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Non-destructive detection
of Phyllostachys edulis under
salt stress using UHF RFID
based on Cole-Cole model
optimization algorithm
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The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry
University, Nanjing, China

Introduction: Salt stress disrupts cellular osmotic balance in Phyllostachys edulis,
alters leaf ion distribution and thereby affects dielectric properties. To meet the
demand for non-destructive salt stress detection, this study proposes a
diagnostic method integrating multi-physics field coupling characteristics.
Methods: Based on the mechanism of salt stress regulating ion concentration in
cell sap, a Cole-Cole dielectric model detection framework was constructed by
analyzing intrinsic correlations between RFID backscattering signal features and
medium dielectric properties. An improved Particle Swarm Optimization (C-T-
PSO) algorithm employing Chebyshev chaotic mapping for population
initialization and t-distribution dynamic perturbation mechanism was developed
to synergistically optimize Cole-Cole model parameters.

Results: Experimental verification showed the C-T-PSO-Cole-Cole hybrid
model exceeded 93% in all core metrics (accuracy, precision, recall, F1-score).
Comparative experiments with six swarm intelligence optimization algorithms
confirmed the model's comprehensive superiority. Convergence curve analysis
based on standard test functions demonstrated faster and more stable
convergence of the C-T-PSO algorithm. The final model achieved non-
destructive diagnosis of salt stress in P. edulis using UHF RFID technology with
95.3% accuracy.

Discussion: The hybrid model provides an effective real-time monitoring tool for
salinized soil management in bamboo forests, validating the feasibility of salt
stress detection through dielectric property analysis.

Phyllostachys edulis, salt stress diagnosis, dielectric properties, C-T-PSO-Cole-Cole
hybrid model, UHF RFID
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1 Introduction

Phyllostachys edulis, as one of the most widely distributed and
economically valuable bamboo species in China, plays an
indispensable role not only in pulp and paper production,
construction, furniture, and landscape architecture, but also
demonstrates unique value in maintaining ecological balance and
enhancing climate change resilience (Liu et al., 2020; Fu et al., 2024).
However, with the increasing severity of soil salinization, salt stress
has become a critical environmental factor constraining the growth
of P. edulis (Zhu et al., 2025). Salt stress disrupts osmotic
homeostasis within bamboo cells, significantly alters ion
distribution across leaf cell membranes, and consequently affects
its dielectric properties and overall physiological function (Singhal
et al., 2021). Specifically, salt stress markedly inhibits the growth of
P. edulis seedlings, manifested as reduced plant height and leaf
number, increased leaf curling, and intensified chlorosis.
Concurrently, salt stress induces an imbalance in the Na™/K"
ratio within the plant. Excessive Na' accumulation exerts
cytotoxic effects. To combat salt stress, P. edulis upregulates the
expression of Na*/H" antiporter (NHX) genes, compartmentalizing
excess Na' into vacuoles to reduce cytosolic Na™ concentration
(Zhao et al., 2021). Furthermore, salt stress significantly decreases
chlorophyll content in seedlings, impairing photosynthetic
efficiency and leading to reductions in key photosynthetic
parameters such as net photosynthetic rate and stomatal
conductance. These alterations not only reveal the detrimental
effects of salt stress on P. edulis growth but also provide crucial
directions for in-depth research into its salt tolerance mechanisms
and the development of salt-resistant cultivars.

Traditional methods for monitoring salt stress exhibit
significant limitations. Regarding physiological and biochemical
indicator measurements, researchers assess the impact of salt
stress on Phyllostachys edulis by quantifying leaf chlorophyll
content, electrolyte leakage rate (Boshimeniuci et al., 2022),
proline content, malondialdehyde (MDA) content, and protective
enzyme activities. While these metrics directly reflect physiological
alterations under salt stress, changes in certain indicators may lag
behind the actual stress impact, limiting real-time assessment. In
molecular biology techniques, researchers such as Sun Yuanchang
and Du Juan have conducted transcriptome sequencing on
Phyllostachys edulis samples before and after salt stress treatment.
This approach identifies differentially expressed genes (DEGs) and
analyzes their associated metabolic pathways (Sun et al., 2022; Du
et al., 2024). Complemented by metabolomics, this method
quantifies stress-induced metabolic fluctuations to reveal
remodeling mechanisms in metabolic networks. However,
functional validation of identified DEGs remains cumbersome
and time-consuming. Recently, electrical signal characterization
has emerged as a novel method for plant stress research.
Researchers including Zhou Mingu collected electrical signals
from salt-stressed Phyllostachys edulis, applying signal processing
algorithms (e.g., wavelet transform, time-frequency analysis) for
noise reduction and feature extraction (Zhou et al., 2019). Analyses
of time-domain features (mean, root mean square), frequency-
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domain characteristics (marginal frequency, centroid frequency),
and time-frequency features (wavelet packet energy) reflect
physiological impacts of salt stress. While providing a new
perspective for stress evaluation, the high cost of precision signal
acquisition equipment hinders its widespread adoption.

Traditional methods for salt stress assessment predominantly
rely on destructive sampling, hindering dynamic monitoring and
limiting data acquisition frequency. Consequently, they fail to
comprehensively capture the transient physiological changes and
long-term adaptation processes in Phyllostachys edulis under salt
stress. Furthermore, while controlled laboratory experiments enable
precise regulation of salt concentration and stress duration, they
struggle to fully replicate the complex and variable environmental
conditions encountered in the field. Natural factors such as soil
type, microbial communities, and climatic variations cannot be
adequately reproduced, thereby compromising the ecological
validity of the research findings.

In recent years, non-destructive detection technologies have
proliferated, capturing significant research attention. Rubio et al.
employed ultra-weak photon emission (UPE) detection technology
to investigate the influence of external illumination on fruit UPE by
measuring both induced and spontaneous photon emissions from
fruits of different colors under natural light and artificial red, green,
and blue light. They also conducted a preliminary analysis of
photon emission differences between organic and conventional
fruits (Rubio et al., 2025). Moghimi et al. achieved quantitative
ranking and early detection of salt tolerance in wheat under salt
stress by combining hyperspectral imaging with machine learning
and image processing methods. This approach not only overcomes
the time-consuming and labor-intensive limitations of traditional
biomass measurements but also enables rapid assessment of wheat’s
response to salt stress as early as 1 day post-treatment, in the
absence of visible symptoms (Moghimi et al, 2018). Wu et al.
utilized microscopic hyperspectral imaging integrated with
chemometric modeling to realize microscopic detection of
peroxidase activity in tomato leaves under salt stress. This
method avoids the cumbersome steps associated with traditional
enzyme activity assays while also providing a visual representation
of the spatial distribution of enzyme activity, allowing for real-time
monitoring of the physiological responses of leaf cells to salt stress
(Wu et al., 2022).

Concurrently, sensor-based diagnostics for plant salt stress are
maturing rapidly. Zhang et al. constructed an electrochemical
sensor based on MWCNT-Ti3C2Tx-Pd nanocomposites, enabling
the detection of hydrogen peroxide release in Arabidopsis leaves
under salt stress, thereby providing a novel method for assessing
plant stress status (Zhang et al, 2022). The Steinhorst team
elucidated a mechanism where excess sodium ions trigger
primary calcium signals within specific cell populations in the
root tip differentiation zone, forming a “sodium-sensing
microenvironment”. This calcium signal transduction pathway
subsequently regulates plant salt tolerance (Steinhorst et al.,
2022). Furthermore, researchers like Wang et al. developed an in-
situ soil salinity monitoring system utilizing Wifi POGO
electromagnetic sensing technology. By integrating data on soil
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electrical conductivity and moisture content, this system enables
rapid assessment of soil salinization levels in saline-alkali lands,
providing crucial environmental monitoring support for plant salt
stress diagnosis (Wang et al., 2020).

The evolution of non-destructive detection technologies has
catalyzed breakthrough advancements in plant stress diagnostics.
Although existing detection methods still face technical bottlenecks
such as high cost, limited applicability, insufficient precision, and
elevated energy consumption, the rise of Internet of Things (IoT)
technology offers new pathways to overcome these challenges.
Notably, Radio Frequency Identification (RFID) technology,
leveraging its mature IoT application framework, demonstrates
significant advantages in agricultural and forestry sectors
(Daskalakis et al., 2019). This technology enables non-invasive,
real-time status perception and data acquisition from monitored
objects through wireless communication between radio frequency
signals and electronic tags. Its efficient and precise data processing
capabilities provide an innovative solution for non-destructive crop
monitoring (Costa et al., 2021).

Against this technological backdrop, several research teams
have pioneered innovative applications of RFID technology for
salinity measurement. Zhang’s team developed the Plant-Keeper
monitoring system, which integrates low-power wireless
communication with commercial RFID tags to track plant
physiological indicators and biological activities in real-time. This
includes monitoring water content and analyzing responses to
stressors such as mechanical damage, salinity, low temperature,
and drought (Zhang et al., 2021). Hillier’s research group modified
commercial RFID sensing tags using polydimethylsiloxane (PDMS)
film technology to create reusable passive RFID sensors. These
successfully achieved quantitative detection of electrolyte solution
concentration changes and demonstrated feasibility for monitoring
salt solution concentrations (Hillier et al., 2019). Sharif's team
proposed a low-cost solution based on inkjet printing technology,
developing a passive UHF RFID tag detection system. By analyzing
variations in tag backscattered power, this system enables rapid
detection of salt and sugar content in water bodies (Sharif et al,
2019). In addition to measuring salinity, Wu’s team leveraged UHF
RFID technology combined with hyperdimensional computing,
collecting leaf tag parameters including RSSI and phase. They
constructed a model enabling real-time, high-precision detection
of leaf water content (Wu et al., 2024).

Parallel to these advancements, deep learning technologies,
particularly Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) networks, have demonstrated
remarkable progress in plant stress detection. These approaches
excel at automatically extracting complex feature patterns and
exhibit outstanding classification accuracy along with powerful
end-to-end learning capabilities when applied to large-scale
datasets. For instance, Kamarudin et al. developed a lightweight
CNN model incorporating an attention mechanism that effectively
achieved water stress detection in plants using leaf images
(Kamarudin et al., 2023). Azimi et al. employed a CNN-LSTM
architecture that successfully captured visual temporal changes
induced by water stress throughout the complete growth cycle of
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chickpeas, enabling early and accurate diagnosis (Azimi et al,
2021). Meanwhile, Wang et al. integrated multi-source sensor
data with deep learning networks to accomplish simultaneous
high-precision classification of poplar varieties and their drought
stress levels (Wang et al.,, 2024).

Despite the impressive performance of these data-driven
methods, their widespread application faces several challenges:
Firstly, they typically require large-scale, high-quality datasets for
training; Secondly, their decision-making process resembles a
“black box” that lacks clear physical interpretability, making it
difficult to elucidate the intrinsic physiological mechanisms
underlying stress responses; Finally, their complex model
architectures present significant challenges for deployment on
resource-constrained edge computing devices such as portable
field monitors. Specifically regarding RFID signal analysis, while
CNNs could effectively process features such as reflected signal
strength and phase from tags, and LSTMs would be suitable for
modeling the temporal patterns of these parameters, these methods
fundamentally rely on learning statistical correlations from data
rather than revealing the biophysical principles underlying
signal variations.

As a classical dielectric relaxation model, the Cole-Cole model
provides a crucial theoretical framework for characterizing the
polarization behavior of complex dielectric materials through the
frequency-domain response characteristics of complex permittivity.
Originally proposed by the Cole brothers in 1941, this model
typically manifests as a characteristic semicircular or arc-shaped
trajectory in the complex permittivity plane, known as the Cole-
Cole semicircle. The geometric characteristics of this arc are
intrinsically linked to the polarization mechanisms of the material
(Fiandaca et al., 2018; Awal et al., 2024).

Since its inception, the Cole-Cole model has undergone
significant development and found extensive application across
multiple fields, including biomedical engineering. In biomedical
engineering, Lin’s team proposed a method based on a modified
Cole-Cole model for detecting trimethylamine N-oxide (TMAO) in
early-stage cardiovascular disease. By correlating analysis and
computational processing of experimental data, this approach
provides a novel pathway for early detection of the disease (Lin
et al, 2024). In electromagnetic wave absorption research, Li
Jiajun’s team utilized Cole-Cole diagram analysis to characterize
the dielectric properties of materials, thereby optimizing the
impedance matching design for electromagnetic wave absorbing
materials (Li et al., 2024).

Despite the notable successes of the Cole-Cole model across
multiple fields, its potential in certain emerging domains remains
underexplored. With ongoing refinements to the theoretical model
and deepening interdisciplinary research, the Cole-Cole model is
poised to play a pivotal role in addressing the complexities of more
diverse systems.

To address the challenges of high cost, poor interference
resistance, and low stability in salt stress detection for
Phyllostachys edulis, this study developed a real-time in-situ
monitoring system for Phyllostachys edulis forests based on UHEF-
RFID technology (Figure 1). This system enables rapid and precise
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FIGURE 1
Real-time in-situ monitoring system for Phyllostachys edulis forests.

acquisition of physiological parameters in complex
field environments.

Based on the research objectives, we propose the following
preliminary hypotheses and corresponding validation strategies:(1)
Salt stress alters the osmotic pressure gradient across leaf blade cell
membranes of Phyllostachys edulis, thereby modifying its dielectric
properties. This dielectric variation can serve as an indicator for
quantifying salt stress intensity;(2) UHF radiofrequency signals
exhibit high sensitivity to dielectric property fluctuations. By
quantifying RF signal characteristics such as RSSI and phase,
dynamic variations in the dielectric properties of Phyllostachys
edulis leaves can be inferred, enabling accurate classification of
salt stress levels.

Research Methods: (1) Conduct an in-depth analysis of the
mechanism by which salt stress alters osmotic pressure inside and
outside cells in Phyllostachys edulis leaves, and how this change
further affects the dielectric constant of the leaves. Simultaneously,
investigate how variations in dielectric properties specifically
influence RFID backscatter signals (e.g., phase, RSSI). (2)
Dynamically collect backscatter signal data (including key
parameters such as RSSI, phase, and read distance) from UHF
RFID sensors attached to Phyllostachys edulis leaves under different
salt stress treatment groups and control groups in laboratory
settings. Collect relevant leaf data at the experimental forest base
of Nanjing Forestry University. Following data acquisition,
precisely calibrate salt stress levels using relative electrical
conductivity measurements to validate the accuracy of the
algorithmic model.

Model Construction: (1) Establish a nonlinear mapping
relationship between the dielectric properties of Phyllostachys
edulis leaves and salt stress levels based on the Cole-Cole
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dielectric model, elucidating physiological interpretations of
model parameters; (2) Incorporate Chebyshev chaotic mapping to
initialize the particle swarm (PSO), enhancing global search
capability and preventing local optima entrapment; (3) Optimize
the PSO algorithm using a t-distribution-based perturbation
strategy to dynamically adjust inertia weights, thereby balancing
exploration and exploitation capabilities for improved parameter
optimization accuracy. The technical workflow of this study is
illustrated in Figure 2.

2 Materials and methods

2.1 Relevant theoretical foundations and
core principles

2.1.1 UHFRFID communication technology

UHF RFID systems, operating in the 860-960 MHz frequency
band, achieve wireless communication primarily through
electromagnetic backscatter modulation. Within this system, the
reader acts as the active party, continuously radiating a radio
frequency electromagnetic field at a specific frequency. Passive
tags lack their own power supply and rely entirely on energy
coupled from the reader’s emitted electromagnetic field. The key
mechanism for information transmission from tags to readers is
electromagnetic backscatter modulation (Lee and Jin, 2011).
Specifically, the integrated circuit within the tag precisely controls
the load state at its antenna port, dynamically altering its reflection
cross-section or absorption characteristics relative to incident
electromagnetic waves. This load switching primarily employs
Amplitude Shift Keying (ASK) modulation, causing systematic
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FIGURE 2

Technical workflow of the UHF RFID-based diagnostic method for salt stress in Phyllostachys edulis.

variations in the amplitude (corresponding to RSSI) and phase of
the signal reflected back to the reader (Xie et al., 2024), thereby
encoding data onto the reflected wave. By continuously monitoring
Received Signal Strength Indication (RSSI) and phase information,
the reader demodulates data transmitted by the tag, with the
transmission principle illustrated in Figure 3. RSSI directly reflects
the strength of received power (P,), while phase changes exhibit
high sensitivity to distance (d), making both critical physical layer
parameters for tag distance measurement and localization.
Crucially, the physical properties of tagged objects (material,
shape, dielectric constant) and variations in the electromagnetic
characteristics of the surrounding environment significantly alter
the load environment of the tag antenna and its electromagnetic

Backscattered
Signal

.))) ENV\L_T( e

Interrogation Singal

RFID tag

FIGURE 3
Operating principle of UHF RFID communication
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scattering properties, thereby compromising the stability of RSSI
and the accuracy of phase measurements.

To quantitatively analyze the fundamental characteristics of the
communication link, theoretical modeling is typically conducted
under idealized conditions. The assumptions include: free-space
propagation, perfect polarization matching, absence of dielectric
losses, and ideal port impedance matching at all interfaces. Under
these simplified conditions, the signal power at the ultra-high
frequency RFID reader’s receiving antenna, denoted as P,
(representing the theoretical characterization of RSSI), can be
calculated using the following equation (Xie et al., 2024):

P, =P,.(£)".G,.G, (1)

Router Provide local

area network

|

Computing
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The parameters in the formula are defined as follows:

* P, denotes the equivalent incident radio frequency power
available for modulation at the tag antenna position;

* G represents the gain of the tag antenna, affecting energy
capture and reflection efficiency;

* G, indicates the gain of the reader’s receiving antenna,
determining the collection capability of weak
reflected signals;

+ A is the operating wavelength of the radio frequency, given

by A = c/f;

d is the line-of-sight distance between the tag and reader
antenna, governing the attenuation of P,(RSSI) and phase
variation A¢ ~*2mod2n (Equation 1) reveals that under
idealized conditions:

1. RSSI-Based Ranging Principle: The received power P, (RSSI)
at the reader is inversely proportional to the fourth power of
the distance d. While distance d can be inferred by
measuring RSSI, its accuracy is susceptible to
environmental interference;

2. Phase-Based Ranging Principle: The carrier phase variation
A¢ exhibits a linear relationship with distance ( A¢ o d),
theoretically enabling higher-precision distance
measurement. However, this method suffers from phase
ambiguity (cycle slips).

However, real-world application scenarios are far from ideal.
Factors such as multipath propagation effects in the environment,
obstacle occlusion, eddy current losses in metal objects, energy
absorption by high-loss media, electromagnetic noise interference,
and antenna mismatch will seriously degrade the correlation
between RSSI and distance d, and introduce phase measurement
errors. These factors result in actual ranging accuracy being much
lower than the theoretical value, which is the core challenge faced by
UHF RFID positioning technology.

In this study, we innovatively utilized the unique properties of
Ultra-High Frequency Radio Frequency Identification (UHF RFID)
technology to conduct in-depth research on salt stress monitoring
of Phyllostachys edulis leaves. This technology is highly sensitive to
changes in the electrical conductivity of media and possesses non-
contact penetration detection capabilities, enabling effective reading
of data from passive tags attached to the abaxial surface of
Phyllostachys edulis leaves. By accurately capturing key
parameters such as Received Signal Strength Indicator (RSSI),
phase shift, and reading distance, and combining them with a
dedicated analysis algorithm developed by us, we successfully
constructed a quantitative evaluation model for salt stress in
Phyllostachys edulis leaves. Experimental results demonstrate that
this technology can accurately distinguish physiological responses
induced by different salt concentration gradients by analyzing the
interaction characteristics between electromagnetic waves and leaf
electrolyte solutions. It provides a non-destructive, continuous, and
high-precision monitoring method for research on salt tolerance of
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bamboo plants, significantly improving the spatiotemporal
resolution of physiological research on salt stress.

2.1.2 RFID backscatter model

The communication foundation of passive RFID systems relies
on the interaction mechanism between electromagnetic waves and
medium interfaces. When radio frequency waves of a specific
frequency emitted by the reader are incident on the surface of
plant leaves, their energy distribution follows the boundary
conditions described by Maxwell’s equations, resulting in three
physical processes: reflection, transmission, and absorption
(Benbaghdad et al, 2016). Among them, the intensity of the
reflected wave is dominated by the permittivity tensor g, and the
reflection coefficient of vertically polarized waves at a specific
incident angle 6; can be quantified using Equation 2:

)
T8, 8) | = §7¢— V‘; @)

Here, the imaginary part €” of the complex permittivity & =
£} —je}} satisfies the relationship €}} = 6/(mg;) with the electrical
conductivity o of the leaf tissue cell sap, directly reflecting changes
in intracellular Na*/K" ion concentrations. This is the physical
essence of the electromagnetic response to salt stress. In a
monostatic transceiver-integrated architecture, the received power
equation derived from the Friis backscattering link model is given
by (Equation 3):

_ P,GIGI M| T ?

Prx T T 4m) 2 p’B M (3)

In the formula, the wavelength A and frequency f satisfy A = ¢/f
; the polarization loss factor m is determined by the antenna
radiation pattern and tag orientation; the gain penalty factor y
characterizes the wavefront phase distortion caused by leaf
curvature (under the Lambertian scattering model, y o 1/ cos® 6;
); the multipath fading margin B needs to compensate for the
Fresnel zone diffraction loss of the signal in the plant canopy
(typical value: 3-6 dB); the path occlusion factor p takes a unit
value under line-of-sight propagation conditions. The modulation
factor M is determined by the impedance switching strategy of the
tag chip, as defined in Equation 4:

1
M= |Ty Tyl @

where the reflection coefficient I' is defined by the conjugate
matching condition in Equation 5:

*

T, = Zenip-Lany (5)

Zeip+Zant

When using Phase Shift Keying (PSK) modulation, the chip
only changes the load reactance component (AX # 0, AR = 0),
enabling phase jumps of I' while maintaining stable DC power
supply. In contrast, Amplitude Shift Keying (ASK) alters the
reflection amplitude through switching of the resistance
component (AR # 0), which requires a trade-off between
modulation depth and the chip’s turn-on voltage. The Received
Signal Strength Indicator (RSSI), as a direct observable of the

frontiersin.org


https://doi.org/10.3389/fpls.2025.1678760
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

system, follows a logarithmic law in its conversion to received
power, as expressed in Equation 6:

RSSI = 20logo(15=)dBm(P: mW) (6)

The hardware parameters and dielectric response terms can be
decoupled by combining the equations, yielding the expressions in

Equations 7, 8:

P,G:GIA'M*M
Pm:K'|rij|2(K:m) ™)
RSSL,y = 10log;y K + 20log; | T | +30 )

Salt stress causes changes in the permeability of leaf cell
membranes. The influx of extracellular Na* increases the
electrical conductivity ¢ by 20-100%, leading to a significant
increase in &}} in the 0.5-5 GHz frequency band. According to
the above equation, when &}} > 5, [T | can be enhanced by 8-15
dB at an incident angle of 60°, ultimately resulting in distinguishable
stress response characteristics in RSSI readings. This phenomenon
lays the electromagnetic theoretical foundation for passive radio
frequency monitoring of plant physiological states. Integrating the
above electromagnetic transmission model and modulation
mechanism, under the constraints of fixed system antenna
parameters ( G, G,,m,y) and operating distance, the
backscattered power received by the reader can be characterized
as a single-valued function of the complex permittivity & of
the medium.

2.1.3 Cole-Cole dielectric model

The previous section of the research confirmed that the power
attenuation and phase shift of RFID backscattered signals can
sensitively reflect changes in the dielectric properties of plant
leaves. Plant tissue, as a heterogeneous biological dielectric,
undergoes significant changes in its cellular structure, water
content, and ion concentration under salt stress, which directly
affects the propagation characteristics of electromagnetic waves. To
quantify this relationship, it is necessary to establish an accurate
dielectric model. The classic Debye model describes a single
relaxation polarization process, as shown in Equation 9
(Benbaghdad et al., 2016):

e(w) = g+ 9)

In the equation, €, and g, represent the limiting dielectric
constants at optical frequency (>100 GHz) and electrostatic field
(0 Hz) respectively, T is the dipole rotation relaxation time, and  is
the angular frequency. This model is applicable to ideal polar
liquids, but it cannot characterize the widely distributed
relaxation time spectrum of biological tissues.

To address this limitation, the Cole-Cole model introduces a
relaxation time distribution parameter o (o0 < o < 1)), and its
general expression is given by Equation 10:

u &H-& O

) =g+,

A1+ (o)™ joe,

(10)
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When 04=0 in the equation, the model degenerates into the
Debye model; an increase in o indicates enhanced dispersion of
time constants in the relaxation process. This model quantifies
multiple mechanisms such as cell membrane interfacial polarization
and protein dipole relaxation through oy, making it particularly
suitable for the water-biomacromolecule composite system
in leaves.

The complex permittivity € and conductivity satisfy the
following relationship described in Equation 11:

- o(w)

e'(w) =¢e'(0) -j %5

(11)

Salt stress affects this equation through two pathways: the
intracellular accumulation of Na*/Cl" ions significantly increases
the static conductivity 64.; meanwhile, cellular dehydration leads to
a reduction in free water, resulting in a decrease in the low-
frequency permittivity €, and an extension of the relaxation time
T. These two types of changes in dielectric response collectively
constitute the electromagnetic characteristics of the stress state.

The direct current conductivity (c4.) of plant leaves exhibits
significant responsive characteristics to salt stress, which can serve
as a key bioelectrical indicator for characterizing the stress state.
Through the coupling analysis of the Cole-Cole dielectric model
and RFID backscattering power, the transfer relationship of
“electromagnetic scattering signal—leaf complex permittivity—
conductivity” has been successfully established. To balance model
accuracy and computational complexity, this paper adopts the first-
order Cole-Cole model (n=1). This simplified form can still
effectively capture the o parameter shift and 64, dynamic changes
caused by salt stress in the characteristic relaxation frequency band
of plant tissues.

2.1.4 Improved C-T-PSO-Cole-Cole multi-
strategy optimization algorithm

To balance model accuracy and computational complexity, this
paper adopts the first-order Cole-Cole model (n=1), formulated in
Equation 12:

&~ O,

e(w) =€+ Trwn) + foe,

(12)

The accurate identification of key parameters (o, T, &), €.,) in
the first-order Cole-Cole dielectric model (Eq. 12) is paramount for
high-precision dielectric spectrum reconstruction. This study
employs an enhanced Particle Swarm Optimization (PSO)
algorithm for the joint inversion of these parameters. The
physical significance and optimization bounds of each parameter
are detailed in Table 1.

This study is built upon the standard PSO algorithm framework
(Stehlik et al., 2024), which facilitates efficient search in the
parameter space by simulating collective swarm intelligence.
Particles update their velocity and position based on their
individual historical best position (ﬁbest) and the swarm’s global
best position ( amt). However, the standard PSO is often prone to
premature convergence and limited population diversity when
solving such complex inverse problems.
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TABLE 1 Optimization parameters of the Cole-Cole model.

Find the
best scope

Parameter
name

Parameter meaning

o The distribution characteristics of the

control response affect the behavior of 1)
the dielectric constant at different ’

frequencies
T Timescale for controlling dielectric (0.12]
response w
& Dielectric response of materials at (2,60]
relatively low frequencies (860MHz) ?
€. Dielectric response of materials at
[1,25]

relatively high frequency (960MHz)

To overcome these limitations, two key enhancements are
proposed. Firstly, a Chebyshev chaotic map is adopted for
population initialization (Zhang et al., 2025). The initial solutions
are generated using (Equation 13) and then mapped to the parameter
search space via the affine transformation in (Equation 14):

Xp41 = cos (n - arccos (x,,)) (13)

X = (x,,2+l)( Xmax

i - Xmin) + Xmin (14)

Compared to traditional random initialization, this method
leverages the ergodicity, randomness, and sensitivity to initial
conditions inherent in chaotic systems to produce an initial
population with superior dispersion. This establishes a better
foundation for subsequent global search and effectively suppresses
premature convergence.

Secondly, a t-distribution perturbation strategy is incorporated
during the later iterations. This mechanism enhances population
diversity by injecting a t-distributed random perturbation into the
current global best solution ( éest), aiding the algorithm in escaping
local optima. Its mathematical formulation is given by (Equation
15):

?rjteei«t/:éest +0- 7—'(V) (15)

where 7"(1/) is a D-dimensional t-distributed random vector
and § is a scaling factor. The heavy-tailed nature of the t-
distribution (particularly when the degrees of freedom parameter
v is small) enables the generation of larger exploration steps
compared to Gaussian perturbations. By adjusting v, this strategy
can adaptively balance the algorithm’s requirement for global
exploration and local exploitation during different iteration stages.

The algorithm’s hyperparameters were configured based on
theoretical and experimental validation as follows: a population size
of N =50 was selected to maintain population diversity while
controlling computational complexity; an inertia weight of w = 0.7
was set to effectively balance global exploration and local exploitation;
learning factors cl = ¢2 = 2.0 were adopted following the standard
cognitive-social model to ensure equilibrium between individual
experience and swarm intelligence; a perturbation scaling factor of
8 = 0.5 was determined through testing to optimally balance

Frontiers in Plant Science

10.3389/fpls.2025.1678760

exploration of new regions and search stability; a maximum
iteration count of M,,,, = 1000 was established based on solution
space complexity analysis, satisfying convergence requirements in
over 99% of cases while incorporating an early stopping mechanism
to prevent unnecessary iterations; random numbers r; and r, were
set to follow a U(0, 1) uniform distribution to preserve stochasticity
and exploratory behavior throughout the iterative process.

The hyperparameters of the C-T-PSO algorithm were initially
determined based on empirical conventions and preliminary
experiments. To further validate the robustness and generalizability
of these choices, a comprehensive sensitivity analysis was conducted
on three key parameters: population size (N), inertia weight (w), and
scaling factor (8). As shown in Figure 4: Sensitivity analysis of
key parameters.

The analysis was performed using a controlled variable
approach on benchmark functions, monitoring the convergence
accuracy and speed. This analysis confirms that the empirically
selected parameter set is robust and generalizable, providing stable
performance across different optimization landscapes.

2.1.5 Classification model

The specific steps of the classification method are as follows:

(1) Use an RFID reader to collect relevant information of
Phyllostachys edulis at different salt stress stages, and expand the
collected data into a model dataset. (2) Perform conversion
processing on the data in the dataset, complete sample labeling, and
generate training sample sets required by the model. (3) Randomly
sample the generated sample sets and divide them into training sets,
test sets, and validation sets in a ratio of 7:2:1. Then, input the training
sets into the model for training. (4) Adjust the model parameters based
on its performance on the test sets, and then retrain the model. Repeat
this process until the performance on the test sets reaches the optimal
level, indicating that the model has converged to an ideal state. (5) Use
the trained and optimized model as a detector to detect salt stress in
Phyllostachys edulis and determine the specific type of salt stress.

To address the challenge of limited sample size and to more
robustly evaluate the generalization performance of the classification
model, a k-fold cross-validation analysis was supplemented in this
study. The specific process was as follows: the entire dataset was
randomly partitioned into 10 mutually exclusive subsets (folds).
Sequentially, one subset was used as the test set, and the remaining
nine subsets were combined as the training set. The training and
testing process was repeated 10 times. The final performance metrics
of the model are presented as the mean and standard deviation of the
results from these 10 tests. This analysis aims to validate the stability
of the results obtained based on a single split.

2.2 experimental preparation

2.2.1 Seedling cultivation and pretreatment
One-year-old healthy Phyllostachys edulis seedlings (with a height

of 30 + 2 cm) available in the market were selected, ensuring they had a

consistent genetic background and were free from pests and diseases.
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FIGURE 4
Sensitivity analysis of key parameters.

Polyethylene pots with a diameter of 25 cm and a height of 30 cm were
used as cultivation containers. The substrate was mixed in a volume
ratio of vermiculite: peat soil: perlite = 3:1:1. This formula has both
water retention and air permeability. The initial pH value was adjusted
to 5.5-6.0 (using 0.1 mol/L HCl or NaOH), which is in line with the
characteristic of Phyllostachys edulis preferring slightly acidic soil.
Before transplantation, the root systems of the seedlings were soaked
in a 0.1% carbendazim solution for disinfection for 10 minutes, then
washed clean and planted in the substrate, with one seedling per pot.

The seedlings were acclimatized for 14 days in an artificial
climate chamber under the conditions of temperature 25 + 2°C,
relative humidity 70 + 5%, and light intensity 300pmol-m™*s™
(photoperiod 12 h/d). They were watered with Hoagland nutrient
solution daily to promote root recovery.

2.2.2 Salt stress treatment design

Six treatment groups were set up: control group (CK, 0 mmol/L
NaCl), T1 (25 mmol/L NaCl), T2 (50 mmol/L NaCl), T3 (75 mmol/
L NaCl), T4 (100 mmol/L NaCl), T5 (125 mmol/L NaCl), and T6
(150 mmol/L NaCl). Each group was replicated in 6 pots, arranged
in a completely randomized block design. After acclimatization, the
stress treatment was initiated: a 50 mL medical syringe was used to
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inject NaCl solution into the main root distribution area (5-10 cm
in depth), with 20 mL injected per plant, twice a week (at 3-day
intervals) for 4 consecutive weeks.

The experiment was conducted in a controlled greenhouse,
where the temperature was maintained at 28 + 2°C during the day
and 22 + 2°C at night, with an air humidity of 70 + 5%. Natural light
was supplemented with LED lighting (light intensity 400-
600umol-m*™.s*"). A soil temperature and moisture transmitter
(DHT11) was placed in each pot to measure air temperature and
humidity, and the relevant data were transmitted to the cloud
platform in real time for data management. This ensured that the
temperature remained within an appropriate range, and the
substrate water content was maintained at 60% * 5% of the
normal water content to avoid interference from drought.

2.2.3 Hardware composition and equipment
selection of the data acquisition system

The hardware of the data acquisition system mainly includes RFID
tags, a reader, and an antenna (Figure 5). The antenna is connected to
the reader via a feeder line. The system is powered by a mobile power
supply, and a router provides a local area network to ensure
communication between the reader and the computer terminal.
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Computer terminal o

RFD Reader

FIGURE 5
Hardware devices of the data acquisition system.

(1) Reader: The Impinj Speedway R420 high-performance
UHF RFID reader is adopted. This device supports
mainstream protocols such as EPC Global Gen 2 and ISO
18000-6C, and provides multiple interfaces including PoE,
RS-232, and USB, facilitating system integration;

(2) Antenna: The RYT-280 circularly polarized antenna is
selected, which is responsible for signal transmission and
reception. With a moderate size and high gain
characteristics, this antenna is suitable for working in the
ultra-high frequency band;

(3) RFID tag: The Lingtian KU7 passive electronic tag was
used, as shown in Figure 6. Based on the traditional wet
inlay, the tag is encapsulated with PET flexible material and
has a symmetrical rectangular structure, which conforms to
the basic shape of Phyllostachys edulis leaves. Its 3M
adhesive ensures firm attachment and prevents edge
curling and falling off, and the PET material also provides
excellent waterproof performance.

2.2.4 Design and implementation of the
software-side data acquisition program

On the software side, the host computer uses the Impinj Octane
SDK to process the radio frequency signals collected by the reader and
extract parameters such as the tag EPC number, RSSI (signal strength),
phase, collection time, antenna port number, and frequency. A data
acquisition program was developed based on the Java interface of this
SDK, which controls the reader to perform operations by instantiating
an Impinj Reader class object. The specific process includes: (1)
Connect the host and the reader to the same local area network
through a specified IP address to establish a connection; (2) Before
starting, configure the reader’s reading mode to MaxThroughput; use
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the ReportConfig class to set the data items to be collected (in addition
to the default EPC, explicitly specify the need to collect RSSI, phase,
time, antenna number, and frequency, and control the collection of
each signal attribute through flag bits); (3) Configure the antenna to
operate in single-antenna mode, set the transmission power to 25.0
dBm and the reception sensitivity to -70.0 dBm to ensure signal
stability; (4) Start the reader after completing the configuration. Data
collection continues for a fixed 10 seconds, then automatically stops
and disconnects; (5) To suppress signal interference (collision) caused
by simultaneous responses from multiple tags, set a tag mask filter to
restrict the reader to accessing only tags within a specified EPC range.
This program achieves efficient and accurate data acquisition and
analysis functions, making it particularly suitable for complex
environments with multiple tags.

2.2.5 Data collection process

To accurately measure the RSSI value scattered by the RFID tag
on the back of Phyllostachys edulis leaves, it is necessary to ensure
that the leaves remain stationary during the measurement and that
their relative angular position with respect to the reader antenna
remains stable. Therefore, the experimental setup is as shown in
Figure 7, where both the RFID reader and Phyllostachys edulis
leaves are placed in a fixed position. This setup, on the one hand,
meets the requirements of measurement accuracy; on the other
hand, it is designed to ensure that the radio frequency signals
reflected by the RFID tag attached to the back of the leaf can
effectively penetrate the leaf tissue and be reliably received by the
reader antenna.

To balance the accuracy and efficiency of data collection, a phased
dynamic sampling strategy was adopted in this experiment: In the initial
observation phase, within one hour, the RFID reader collected data
every 6 minutes, with 300 sets of data collected each time to
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FIGURE 6

Lingtian KU7 passive electronic tag. (a) Electronic tags are pasted on the front view of Phyllostachys edulis. (b) Electronic label attached to the back
of Phyllostachys edulis. (c) Schematic diagram of the tag's material structure.

the tag.

(d) Physical image of the electronic inlay. (e) Dimensional schematic of

comprehensively capture the characteristics of dynamic changes; once
the system state tended to be stable, it entered the regular monitoring
phase, where the sampling interval was adjusted to 30 minutes per time,
with 300 sets of experimental data collected each time. This ensures data
timeliness while optimizing the allocation of storage resources.

2.2.6 Determination of relative electrical
conductivity of Phyllostachys edulis leaves

To evaluate the degree of environmental stress on Phyllostachys
edulis leaves, this study used relative conductivity (RC) as an indicator
for determination. The principle is based on the increased electrolyte
leakage caused by cell membrane damage. Functional leaves of
Phyllostachys edulis were selected, rinsed with deionized water, and
surface moisture was blotted dry. A punch was used to sample leaves
while avoiding the main veins, and leaf samples of equal area
(approximately 0.1 g) were weighed. The samples were placed in
stoppered test tubes, 20 mL of deionized water was added, and they
were soaked at room temperature for 1 hour. A conductivity meter
(TDS pen) was used to measure the conductivity value C; of the leaf
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soaking solution at this point. Subsequently, the test tubes were placed in
a boiling water bath and boiled for 30 minutes to kill the tissues. After
shaking and cooling, the final conductivity value C, was measured. The
conductivity meter (TDS pen) is shown in Figure 8. The relative
conductivity (RC) of the leaves was calculated according to (Equation
16) (Cao et al., 2025):

RC = g_z x 100 % (16)

The salt stress status of Phyllostachys edulis leaves is inferred by
analyzing the RSSI values of RFID tags. The RFID reader is used to
read the tags attached to the back of the leaves, obtain their RSSI
signals, and specific algorithms are employed to process these
signals to determine the stress level.

2.2.7 Data collection related to salt stress in
Phyllostachys edulis leaves

At the experimental forest base of Nanjing Forestry University,
several bamboo leaves were selected. RFID tags were attached to the
back of the leaves on-site, and a fixing device was secured (to ensure
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FIGURE 7

Data acquisition perspectives. (a) Frontal overview of the experimental setup, showing the relative positions of the plant, antenna, and reader. (b)
Close-up view detailing the method of immobilizing the Phyllostachys edulis leaves. (c) Side view illustrating the fixed angle and distance between

the antenna and the target leaf.

signal transmission). Data such as RSSI and phase of the tags were
collected using an RFID reader and immediately saved, as shown in
Figure 9. The leaves were then promptly collected, rinsed with
deionized water and blotted dry. Samples of approximately 0.1 g
were punched out, avoiding the main veins, and placed in stoppered
test tubes with 20 mL of deionized water. After soaking at room
temperature for 1 hour, the tubes were heated in a boiling water
bath for 20 minutes, shaken, and cooled to room temperature. A
conductivity meter was used to measure the conductivity of the
soaking solution and the cooled boiled solution. The relative
conductivity was calculated according to the formula. Finally, the
data were input into the algorithmic model to predict the stress
status, and the error rate was analyzed by comparing with the
measured results to verify the model’s accuracy.

2.2.8 Evaluation indicators

To objectively evaluate the performance of the Phyllostachys
edulis salt stress detection model constructed in this study,
Accuracy, Precision, Recall, and F1-Score were selected as core
evaluation metrics (Chetry et al., 2025). These metrics quantify the
model’s predictive efficacy for leaf salt stress states (e.g., no stress,
mild salt stress, moderate salt stress, severe salt stress) from different
dimensions. The definitions and calculation methods of each metric
are shown in Table 2 below:

Accuracy reflects the overall classification correctness rate of the
model. Precision measures the reliability of the model’s prediction
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FIGURE 8
TDS Pen.
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(b)

(©)

FIGURE 9

On-site collection and preparation of bamboo leaf samples. (a) Bamboo leaves in their natural field environment prior to collection. (b) Tagging
locations indicated by red markers on the bamboo stems. (c) Collected leaf samples arranged and numbered for subsequent analysis.

results for a specific stress level; a higher value indicates fewer false
positives. Recall, on the other hand, reflects the model’s ability to
detect true stress samples; a higher value indicates fewer false
negatives. Given that Precision and Recall may show a trade-off
(where one increases at the expense of the other), the F1-Score, as
the harmonic mean of the two, can effectively balance the model’s
reliability and detection ability. It is particularly suitable for
evaluating the model’s comprehensive discrimination
performance across different salt stress levels.

3 Results and discussion

3.1 Experimental results and analysis of
different degrees of salt stress

In the initial experiment applying a gradient concentration of
NaCl solution to the roots of Phyllostachys edulis, the variation in
RSSI signal strength is depicted in Figure 10. The baseline signal
stabilized at approximately -55.4 dBm, with the untreated control
group consistently maintaining relative stability.

TABLE 2 Model evaluation index.

Metric Name Calculation formula meaning

When the salt concentration increased to 25 mmol/L, the signal
strengthened to -53.5 dBm. This enhancement is primarily
associated with an elevation in the leaf dielectric constant: the
low-salt environment may increase ion concentration in the
intercellular space/cytoplasm, optimizing the electrical
conductivity of the tissue fluid and thereby enhancing the tissue’s
conduction efficiency for electromagnetic waves.

As the salt concentration further increased to 50 mmol/L and 75
mmol/L, the signal continued to strengthen (reaching -51.5 dBm
and -50 dBm, respectively). This reflects an increase in the real part
of the complex permittivity of the leaves, where the transmembrane
hydration layer structure maintained by cellular osmotic
adjustment may further reinforce the dielectric properties.

When the salt concentration surpassed the 100 mmol/L
threshold, the signal surged to a peak of -47 dBm, signifying a
qualitative shift in the dielectric response: On one hand, high salt
ion concentration significantly increased cytoplasmic electrical
conductivity, leading to an elevation in the dielectric loss factor.
On the other hand, physiological changes induced by stress, such as
proline accumulation, may also influence the capacitive properties
of cell membranes. These two factors act synergistically to

Accuracy Accuracy = TP+ TN The correct proportion of the model predicts the sample
TP + TN + FP + EN
Precision Precision = TP The proportion of the predicted positive category is actually positive category
TP + FP
Recall Recall = _TP The proportion of the positive category that is actually predicted to be positive category
TP + FN
Fl-Score Precision x Recall = The harmonic mean of precision and recall, comprehensively balancing both metrics to reflect overall

F1 - Score = 2 x Precision + Recall = model performance

TP (True Positive) refers to the number of samples that actually belong to a certain level and are correctly predicted; TN (True Negative) refers to the number of samples that do not actually
belong to a certain level and are predicted to be of other levels; FP (False Positive) refers to the number of samples that do not actually belong to a certain level but are mistakenly judged as

belonging to that level; FN (False Negative) refers to the number of samples that actually belong to a certain level but are missed in judgment.
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FIGURE 10
Changes in RSSI signal strength.

significantly enhance the leaf’s energy coupling efficiency with
electromagnetic waves.

Under the 125 mmol/L treatment, the signal further
strengthened to -43.5 dBm. Dielectric spectroscopy characteristics
at this stage revealed a leftward shift in relaxation frequency,
reflecting reduced cell membrane fluidity or hindered molecular
motion. Combined with the occurrence of membrane lipid
peroxidation, this indicates that membrane structural damage has
led to significant alterations in dielectric loss characteristics (such as
peak broadening or anomalous intensity), approaching a limiting
state under this stress level. Upon stress removal, the signal could
only partially recover to around -52 dBm.

When the concentration reached 150 mmol/L, the signal rose to
-41.5 dBm, indicating that the leaf dielectric properties entered a state
of severe disruption. At this point, irreversible structural damage,
including chloroplast disintegration and mitochondrial dysfunction,
had occurred. Ultimately, the severe cellular structural damage
constitutes the fundamental irreversible cause. This prevents the
restoration of abnormal dielectric properties—resulting from the
combined effects of structural damage and persistent ionic effects
(such as sustained ionic shielding)—even after stress removal.
Consequently, the RSSI signal cannot return to baseline levels.
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In seven groups of control experiments, Phyllostachys edulis was
subjected to long-term treatment with NaCl solutions of different
concentrations, and the changes in relative conductivity of its leaves
are shown in Figure 11. As the concentration of NaCl solution
increased from 0 mmol/L to 150 mmol/L, the relative conductivity
of leaves showed a gradient increasing trend, reaching 1.31, 1.50,
1.73, 2.08, 2.50, and 3.00 times that of the control group,
respectively. This indicates a significant positive correlation
between salt concentration and the degree of cell membrane
damage. In the concentration range of 0-50 mmol/L (including
the 25 mmol/L and 50 mmol/L groups), the increase in relative
conductivity did not exceed 50% (<1.50 times). The cell membrane
structure remained intact, and the electrolyte leakage did not reach
the damage threshold. This range is defined as the non-salt stress
state (color scale 1). When the concentration increased to 50-100
mmol/L (including the 75 mmol/L and 100 mmol/L groups), the
relative conductivity increased to 1.73-2.08 times. At this point,
osmotic adjustment substances (such as proline) began to
accumulate, but the degree of membrane lipid peroxidation
intensified, resulting in reversible cell damage, thus classified as
mild salt stress (color scale 2). When the concentration reached
100-125 mmol/L (including the 125 mmol/L group), the relative
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Relative conductivity of Phyllostachys edulis leaves.

conductivity jumped to 2.50 times. The selective barrier function of
the cell membrane declined, and the ion homeostasis regulation
mechanism collapsed, leading to massive leakage of intracellular
solutes. This stage is categorized as moderate salt stress (color scale
3). When the concentration exceeded 125 mmol/L (150 mmol/L
group), the relative conductivity soared to 3.00 times. The
chloroplast structure disintegrated and reactive oxygen species
accumulated explosively, marking the initiation of programmed
cell death. At this point, Phyllostachys edulis was in an irreversible
severe salt stress state (color scale 4). The growth status of
Phyllostachys edulis under different stress levels after long-term
treatment is shown in Figure 12, which are classified into non-
stress, mild salt stress, moderate salt stress, and severe salt stress.
This classification system provides a theoretical basis for the study
of Phyllostachys edulis’s salt stress response mechanism.

3.2 Performance comparison of various
optimization algorithms and standard
machine learning classifiers

To comprehensively evaluate the comprehensive performance
of the improved C-T-PSO algorithm, this section conducts
experimental comparisons between it and four representative
swarm intelligence optimization algorithms, including Particle
Swarm Optimization (PSO) (Tang and Meng, 2024), Ant Colony
Optimization (ACO) (Blum, 2024), Grey Wolf Optimizer (GWO)
(Premkumar et al., 2024), Whale Optimization Algorithm (WOA)
(Rajmohan et al., 2023), and Sparrow Search Algorithm (SSA) (Sun
et al., 2023). By comparing these mainstream algorithms, the aim is
to examine the relative advantages of C-T-PSO in solving
optimization problems.

(a) No stress

(b) Mild salt stress

(c)Moderate salt stress (d)Severe salt stress

FIGURE 12

Phenotypic comparison of Phyllostachys edulis under different salt stress levels. (a) No stress: healthy, fully expanded green leaves. (b) Mild salt
stress: slight leaf curling and initial wilting. (c) Moderate salt stress: pronounced wilting and chlorosis. (d) Severe salt stress: severe chlorosis,

necrosis, and extensive leaf desiccation.
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Four types of test functions. (a) Ackley Function. (b) Sphere Function. (c) Rastrigin Function. (d) Schwefel Function.
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Meanwhile, to thoroughly investigate the robustness of the
algorithm in coping with different optimization challenges, four
types of benchmark test functions with typical structural
characteristics are selected for evaluation. Among them, the
Ackley and Sphere functions contain only one minimum value
within their value ranges, belonging to unimodal optimization
problems; while the Rastrigin and Schwefel functions have
multiple minimum values, which tend to cause the algorithm to
fall into local optima and are typical multimodal optimization
problems. To explore the performance and optimization

TABLE 3 The detailed attributes of the selected test function.

efficiency of the C-T-PSO algorithm after multi-strategy joint
optimization in various functions, multiple test functions are
selected for experiments, as shown in Figure 13. Table 3 specifies
the expressions, detailed parameters (including x value ranges), and
minimum values of these four test functions.

To control the impact of randomness, the initial population sizeZ
and maximum number of iterations for all five algorithms were
uniformly set to 50 and 250, respectively. The experimental results
(Figure 14) show that the C-T-PSO algorithm proposed in this
chapter outperforms other comparative algorithms in both

Function name Expression x value range Minimum value
Ackley f(x) = — aexp(—b\/ngOAO); - exp(%gcos(cxi) ta+e [-32.786,32.786] 0
Sphere f(x) = zd:xiz [-100,100] 0
i=1
Rastrigin £ = 10d + 3 [xi; — 10 cos (2mx,)] [-512,5.12] 0
i=1
Schwefel f(x) = Ed:(z;:lxj)z [-500,500] 0
i=1
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Convergence performance of six algorithms on selected test functions.

convergence speed and convergence accuracy, with a faster
convergence rate and the ability to find better solutions more quickly.

To quantitatively evaluate the convergence accuracy and
robustness of the algorithms, each algorithm was independently
executed 30 times on each test function. The statistical results (mean
+ standard deviation) are presented in Table 4. The analysis
demonstrates that the C-T-PSO algorithm achieved the best or
competitive mean performance on the vast majority of functions.
Moreover, its standard deviation is significantly lower than that of
other comparative algorithms, proving its comprehensive advantages
in high solution accuracy and strong stability. These statistical results
corroborate the convergence trends observed in Figure 14.

To further systematically evaluate the additional value and
comparative advantages of the proposed physics-model-driven
approach, a comprehensive comparison was conducted with three
classical machine learning algorithms that directly utilize raw RFID
signals for classification. The models selected for comparison were
carefully chosen to cover different machine learning paradigms:

Support Vector Machine (SVM) as a representative of powerful
linear and nonlinear classifiers; Random Forest (RF) as an efficient
and robust ensemble learning algorithm; and XGBoost as a top-
performing gradient boosting framework renowned for its
excellence in numerous data science competitions.

3.3 Determination and analysis of salt
stress diagnosis results for Phyllostachys
edulis

The experimental results are shown in Figure 15. The C-T-PSO-
Cole-Cole model constructed in this study exhibits
comprehensively excellent performance in the detection of salt
stress in Phyllostachys edulis. For the four states of no stress, mild
salt stress, moderate salt stress, and severe salt stress, the core
evaluation indicators of the model—Accuracy, Precision, Recall,
and F1-Score—all stably exceed 93%. This data indicates that the

TABLE 4 Statistical results (Mean + Standard Deviation) of the optimization algorithms over 30 independent runs on benchmark functions.

Algorithm Ackley Sphere Rastrigin Schwefel
C-T-PSO 3.52x107 + 1.21x107 3.39x10™7 + 8.47x10°° 1.02x107 + 0.2175 0.9812 + 0.2451
PSO 0.0124 + 0.0056 4.8754 + 1.2243 325.3263 + 81.4863 8970.6163 + 2240.7352
ACO 0.8761 + 0.2343 15300.6734 + 3830.6489 312.5765 + 78.1637 8780.2489 + 2190.3243
SSA 0.3271 + 0.0523 1.95x107%° * 4.88x10" 0.0032 + 2.0574 963.7134 + 241.1244
WOA 0.0016 + 8.17x10™ 5.78x107° * 1.44x10°° 1.92x107 * 95.8784 341.4241 + 85.2746
GWO 0.3383 + 0.0612 0.8485 + 0.2121 28.9867 + 7.2383 9050.7873 + 2260.6453
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FIGURE 15
Multi-indicator performance evaluation of gradient salt stress.

model has a high generalization ability in classifying samples with
different stress levels. The synchronous optimization of its Precision
and Recall ensures the reliability of the prediction results, while the
F1-Score verifies the overall advantage of the classification
effectiveness. The comprehensive performance evaluation of the
overall experimental results is shown in Figure 16. The model
demonstrates excellent stability in the global dimension: the core
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FIGURE 16

Overall performance evaluation of multi-indicator for salt stress.
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indicators (Accuracy, Precision, Recall, and F1-Score) all remain
consistently in the high range of over 94%.

Figure 17 shows the confusion matrix based on feature layer
fusion. After selecting 50 test samples for prediction, their relative
conductivity was measured immediately, including 20 samples with
no stress (0), 10 samples with mild salt stress (1), 10 samples with
moderate salt stress (2), and 10 samples with severe salt stress (3).
The prediction results indicate that 1 no-stress sample was
misjudged as mild stress, 1 mild salt stress sample was misjudged
as no stress, 1 moderate salt stress sample was misjudged as no
stress, and all severe salt stress samples were predicted correctly.

Predictive degree
0 1

Accuracy

(92%) |

2 3

Reality

FIGURE 17
Confusion matrix based feature layer fusion.
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The prediction results are basically consistent with the experimental
data of relative conductivity.

Figure 18 shows the experimental results of diagnosing the salt
stress status of Phyllostachys edulis after inverting the Cole-Cole
model parameters using five optimization models. From the
comprehensive comparison of various evaluation indicators in the
figure, it can be clearly observed that the C-T-PSO-Cole-Cole model
constructed in this study exhibits significant advantages in all key
performance indicators. Compared with the other five comparative
methods, this model not only achieves the highest comprehensive
score but also shows higher reliability and stability in identifying
different stress levels. The performance comparison between the C-
T-PSO-Cole-Cole model and standard machine learning classifiers
is shown in Figure 19. All comparative models demonstrated
commendable performance, with XGBoost achieving an accuracy
of 94.2%, which confirms the effectiveness of raw RFID features for
salt stress diagnosis. The proposed C-T-PSO-Cole-Cole model
achieved optimal results across all metrics, exhibiting marginal
yet consistent improvements over XGBoost with an accuracy of
95.3% and an F1-score of 95.9%. This result strongly confirms that
the Phyllostachys edulis salt stress diagnosis method based on the
optimized C-T-PSO-Cole-Cole model has excellent performance
and practical value. It provides a more effective technical solution
for precise non-destructive monitoring of Phyllostachys edulis salt
stress and a robust analysis tool for plant stress response research.

4 Conclusion

This paper proposes a non-destructive detection method for salt
stress in Phyllostachys edulis based on UHF RFID signal analysis and
the C-T-PSO-Cole-Cole model. In a laboratory environment, by
reading the reflected signals from passive RFID tags attached to the

[ C-T-PSO

FIGURE 18
Performance comparison of six optimization algorithms.
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FIGURE 19
Performance comparison of standard machine learning classifiers.

abaxial surface of Phyllostachys edulis leaves under different gradient
salt stresses, radio frequency features such as RSSI and phase were
collected, and their dynamic response patterns with varying stress
intensities were quantified. Based on the Cole-Cole dielectric model, a
nonlinear mapping relationship between the dielectric properties of
Phyllostachys edulis leaves and the degree of salt stress was
established, and the physiological interpretation of the model
parameters was clarified. Furthermore, the Chebyshev chaotic
mapping was introduced to initialize the particle swarm, enhancing
the global search capability through high-dispersion initial solutions
and avoiding local optimal traps. Finally, combined with the t-
distribution perturbation strategy to dynamically adjust the inertia
weight, the exploration and exploitation capabilities were adaptively
balanced during the iteration process, significantly improving the
accuracy of model parameters. To verify the generalization ability of
the model, relevant data of several Phyllostachys edulis leaves were
collected from the experimental forest base of Nanjing Forestry
University. After data collection, the leaves were immediately sealed
and sent to the laboratory, and the salt stress levels were accurately
calibrated by the relative conductivity measurement method to verify
the accuracy of the algorithm model. The experimental results show
that the C-T-PSO-Cole-Cole model exhibits comprehensive
advantages in salt stress diagnosis tasks: the classification accuracy
(Accuracy = 0.953), precision (Precision = 0.949), recall (Recall =
0.941), and F1-score (F1-Score = 0.959) are all superior to those of the
comparison models, verifying the effectiveness of the multi-stage
optimization strategy. To further validate the robustness of the
classification model, we re-evaluated it using 10-fold cross-
validation. The results demonstrated that the model achieved an
average classification accuracy of 94.5% (standard deviation: + 1.2%).
This outcome is highly consistent with the accuracy obtained from
the initial train-test split (95.3%). More importantly, the exceptionally
low standard deviation indicates stable performance across different
data partitions, effectively mitigating concerns regarding potential
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randomness arising from a single random split. This strongly
confirms that the C-T-PSO-Cole-Cole model exhibits remarkable
and reliable generalization capability even with limited samples.

The above research verifies the core hypotheses proposed in the
introduction: (1) Salt stress alters the osmotic pressure inside and
outside the leaf cells of Phyllostachys edulis, which in turn affects their
dielectric constant. This change can reflect the degree of salt stress by
detecting the dielectric properties of leaves; (2) UHF radio frequency
signals are highly responsive to changes in the dielectric constant of
the medium. By quantifying the characteristics of radio frequency
signals such as RSSI and phase, the dynamic changes in the dielectric
properties of Phyllostachys edulis leaves can be inverted, thereby
achieving accurate discrimination of salt stress levels.

Compared with the widely studied deep learning methods, the
proposed approach exhibits unique advantages. Although CNN
excels in processing image features and LSTM possesses inherent
strengths in modeling time-series data, these methods—if applied to
RFID signal analysis—may achieve good performance, but their
“black-box” nature results in a lack of physical interpretability in the
decision-making process.

The innovative value of our method lies in successfully
establishing an interpretable linkage from RFID signals to plant
physiological status. Through the inversion of Cole-Cole model
parameters, we can directly correlate changes in dielectric
properties with physiological processes such as ion balance and
membrane integrity at the cellular level. This offers an analytical
perspective with greater physical transparency for understanding
plant stress response mechanisms compared to purely data-driven
deep learning approaches. Furthermore, the computational
efficiency of our method is significantly higher than that of
complex deep learning models, making it more suitable for real-
time processing on resource-constrained field monitoring devices.

It is noteworthy that this study does not aim to completely
replace deep learning methods. Rather, the two technical pathways
exhibit distinct advantages in different scenarios: deep learning
performs exceptionally well in contexts with massive annotated
data and no requirement for interpretability, while our method
demonstrates greater practical value in situations with limited data,
where interpretability is essential, and field deployment is needed.

While the proposed C-T-PSO-Cole-Cole model demonstrates high
accuracy under controlled laboratory conditions, its performance in
complex and unstructured field environments may be challenged by
various sources of uncontrolled noise and environmental variability.
Key confounding factors include diurnal and seasonal fluctuations in
temperature and humidity, which directly affect the dielectric
properties of plant tissues and thus can masquerade as or obscure
salt stress signals. Additionally, electromagnetic interference from other
wireless devices and signal attenuation or multipath effects caused by
rain, wind, and dense foliage could significantly bias the acquired RFID
signal features, namely the Received Signal Strength Indicator and
phase, potentially leading to misinterpretations of plant physiological
status. To ensure the scalability and robustness of our method for
practical real-world applications, we have identified two primary
limitations and propose corresponding strategic solutions for future
research and development.
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1. To combat signal instability induced by fluctuating
microclimatic conditions, we propose the development of a
hybrid signal processing framework. This framework
will synergistically combine time-frequency analysis
techniques. Specifically, we will employ Wavelet Packet
Transform for its multi-resolution analysis capabilities to
isolate non-stationary noise components from the raw RFID
signal. This will be coupled with an Adaptive Kalman Filter,
which will dynamically adjust its parameters based on real-
time inputs from integrated temperature and humidity
sensors. This dual approach aims to differentiate between
dielectric changes caused by environmental fluctuations and
those arising from genuine salt stress, thereby significantly
enhancing the signal-to-noise ratio and diagnostic fidelity in
noisy field conditions.

2. Acknowledging the limitation of single-leaf detection in
capturing whole-plant physiological status, our future work
will focus on architecting a multi-modal, space-ground
collaborative sensing network. At the canopy level,
unmanned aerial vehicles equipped with multi-reader RFID
arrays will perform systematic raster scans to map spatial
variance in stress responses. At the plant level, a network of
ultra-thin, flexible RFID sensor tags will be deployed on
multiple leaves and branches to continuously monitor stress
propagation dynamics. The data fusion engine will integrate
this multi-source RFID data with hyperspectral imagery
acquired from the UAVs. This integration will leverage
machine learning models, particularly convolutional neural
networks for feature extraction from images and recurrent
neural networks for time-series analysis of RFID data, to
construct a spatiotemporally explicit model for visualizing,
forecasting, and understanding the systemic dynamics of salt
stress in Phyllostachys edulis.

This study provides technical support for measuring the salt
stress level of Phyllostachys edulis. In the future, through hardware
innovation and algorithm iteration, the monitoring efficiency and
application scope will be further enhanced.
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