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Non-destructive detection
of Phyllostachys edulis under
salt stress using UHF RFID
based on Cole-Cole model
optimization algorithm
Wen Zhang, Ziyang Hou, Yanyi Liu and Yin Wu*

The College of Information Science and Technology & Artificial Intelligence, Nanjing Forestry
University, Nanjing, China
Introduction: Salt stress disrupts cellular osmotic balance in Phyllostachys edulis,

alters leaf ion distribution and thereby affects dielectric properties. To meet the

demand for non-destructive salt stress detection, this study proposes a

diagnostic method integrating multi-physics field coupling characteristics.

Methods: Based on the mechanism of salt stress regulating ion concentration in

cell sap, a Cole-Cole dielectric model detection framework was constructed by

analyzing intrinsic correlations between RFID backscattering signal features and

medium dielectric properties. An improved Particle Swarm Optimization (C-T-

PSO) algorithm employing Chebyshev chaotic mapping for population

initialization and t-distribution dynamic perturbation mechanism was developed

to synergistically optimize Cole-Cole model parameters.

Results: Experimental verification showed the C-T-PSO-Cole-Cole hybrid

model exceeded 93% in all core metrics (accuracy, precision, recall, F1-score).

Comparative experiments with six swarm intelligence optimization algorithms

confirmed the model's comprehensive superiority. Convergence curve analysis

based on standard test functions demonstrated faster and more stable

convergence of the C-T-PSO algorithm. The final model achieved non-

destructive diagnosis of salt stress in P. edulis using UHF RFID technology with

95.3% accuracy.

Discussion: The hybrid model provides an effective real-time monitoring tool for

salinized soil management in bamboo forests, validating the feasibility of salt

stress detection through dielectric property analysis.
KEYWORDS

Phyllostachys edulis, salt stress diagnosis, dielectric properties, C-T-PSO-Cole-Cole
hybrid model, UHF RFID
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1678760/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678760/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678760/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678760/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678760/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1678760&domain=pdf&date_stamp=2025-10-21
mailto:wuyin@njfu.edu.cn
https://doi.org/10.3389/fpls.2025.1678760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1678760
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2025.1678760
1 Introduction

Phyllostachys edulis, as one of the most widely distributed and

economically valuable bamboo species in China, plays an

indispensable role not only in pulp and paper production,

construction, furniture, and landscape architecture, but also

demonstrates unique value in maintaining ecological balance and

enhancing climate change resilience (Liu et al., 2020; Fu et al., 2024).

However, with the increasing severity of soil salinization, salt stress

has become a critical environmental factor constraining the growth

of P. edulis (Zhu et al., 2025). Salt stress disrupts osmotic

homeostasis within bamboo cells, significantly alters ion

distribution across leaf cell membranes, and consequently affects

its dielectric properties and overall physiological function (Singhal

et al., 2021). Specifically, salt stress markedly inhibits the growth of

P. edulis seedlings, manifested as reduced plant height and leaf

number, increased leaf curling, and intensified chlorosis.

Concurrently, salt stress induces an imbalance in the Na+/K+

ratio within the plant. Excessive Na+ accumulation exerts

cytotoxic effects. To combat salt stress, P. edulis upregulates the

expression of Na+/H+ antiporter (NHX) genes, compartmentalizing

excess Na+ into vacuoles to reduce cytosolic Na+ concentration

(Zhao et al., 2021). Furthermore, salt stress significantly decreases

chlorophyll content in seedlings, impairing photosynthetic

efficiency and leading to reductions in key photosynthetic

parameters such as net photosynthetic rate and stomatal

conductance. These alterations not only reveal the detrimental

effects of salt stress on P. edulis growth but also provide crucial

directions for in-depth research into its salt tolerance mechanisms

and the development of salt-resistant cultivars.

Traditional methods for monitoring salt stress exhibit

significant limitations. Regarding physiological and biochemical

indicator measurements, researchers assess the impact of salt

stress on Phyllostachys edulis by quantifying leaf chlorophyll

content, electrolyte leakage rate (Boshimeniuci et al., 2022),

proline content, malondialdehyde (MDA) content, and protective

enzyme activities. While these metrics directly reflect physiological

alterations under salt stress, changes in certain indicators may lag

behind the actual stress impact, limiting real-time assessment. In

molecular biology techniques, researchers such as Sun Yuanchang

and Du Juan have conducted transcriptome sequencing on

Phyllostachys edulis samples before and after salt stress treatment.

This approach identifies differentially expressed genes (DEGs) and

analyzes their associated metabolic pathways (Sun et al., 2022; Du

et al., 2024). Complemented by metabolomics, this method

quantifies stress-induced metabolic fluctuations to reveal

remodeling mechanisms in metabolic networks. However,

functional validation of identified DEGs remains cumbersome

and time-consuming. Recently, electrical signal characterization

has emerged as a novel method for plant stress research.

Researchers including Zhou Mingu collected electrical signals

from salt-stressed Phyllostachys edulis, applying signal processing

algorithms (e.g., wavelet transform, time-frequency analysis) for

noise reduction and feature extraction (Zhou et al., 2019). Analyses

of time-domain features (mean, root mean square), frequency-
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domain characteristics (marginal frequency, centroid frequency),

and time-frequency features (wavelet packet energy) reflect

physiological impacts of salt stress. While providing a new

perspective for stress evaluation, the high cost of precision signal

acquisition equipment hinders its widespread adoption.

Traditional methods for salt stress assessment predominantly

rely on destructive sampling, hindering dynamic monitoring and

limiting data acquisition frequency. Consequently, they fail to

comprehensively capture the transient physiological changes and

long-term adaptation processes in Phyllostachys edulis under salt

stress. Furthermore, while controlled laboratory experiments enable

precise regulation of salt concentration and stress duration, they

struggle to fully replicate the complex and variable environmental

conditions encountered in the field. Natural factors such as soil

type, microbial communities, and climatic variations cannot be

adequately reproduced, thereby compromising the ecological

validity of the research findings.

In recent years, non-destructive detection technologies have

proliferated, capturing significant research attention. Rubio et al.

employed ultra-weak photon emission (UPE) detection technology

to investigate the influence of external illumination on fruit UPE by

measuring both induced and spontaneous photon emissions from

fruits of different colors under natural light and artificial red, green,

and blue light. They also conducted a preliminary analysis of

photon emission differences between organic and conventional

fruits (Rubio et al., 2025). Moghimi et al. achieved quantitative

ranking and early detection of salt tolerance in wheat under salt

stress by combining hyperspectral imaging with machine learning

and image processing methods. This approach not only overcomes

the time-consuming and labor-intensive limitations of traditional

biomass measurements but also enables rapid assessment of wheat’s

response to salt stress as early as 1 day post-treatment, in the

absence of visible symptoms (Moghimi et al., 2018). Wu et al.

utilized microscopic hyperspectral imaging integrated with

chemometric modeling to realize microscopic detection of

peroxidase activity in tomato leaves under salt stress. This

method avoids the cumbersome steps associated with traditional

enzyme activity assays while also providing a visual representation

of the spatial distribution of enzyme activity, allowing for real-time

monitoring of the physiological responses of leaf cells to salt stress

(Wu et al., 2022).

Concurrently, sensor-based diagnostics for plant salt stress are

maturing rapidly. Zhang et al. constructed an electrochemical

sensor based on MWCNT-Ti3C2Tx-Pd nanocomposites, enabling

the detection of hydrogen peroxide release in Arabidopsis leaves

under salt stress, thereby providing a novel method for assessing

plant stress status (Zhang et al., 2022). The Steinhorst team

elucidated a mechanism where excess sodium ions trigger

primary calcium signals within specific cell populations in the

root tip differentiation zone, forming a “sodium-sensing

microenvironment”. This calcium signal transduction pathway

subsequently regulates plant salt tolerance (Steinhorst et al.,

2022). Furthermore, researchers like Wang et al. developed an in-

situ soil salinity monitoring system utilizing Wifi POGO

electromagnetic sensing technology. By integrating data on soil
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electrical conductivity and moisture content, this system enables

rapid assessment of soil salinization levels in saline-alkali lands,

providing crucial environmental monitoring support for plant salt

stress diagnosis (Wang et al., 2020).

The evolution of non-destructive detection technologies has

catalyzed breakthrough advancements in plant stress diagnostics.

Although existing detection methods still face technical bottlenecks

such as high cost, limited applicability, insufficient precision, and

elevated energy consumption, the rise of Internet of Things (IoT)

technology offers new pathways to overcome these challenges.

Notably, Radio Frequency Identification (RFID) technology,

leveraging its mature IoT application framework, demonstrates

significant advantages in agricultural and forestry sectors

(Daskalakis et al., 2019). This technology enables non-invasive,

real-time status perception and data acquisition from monitored

objects through wireless communication between radio frequency

signals and electronic tags. Its efficient and precise data processing

capabilities provide an innovative solution for non-destructive crop

monitoring (Costa et al., 2021).

Against this technological backdrop, several research teams

have pioneered innovative applications of RFID technology for

salinity measurement. Zhang’s team developed the Plant-Keeper

monitoring system, which integrates low-power wireless

communication with commercial RFID tags to track plant

physiological indicators and biological activities in real-time. This

includes monitoring water content and analyzing responses to

stressors such as mechanical damage, salinity, low temperature,

and drought (Zhang et al., 2021). Hillier’s research group modified

commercial RFID sensing tags using polydimethylsiloxane (PDMS)

film technology to create reusable passive RFID sensors. These

successfully achieved quantitative detection of electrolyte solution

concentration changes and demonstrated feasibility for monitoring

salt solution concentrations (Hillier et al., 2019). Sharif’s team

proposed a low-cost solution based on inkjet printing technology,

developing a passive UHF RFID tag detection system. By analyzing

variations in tag backscattered power, this system enables rapid

detection of salt and sugar content in water bodies (Sharif et al.,

2019). In addition to measuring salinity, Wu’s team leveraged UHF

RFID technology combined with hyperdimensional computing,

collecting leaf tag parameters including RSSI and phase. They

constructed a model enabling real-time, high-precision detection

of leaf water content (Wu et al., 2024).

Parallel to these advancements, deep learning technologies,

particularly Convolutional Neural Networks (CNN) and Long

Short-Term Memory (LSTM) networks, have demonstrated

remarkable progress in plant stress detection. These approaches

excel at automatically extracting complex feature patterns and

exhibit outstanding classification accuracy along with powerful

end-to-end learning capabilities when applied to large-scale

datasets. For instance, Kamarudin et al. developed a lightweight

CNN model incorporating an attention mechanism that effectively

achieved water stress detection in plants using leaf images

(Kamarudin et al., 2023). Azimi et al. employed a CNN-LSTM

architecture that successfully captured visual temporal changes

induced by water stress throughout the complete growth cycle of
Frontiers in Plant Science 03
chickpeas, enabling early and accurate diagnosis (Azimi et al.,

2021). Meanwhile, Wang et al. integrated multi-source sensor

data with deep learning networks to accomplish simultaneous

high-precision classification of poplar varieties and their drought

stress levels (Wang et al., 2024).

Despite the impressive performance of these data-driven

methods, their widespread application faces several challenges:

Firstly, they typically require large-scale, high-quality datasets for

training; Secondly, their decision-making process resembles a

“black box” that lacks clear physical interpretability, making it

difficult to elucidate the intrinsic physiological mechanisms

underlying stress responses; Finally, their complex model

architectures present significant challenges for deployment on

resource-constrained edge computing devices such as portable

field monitors. Specifically regarding RFID signal analysis, while

CNNs could effectively process features such as reflected signal

strength and phase from tags, and LSTMs would be suitable for

modeling the temporal patterns of these parameters, these methods

fundamentally rely on learning statistical correlations from data

rather than revealing the biophysical principles underlying

signal variations.

As a classical dielectric relaxation model, the Cole-Cole model

provides a crucial theoretical framework for characterizing the

polarization behavior of complex dielectric materials through the

frequency-domain response characteristics of complex permittivity.

Originally proposed by the Cole brothers in 1941, this model

typically manifests as a characteristic semicircular or arc-shaped

trajectory in the complex permittivity plane, known as the Cole-

Cole semicircle. The geometric characteristics of this arc are

intrinsically linked to the polarization mechanisms of the material

(Fiandaca et al., 2018; Awal et al., 2024).

Since its inception, the Cole-Cole model has undergone

significant development and found extensive application across

multiple fields, including biomedical engineering. In biomedical

engineering, Lin’s team proposed a method based on a modified

Cole-Cole model for detecting trimethylamine N-oxide (TMAO) in

early-stage cardiovascular disease. By correlating analysis and

computational processing of experimental data, this approach

provides a novel pathway for early detection of the disease (Lin

et al., 2024). In electromagnetic wave absorption research, Li

Jiajun’s team utilized Cole-Cole diagram analysis to characterize

the dielectric properties of materials, thereby optimizing the

impedance matching design for electromagnetic wave absorbing

materials (Li et al., 2024).

Despite the notable successes of the Cole-Cole model across

multiple fields, its potential in certain emerging domains remains

underexplored. With ongoing refinements to the theoretical model

and deepening interdisciplinary research, the Cole-Cole model is

poised to play a pivotal role in addressing the complexities of more

diverse systems.

To address the challenges of high cost, poor interference

resistance, and low stability in salt stress detection for

Phyllostachys edulis, this study developed a real-time in-situ

monitoring system for Phyllostachys edulis forests based on UHF-

RFID technology (Figure 1). This system enables rapid and precise
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acquis i t ion of phys io log ica l parameters in complex

field environments.

Based on the research objectives, we propose the following

preliminary hypotheses and corresponding validation strategies:(1)

Salt stress alters the osmotic pressure gradient across leaf blade cell

membranes of Phyllostachys edulis, thereby modifying its dielectric

properties. This dielectric variation can serve as an indicator for

quantifying salt stress intensity;(2) UHF radiofrequency signals

exhibit high sensitivity to dielectric property fluctuations. By

quantifying RF signal characteristics such as RSSI and phase,

dynamic variations in the dielectric properties of Phyllostachys

edulis leaves can be inferred, enabling accurate classification of

salt stress levels.

Research Methods: (1) Conduct an in-depth analysis of the

mechanism by which salt stress alters osmotic pressure inside and

outside cells in Phyllostachys edulis leaves, and how this change

further affects the dielectric constant of the leaves. Simultaneously,

investigate how variations in dielectric properties specifically

influence RFID backscatter signals (e.g., phase, RSSI). (2)

Dynamically collect backscatter signal data (including key

parameters such as RSSI, phase, and read distance) from UHF

RFID sensors attached to Phyllostachys edulis leaves under different

salt stress treatment groups and control groups in laboratory

settings. Collect relevant leaf data at the experimental forest base

of Nanjing Forestry University. Following data acquisition,

precisely calibrate salt stress levels using relative electrical

conductivity measurements to validate the accuracy of the

algorithmic model.

Model Construction: (1) Establish a nonlinear mapping

relationship between the dielectric properties of Phyllostachys

edulis leaves and salt stress levels based on the Cole-Cole
Frontiers in Plant Science 04
dielectric model, elucidating physiological interpretations of

model parameters; (2) Incorporate Chebyshev chaotic mapping to

initialize the particle swarm (PSO), enhancing global search

capability and preventing local optima entrapment; (3) Optimize

the PSO algorithm using a t-distribution-based perturbation

strategy to dynamically adjust inertia weights, thereby balancing

exploration and exploitation capabilities for improved parameter

optimization accuracy. The technical workflow of this study is

illustrated in Figure 2.
2 Materials and methods

2.1 Relevant theoretical foundations and
core principles

2.1.1 UHFRFID communication technology
UHF RFID systems, operating in the 860–960 MHz frequency

band, achieve wireless communication primarily through

electromagnetic backscatter modulation. Within this system, the

reader acts as the active party, continuously radiating a radio

frequency electromagnetic field at a specific frequency. Passive

tags lack their own power supply and rely entirely on energy

coupled from the reader’s emitted electromagnetic field. The key

mechanism for information transmission from tags to readers is

electromagnetic backscatter modulation (Lee and Jin, 2011).

Specifically, the integrated circuit within the tag precisely controls

the load state at its antenna port, dynamically altering its reflection

cross-section or absorption characteristics relative to incident

electromagnetic waves. This load switching primarily employs

Amplitude Shift Keying (ASK) modulation, causing systematic
FIGURE 1

Real-time in-situ monitoring system for Phyllostachys edulis forests.
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variations in the amplitude (corresponding to RSSI) and phase of

the signal reflected back to the reader (Xie et al., 2024), thereby

encoding data onto the reflected wave. By continuously monitoring

Received Signal Strength Indication (RSSI) and phase information,

the reader demodulates data transmitted by the tag, with the

transmission principle illustrated in Figure 3. RSSI directly reflects

the strength of received power (Pr), while phase changes exhibit

high sensitivity to distance (d), making both critical physical layer

parameters for tag distance measurement and localization.

Crucially, the physical properties of tagged objects (material,

shape, dielectric constant) and variations in the electromagnetic

characteristics of the surrounding environment significantly alter

the load environment of the tag antenna and its electromagnetic
Frontiers in Plant Science 05
scattering properties, thereby compromising the stability of RSSI

and the accuracy of phase measurements.

To quantitatively analyze the fundamental characteristics of the

communication link, theoretical modeling is typically conducted

under idealized conditions. The assumptions include: free-space

propagation, perfect polarization matching, absence of dielectric

losses, and ideal port impedance matching at all interfaces. Under

these simplified conditions, the signal power at the ultra-high

frequency RFID reader’s receiving antenna, denoted as Pr
(representing the theoretical characterization of RSSI), can be

calculated using the following equation (Xie et al., 2024):

Pr = Pt : (
l

4pd )
4 :Gt :Gr (1)
FIGURE 2

Technical workflow of the UHF RFID-based diagnostic method for salt stress in Phyllostachys edulis.
FIGURE 3

Operating principle of UHF RFID communication.
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The parameters in the formula are defined as follows:
Fron
• Pt   denotes the equivalent incident radio frequency power

available for modulation at the tag antenna position;

• Gt represents the gain of the tag antenna, affecting energy

capture and reflection efficiency;

• Gr indicates the gain of the reader’s receiving antenna,

determining the col lec t ion capabi l i ty of weak

reflected signals;

• l is the operating wavelength of the radio frequency, given

by l = c=f ;
d  is the line-of-sight distance between the tag and reader

antenna, governing the attenuation of Pr(RSSI) and phase

variation Df ≈ 4pd
l mod 2p (Equation 1) reveals that under

idealized conditions:
1. RSSI-Based Ranging Principle: The received power Pr (RSSI)

at the reader is inversely proportional to the fourth power of

the distance  d. While distance d can be inferred by

measuring RSSI, i ts accuracy is susceptible to

environmental interference;

2. Phase-Based Ranging Principle: The carrier phase variation

Df exhibits a linear relationship with distance ( Df ∝ d),

theoretically enabling higher-precision distance

measurement. However, this method suffers from phase

ambiguity (cycle slips).
However, real-world application scenarios are far from ideal.

Factors such as multipath propagation effects in the environment,

obstacle occlusion, eddy current losses in metal objects, energy

absorption by high-loss media, electromagnetic noise interference,

and antenna mismatch will seriously degrade the correlation

between RSSI and distance d, and introduce phase measurement

errors. These factors result in actual ranging accuracy being much

lower than the theoretical value, which is the core challenge faced by

UHF RFID positioning technology.

In this study, we innovatively utilized the unique properties of

Ultra-High Frequency Radio Frequency Identification (UHF RFID)

technology to conduct in-depth research on salt stress monitoring

of Phyllostachys edulis leaves. This technology is highly sensitive to

changes in the electrical conductivity of media and possesses non-

contact penetration detection capabilities, enabling effective reading

of data from passive tags attached to the abaxial surface of

Phyllostachys edulis leaves. By accurately capturing key

parameters such as Received Signal Strength Indicator (RSSI),

phase shift, and reading distance, and combining them with a

dedicated analysis algorithm developed by us, we successfully

constructed a quantitative evaluation model for salt stress in

Phyllostachys edulis leaves. Experimental results demonstrate that

this technology can accurately distinguish physiological responses

induced by different salt concentration gradients by analyzing the

interaction characteristics between electromagnetic waves and leaf

electrolyte solutions. It provides a non-destructive, continuous, and

high-precision monitoring method for research on salt tolerance of
tiers in Plant Science 06
bamboo plants, significantly improving the spatiotemporal

resolution of physiological research on salt stress.

2.1.2 RFID backscatter model
The communication foundation of passive RFID systems relies

on the interaction mechanism between electromagnetic waves and

medium interfaces. When radio frequency waves of a specific

frequency emitted by the reader are incident on the surface of

plant leaves, their energy distribution follows the boundary

conditions described by Maxwell’s equations, resulting in three

physical processes: reflection, transmission, and absorption

(Benbaghdad et al., 2016). Among them, the intensity of the

reflected wave is dominated by the permittivity tensor ej, and the

reflection coefficient of vertically polarized waves at a specific

incident angle qi can be quantified using Equation 2:

∣Gij(qi, ej) ∣ =
cosqi−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ej−sin2 qi

p
cosqi+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ej−sin2 qi

p (2)

Here, the imaginary part e 00 of the complex permittivity ej =
e }−je}} satisfies the relationship e}} = s=(we0) with the electrical

conductivity s of the leaf tissue cell sap, directly reflecting changes

in intracellular Na+/K+ ion concentrations. This is the physical

essence of the electromagnetic response to salt stress. In a

monostatic transceiver-integrated architecture, the received power

equation derived from the Friis backscattering link model is given

by (Equation 3):

Prx =
PtG

2
t G

2
rl4h2 ·∣Gij ∣2

(4pr)4y2r2B M (3)

In the formula, the wavelength l and frequency f satisfy l = c=f

; the polarization loss factor h is determined by the antenna

radiation pattern and tag orientation; the gain penalty factor y
characterizes the wavefront phase distortion caused by leaf

curvature (under the Lambertian scattering model, y ∝ 1= cos2 qi
); the multipath fading margin B needs to compensate for the

Fresnel zone diffraction loss of the signal in the plant canopy

(typical value: 3–6 dB); the path occlusion factor r takes a unit

value under line-of-sight propagation conditions. The modulation

factor M is determined by the impedance switching strategy of the

tag chip, as defined in Equation 4:

M =
1
4
∣GA − GB ∣

2 (4)

where the reflection coefficient GA is defined by the conjugate

matching condition in Equation 5:

 GA =
Zchip−Z*ant
Zchip+Zant

(5)

When using Phase Shift Keying (PSK) modulation, the chip

only changes the load reactance component (DX ≠ 0, DR = 0),

enabling phase jumps of G while maintaining stable DC power

supply. In contrast, Amplitude Shift Keying (ASK) alters the

reflection amplitude through switching of the resistance

component (DR ≠ 0), which requires a trade-off between

modulation depth and the chip’s turn-on voltage. The Received

Signal Strength Indicator (RSSI), as a direct observable of the
frontiersin.org
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system, follows a logarithmic law in its conversion to received

power, as expressed in Equation 6:

RSSI = 20 log10ð P
10−3ÞdBm(P :mW) (6)

The hardware parameters and dielectric response terms can be

decoupled by combining the equations, yielding the expressions in

Equations 7, 8:

Prx = K · ∣Gij ∣2 (K = PtG
2
t G

2
r l4h2M

(4pr)4y2r2B ) (7)

RSSIrx = 10 log10 K + 20 log10 ∣Gij ∣+30 (8)

Salt stress causes changes in the permeability of leaf cell

membranes. The influx of extracellular Na+ increases the

electrical conductivity s by 20-100%, leading to a significant

increase in e}} in the 0.5–5 GHz frequency band. According to

the above equation, when e}} > 5, ∣Gij ∣ can be enhanced by 8–15

dB at an incident angle of 60°, ultimately resulting in distinguishable

stress response characteristics in RSSI readings. This phenomenon

lays the electromagnetic theoretical foundation for passive radio

frequency monitoring of plant physiological states. Integrating the

above electromagnetic transmission model and modulation

mechanism, under the constraints of fixed system antenna

parameters ( Gt, Gr,h,y) and operat ing dis tance , the

backscattered power received by the reader can be characterized

as a single-valued function of the complex permittivity ej of

the medium.

2.1.3 Cole-Cole dielectric model
The previous section of the research confirmed that the power

attenuation and phase shift of RFID backscattered signals can

sensitively reflect changes in the dielectric properties of plant

leaves. Plant tissue, as a heterogeneous biological dielectric,

undergoes significant changes in its cellular structure, water

content, and ion concentration under salt stress, which directly

affects the propagation characteristics of electromagnetic waves. To

quantify this relationship, it is necessary to establish an accurate

dielectric model. The classic Debye model describes a single

relaxation polarization process, as shown in Equation 9

(Benbaghdad et al., 2016):

e(w) = ea +
e0−ea
1+jwt (9)

In the equation, ea and e0 represent the limiting dielectric

constants at optical frequency (>100 GHz) and electrostatic field

(0 Hz) respectively, t is the dipole rotation relaxation time, and w is

the angular frequency. This model is applicable to ideal polar

liquids, but it cannot characterize the widely distributed

relaxation time spectrum of biological tissues.

To address this limitation, the Cole-Cole model introduces a

relaxation time distribution parameter a (a(0 ≤ a < 1)), and its

general expression is given by Equation 10:

e(w) = ea +o
n

i=1

e0 − ea
1 + (jwti)1−ai

+
sdc

jwev
(10)
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When ai=0 in the equation, the model degenerates into the

Debye model; an increase in ai indicates enhanced dispersion of

time constants in the relaxation process. This model quantifies

multiple mechanisms such as cell membrane interfacial polarization

and protein dipole relaxation through  ai, making it particularly

suitable for the water-biomacromolecule composite system

in leaves.

The complex permittivity e* and conductivity satisfy the

following relationship described in Equation 11:

e*(w) = e 0 (w) − j s(w)we0 (11)

Salt stress affects this equation through two pathways: the

intracellular accumulation of Na+/Cl+ ions significantly increases

the static conductivity sdc; meanwhile, cellular dehydration leads to

a reduction in free water, resulting in a decrease in the low-

frequency permittivity  e0 and an extension of the relaxation time

t. These two types of changes in dielectric response collectively

constitute the electromagnetic characteristics of the stress state.

The direct current conductivity (sdc) of plant leaves exhibits

significant responsive characteristics to salt stress, which can serve

as a key bioelectrical indicator for characterizing the stress state.

Through the coupling analysis of the Cole-Cole dielectric model

and RFID backscattering power, the transfer relationship of

“electromagnetic scattering signal—leaf complex permittivity—

conductivity” has been successfully established. To balance model

accuracy and computational complexity, this paper adopts the first-

order Cole-Cole model (n=1). This simplified form can still

effectively capture the a parameter shift and sdc dynamic changes

caused by salt stress in the characteristic relaxation frequency band

of plant tissues.

2.1.4 Improved C-T-PSO-Cole-Cole multi-
strategy optimization algorithm

To balance model accuracy and computational complexity, this

paper adopts the first-order Cole-Cole model (n=1), formulated in

Equation 12:

e(w) = e∞ + e0−e∞
1+(jwti)(1−a)

+ ss
jwev (12)

The accurate identification of key parameters (a, t,  e0,  e∞) in
the first-order Cole-Cole dielectric model (Eq. 12) is paramount for

high-precision dielectric spectrum reconstruction. This study

employs an enhanced Particle Swarm Optimization (PSO)

algorithm for the joint inversion of these parameters. The

physical significance and optimization bounds of each parameter

are detailed in Table 1.

This study is built upon the standard PSO algorithm framework

(Stehlik et al., 2024), which facilitates efficient search in the

parameter space by simulating collective swarm intelligence.

Particles update their velocity and position based on their

individual historical best position ( P
→

best) and the swarm’s global

best position ( G
→

best). However, the standard PSO is often prone to

premature convergence and limited population diversity when

solving such complex inverse problems.
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To overcome these limitations, two key enhancements are

proposed. Firstly, a Chebyshev chaotic map is adopted for

population initialization (Zhang et al., 2025). The initial solutions

are generated using (Equation 13) and then mapped to the parameter

search space via the affine transformation in (Equation 14):

xn+1 = cos (n · arccos (xn)) (13)

 Xi =
(xn+1)

2 (  Xmax − Xmin) + Xmin (14)

Compared to traditional random initialization, this method

leverages the ergodicity, randomness, and sensitivity to initial

conditions inherent in chaotic systems to produce an initial

population with superior dispersion. This establishes a better

foundation for subsequent global search and effectively suppresses

premature convergence.

Secondly, a t-distribution perturbation strategy is incorporated

during the later iterations. This mechanism enhances population

diversity by injecting a t-distributed random perturbation into the

current global best solution ( G
→

best), aiding the algorithm in escaping

local optima. Its mathematical formulation is given by (Equation

15):

P
→best
new=G

→

best +d · T
→
(v) (15)

where T
→
(v) is a D-dimensional t-distributed random vector

and d is a scaling factor. The heavy-tailed nature of the t-

distribution (particularly when the degrees of freedom parameter

n is small) enables the generation of larger exploration steps

compared to Gaussian perturbations. By adjusting n, this strategy
can adaptively balance the algorithm’s requirement for global

exploration and local exploitation during different iteration stages.

The algorithm’s hyperparameters were configured based on

theoretical and experimental validation as follows: a population size

of N = 50 was selected to maintain population diversity while

controlling computational complexity; an inertia weight of w = 0:7

was set to effectively balance global exploration and local exploitation;

learning factors c1 = c2 = 2:0 were adopted following the standard

cognitive-social model to ensure equilibrium between individual

experience and swarm intelligence; a perturbation scaling factor of

d = 0.5 was determined through testing to optimally balance
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exploration of new regions and search stability; a maximum

iteration count of Mmax = 1000 was established based on solution

space complexity analysis, satisfying convergence requirements in

over 99% of cases while incorporating an early stopping mechanism

to prevent unnecessary iterations; random numbers r1 and  r2 were

set to follow a U(0, 1) uniform distribution to preserve stochasticity

and exploratory behavior throughout the iterative process.

The hyperparameters of the C-T-PSO algorithm were initially

determined based on empirical conventions and preliminary

experiments. To further validate the robustness and generalizability

of these choices, a comprehensive sensitivity analysis was conducted

on three key parameters: population size (N), inertia weight (w), and

scaling factor (d). As shown in Figure 4: Sensitivity analysis of

key parameters.

The analysis was performed using a controlled variable

approach on benchmark functions, monitoring the convergence

accuracy and speed. This analysis confirms that the empirically

selected parameter set is robust and generalizable, providing stable

performance across different optimization landscapes.
2.1.5 Classification model
The specific steps of the classification method are as follows:

(1) Use an RFID reader to collect relevant information of

Phyllostachys edulis at different salt stress stages, and expand the

collected data into a model dataset. (2) Perform conversion

processing on the data in the dataset, complete sample labeling, and

generate training sample sets required by the model. (3) Randomly

sample the generated sample sets and divide them into training sets,

test sets, and validation sets in a ratio of 7:2:1. Then, input the training

sets into the model for training. (4) Adjust the model parameters based

on its performance on the test sets, and then retrain the model. Repeat

this process until the performance on the test sets reaches the optimal

level, indicating that the model has converged to an ideal state. (5) Use

the trained and optimized model as a detector to detect salt stress in

Phyllostachys edulis and determine the specific type of salt stress.

To address the challenge of limited sample size and to more

robustly evaluate the generalization performance of the classification

model, a k-fold cross-validation analysis was supplemented in this

study. The specific process was as follows: the entire dataset was

randomly partitioned into 10 mutually exclusive subsets (folds).

Sequentially, one subset was used as the test set, and the remaining

nine subsets were combined as the training set. The training and

testing process was repeated 10 times. The final performance metrics

of the model are presented as the mean and standard deviation of the

results from these 10 tests. This analysis aims to validate the stability

of the results obtained based on a single split.
2.2 experimental preparation

2.2.1 Seedling cultivation and pretreatment
One-year-old healthy Phyllostachys edulis seedlings (with a height

of 30 ± 2 cm) available in the market were selected, ensuring they had a

consistent genetic background and were free from pests and diseases.
TABLE 1 Optimization parameters of the Cole-Cole model.

Parameter
name

Parameter meaning
Find the
best scope

a The distribution characteristics of the
control response affect the behavior of
the dielectric constant at different
frequencies

(0,1)

t Timescale for controlling dielectric
response

[0.1,2]

e0 Dielectric response of materials at
relatively low frequencies (860MHz)

[2,60]

e∞ Dielectric response of materials at
relatively high frequency (960MHz)

[1,25]
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Polyethylene pots with a diameter of 25 cm and a height of 30 cm were

used as cultivation containers. The substrate was mixed in a volume

ratio of vermiculite: peat soil: perlite = 3:1:1. This formula has both

water retention and air permeability. The initial pH value was adjusted

to 5.5-6.0 (using 0.1 mol/L HCl or NaOH), which is in line with the

characteristic of Phyllostachys edulis preferring slightly acidic soil.

Before transplantation, the root systems of the seedlings were soaked

in a 0.1% carbendazim solution for disinfection for 10 minutes, then

washed clean and planted in the substrate, with one seedling per pot.

The seedlings were acclimatized for 14 days in an artificial

climate chamber under the conditions of temperature 25 ± 2°C,

relative humidity 70 ± 5%, and light intensity 300mmol·m+²·s+¹

(photoperiod 12 h/d). They were watered with Hoagland nutrient

solution daily to promote root recovery.

2.2.2 Salt stress treatment design
Six treatment groups were set up: control group (CK, 0 mmol/L

NaCl), T1 (25 mmol/L NaCl), T2 (50 mmol/L NaCl), T3 (75 mmol/

L NaCl), T4 (100 mmol/L NaCl), T5 (125 mmol/L NaCl), and T6

(150 mmol/L NaCl). Each group was replicated in 6 pots, arranged

in a completely randomized block design. After acclimatization, the

stress treatment was initiated: a 50 mL medical syringe was used to
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inject NaCl solution into the main root distribution area (5–10 cm

in depth), with 20 mL injected per plant, twice a week (at 3-day

intervals) for 4 consecutive weeks.

The experiment was conducted in a controlled greenhouse,

where the temperature was maintained at 28 ± 2°C during the day

and 22 ± 2°C at night, with an air humidity of 70 ± 5%. Natural light

was supplemented with LED lighting (light intensity 400-

600mmol·m+²·s+¹). A soil temperature and moisture transmitter

(DHT11) was placed in each pot to measure air temperature and

humidity, and the relevant data were transmitted to the cloud

platform in real time for data management. This ensured that the

temperature remained within an appropriate range, and the

substrate water content was maintained at 60% ± 5% of the

normal water content to avoid interference from drought.

2.2.3 Hardware composition and equipment
selection of the data acquisition system

The hardware of the data acquisition systemmainly includes RFID

tags, a reader, and an antenna (Figure 5). The antenna is connected to

the reader via a feeder line. The system is powered by a mobile power

supply, and a router provides a local area network to ensure

communication between the reader and the computer terminal.
FIGURE 4

Sensitivity analysis of key parameters.
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Fron
(1) Reader: The Impinj Speedway R420 high-performance

UHF RFID reader is adopted. This device supports

mainstream protocols such as EPC Global Gen 2 and ISO

18000-6C, and provides multiple interfaces including PoE,

RS-232, and USB, facilitating system integration;

(2) Antenna: The RYT-280 circularly polarized antenna is

selected, which is responsible for signal transmission and

reception. With a moderate size and high gain

characteristics, this antenna is suitable for working in the

ultra-high frequency band;

(3) RFID tag: The Lingtian KU7 passive electronic tag was

used, as shown in Figure 6. Based on the traditional wet

inlay, the tag is encapsulated with PET flexible material and

has a symmetrical rectangular structure, which conforms to

the basic shape of Phyllostachys edulis leaves. Its 3M

adhesive ensures firm attachment and prevents edge

curling and falling off, and the PET material also provides

excellent waterproof performance.
2.2.4 Design and implementation of the
software-side data acquisition program

On the software side, the host computer uses the Impinj Octane

SDK to process the radio frequency signals collected by the reader and

extract parameters such as the tag EPC number, RSSI (signal strength),

phase, collection time, antenna port number, and frequency. A data

acquisition program was developed based on the Java interface of this

SDK, which controls the reader to perform operations by instantiating

an Impinj Reader class object. The specific process includes: (1)

Connect the host and the reader to the same local area network

through a specified IP address to establish a connection; (2) Before

starting, configure the reader’s reading mode to MaxThroughput; use
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the ReportConfig class to set the data items to be collected (in addition

to the default EPC, explicitly specify the need to collect RSSI, phase,

time, antenna number, and frequency, and control the collection of

each signal attribute through flag bits); (3) Configure the antenna to

operate in single-antenna mode, set the transmission power to 25.0

dBm and the reception sensitivity to -70.0 dBm to ensure signal

stability; (4) Start the reader after completing the configuration. Data

collection continues for a fixed 10 seconds, then automatically stops

and disconnects; (5) To suppress signal interference (collision) caused

by simultaneous responses from multiple tags, set a tag mask filter to

restrict the reader to accessing only tags within a specified EPC range.

This program achieves efficient and accurate data acquisition and

analysis functions, making it particularly suitable for complex

environments with multiple tags.

2.2.5 Data collection process
To accurately measure the RSSI value scattered by the RFID tag

on the back of Phyllostachys edulis leaves, it is necessary to ensure

that the leaves remain stationary during the measurement and that

their relative angular position with respect to the reader antenna

remains stable. Therefore, the experimental setup is as shown in

Figure 7, where both the RFID reader and Phyllostachys edulis

leaves are placed in a fixed position. This setup, on the one hand,

meets the requirements of measurement accuracy; on the other

hand, it is designed to ensure that the radio frequency signals

reflected by the RFID tag attached to the back of the leaf can

effectively penetrate the leaf tissue and be reliably received by the

reader antenna.

To balance the accuracy and efficiency of data collection, a phased

dynamic sampling strategy was adopted in this experiment: In the initial

observation phase, within one hour, the RFID reader collected data

every 6 minutes, with 300 sets of data collected each time to
FIGURE 5

Hardware devices of the data acquisition system.
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comprehensively capture the characteristics of dynamic changes; once

the system state tended to be stable, it entered the regular monitoring

phase, where the sampling interval was adjusted to 30 minutes per time,

with 300 sets of experimental data collected each time. This ensures data

timeliness while optimizing the allocation of storage resources.
2.2.6 Determination of relative electrical
conductivity of Phyllostachys edulis leaves

To evaluate the degree of environmental stress on Phyllostachys

edulis leaves, this study used relative conductivity (RC) as an indicator

for determination. The principle is based on the increased electrolyte

leakage caused by cell membrane damage. Functional leaves of

Phyllostachys edulis were selected, rinsed with deionized water, and

surface moisture was blotted dry. A punch was used to sample leaves

while avoiding the main veins, and leaf samples of equal area

(approximately 0.1 g) were weighed. The samples were placed in

stoppered test tubes, 20 mL of deionized water was added, and they

were soaked at room temperature for 1 hour. A conductivity meter

(TDS pen) was used to measure the conductivity value C1 of the leaf
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soaking solution at this point. Subsequently, the test tubes were placed in

a boiling water bath and boiled for 30 minutes to kill the tissues. After

shaking and cooling, the final conductivity value C2 was measured. The

conductivity meter (TDS pen) is shown in Figure 8. The relative

conductivity (RC) of the leaves was calculated according to (Equation

16) (Cao et al., 2025):

RC = C1
C2

� 100% (16)

The salt stress status of Phyllostachys edulis leaves is inferred by

analyzing the RSSI values of RFID tags. The RFID reader is used to

read the tags attached to the back of the leaves, obtain their RSSI

signals, and specific algorithms are employed to process these

signals to determine the stress level.

2.2.7 Data collection related to salt stress in
Phyllostachys edulis leaves

At the experimental forest base of Nanjing Forestry University,

several bamboo leaves were selected. RFID tags were attached to the

back of the leaves on-site, and a fixing device was secured (to ensure
FIGURE 6

Lingtian KU7 passive electronic tag. (a) Electronic tags are pasted on the front view of Phyllostachys edulis. (b) Electronic label attached to the back
of Phyllostachys edulis. (c) Schematic diagram of the tag's material structure. (d) Physical image of the electronic inlay. (e) Dimensional schematic of
the tag.
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signal transmission). Data such as RSSI and phase of the tags were

collected using an RFID reader and immediately saved, as shown in

Figure 9. The leaves were then promptly collected, rinsed with

deionized water and blotted dry. Samples of approximately 0.1 g

were punched out, avoiding the main veins, and placed in stoppered

test tubes with 20 mL of deionized water. After soaking at room

temperature for 1 hour, the tubes were heated in a boiling water

bath for 20 minutes, shaken, and cooled to room temperature. A

conductivity meter was used to measure the conductivity of the

soaking solution and the cooled boiled solution. The relative

conductivity was calculated according to the formula. Finally, the

data were input into the algorithmic model to predict the stress

status, and the error rate was analyzed by comparing with the

measured results to verify the model’s accuracy.

2.2.8 Evaluation indicators
To objectively evaluate the performance of the Phyllostachys

edulis salt stress detection model constructed in this study,

Accuracy, Precision, Recall, and F1-Score were selected as core

evaluation metrics (Chetry et al., 2025). These metrics quantify the

model’s predictive efficacy for leaf salt stress states (e.g., no stress,

mild salt stress, moderate salt stress, severe salt stress) from different

dimensions. The definitions and calculation methods of each metric

are shown in Table 2 below:

Accuracy reflects the overall classification correctness rate of the

model. Precision measures the reliability of the model’s prediction
FIGURE 7

Data acquisition perspectives. (a) Frontal overview of the experimental setup, showing the relative positions of the plant, antenna, and reader. (b)
Close-up view detailing the method of immobilizing the Phyllostachys edulis leaves. (c) Side view illustrating the fixed angle and distance between
the antenna and the target leaf.
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FIGURE 8

TDS Pen.
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results for a specific stress level; a higher value indicates fewer false

positives. Recall, on the other hand, reflects the model’s ability to

detect true stress samples; a higher value indicates fewer false

negatives. Given that Precision and Recall may show a trade-off

(where one increases at the expense of the other), the F1-Score, as

the harmonic mean of the two, can effectively balance the model’s

reliability and detection ability. It is particularly suitable for

evaluating the model ’s comprehensive discrimination

performance across different salt stress levels.
3 Results and discussion

3.1 Experimental results and analysis of
different degrees of salt stress

In the initial experiment applying a gradient concentration of

NaCl solution to the roots of Phyllostachys edulis, the variation in

RSSI signal strength is depicted in Figure 10. The baseline signal

stabilized at approximately -55.4 dBm, with the untreated control

group consistently maintaining relative stability.
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When the salt concentration increased to 25 mmol/L, the signal

strengthened to -53.5 dBm. This enhancement is primarily

associated with an elevation in the leaf dielectric constant: the

low-salt environment may increase ion concentration in the

intercellular space/cytoplasm, optimizing the electrical

conductivity of the tissue fluid and thereby enhancing the tissue’s

conduction efficiency for electromagnetic waves.

As the salt concentration further increased to 50 mmol/L and 75

mmol/L, the signal continued to strengthen (reaching -51.5 dBm

and -50 dBm, respectively). This reflects an increase in the real part

of the complex permittivity of the leaves, where the transmembrane

hydration layer structure maintained by cellular osmotic

adjustment may further reinforce the dielectric properties.

When the salt concentration surpassed the 100 mmol/L

threshold, the signal surged to a peak of -47 dBm, signifying a

qualitative shift in the dielectric response: On one hand, high salt

ion concentration significantly increased cytoplasmic electrical

conductivity, leading to an elevation in the dielectric loss factor.

On the other hand, physiological changes induced by stress, such as

proline accumulation, may also influence the capacitive properties

of cell membranes. These two factors act synergistically to
FIGURE 9

On-site collection and preparation of bamboo leaf samples. (a) Bamboo leaves in their natural field environment prior to collection. (b) Tagging
locations indicated by red markers on the bamboo stems. (c) Collected leaf samples arranged and numbered for subsequent analysis.
TABLE 2 Model evaluation index.

Metric Name Calculation formula meaning

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN
The correct proportion of the model predicts the sample

Precision Precision =
TP

TP + FP
The proportion of the predicted positive category is actually positive category

Recall Recall =
TP

TP + FN
The proportion of the positive category that is actually predicted to be positive category

F1-Score F1 − Score = 2� Precision � Recall
Precision +  Recall

The harmonic mean of precision and recall, comprehensively balancing both metrics to reflect overall
model performance
TP (True Positive) refers to the number of samples that actually belong to a certain level and are correctly predicted; TN (True Negative) refers to the number of samples that do not actually
belong to a certain level and are predicted to be of other levels; FP (False Positive) refers to the number of samples that do not actually belong to a certain level but are mistakenly judged as
belonging to that level; FN (False Negative) refers to the number of samples that actually belong to a certain level but are missed in judgment.
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significantly enhance the leaf’s energy coupling efficiency with

electromagnetic waves.

Under the 125 mmol/L treatment, the signal further

strengthened to -43.5 dBm. Dielectric spectroscopy characteristics

at this stage revealed a leftward shift in relaxation frequency,

reflecting reduced cell membrane fluidity or hindered molecular

motion. Combined with the occurrence of membrane lipid

peroxidation, this indicates that membrane structural damage has

led to significant alterations in dielectric loss characteristics (such as

peak broadening or anomalous intensity), approaching a limiting

state under this stress level. Upon stress removal, the signal could

only partially recover to around -52 dBm.

When the concentration reached 150 mmol/L, the signal rose to

-41.5 dBm, indicating that the leaf dielectric properties entered a state

of severe disruption. At this point, irreversible structural damage,

including chloroplast disintegration and mitochondrial dysfunction,

had occurred. Ultimately, the severe cellular structural damage

constitutes the fundamental irreversible cause. This prevents the

restoration of abnormal dielectric properties—resulting from the

combined effects of structural damage and persistent ionic effects

(such as sustained ionic shielding)—even after stress removal.

Consequently, the RSSI signal cannot return to baseline levels.
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In seven groups of control experiments, Phyllostachys edulis was

subjected to long-term treatment with NaCl solutions of different

concentrations, and the changes in relative conductivity of its leaves

are shown in Figure 11. As the concentration of NaCl solution

increased from 0 mmol/L to 150 mmol/L, the relative conductivity

of leaves showed a gradient increasing trend, reaching 1.31, 1.50,

1.73, 2.08, 2.50, and 3.00 times that of the control group,

respectively. This indicates a significant positive correlation

between salt concentration and the degree of cell membrane

damage. In the concentration range of 0–50 mmol/L (including

the 25 mmol/L and 50 mmol/L groups), the increase in relative

conductivity did not exceed 50% (≤1.50 times). The cell membrane

structure remained intact, and the electrolyte leakage did not reach

the damage threshold. This range is defined as the non-salt stress

state (color scale 1). When the concentration increased to 50–100

mmol/L (including the 75 mmol/L and 100 mmol/L groups), the

relative conductivity increased to 1.73-2.08 times. At this point,

osmotic adjustment substances (such as proline) began to

accumulate, but the degree of membrane lipid peroxidation

intensified, resulting in reversible cell damage, thus classified as

mild salt stress (color scale 2). When the concentration reached

100–125 mmol/L (including the 125 mmol/L group), the relative
FIGURE 10

Changes in RSSI signal strength.
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conductivity jumped to 2.50 times. The selective barrier function of

the cell membrane declined, and the ion homeostasis regulation

mechanism collapsed, leading to massive leakage of intracellular

solutes. This stage is categorized as moderate salt stress (color scale

3). When the concentration exceeded 125 mmol/L (150 mmol/L

group), the relative conductivity soared to 3.00 times. The

chloroplast structure disintegrated and reactive oxygen species

accumulated explosively, marking the initiation of programmed

cell death. At this point, Phyllostachys edulis was in an irreversible

severe salt stress state (color scale 4). The growth status of

Phyllostachys edulis under different stress levels after long-term

treatment is shown in Figure 12, which are classified into non-

stress, mild salt stress, moderate salt stress, and severe salt stress.

This classification system provides a theoretical basis for the study

of Phyllostachys edulis’s salt stress response mechanism.
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3.2 Performance comparison of various
optimization algorithms and standard
machine learning classifiers

To comprehensively evaluate the comprehensive performance

of the improved C-T-PSO algorithm, this section conducts

experimental comparisons between it and four representative

swarm intelligence optimization algorithms, including Particle

Swarm Optimization (PSO) (Tang and Meng, 2024), Ant Colony

Optimization (ACO) (Blum, 2024), Grey Wolf Optimizer (GWO)

(Premkumar et al., 2024), Whale Optimization Algorithm (WOA)

(Rajmohan et al., 2023), and Sparrow Search Algorithm (SSA) (Sun

et al., 2023). By comparing these mainstream algorithms, the aim is

to examine the relative advantages of C-T-PSO in solving

optimization problems.
FIGURE 11

Relative conductivity of Phyllostachys edulis leaves.
FIGURE 12

Phenotypic comparison of Phyllostachys edulis under different salt stress levels. (a) No stress: healthy, fully expanded green leaves. (b) Mild salt
stress: slight leaf curling and initial wilting. (c) Moderate salt stress: pronounced wilting and chlorosis. (d) Severe salt stress: severe chlorosis,
necrosis, and extensive leaf desiccation.
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Meanwhile, to thoroughly investigate the robustness of the

algorithm in coping with different optimization challenges, four

types of benchmark test functions with typical structural

characteristics are selected for evaluation. Among them, the

Ackley and Sphere functions contain only one minimum value

within their value ranges, belonging to unimodal optimization

problems; while the Rastrigin and Schwefel functions have

multiple minimum values, which tend to cause the algorithm to

fall into local optima and are typical multimodal optimization

problems. To explore the performance and optimization
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efficiency of the C-T-PSO algorithm after multi-strategy joint

optimization in various functions, multiple test functions are

selected for experiments, as shown in Figure 13. Table 3 specifies

the expressions, detailed parameters (including x value ranges), and

minimum values of these four test functions.

To control the impact of randomness, the initial population sizeZ

and maximum number of iterations for all five algorithms were

uniformly set to 50 and 250, respectively. The experimental results

(Figure 14) show that the C-T-PSO algorithm proposed in this

chapter outperforms other comparative algorithms in both
FIGURE 13

Four types of test functions. (a) Ackley Function. (b) Sphere Function. (c) Rastrigin Function. (d) Schwefel Function.
TABLE 3 The detailed attributes of the selected test function.

Function name Expression x value range Minimum value

Ackley fðxÞ  =  �  aexpð�b

ffiffiffi
1
d

r
x00A0Þ;� expð 1

do
d

i¼1

cosðcxiÞ + a + e [-32.786,32.786] 0

Sphere f (x) =o
d

i=1

xi2 [-100,100] 0

Rastrigin f (x) = 10d +o
d

i=1

½xi2 − 10 cos (2pxi)� [-5.12,5.12] 0

Schwefel f (x) =  o
d

i=1

(oi
j=1xj)

2 [-500,500] 0
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convergence speed and convergence accuracy, with a faster

convergence rate and the ability to find better solutions more quickly.

To quantitatively evaluate the convergence accuracy and

robustness of the algorithms, each algorithm was independently

executed 30 times on each test function. The statistical results (mean

± standard deviation) are presented in Table 4. The analysis

demonstrates that the C-T-PSO algorithm achieved the best or

competitive mean performance on the vast majority of functions.

Moreover, its standard deviation is significantly lower than that of

other comparative algorithms, proving its comprehensive advantages

in high solution accuracy and strong stability. These statistical results

corroborate the convergence trends observed in Figure 14.

To further systematically evaluate the additional value and

comparative advantages of the proposed physics-model-driven

approach, a comprehensive comparison was conducted with three

classical machine learning algorithms that directly utilize raw RFID

signals for classification. The models selected for comparison were

carefully chosen to cover different machine learning paradigms:
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Support Vector Machine (SVM) as a representative of powerful

linear and nonlinear classifiers; Random Forest (RF) as an efficient

and robust ensemble learning algorithm; and XGBoost as a top-

performing gradient boosting framework renowned for its

excellence in numerous data science competitions.
3.3 Determination and analysis of salt
stress diagnosis results for Phyllostachys
edulis

The experimental results are shown in Figure 15. The C-T-PSO-

Cole-Cole model constructed in this s tudy exhibi t s

comprehensively excellent performance in the detection of salt

stress in Phyllostachys edulis. For the four states of no stress, mild

salt stress, moderate salt stress, and severe salt stress, the core

evaluation indicators of the model—Accuracy, Precision, Recall,

and F1-Score—all stably exceed 93%. This data indicates that the
FIGURE 14

Convergence performance of six algorithms on selected test functions.
TABLE 4 Statistical results (Mean ± Standard Deviation) of the optimization algorithms over 30 independent runs on benchmark functions.

Algorithm Ackley Sphere Rastrigin Schwefel

C-T-PSO 3.52×10-7 ± 1.21×10-7 3.39×10-59 ± 8.47×10-60 1.02×10-7 ± 0.2175 0.9812 ± 0.2451

PSO 0.0124 ± 0.0056 4.8754 ± 1.2243 325.3263 ± 81.4863 8970.6163 ± 2240.7352

ACO 0.8761 ± 0.2343 15300.6734 ± 3830.6489 312.5765 ± 78.1637 8780.2489 ± 2190.3243

SSA 0.3271 ± 0.0523 1.95×10-36 ± 4.88×10-47 0.0032 ± 2.0574 963.7134 ± 241.1244

WOA 0.0016 ± 8.17×10-4 5.78×10-6 ± 1.44×10-6 1.92×10-5 ± 95.8784 341.4241 ± 85.2746

GWO 0.3383 ± 0.0612 0.8485 ± 0.2121 28.9867 ± 7.2383 9050.7873 ± 2260.6453
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model has a high generalization ability in classifying samples with

different stress levels. The synchronous optimization of its Precision

and Recall ensures the reliability of the prediction results, while the

F1-Score verifies the overall advantage of the classification

effectiveness. The comprehensive performance evaluation of the

overall experimental results is shown in Figure 16. The model

demonstrates excellent stability in the global dimension: the core
Frontiers in Plant Science 18
indicators (Accuracy, Precision, Recall, and F1-Score) all remain

consistently in the high range of over 94%.

Figure 17 shows the confusion matrix based on feature layer

fusion. After selecting 50 test samples for prediction, their relative

conductivity was measured immediately, including 20 samples with

no stress (0), 10 samples with mild salt stress (1), 10 samples with

moderate salt stress (2), and 10 samples with severe salt stress (3).

The prediction results indicate that 1 no-stress sample was

misjudged as mild stress, 1 mild salt stress sample was misjudged

as no stress, 1 moderate salt stress sample was misjudged as no

stress, and all severe salt stress samples were predicted correctly.
FIGURE 15

Multi-indicator performance evaluation of gradient salt stress.
FIGURE 16

Overall performance evaluation of multi-indicator for salt stress.

FIGURE 17

Confusion matrix based feature layer fusion.
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The prediction results are basically consistent with the experimental

data of relative conductivity.

Figure 18 shows the experimental results of diagnosing the salt

stress status of Phyllostachys edulis after inverting the Cole-Cole

model parameters using five optimization models. From the

comprehensive comparison of various evaluation indicators in the

figure, it can be clearly observed that the C-T-PSO-Cole-Cole model

constructed in this study exhibits significant advantages in all key

performance indicators. Compared with the other five comparative

methods, this model not only achieves the highest comprehensive

score but also shows higher reliability and stability in identifying

different stress levels. The performance comparison between the C-

T-PSO-Cole-Cole model and standard machine learning classifiers

is shown in Figure 19. All comparative models demonstrated

commendable performance, with XGBoost achieving an accuracy

of 94.2%, which confirms the effectiveness of raw RFID features for

salt stress diagnosis. The proposed C-T-PSO-Cole-Cole model

achieved optimal results across all metrics, exhibiting marginal

yet consistent improvements over XGBoost with an accuracy of

95.3% and an F1-score of 95.9%. This result strongly confirms that

the Phyllostachys edulis salt stress diagnosis method based on the

optimized C-T-PSO-Cole-Cole model has excellent performance

and practical value. It provides a more effective technical solution

for precise non-destructive monitoring of Phyllostachys edulis salt

stress and a robust analysis tool for plant stress response research.
4 Conclusion

This paper proposes a non-destructive detection method for salt

stress in Phyllostachys edulis based on UHF RFID signal analysis and

the C-T-PSO-Cole-Cole model. In a laboratory environment, by

reading the reflected signals from passive RFID tags attached to the
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abaxial surface of Phyllostachys edulis leaves under different gradient

salt stresses, radio frequency features such as RSSI and phase were

collected, and their dynamic response patterns with varying stress

intensities were quantified. Based on the Cole-Cole dielectric model, a

nonlinear mapping relationship between the dielectric properties of

Phyllostachys edulis leaves and the degree of salt stress was

established, and the physiological interpretation of the model

parameters was clarified. Furthermore, the Chebyshev chaotic

mapping was introduced to initialize the particle swarm, enhancing

the global search capability through high-dispersion initial solutions

and avoiding local optimal traps. Finally, combined with the t-

distribution perturbation strategy to dynamically adjust the inertia

weight, the exploration and exploitation capabilities were adaptively

balanced during the iteration process, significantly improving the

accuracy of model parameters. To verify the generalization ability of

the model, relevant data of several Phyllostachys edulis leaves were

collected from the experimental forest base of Nanjing Forestry

University. After data collection, the leaves were immediately sealed

and sent to the laboratory, and the salt stress levels were accurately

calibrated by the relative conductivity measurement method to verify

the accuracy of the algorithm model. The experimental results show

that the C-T-PSO-Cole-Cole model exhibits comprehensive

advantages in salt stress diagnosis tasks: the classification accuracy

(Accuracy = 0.953), precision (Precision = 0.949), recall (Recall =

0.941), and F1-score (F1-Score = 0.959) are all superior to those of the

comparison models, verifying the effectiveness of the multi-stage

optimization strategy. To further validate the robustness of the

classification model, we re-evaluated it using 10-fold cross-

validation. The results demonstrated that the model achieved an

average classification accuracy of 94.5% (standard deviation: ± 1.2%).

This outcome is highly consistent with the accuracy obtained from

the initial train-test split (95.3%). More importantly, the exceptionally

low standard deviation indicates stable performance across different

data partitions, effectively mitigating concerns regarding potential
FIGURE 18

Performance comparison of six optimization algorithms.
FIGURE 19

Performance comparison of standard machine learning classifiers.
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randomness arising from a single random split. This strongly

confirms that the C-T-PSO-Cole-Cole model exhibits remarkable

and reliable generalization capability even with limited samples.

The above research verifies the core hypotheses proposed in the

introduction: (1) Salt stress alters the osmotic pressure inside and

outside the leaf cells of Phyllostachys edulis, which in turn affects their

dielectric constant. This change can reflect the degree of salt stress by

detecting the dielectric properties of leaves; (2) UHF radio frequency

signals are highly responsive to changes in the dielectric constant of

the medium. By quantifying the characteristics of radio frequency

signals such as RSSI and phase, the dynamic changes in the dielectric

properties of Phyllostachys edulis leaves can be inverted, thereby

achieving accurate discrimination of salt stress levels.

Compared with the widely studied deep learning methods, the

proposed approach exhibits unique advantages. Although CNN

excels in processing image features and LSTM possesses inherent

strengths in modeling time-series data, these methods—if applied to

RFID signal analysis—may achieve good performance, but their

“black-box” nature results in a lack of physical interpretability in the

decision-making process.

The innovative value of our method lies in successfully

establishing an interpretable linkage from RFID signals to plant

physiological status. Through the inversion of Cole-Cole model

parameters, we can directly correlate changes in dielectric

properties with physiological processes such as ion balance and

membrane integrity at the cellular level. This offers an analytical

perspective with greater physical transparency for understanding

plant stress response mechanisms compared to purely data-driven

deep learning approaches. Furthermore, the computational

efficiency of our method is significantly higher than that of

complex deep learning models, making it more suitable for real-

time processing on resource-constrained field monitoring devices.

It is noteworthy that this study does not aim to completely

replace deep learning methods. Rather, the two technical pathways

exhibit distinct advantages in different scenarios: deep learning

performs exceptionally well in contexts with massive annotated

data and no requirement for interpretability, while our method

demonstrates greater practical value in situations with limited data,

where interpretability is essential, and field deployment is needed.

While the proposed C-T-PSO-Cole-Cole model demonstrates high

accuracy under controlled laboratory conditions, its performance in

complex and unstructured field environments may be challenged by

various sources of uncontrolled noise and environmental variability.

Key confounding factors include diurnal and seasonal fluctuations in

temperature and humidity, which directly affect the dielectric

properties of plant tissues and thus can masquerade as or obscure

salt stress signals. Additionally, electromagnetic interference from other

wireless devices and signal attenuation or multipath effects caused by

rain, wind, and dense foliage could significantly bias the acquired RFID

signal features, namely the Received Signal Strength Indicator and

phase, potentially leading to misinterpretations of plant physiological

status. To ensure the scalability and robustness of our method for

practical real-world applications, we have identified two primary

limitations and propose corresponding strategic solutions for future

research and development.
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1. To combat signal instability induced by fluctuating

microclimatic conditions, we propose the development of a

hybrid signal processing framework. This framework

will synergistically combine time-frequency analysis

techniques. Specifically, we will employ Wavelet Packet

Transform for its multi-resolution analysis capabilities to

isolate non-stationary noise components from the raw RFID

signal. This will be coupled with an Adaptive Kalman Filter,

which will dynamically adjust its parameters based on real-

time inputs from integrated temperature and humidity

sensors. This dual approach aims to differentiate between

dielectric changes caused by environmental fluctuations and

those arising from genuine salt stress, thereby significantly

enhancing the signal-to-noise ratio and diagnostic fidelity in

noisy field conditions.

2. Acknowledging the limitation of single-leaf detection in

capturing whole-plant physiological status, our future work

will focus on architecting a multi-modal, space-ground

collaborative sensing network. At the canopy level,

unmanned aerial vehicles equipped with multi-reader RFID

arrays will perform systematic raster scans to map spatial

variance in stress responses. At the plant level, a network of

ultra-thin, flexible RFID sensor tags will be deployed on

multiple leaves and branches to continuously monitor stress

propagation dynamics. The data fusion engine will integrate

this multi-source RFID data with hyperspectral imagery

acquired from the UAVs. This integration will leverage

machine learning models, particularly convolutional neural

networks for feature extraction from images and recurrent

neural networks for time-series analysis of RFID data, to

construct a spatiotemporally explicit model for visualizing,

forecasting, and understanding the systemic dynamics of salt

stress in Phyllostachys edulis.
This study provides technical support for measuring the salt

stress level of Phyllostachys edulis. In the future, through hardware

innovation and algorithm iteration, the monitoring efficiency and

application scope will be further enhanced.
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