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University of Warmia and Mazury in Olsztyn,
Poland
Anto Lourdu Xavier Raj Arockia Selvarathinam,
Grand Valley State University, United States

*CORRESPONDENCE

Meshal Alfarhood

malf@ksu.edu.sa

RECEIVED 19 August 2025
ACCEPTED 27 October 2025

PUBLISHED 26 November 2025

CITATION

Alfarhood M, Alsahw N, Almajed M,
Alzahrani M, Alawfi A, Alanazi M and
Alalwan A (2025) A machine learning
approach for classifying date fruit
varieties at the Rutab stage.
Front. Plant Sci. 16:1678757.
doi: 10.3389/fpls.2025.1678757

COPYRIGHT

© 2025 Alfarhood, Alsahw, Almajed, Alzahrani,
Alawfi, Alanazi and Alalwan. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 November 2025

DOI 10.3389/fpls.2025.1678757
A machine learning approach for
classifying date fruit varieties
at the Rutab stage
Meshal Alfarhood*, Nawaf Alsahw, Mohammed Almajed,
Meshaal Alzahrani, Ahmad Alawfi , Meshal Alanazi
and Abdalrahman Alalwan

Department of Computer Science, College of Computer and Information Sciences, King Saud
University, Riyadh, Saudi Arabia
Introduction: Dates have long been a vital part of the cultural and nutritional

heritage of arid regions, particularly in the Middle East. Among their ripening

stages, the Rutab stage—an intermediate phase between the Khalal (immature)

and Tamar (fully ripe) stages—holds unique significance in terms of taste, texture,

and market value. However, the classification of Rutab varieties remains

underrepresented in the literature.

Methods: To address this gap, we present a pipeline that leverages machine

learning to classify Rutab dates from images. A custom dataset comprising 1,659

images across eight popular Rutab types was collected, and several deep learning

models were evaluated.

Results and discussion: Among the tested models, YOLOv12 achieved the

highest recall of 93%. The proposed system is deployed within a mobile

application, aiming to promote cultural preservation and increase global

awareness of the diversity found within date varieties.
KEYWORDS

dates, fruit classification, machine learning, YOLO, Rutab stage, image recognition,
agricultural technology, and mobile application
1 Introduction

Dates are an integral part of agricultural and dietary systems in many regions,

particularly in the Middle East and North Africa. With over 200 varieties, dates thrive in

harsh environmental conditions such as extreme heat and water scarcity. These fruits have

historically been crucial for the survival and development of ancient civilizations in desert

regions worldwide (Jain and Johnson, 2015). Today, dates are widely recognized as a highly

nutritious health food, rich in fructose—a natural sugar—as well as essential vitamins and

dietary fiber. Additionally, dates are valued for their medicinal properties, including

cholesterol-lowering effects and their role in preventing diseases such as cancer, diabetes,

and cardiovascular conditions (Al-Dashti et al., 2021).
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With a wide range of varieties, dates differ in size, shape, color,

texture, and taste. The classification of these cultivars is crucial for

quality control, market pricing, pest management, and consumer

satisfaction (Rojas Santelices et al., 2025). Moreover, many in our

current and future generations are unaware of the different types of

dates and their seasons. Traditionally, dates classification has relied

on manual inspection by experts, a process that is labor-intensive,

time-consuming, and prone to human error. As the demand for

automation in the agricultural sector grows, there is an urgent need

for robust and efficient systems capable of classifying dates

accurately and consistently.

Recently, machine learning (ML) has emerged as a

transformative tool across many academic and industrial fields,

providing powerful tools for pattern recognition, prediction, and

classification. The agricultural sector, in particular, has experienced

rapid growth in the application of ML techniques to address

complex challenges, ranging from crop yield prediction to disease

detection and quality grading of produce (Liakos et al., 2018). For

fruit classification, ML algorithms have demonstrated considerable

success in providing objective, rapid, and non-destructive

evaluation. Various approaches, including Support Vector

Machines (SVM), k-Nearest Neighbors (KNN), and increasingly,

deep learning models like model based-Convolutional Neural

Networks (CNNs), have shown high effectiveness in categorizing

fruits based on their external and internal characteristics

(Sahidullah et al., 2023). By learning from large datasets and

subtle cues, these models suit dates classification and can improve

efficiency and standardization.
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Most of the existing research in the domain of date fruit

classification focuses on the final stage of dates and neglects the

“Rutab” stage, which is the middle stage of date development

between the Tamar (final) and Khalal (immature) stages (Altaheri

et al., 2019). This gap is significant because many Rutab varieties

share highly similar visual characteristics (such as color, shape, and

texture), making them much harder to distinguish. In contrast,

studies targeting other ripeness stages or more visually distinct

classes often face a less challenging classification problem. In this

paper, we aim to address this gap by using advanced machine

learning techniques to classify “Rutab” dates. To achieve this, we

created our own dataset specifically for “Rutab” dates, focusing on

eight widely consumed varieties: Khalas, Sullaj, Alhlwah, Red

Sukkari, Barhi, Ruthanah, Meneifi, and Shishi. Figure 1 illustrates

representative samples from each variety. In total, the dataset

includes 1659 labeled images, ensuring a balanced representation

across all eight Rutab types for training and evaluation purposes.

In addition, we fine-tuned five state-of-the-art deep learning

models for this task: a baseline Convolutional Neural Network

(CNN) (LeCun et al., 1998), ResNet-50 (He et al., 2016),

EfficientNet (Tan and Le, 2019), YOLOv8 (Varghese and

Sambath, 2024), and YOLOv12 (Tian et al., 2025). Among these,

YOLOv12 demonstrated superior performance, achieving the

highest recall of 93%, indicating its strong ability to correctly

identify Rutab varieties across diverse conditions. To bridge

research and practical application, the finalized model was

deployed within a user-friendly mobile application, enabling real-

time classification of Rutab dates in real-world settings.
FIGURE 1

Representative sample images of the eight selected date varieties at the Rutab stage of ripening. The visual differences in color, texture, and shape
across varieties highlight the classification challenge addressed in this study.
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To summarize, this paper’s primary contributions can be

outlined in three main points:
Fron
• First, we created a unique dataset specifically focused on the

“Rutab” stage, covering eight popular types of dates. Since

there is limited work in the literature addressing this stage,

our dataset serves as a valuable resource for future studies

on date classification.

• Second, we explored and fine-tuned multiple deep learning

techniques, proposing an effective pipeline for “Rutab”

classification. Our approach achieved a high recall value

of 93%, demonstrating its accuracy and reliability.

• Third, we integrated our findings into a mobile application,

making it easy and accessible for users interested in

classifying “Rutab” dates in real-world scenarios.
The remainder of this paper is organized as follows. Section 2

reviews related literature, highlighting significant studies and

methodologies pertinent to our research. Section 3 details our

methodology, covering the entire process from data collection to

the deployment of the mobile application. In Section 4, we present

and analyze our results, discussing key findings along with their

limitations. Finally, Section 5 concludes the paper by summarizing

the main outcomes and suggesting directions for future work.
2 Related work

The classification of date fruit has been a prominent area of

research, with numerous studies employing diverse techniques for

various applications, including automated harvesting systems and

varietal identification. These efforts have also contributed valuable

date fruit datasets to the research community. Beyond date fruits,

the broader field of plant classification has seen significant

advancements. Studies focusing on other plants, such as cherries

and palm trees, have explored sophisticated techniques to enhance

accuracy, often by merging multiple models or expanding limited

datasets through Generative Adversarial Networks (GANs) for data

augmentation. This rich body of work provides a strong foundation

for our investigation into date fruit classification.
2.1 Approaches to date fruit classification

Koklu et al (Koklu et al., 2021). classified date fruits into genetic

varieties using image analysis. Their research employed various

machine learning methods, developing models with logistic

regression (LR) and artificial neural network (ANN) techniques.

The dataset for this study comprised 898 images across seven

distinct date fruit types: Barhee, Deglet Nour, Sukkary, Rotab

Mozafati, Ruthana, Safawi, and Sagai. The individual methods

yielded accuracies of 91% for LR and 92.2% for ANN. Notably,

combining these models into a stacking ensemble increased the

accuracy to a successful 92.8%.
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Meanwhile, Raed Sababa and Samy Abu-Naser (Sababa and

Abu-Naser, 2024) utilized a pre-trained Convolutional Neural

Network (ConvNeXtTiny). They trained their system on a dataset

of 1,350 images to recognize nine date types. The deep learning

model they developed achieved an outstanding accuracy of 99.44%

on the test set. This high precision highlighted the model’s

effectiveness in classifying diverse date varieties, which varied in

size, shape, and sugar content, promising significant advancements

in date fruit production and consumption.

Albarrak et al (Albarrak et al., 2022). also introduced a deep

learning-based approach for classifying date fruits, aiming to

develop an automated system using machine learning techniques.

Their study incorporated methods such as image augmentation,

decaying learning rates, model checkpointing, and hybrid weight

adjustments to enhance accuracy. They compiled a dataset

comprising eight date fruit varieties (Safawi, Khudri, Shishi,

Ambir, Raziz, Mabroom, Khalas, and Lubana) to train the model.

The proposed system, built on the MobileNetV2 architecture,

achieved an impressive accuracy of 99%.

These classification models possess considerable real-world

applicability. For instance, Faisal et al (Faisal et al., 2020).

developed a harvesting system to estimate date fruit type and

maturity level using computer vision (CV) and deep learning

(DL). Their approach incorporated four different deep learning

architectures: ResNet, VGG-19, Inception-V3, and NASNet. They

utilized an online dataset of 8079 high-resolution images, covering

five distinct date types and their maturity levels. The system

demonstrated strong performance, with the ResNet model

proving to be the most effective. Meanwhile, Adnan and

Nasharuddin (2024) introduced an innovative Android-based

mobile application designed to facilitate rapid identification of

date fruit varieties and enhance user knowledge. By employing a

transfer learning technique with a pre-trained neural network, their

app successfully categorized nine date types, such as Ajwa, Medjool,

and Rutab, achieving a remarkable 94.2% accuracy rate.

Morover, Almutairi et al (Almutairi et al., 2024). utilized the

famous algorithm You Only Look Once (YOLO). They trained

various models like YOLOv5, YOLOv7, and YOLOv8 on a dataset

of 1735 images, representing nine distinct types of dates. They

achieved remarkable results using YOLOv8, with a mean recall of

0.99%, precision of 0.991%, and a mean average precision (mAP) of

0.994%. On the other hand, Öznur Özaltın (2024) suggested image-

feature-based machine learning algorithms to classify date fruit. The

study used decision tree, K-nearest neighbors, artificial neural

networks, and support vector machine algorithms, with different

hyperparameters employed to classify date fruit. The results showed

that the best algorithm was a 25-layer neural network, achieving a

93.85% test accuracy.

Additionally, Rybacki et al (Rybacki et al., 2024). proposed

DateNET, an automatic classification model for different varieties of

date palm fruits using a convolutional neural network (CNN). Their

model focused on two key factors: geometric parameters and color

differences of the dates. The dataset they used contained 500 images,

with 100 images for each variety. Color-based classification
frontiersin.org
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achieved 85.24%, geometric classification 87.62%, and an

impressive 93.41% when both factors were combined.

While these studies demonstrate impressive accuracy in

classifying date varieties, it is important to note that most of them

focus on the Tamar stage, where visual differences between varieties

are more pronounced. Tamar dates typically exhibit distinct color,

texture, and dryness, which provide clearer cues for image-based

models. In contrast, Rutab dates, which are semi-ripe, often share

similar color tones and smooth textures, making them harder to

distinguish. This visual similarity among Rutab varieties introduces

greater intra-class ambiguity and inter-class overlap, which can

reduce classification performance even with advanced models. Our

study in this paper addresses this gap by focusing specifically on the

Rutab stage, where classification remains underexplored and

more complex.
2.2 Classification techniques in other fruit
and plant species

Other studies that are not directly related to dates can provide

general insights into new algorithms and mechanisms. For example,

Momeny et al (Momeny et al., 2020). presented a CNN-based

hybrid pooling approach that can accurately classify cherry fruit

into two classes. The research used an innovative CNN architecture

that combines multiple pooling techniques, including average and

max pooling. The model was evaluated using the CIFAR-10 dataset.

As a result, the CNN model achieved a high classification accuracy

rate of 99.4%. Also, Phan et al (Phan et al., 2023). proposed a system

to classify tomatoes into three classes: mature, unripe, and damaged

by utilizing four different deep learning models: YOLOv5,
Frontiers in Plant Science 04
ResNet50, ResNet-101, and EfficientNet-B0. With 4,500 images in

the dataset, YOLOv5 with ResNet-101 achieved the best

performance among other combinations.

Moreover, Gulzar Yonis (Gulzar, 2023) developed a fruit image

classification model using transfer learning with MobileNet-v2. The

dataset comprised 26,149 images across 40 fruit classes. Through

experimentation, their TL-MobileNetV2 model achieved 99%

accuracy, effectively demonstrating its capability for robust fruit

classification. Moreover, Safran et al (Safran et al., 2024). introduced

DPXception, a lightweight CNNmodel designed for classifying date

palm trees. They utilized a dataset of 2358 images representing four

different date palm species. When tested against seven well-known

CNN models, including ResNet50 and DenseNet201, DPXception

achieved the highest accuracy at 92.9%.

Additionally, Zhang et al (Zhang et al., 2021). developed a deep

learning-based model for classifying tree species using RGB optical

images captured by an unmanned aerial vehicle (UAV). The

approach combined advanced deep learning techniques with

aerial imagery to identify individual tree species. The study

employed CNN architectures such as AlexNet, VGG-16,

and ResNet-50, using a dataset that included tree canopy images

with both simple and complex backgrounds. The performance of

these models was compared against traditional methods like K-

nearest neighbor (KNN) and backpropagation (BP) neural

networks. The analysis demonstrated that ResNet-50 was

particularly effective for urban tree species classification based on

RGB imagery.

Table 1 provides a summary of the reviewed literature, detailing

the domain, the number of images and classes in the datasets used,

and the applied model that achieved the highest accuracy in

each study.
TABLE 1 Comparative summary of related work, highlighting key aspects including the application domain, dataset size, and the classification models
employed.

Work Domain Dataset Adopted model

(Koklu et al., 2021) Date Classification 898 images (7 classes)
Logistic Regression and Artificial

Neural Network

(Sababa and Abu-Naser, 2024) Date Classification 1350 images (9 classes) ConvNeXtTiny

(Albarrak et al., 2022) Date Classification 1717 images (8 classes) MobileNetV2

(Faisal et al., 2020) Date Classification 8079 images (5 classes) ResNet

(Adnan and Nasharuddin, 2024) Date Classification 1658 (9 classes) Pre-trained TensorFlow Lite

(Almutairi et al., 2024) Date Classification 1735 images (9 classes) YOLOv8

(Özaltın, 2024) Date Classification 898 images (7 classes) Artificial Neural Network

(Rybacki et al., 2024) Date Classification 500 images (5 classes) DateNET (CNN)

(Momeny et al., 2020) Cherry Classification 719 images (2 classes) Convolutional Neural Network

(Phan et al., 2023) Tomato Classification 4500 images (3 classes) YOLOv5 and ResNet

(Gulzar, 2023) Fruit Classification 26,149 images (40 classes) MobileNetV2

(Safran et al., 2024) Palm Tree Classification 2358 images (4 classes) DPXception (CNN-based)

(Zhang et al., 2021) Tree Classification 19,302 images (10 classes) ResNet-50
This comparison provides context for the current study and underscores the novelty of focusing specifically on Rutab date classification using a custom-curated dataset and state-of-the-art deep
learning techniques.
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3 Materials and methods

Our approach to classifying Rutab date varieties involves a

multi-stage pipeline, as illustrated in Figure 2. The process begins

with the construction of our own custom dataset, which we

collected manually under controlled conditions. Following data

acquisition, we applied a series of preprocessing steps. These

included cropping to isolate the date fruit and resizing the images

to a standardized input dimension suitable for deep learning

models. To enhance model generalization, we employed various

data augmentation techniques such as horizontal flipping and

random rotation. The dataset was then partitioned into training,

validation, and testing subsets using a stratified split to preserve

class distribution across sets. Subsequently, we fine-tuned several

state-of-the-art deep learning architectures, including CNN,

YOLOv8, ResNet50, EfficientNetB0, and YOLOv12. The best-

performing model—YOLOv12 in our case—was selected for

integration into a mobile application designed for public use,

enabling users to classify Rutab dates in real time. The following

sections provide detailed descriptions of each step in our

methodology, including dataset collection, data cleaning, data

augmentation, data splitting, model training, model evaluation,

and mobile development.
3.1 Data collection

To develop a robust and reliable classification system for Rutab

dates, we first constructed our own custom dataset, as publicly

available datasets focusing specifically on this intermediate ripening

stage are currently lacking. The absence of such datasets presents a

gap in the literature and limits the development of machine learning

models tailored to this crucial phase of date fruit maturity.

Our dataset comprises a total of 1659 high-resolution images.

These images represent eight widely recognized Rutab date varieties

that are commonly cultivated and consumed in the Middle East.

The selected varieties include Khalas, Sullaj, Alhlwah, Red Sukkari,
Frontiers in Plant Science 05
Barhi, Ruthanah, Meneifi, and Shishi—all of which are culturally

and commercially significant in the region.

To ensure the accuracy and reliability of class labels, each image

was reviewed and verified by individuals with expert knowledge in

dates classification, including local farmers and agricultural

specialists familiar with the characteristics of Rutab varieties.

Table 2 presents the distribution of images across the eight Rutab

types within our dataset.

To ensure consistency and quality in image collection, Rutab

date images were captured using a 12-megapixel smartphone

camera in JPEG format at a resolution of 4032 × 3024 pixels. The

photos were taken in a closed indoor room under bright lighting

conditions provided by overhead fluorescent lights. The camera was

positioned approximately 30 cm above the samples, and a plain

white background was used to minimize visual distractions and

enhance contrast.
FIGURE 2

An overview of the proposed methodological pipeline, illustrating the seven key stages from data acquisition to deployment.
TABLE 2 Distribution of the 1659 images in our collected dataset across
the eight Rutab date varieties.

Rutab date type Number of images

Alhalwah 109

Barhi 253

Khalas 229

Meneifi 208

Red Sukkari 133

Ruthana 271

Shishi 248

Sullaj 208

Total 1659
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3.2 Data cleaning

To ensure consistency in input dimensions and image quality,

all collected images underwent a systematic preprocessing pipeline

prior to model training, resulting in a final collected dataset of 1659

high-quality images. The preprocessing stage consisted of three

main steps: image filtering, cropping, and resizing, as

outlined below:
Fron
• Image Filtering: We performed a manual inspection of the

initially collected dataset to remove images that did not

meet quality standards. This included excluding images that

were blurry, underexposed, overexposed, or exhibited

significant occlusions. Additionally, images with distorted

color profiles, irregular shapes, or excessively uniform

backgrounds were excluded to improve the diversity and

representativeness of the dataset. This filtering process was

essential for ensuring that the deep learning models trained

on this dataset could generalize well to real-world scenarios.

• Image Cropping: To maintain a consistent aspect ratio and

eliminate unnecessary background variations, each image

was cropped to a square format centered around the date

fruit. This step helped focus the model’s attention on the

relevant features of the Rutab dates.

• Image Resizing: Following cropping, all images were resized

to a fixed resolution of 224 × 224 pixels. This dimension was

selected to comply with the input size requirements of

standard convolutional neural network architectures such

as ResNet and EfficientNet, while also optimizing

computational efficiency.
3.3 Data augmentation

To improve the model’s generalization to varied real-world

scenarios, a consistent set of geometric data augmentation

techniques was applied throughout the training process. This also

helped reduce overfitting caused by the dataset’s limited size. The

specific augmentation settings included the following:
• Rotation: Random rotation within a range of ±20° to

account for angular variation during image acquisition.

• Translation: Random shift of up to ±10% along both

horizontal and vertical axes to simulate positional variance.

• Scaling: Uniform scaling by up to ±10% to introduce

scale invariance.

• Shearing: Geometric shearing up to ±5° to reflect distortions

that may occur during handheld photography.

• Horizontal Flip: Applied with a probability of 50% to

augment viewpoint diversity.
Color-based augmentations such as changes in hue, saturation,

brightness, as well as composite techniques like mixup and mosaic,

were deliberately excluded. This was based on the need to preserve
tiers in Plant Science 06
the subtle chromatic and textural cues that are essential for

distinguishing between Rutab types, many of which differ

primarily in surface coloration and translucency. As such, the

augmentation strategy prioritized geometric transformations that

generalize spatial features while maintaining the color fidelity

necessary for fine-grained classification.
3.4 Data splitting

Our dataset was partitioned into three different subsets to

facilitate robust model development and evaluation, as follows:
• 70% for training, used to learn the model parameters.

• 10% for validation, used for hyperparameter tuning and for

early-stopping training.

• 20% for test ing, reserved exclusively for final

performance evaluation.
The split was performed using a randomized sampling strategy

to ensure that each subset maintained a representative distribution

of the eight Rutab classes. This approach helps preserve class

balance and ensures that all Rutab types are present across

training, validation, and testing sets, thereby supporting

generalizability and fair evaluation.
3.5 Model training

To develop a robust classification system for Rutab date

varieties, we adopted and fine-tuned five well-established deep

learning architectures. Each model was evaluated under the same

experimental conditions to determine the most effective solution for

deployment in the mobile application. The selected models are:

Convolutional Neural Networks (CNNs) (LeCun et al., 1998),

ResNet-50 (He et al., 2016), EfficientNet (Tan and Le, 2019),

YOLOv8 (Varghese and Sambath, 2024), and YOLOv12 (Tian

et al., 2025). A brief overview of each architecture is provided below:
• Convolutional Neural Networks (CNNs) (LeCun et al.,

1998) are a category of deep learning architectures

tailored for image analysis. They utilize convolutional

layers to extract spatial hierarchies of features from input

images, followed by pooling and fully connected layers for

classification tasks. CNNs have achieved notable success in

areas such as object recognition, facial identification, and

handwritten digit classification.

• Residual Networks (ResNet-50) (He et al., 2016) introduce

“skip connections” that allow the model to bypass certain

layers, effectively addressing the vanishing gradient issue.

This innovation enables the training of much deeper

networks without compromising performance. ResNet-50,

consisting of 50 layers, is widely adopted in image

classification tasks and is frequently used as a feature

extractor in computer vision applications.
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• EfficientNet (Tan and Le, 2019) represents a class of CNN

architectures that employ a compound scaling strategy to

proportionally adjust the model’s depth, width, and

resolution. This balanced scaling results in a highly efficient

architecture that achieves strong accuracy while using fewer

parameters and less computation than traditional models. Its

lightweight nature makes it ideal for deployment in mobile

and resource-constrained environments.

• You Only Look Once (YOLO) (Redmon et al., 2016;

Varghese and Sambath, 2024; Tian et al., 2025) is a state-

of-the-art real-time object detection framework. Unlike

conventional approaches that apply classification within a

sliding window or region proposal mechanism, YOLO

reformulates object detection as a single end-to-end

regression task. It simultaneously predicts bounding box

coordinates and class probabilities in a single forward pass,

resulting in high-speed inference and strong accuracy. For

the adopted YOLOv12 model (Jegham et al., 2025; Tian

et al., 2025), we utilized its classification variant. Figure 3

illustrates the architecture of YOLOv12, highlighting the

deta i led s tructure of i t s backbone , neck , and

head components.
Each of these models was fine-tuned on the collected Rutab

dataset and evaluated using the same evaluation metrics, enabling a

rigorous comparison of their effectiveness for our application.
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3.6 Model evaluation

To evaluate and compare the performance of each fine-tuned

state-of-the-art model, we employed three widely used classification

metrics: precision, recall, and the F1-score. The results of this

evaluation directly informed our selection of the optimal model

for integration into the final mobile application. The evaluation

metrics are described as follows:

Precision: Precision measures the proportion of correctly

identified Rutab samples among all instances predicted as a

particular class. The formula for precision is given by:

Precision =
TP

TP + FP
:

Recall: Recall assesses the proportion of actual Rutab samples

that were correctly identified by the model. The formula for recall is:

Recall =
TP

TP + FN
:

F1-Score: The F1-score represents the harmonic mean of

precision and recall, offering a unified measure that balances the

trade-off between false positives and false negatives. It is calculated

using the following formula:

F1 − Score = 2� Precision� Recall
Precision + Recall

:

FIGURE 3

Architecture of our fine-tuned YOLOv12 model applied to our collected Rutab dataset, illustrating key components such as backbone, neck, and
head, along with modifications introduced during fine-tuning for improved classification performance.
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3.7 Hyperparameter settings

In this section, we explicitly present the key hyperparameters

used for training the selected deep learning models. A batch size of

16 and an initial learning rate of 0.001 were consistently applied

across all models. The number of training epochs varied by model,

based on preliminary experiments and the point at which validation

performance converged: 50 epochs for both the CNN and YOLOv8,

75 epochs for ResNet-50, and 100 epochs for EfficientNetB0 and

YOLOv12. These choices reflect an empirical balance between

training time and performance stability. Table 3 provides a

summary of the training hyperparameter configurations employed

for all models evaluated in this study.
3.8 Mobile application development

Our objective extends beyond theoretical exploration; therefore,

we have integrated the best-performing model—YOLOv12— into a

fully developed, user-friendly mobile application. This application is

publicly available, enabling users to classify Rutab date varieties in

real-time, thereby bridging the gap between research and practical

use. Figure 4 presents sample screenshots of the deployed mobile

application, demonstrating its real-time classification capability and

intuitive interface.
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3.9 Software environment

The data preprocessing stage was implemented in Python using

the Pillow library, where all images were resized to a unified

resolution of 224 × 224 pixels to standardize input dimensions

for training. Data augmentation was also performed using Pillow.

Model training was conducted using both PyTorch and

TensorFlow frameworks. PyTorch was used for ResNet, RNN,

and YOLO implementations (with Ultralytics serving as the

backend for YOLO). TensorFlow was used for training

EfficientNet and CNN models. For mobile application

deployment, the system was built using Flutter SDK with

Dart, incorporating Hive for local storage, Camera and Image

Picker packages for image input, an HTTP client for API

communication, and OpenAI GPT-4 API integration for

intelligent user interaction.
4 Results and analysis

This section details the experimental outcomes, beginning with

a performance comparison of the evaluated models on the Rutab

date classification task. We then analyze the confusion matrix of the

top-performing model to assess its per-class accuracy and detail the

key hyperparameter settings used to achieve these results.
FIGURE 4

Sample screenshots from our developed mobile application, showcasing the integration of the best-performing classification model—YOLOv12 in
our case—demonstrate the system’s real-time capability in accurately identifying Rutab date varieties.
TABLE 3 A summary of the training hyperparameter settings used for all deep learning models evaluated in this study.

Parameter CNN ResNet-50 EfficientNetB0 YOLOv8 YOLOv12

Epochs 50 75 100 50 100

Batch Size 16 16 16 16 16

Learning Rate 0.001 0.001 0.001 0.001 0.001

Optimizer Adam Adam Adam SGD Adam
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4.1 Comparative performance analysis

Table 4 presents a comparative evaluation of five deep learning

models based on their performance on our test dataset. The baseline

CNN model yielded the lowest scores across all metrics, reflecting

its limited capacity for complex feature extraction. Both ResNet-50

and EfficientNetB0 demonstrated improved performance, with

EfficientNetB0 slightly outperforming ResNet-50 in precision and

recall, though both models achieved the same F1-score.

A substantial performance gain is observed with YOLOv8,

which achieved over 82% in both precision and recall,

highlighting its effectiveness in object detection tasks. Notably,

YOLOv12 outperformed all other models, achieving 93% across

precision, recall, and F1-score. This consistent and significant

improvement underscores YOLOv12’s robustness and accuracy,

justifying its inclusion in our developed mobile application.

Figure 5 presents sample classification results from the YOLOv12

model, showing the predicted Rutab varieties with their class labels

on test images.

To evaluate model efficiency, we report both training and

inference times across all architectures. Training durations varied

significantly depending on model complexity and number of

epochs: CNN required 25 seconds per epoch, EfficientNet took 24

seconds per epoch, ResNet-50 required 163 seconds per epoch,

YOLOv8 finished in 19 seconds per epoch, and YOLOv12 trained

for around 20 seconds per epoch. In terms of inference speed,

YOLO models were the fastest (104 images/sec), followed by

EfficientNet (37 images/sec), ResNet-50 (23 images/sec), and

CNN (19 images/sec). These results highlight the trade-offs
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between model complexity, training time, and real-time

performance, with YOLO models offering the most favorable

balance for practical applications. To contextualize these metrics,

model training was performed on a workstation equipped with an

NVIDIA GeForce RTX 3080 GPU (10 GB VRAM), an Intel Core i7

CPU, and 32 GB RAM.
4.2 In-depth analysis: YOLOv12
performance

Across the five evaluated models—CNN, EfficientNetB0,

ResNet-50, YOLOv8, and YOLOv12—the confusion matrices

reveal distinct patterns in classification performance for Rutab

date varieties, as shown in Figure 6. YOLOv12 outperforms all

previous models, achieving near-perfect recall across most classes:

100% for Berhi, and Red Sukkari; 98% for Menefi; 96% for Shishi;

95% for Alhlwah; and 93% for Ruthana. It also significantly

improves classification of Khalas (87% recall) and Sullaj (78%

recall), which were previously challenging for other models.

YOLOv8 had already shown strong performance, especially on

Berhi, Red Sukkari, Ruthana, Alhlwah, and Shishi, but YOLOv12

further reduces confusion and boosts accuracy across all classes.

EfficientNetB0 and ResNet-50 showed moderate success, with

EfficientNet performing well on Berhi and Red Sukkari, while

ResNet handled Meneifi more effectively. The CNN model

struggled significantly, failing to correctly classify Ruthana and

Sullaj altogether and showing high misclassification rates among

visually similar brown varieties like Khalas and Meneifi.

Common confusion patterns emerged across models,

particularly among the yellow-colored varieties—Khalas, Sullaj,

Meneifi, and Ruthana—due to their similar appearance at the

Rutab stage. Alhlwah and Red Sukkari also showed minor

confusion, likely because of their shared yellow-golden hue.

YOLOv12 demonstrated the strongest ability to separate these

classes, with minimal cross-class misclassification: for example,

only 5% of Alhlwah were misclassified, and Sullaj confusion was

reduced to small percentages across Khalas, Meneifi, Ruthana, and

Shishi. Compared to YOLOv8, which still showed some confusion

between Khalas and Sullaj, YOLOv12’s attention-centric

architecture and refined feature aggregation clearly enhance its

ability to distinguish visually similar agricultural products.
FIGURE 5

Sample classification outputs generated by the YOLOv12 model, illustrating the predicted Rutab varieties along with their corresponding class labels
on the test images.
TABLE 4 A comparative analysis of the five deep learning architectures
based on their performance on our test dataset.

Model Precision Recall F1-score

CNN 44.5% 47.5% 44.8%

ResNet-50 69.9% 68.7% 68.5%

EfficientNetB0 70.6% 70% 68.5%

YOLOv8 84.7% 82.5% 82.4%

YOLOv12 93% 93% 93%
The results indicate that YOLOv12 outperforms competing models across all three evaluation
metrics: Precision, Recall, and F-1 score.
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Overall, YOLOv12 proves to be the most robust and accurate model

for Rutab date classification in our study.

To assess YOLOv12’s learning stability, Figure 7 illustrates its

accuracy on the validation set across training epochs. The curve

shows a consistent upward trend, converging smoothly without

unexpected fluctuations or divergence. The absence of instability

and the sustained improvement in accuracy suggest that the model

generalizes well to unseen data, offering strong evidence against

overfitting throughout the training process. Also, Figure 8 presents
Frontiers in Plant Science 10
the training and validation loss curves over the same epochs. The

loss steadily decreases for both sets, further confirming the model’s

effective learning and stable training process without divergence.

Overall, the analysis confirms that YOLOv12 provides the best

balance between accuracy and generalization. The model

successfully learned to differentiate between all eight Rutab

varieties — a challenging task given their high intra-class

similarity and inter-class overlap, particularly among varieties

with comparable color and shape profiles. Although YOLOv12
FIGURE 6

The confusion matrices for all evaluated models on the test dataset, highlighting YOLOv12 as the best-performing model.
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achieved strong performance on our Rutab dataset (93% precision,

recall, and F1-score), the task remains inherently more difficult than

Tamar classification. Prior studies on Tamar-stage classification

often report higher accuracy because fully ripened fruits exhibit

more distinctive visual features, such as darker hues and surface

wrinkling, which aid model classification. These findings support

the model’s deployment in our developed mobile application, where

reliability and real-world performance are essential.
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Despite the promising results achieved in this study, several

limitations should be acknowledged. First, the dataset used—while

carefully collected—remains relatively small, which may affect the

generalizability of the model across broader contexts. Additionally,

all images were collected under controlled indoor lighting

conditions against a uniform white background, which do not

fully reflect the variability encountered in real-world agricultural

environments. Factors such as fluctuating natural light, diverse
FIGURE 7

The validation accuracy over 100 epochs showing convergence of the YOLOv12 model.
FIGURE 8

The training and validation loss over 100 epochs demonstrating stable model optimization.
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environmental conditions, and inconsistent backgrounds in farm

scenarios could impact model performance.
5 Conclusions

This paper introduces a novel machine learning-based

approach for the classification of “Rutab” dates, a ripening stage

that holds both cultural and commercial importance yet remains

largely underexplored in current literature. By focusing on this

intermediate phase rather than the more commonly studied

“Tamar” stage, our work provides new insights and tools for the

classification of date varieties. The development of a custom image

dataset and the successful implementation of deep learning models

—particularly YOLOv12, which achieved a recall of 93%—

demonstrate the potential of our pipeline in supporting

agricultural and cultural applications. The integration of our

classification pipeline into a mobile application further enhances

its practical value, offering an accessible tool for farmers,

researchers, and the public.

Although the proposed methodology demonstrates promising

results in classifying Rutab date varieties, several avenues remain

open for future exploration and enhancement. For example, the

current dataset, while representative, is limited in size. Future work

will focus on collecting a larger and more diverse dataset,

encompassing various environmental conditions (e.g., lighting,

background, occlusion) to improve the model’s robustness and

generalization in real-world scenarios. In addition, the current

classification framework includes eight commonly consumed

Rutab types. Expanding the taxonomy to include lesser known or

r eg i on - spe c ifi c va r i e t i e s w i l l enhance the mode l ’ s

comprehensiveness and cultural relevance.

Furthermore, future work will investigate the integration of

explainable AI techniques to enhance transparency and trust in

agricultural applications. Leveraging larger pre-trained models

through transfer learning may further improve classification

accuracy and generalization. Moreover, investigating multimodal

approaches—such as combining image data with sensor inputs like

moisture or temperature—could provide richer context and lead to

more robust classification systems. These future directions aim to

broaden the system’s applicability, improve performance, and

contribute to the broader goal of using AI for agricultural and

cultural heritage preservation.
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