosity in current methods by introducing the canopy

TABLE 2 Prediction results for different partition sizes.

Algorithm Voxel size Average of volume predictions
2xVS 0.3892
3xVS 03715
4xVS 03588
5% VS 03231
EV 6xVS 03108
7xVS 0.3006
8xVS 0.2940
9xVS 0.2856
10xVS 0.2805
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effective volume coefficient, which quantifies the influence of porosity
on canopy volume calculations.

4.1 Discussion on key parameters of the EV
method

4.1.1 Voxel size

Figure 14 presents the results of processing the fruit tree canopy
point cloud data in the yoz projection plane using different voxel sizes.
It can be observed that as the voxel size increases, the percentage of the
effective voxel area also increases. This phenomenon highlights the
critical impact of voxel size selection on the performance of the EV
algorithm. When the voxel size is set too small (Figure 14a), the effective
voxels may fail to fully cover the actual effective canopy area due to the
insufficient density of the point cloud data. This leads to an
underestimation of the calculated planar effective coefficients, which
in turn will result in a small effective volume in the final calculation.
Conversely, when the voxel size is set too large (Figure 14c), the actual
spatial extent represented by a single point cloud data point becomes
exaggerated. This causes an overestimation of the planar effective
coefficient, ultimately leading to an inflated effective volume calculation.

4.1.2 Partition size

Figure 15 illustrates the distribution of weights for each partition
computed from the fruit tree canopy point cloud data in the yoz
projection plane using different partition sizes. The weights are
determined by the canopy thickness of the reconstruction model in
the projection direction of the corresponding partition. The choice of
partition size has a significant impact on the accuracy of weight
calculation and the final estimation of canopy effective volume. When
the partition size is set too small (Figure 15a), the weights obtained from
the pointless cloud partitioning calculation tend to be smaller than the
actual weights, leading to the overestimation of the planar effective
coefficients and, consequently, a calculated effective volume that is too
large. Conversely, when the partition size is set too large (Figure 15¢),
each partition usually contains a large amount of point cloud data and
covers a wide area. In such cases, some voxels within the partition that
lack point cloud data may be assigned higher weights than they should,

Average of volume measurements R? RMSE MAE

0.3422 0.8175 | 0.0517 0.0471
0.3422 0.9308 | 0.0318 0.0293
0.3422 0.9782 | 0.0179 0.0167
0.3422 0.9720 | 0.0203 0.0191
0.3422 0.9237 | 0.0334 0.0313
0.3422 0.8658 | 0.0443 0.0416
0.3422 0.8246 | 0.0507 0.0481
0.3422 0.7564 | 0.0597 0.0566
0.3422 0.7074 | 0.0654 0.0617
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FIGURE 15
Effect of different partition sizes. (a) 2xVS. (b) 5xVS. (c) 10xVS.

which results in an underestimation of the planar effective coefficient

and, ultimately, a lower calculated canopy effective volume.

4.2 The difference in predictive
performance between simulated and
actual fruit trees for each method

Differences in canopy structure result in different prediction
performances between simulated and actual fruit trees for each
method. Simulated fruit trees are artificially constructed with dense
branches, smaller internal porosity, smoother surfaces, and relatively

fewer surface depressions. In contrast, actual fruit trees grow naturally

with sparser branches, larger internal porosity, and relatively more

surface depressions. The complex, non-convex structure of actual fruit
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trees is precisely what the ASBS method excels at handling when
predicting their volume. Furthermore, during the slicing process, larger
porosity sizes within actual fruit trees are better identified and removed,
thereby improving the prediction performance of the ASBS method in
real fruit trees. When predicting actual fruit trees, the CHBS method
contains more surface depressions in its reconstructed model due to the
complex, non-convex structure of real trees. However, during the
slicing process, internal porosity within the trees is better identified
and removed. With the combined effect of these two factors, the
prediction performance of the CHBS method also improves for actual
fruit trees, though not as significantly as that of the ASBS method. The
VB method can only identify porosity larger than its voxel size. The
larger internal porosity in actual fruit trees compared to simulated
results allows the VB method to better demonstrate its identification
capabilities, thereby improving prediction accuracy. the EV method,
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benefiting from the effective volume coefficient, can precisely quantify
the effective volume after removing canopy porosity, resulting in
relatively stable prediction performance for both simulated and
actual fruit trees.

The results of simulated fruit tree experiments showed that the
volume reduction rates for the EV method compared to the ASBS,
CHBS, and VB methods were 0.5101, 0.6953, and 0.6213, respectively.
In actual orchard experiments, these values were 0.4261, 0.6584, and
0.5581, respectively. The ASBS, CHBS, and VB methods have
improved prediction performance in actual fruit trees due to their
better handling of large-size porosity, reducing the gap with the EV
method’s predictions. This corresponds with our experimental data
and indirectly confirms the EV method’s stability when applied to
canopy structures containing porosity at different sizes.

4.3 Discussion on further research

This study proposes a method for calculating the canopy effective
volume of fruit trees. By introducing an effective volume coefficient, it
enables precisely quantify the effective volume after removing canopy
porosity. However, there are still some shortcomings:

1. This study used the projection method to measure the actual
values of canopy effective volume in fruit trees. However, this
method is influenced by factors such as the divergent nature of
light source, leading to systematic error that causes
overestimation of results. Therefore, the results measured by
the projection method can serve as a relatively conservative
reference standard, but precise measurement methods for
actual canopy effective volume still require further research.

. In this study, when discussing the optimal values of the key
parameters voxel size and partition size, the accuracy of the
distribution of their values is not refined enough. In future
work, more precise optimal parameter values could be
determined by combining deep learning with other
advanced methods to enhance prediction accuracy further.

5 Conclusion

This study aims to accurately quantify the canopy effective volume
after removing canopy porosity and provides a method for calculating
the canopy effective volume of fruit trees based on LiDAR point cloud
data. First, a data preprocessing approach was developed specifically for
the standardized tall spindle orchard point cloud data, enabling the
effective extraction of fruit tree canopy point clouds and the
segmentation of 3D reconstruction areas. Based on this, an alpha-
shape canopy reconstruction method based on dynamic parameter
optimization was developed for reconstructing canopy regions, and an
effective volume coefficient calculation model was constructed. The
study analyzed and clarified the influence of core parameters voxel size
and partition size on the performance of the method. The method was
validated through both simulated fruit tree and orchard experiments.
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Results demonstrate that the EV method can accurately measure the
canopy volume of fruit trees, providing the basis for precise spray
technology in orchards. The main conclusions are as follows:

1. A pre-processing procedure of canopy extraction and 3D
reconstruction area segmentation for standardized tall spindle
orchard point cloud data was developed. An alpha-shape
canopy reconstruction method based on dynamic parameter
optimization was developed, and the canopy effective volume
coefficient was constructed. The effects of voxel size and
partition size on the calculation of the effective volume
coefficient were analyzed. The optimal parameter values were
determined to be the average nearest neighbor distance of the
point cloud and five times the voxel size, respectively, based on
the density of the canopy point cloud data.

. The simulated fruit tree experiment results show that the
canopy effective volume predicted by the EV method has high
accuracy and stability, with evaluation metrics R*, RMSE, and
MAE values of 0.9720, 0.0203 m’, and 0.0191, respectively.
Compared with the prediction results of the ASBS, CHBS, and
VB methods, the volume reduction rates were 0.5101, 0.6953,
and 0.6213, respectively. The influence of canopy porosity on
the volume prediction could be effectively removed. In
addition, the orchard experiment results followed a similar
trend to the simulated fruit tree experiment results, confirming
the method’s applicability in complex orchard environments.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Written informed consent was obtained from the individual(s) for
the publication of any identifiable images or data included in this article.

Author contributions

HM: Data curation, Formal Analysis, Visualization, Writing —
original draft. KW: Formal Analysis, Validation, Writing - original
draft. JM: Data curation, Validation, Writing - review & editing. SJ:
Resources, Writing - review & editing. PL: Data curation,
Visualization, Writing - review & editing. CY: Writing — review
& editing. DW: Methodology, Supervision, Writing - review &
editing. HWC: Data curation, Resources, Writing — review &
editing. HYC: Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This study is supported by

frontiersin.org


https://doi.org/10.3389/fpls.2025.1679027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ma et al.

the Key Research and Development Project of Henan Province
(241111111300), the National Key Research and Development
Program of China (2023YFD2000013), the China Postdoctoral
Science Foundation under Grant Number (2024M760803), the
Science and Technology Project of Henan Province (252102111179),
the Key Research Programs of Higher Education Institutions in Henan
Province (25B416007).

Acknowledgments

Appreciations are given to the editor and reviewers of
the Journal.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Bienert, A., Hess, C., Maas, H., and Von Oheimb, G. (2014). A voxel-based technique
to estimate the volume of trees from terrestrial laser scanner data. ISPRS Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 40, 101-106. doi: 10.5194/isprsarchives-XL-
5-101-2014

Cao, Y., Wang, N., Wu, B,, Zhang, X., Wang, Y., Xu, S,, et al. (2025). A novel adaptive
cuboid regional growth algorithm for trunk-branch segmentation of point clouds from
two fruit tree species. Agriculture 15, 1463. doi: 10.3390/agriculture15141463

Chakraborty, M., Khot, L., Sankaran, S., and Jacoby, P. (2019). Evaluation of mobile
3D light detection and ranging based canopy mapping system for tree fruit crops.
Comput. Electron. Agric. 158, 284-293. doi: 10.1016/j.compag.2019.02.012

Cheein, F., and Guivant, J. (2014). SLAM-based incremental convex hull processing
approach for treetop volume estimation. Comput. Electron. Agric. 102, 19-30.
doi: 10.1016/j.compag.2014.01.002

Colago, A., Trevisan, R., Molin, J., Rosell-Polo, J., and Escola, A. (2017). Orange tree
canopy volume estimation by manual and LiDAR-based methods. Adv. Anim. Biosci. 8,
477-480. doi: 10.1017/52040470017001133

Dong, X., Kim, W., and Lee, K. (2021). Drone-based three-dimensional
photogrammetry and concave hull by slices algorithm for apple tree volume
mapping. J. Biosyst. Eng. 46, 474-484. doi: 10.1007/s42853-021-00120-y

Dong, X, Kim, W., Yu, Z,, Oh, ], Ehsani, R,, and Lee, K. (2024). Improved voxel-
based volume estimation and pruning severity mapping of apple trees during the
pruning period. Comput. Electron. Agric. 219, 108834. doi: 10.1016/
j.compag.2024.108834

Fernandez-Sarria, A., Lopez-Cortés, I, Estornell, J., Velazquez-Marti, B., and Salazar,
D. (2019). Estimating residual biomass of olive tree crops using terrestrial laser
scanning. Int. J. Appl. Earth Obs. Geoinf. 75, 163-170. doi: 10.1016/.jag.2018.10.019

Gao, P, Jiang, J., Song, J., Xie, F., Bai, Y., Fu, Y., et al. (2021). Canopy volume
measurement of fruit trees using robotic platform loaded LiDAR data. IEEE Access 9,
156246-156259. doi: 10.1109/ACCESS.2021.3127566

Gu, C,, Zhai, C., Wang, X., and Wang, S. (2021). CMPC: an innovative Lidar-based
method to estimate tree canopy meshing-profile volumes for orchard target-oriented
spray. Sensors 21, 4252. doi: 10.3390/521124252

Guo, N, Xu, N,, Kang, J., Zhang, G., Meng, Q., Niu, M,, et al. (2025). A study on
canopy volume measurement model for fruit tree application based on liDAR point
cloud. Agriculture 15, 130. doi: 10.3390/agriculture15020130

Hadas, E., Borkowski, A., Estornell, J., and Tymkow, P. (2017). Automatic estimation
of olive tree dendrometric parameters based on airborne laser scanning data using
alpha-shape and principal component analysis. GISci. Remote Sens. 54, 898-917.
doi: 10.1080/15481603.2017.1351148

Hosoi, F., Nakai, Y., and Omasa, K. (2013). 3-D voxel-based solid modeling of a
broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS
J. Photogramm. Remote Sens. 82, 41-48. doi: 10.1016/j.isprsjprs.2013.04.011

Frontiers in Plant Science

18

10.3389/fpls.2025.1679027

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Huang, Y., Ren, Z., Li, D, and Liu, X. (2020). Phenotypic techniques and applications
in fruit trees: a review. Plant Methods 16, 1-22. doi: 10.1186/s13007-020-00649-7

Johansen, K., Raharjo, T., and McCabe, M. (2018). Using multi-spectral UAV
imagery to extract tree crop structural properties and assess pruning effects. Remote
Sens. 10, 854. doi: 10.3390/rs10060854

Lecigne, B., Delagrange, S., and Messier, C. (2018). Exploring trees in three dimensions:
VoxR, a novel voxel-based R package dedicated to analysing the complex arrangement of
tree crowns. Ann. Bot. 121, 589-601. doi: 10.1093/aob/mcx095

Li, W., Tang, B., Hou, Z., Wang, H., Bing, Z., Yang, Q., et al. (2024). Dynamic slicing
and reconstruction algorithm for precise canopy volume estimation in 3D citrus tree
point clouds. Remote Sens. 16, 2142. doi: 10.3390/rs16122142

Liu, H,, Du, Z, Shen, Y., Du, W., and Zhang, X. (2024). Development and evaluation
of an intelligent multivariable spraying robot for orchards and nurseries. Comput.
Electron. Agric. 222, 109056. doi: 10.1016/j.compag.2024.109056

Liu, L., Liu, Y., He, X,, and Liu, W. (2022). Precision variable-rate spraying robot by
using single 3D LIDAR in orchards. Agronomy 12, 2509. doi: 10.3390/
agronomy12102509

Liu, X,, Wang, Y., Kang, F., Yue, Y., and Zheng, Y. (2021). Canopy parameter
estimation of citrus grandis var. Longanyou based on Lidar 3d point clouds. Remote
Sens. 13, 1859. doi: 10.3390/rs13091859

Meshram, A., Vanalkar, A., Kalambe, K., and Badar, A. (2022). Pesticide spraying
robot for precision agriculture: A categorical literature review and future trends. J. Field
Robot. 39, 153-171. doi: 10.1002/r0b.22043

Qi, Y., Dong, X., Chen, P., Lee, K, Lan, Y., Lu, X,, et al. (2021). Canopy volume
extraction of citrus reticulate blanco cv. shatangju trees using UAV image-based point
cloud deep learning. Remote Sens. 13, 3437. doi: 10.3390/rs13173437

Qiu, Q, Sun, N, Bai, H., Wang, N,, Fan, Z., Wang, Y., et al. (2019). Field-based high-
throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a
“Phenomobile. Front. Plant Sci. 10, 554. doi: 10.3389/fpls.2019.00554

Salcedo, R., Zhu, H., Zhang, Z., Wei, Z., Chen, L., Ozkan, D,, et al. (2020). Foliar
deposition and coverage on young apple trees with PWM-controlled spray systems.
Comput. Electron. Agric. 178, 105794. doi: 10.1016/j.compag.2020.105794

Siebers, M., Fu, P., Blakely, B., Long, S., Bernacchi, C., and McGrath, J. (2024). Fast,
nondestructive and precise biomass measurements are possible using lidar-based
convex hull and voxelization algorithms. Remote Sens. 16, 2191. doi: 10.3390/
rs16122191

Sun, D, Quan, Z., Wu, P, Liu, W., Xue, X, Song, S., et al. (2024). Design and testing
of a fruit tree variable spray system based on exG-AABB. Agronomy 14, 2199.
doi: 10.3390/agronomy14102199

Sun, H, Ye, Q,, Chen, Q, Fu, L,, Xu, Z,, and Hu, C. (2024). Tree canopy volume
extraction fusing ALS and TLS based on improved pointNeXt. Remote Sens. 16, 2641.
doi: 10.3390/rs16142641

frontiersin.org


https://doi.org/10.5194/isprsarchives-XL-5-101-2014
https://doi.org/10.5194/isprsarchives-XL-5-101-2014
https://doi.org/10.3390/agriculture15141463
https://doi.org/10.1016/j.compag.2019.02.012
https://doi.org/10.1016/j.compag.2014.01.002
https://doi.org/10.1017/S2040470017001133
https://doi.org/10.1007/s42853-021-00120-y
https://doi.org/10.1016/j.compag.2024.108834
https://doi.org/10.1016/j.compag.2024.108834
https://doi.org/10.1016/j.jag.2018.10.019
https://doi.org/10.1109/ACCESS.2021.3127566
https://doi.org/10.3390/s21124252
https://doi.org/10.3390/agriculture15020130
https://doi.org/10.1080/15481603.2017.1351148
https://doi.org/10.1016/j.isprsjprs.2013.04.011
https://doi.org/10.1186/s13007-020-00649-7
https://doi.org/10.3390/rs10060854
https://doi.org/10.1093/aob/mcx095
https://doi.org/10.3390/rs16122142
https://doi.org/10.1016/j.compag.2024.109056
https://doi.org/10.3390/agronomy12102509
https://doi.org/10.3390/agronomy12102509
https://doi.org/10.3390/rs13091859
https://doi.org/10.1002/rob.22043
https://doi.org/10.3390/rs13173437
https://doi.org/10.3389/fpls.2019.00554
https://doi.org/10.1016/j.compag.2020.105794
https://doi.org/10.3390/rs16122191
https://doi.org/10.3390/rs16122191
https://doi.org/10.3390/agronomy14102199
https://doi.org/10.3390/rs16142641
https://doi.org/10.3389/fpls.2025.1679027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ma et al.

Underwood, J., Hung, C., Whelan, B., and Sukkarieh, S. (2016). Mapping almond
orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Comput.
Electron. Agric. 130, 83-96. doi: 10.1016/j.compag.2016.09.014

Vonderach, C., Voegtle, T., and Adler, P. (2012). Voxel-based approach for estimating
urban tree volume from terrestrial laser scanning data. ISPRS Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 39, 451-456. doi: 10.5194/isprsarchives-XXXIX-B8-451-2012

Walter, J., Edwards, J., McDonald, G., and Kuchel, H. (2019). Estimating biomass
and canopy height with LiDAR for field crop breeding. Front. Plant Sci. 10, 1145.
doi: 10.3389/fpls.2019.01145

Wang, F, Jia, W., Guo, H., Zhang, X,, Li, D., Li, Z, et al. (2024). Point cloud-based
crown volume improves tree biomass estimation: Evaluating different crown volume
extraction algorithms. Comput. Electron. Agric. 225, 109288. doi: 10.1016/
j.compag.2024.109288

Wang, K., Zhou, J., Zhang, W., and Zhang, B. (2021). Mobile LiDAR scanning system
combined with canopy morphology extracting methods for tree crown parameters
evaluation in orchards. Sensors 21, 339. doi: 10.3390/s21020339

Frontiers in Plant Science

19

10.3389/fpls.2025.1679027

Wang, M., Dou, H., Sun, H., Zhai, C,, Zhang, Y., and Yuan, F. (2023). Calculation method
of canopy dynamic meshing division volumes for precision pesticide application in orchards
based on lidar. Agronomy 13, 1077. doi: 10.3390/agronomy13041077

Xu, W., Feng, Z., Su, Z.,, Xu, H,, Jiao, Y., and Deng, O. (2014). An automatic
extraction algorithm for individual tree crown projection area and volume based on 3D
point cloud data. Spectrosc. Spectral Anal. 34, 465-471. doi: 10.3964/j.issn.1000-0593
(2014)02-0465-07

Yan, Z, Liu, R., Cheng, L., Zhou, X., Ruan, X., and Xiao, Y. (2019). A concave hull
methodology for calculating the crown volume of individual trees based on vehicle-
borne LiDAR data. Remote Sens. 11, 623. doi: 10.3390/rs11060623

Zhou, H., Zhang, J., Ge, L., Yu, X,, Wang, Y., and Zhang, C. (2021). Research on
volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and
clustering segmentation. Int. J. Remote Sens. 42, 738-755. doi: 10.1080/
01431161.2020.1811917

Zhu, Z., Kleinn, C., and Nélke, N. (2021). Assessing tree crown volume—A review.
Forestry 94, 18-35. doi: 10.1093/forestry/cpaa037

frontiersin.org


https://doi.org/10.1016/j.compag.2016.09.014
https://doi.org/10.5194/isprsarchives-XXXIX-B8-451-2012
https://doi.org/10.3389/fpls.2019.01145
https://doi.org/10.1016/j.compag.2024.109288
https://doi.org/10.1016/j.compag.2024.109288
https://doi.org/10.3390/s21020339
https://doi.org/10.3390/agronomy13041077
https://doi.org/10.3964/j.issn.1000-0593(2014)02-0465-07
https://doi.org/10.3964/j.issn.1000-0593(2014)02-0465-07
https://doi.org/10.3390/rs11060623
https://doi.org/10.1080/01431161.2020.1811917
https://doi.org/10.1080/01431161.2020.1811917
https://doi.org/10.1093/forestry/cpaa037
https://doi.org/10.3389/fpls.2025.1679027
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Calculation method of canopy effective volume for fruit tree based on LiDAR point cloud data
	1 Introduction
	2 Materials and methods
	2.1 Experimental area
	2.2 Point cloud acquisition equipment and methods
	2.3 Measurement method of canopy effective volume
	2.4 Data preprocessing
	2.4.1 Removing noise points and ground filtering
	2.4.2 Dividing the area for 3D reconstruction

	2.5 Calculation of canopy effective volume of fruit trees
	2.5.1 Canopy reconstruction and reconstruction model volume calculation
	2.5.2 Calculation of effective volume coefficient

	2.6 Calculation model construction of canopy effective volume of fruit trees
	2.7 Experimental validation design

	3 Results
	3.1 Simulated fruit tree experiment results and analysis
	3.1.1 EV algorithm predicted results compared to measured values
	3.1.2 Comparison of EV method predictions with current methods

	3.2 Orchard experiment results and analysis
	3.3 Prediction results using different voxel sizes
	3.4 Prediction results using different partition sizes

	4 Discussion
	4.1 Discussion on key parameters of the EV method
	4.1.1 Voxel size
	4.1.2 Partition size

	4.2 The difference in predictive performance between simulated and actual fruit trees for each method
	4.3 Discussion on further research

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


