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A machine learning approach for
classifying date fruit varieties
at the Rutab stage

Meshal Alfarhood*, Nawaf Alsahw, Mohammed Almajed,
Meshaal Alzahrani, Ahmad Alawfi, Meshal Alanazi
and Abdalrahman Alalwan

Department of Computer Science, College of Computer and Information Sciences, King Saud
University, Riyadh, Saudi Arabia

Introduction: Dates have long been a vital part of the cultural and nutritional
heritage of arid regions, particularly in the Middle East. Among their ripening
stages, the Rutab stage—an intermediate phase between the Khalal (immature)
and Tamar (fully ripe) stages—holds unique significance in terms of taste, texture,
and market value. However, the classification of Rutab varieties remains
underrepresented in the literature.

Methods: To address this gap, we present a pipeline that leverages machine
learning to classify Rutab dates from images. A custom dataset comprising 1,659
images across eight popular Rutab types was collected, and several deep learning
models were evaluated.

Results and discussion: Among the tested models, YOLOv12 achieved the
highest recall of 93%. The proposed system is deployed within a mobile
application, aiming to promote cultural preservation and increase global
awareness of the diversity found within date varieties.

KEYWORDS

dates, fruit classification, machine learning, YOLO, Rutab stage, image recognition,
agricultural technology, and mobile application

1 Introduction

Dates are an integral part of agricultural and dietary systems in many regions,
particularly in the Middle East and North Africa. With over 200 varieties, dates thrive in
harsh environmental conditions such as extreme heat and water scarcity. These fruits have
historically been crucial for the survival and development of ancient civilizations in desert
regions worldwide (Jain and Johnson, 2015). Today, dates are widely recognized as a highly
nutritious health food, rich in fructose—a natural sugar—as well as essential vitamins and
dietary fiber. Additionally, dates are valued for their medicinal properties, including
cholesterol-lowering effects and their role in preventing diseases such as cancer, diabetes,
and cardiovascular conditions (Al-Dashti et al., 2021).
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With a wide range of varieties, dates differ in size, shape, color,
texture, and taste. The classification of these cultivars is crucial for
quality control, market pricing, pest management, and consumer
satisfaction (Rojas Santelices et al., 2025). Moreover, many in our
current and future generations are unaware of the different types of
dates and their seasons. Traditionally, dates classification has relied
on manual inspection by experts, a process that is labor-intensive,
time-consuming, and prone to human error. As the demand for
automation in the agricultural sector grows, there is an urgent need
for robust and efficient systems capable of classifying dates
accurately and consistently.

Recently, machine learning (ML) has emerged as a
transformative tool across many academic and industrial fields,
providing powerful tools for pattern recognition, prediction, and
classification. The agricultural sector, in particular, has experienced
rapid growth in the application of ML techniques to address
complex challenges, ranging from crop yield prediction to disease
detection and quality grading of produce (Liakos et al., 2018). For
fruit classification, ML algorithms have demonstrated considerable
success in providing objective, rapid, and non-destructive
evaluation. Various approaches, including Support Vector
Machines (SVM), k-Nearest Neighbors (KNN), and increasingly,
deep learning models like model based-Convolutional Neural
Networks (CNNs), have shown high effectiveness in categorizing
fruits based on their external and internal characteristics
(Sahidullah et al, 2023). By learning from large datasets and
subtle cues, these models suit dates classification and can improve
efficiency and standardization.

10.3389/fpls.2025.1678757

Most of the existing research in the domain of date fruit
classification focuses on the final stage of dates and neglects the
“Rutab” stage, which is the middle stage of date development
between the Tamar (final) and Khalal (immature) stages (Altaheri
et al,, 2019). This gap is significant because many Rutab varieties
share highly similar visual characteristics (such as color, shape, and
texture), making them much harder to distinguish. In contrast,
studies targeting other ripeness stages or more visually distinct
classes often face a less challenging classification problem. In this
paper, we aim to address this gap by using advanced machine
learning techniques to classify “Rutab” dates. To achieve this, we
created our own dataset specifically for “Rutab” dates, focusing on
eight widely consumed varieties: Khalas, Sullaj, Alhlwah, Red
Sukkari, Barhi, Ruthanah, Meneifi, and Shishi. Figure 1 illustrates
representative samples from each variety. In total, the dataset
includes 1659 labeled images, ensuring a balanced representation
across all eight Rutab types for training and evaluation purposes.

In addition, we fine-tuned five state-of-the-art deep learning
models for this task: a baseline Convolutional Neural Network
(CNN) (LeCun et al.,, 1998), ResNet-50 (He et al., 2016),
EfficientNet (Tan and Le, 2019), YOLOvV8 (Varghese and
Sambath, 2024), and YOLOv12 (Tian et al, 2025). Among these,
YOLOvVI12 demonstrated superior performance, achieving the
highest recall of 93%, indicating its strong ability to correctly
identify Rutab varieties across diverse conditions. To bridge
research and practical application, the finalized model was
deployed within a user-friendly mobile application, enabling real-
time classification of Rutab dates in real-world settings.

(1a) Alhlwah (1b) Red Sukkari

(1c) Berhi (1d) Khalas

(le) Meneifi (1f) Sullaj

FIGURE 1

(1g) Ruthana (1h) Shishi
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Representative sample images of the eight selected date varieties at the Rutab stage of ripening. The visual differences in color, texture, and shape
across varieties highlight the classification challenge addressed in this study.
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To summarize, this paper’s primary contributions can be
outlined in three main points:

*  First, we created a unique dataset specifically focused on the
“Rutab” stage, covering eight popular types of dates. Since
there is limited work in the literature addressing this stage,
our dataset serves as a valuable resource for future studies
on date classification.

» Second, we explored and fine-tuned multiple deep learning
techniques, proposing an effective pipeline for “Rutab”
classification. Our approach achieved a high recall value
of 93%, demonstrating its accuracy and reliability.

* Third, we integrated our findings into a mobile application,
making it easy and accessible for users interested in
classifying “Rutab” dates in real-world scenarios.

The remainder of this paper is organized as follows. Section 2
reviews related literature, highlighting significant studies and
methodologies pertinent to our research. Section 3 details our
methodology, covering the entire process from data collection to
the deployment of the mobile application. In Section 4, we present
and analyze our results, discussing key findings along with their
limitations. Finally, Section 5 concludes the paper by summarizing
the main outcomes and suggesting directions for future work.

2 Related work

The classification of date fruit has been a prominent area of
research, with numerous studies employing diverse techniques for
various applications, including automated harvesting systems and
varietal identification. These efforts have also contributed valuable
date fruit datasets to the research community. Beyond date fruits,
the broader field of plant classification has seen significant
advancements. Studies focusing on other plants, such as cherries
and palm trees, have explored sophisticated techniques to enhance
accuracy, often by merging multiple models or expanding limited
datasets through Generative Adversarial Networks (GANs) for data
augmentation. This rich body of work provides a strong foundation
for our investigation into date fruit classification.

2.1 Approaches to date fruit classification

Koklu et al (Koklu et al., 2021). classified date fruits into genetic
varieties using image analysis. Their research employed various
machine learning methods, developing models with logistic
regression (LR) and artificial neural network (ANN) techniques.
The dataset for this study comprised 898 images across seven
distinct date fruit types: Barhee, Deglet Nour, Sukkary, Rotab
Mozafati, Ruthana, Safawi, and Sagai. The individual methods
yielded accuracies of 91% for LR and 92.2% for ANN. Notably,
combining these models into a stacking ensemble increased the
accuracy to a successful 92.8%.
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Meanwhile, Raed Sababa and Samy Abu-Naser (Sababa and
Abu-Naser, 2024) utilized a pre-trained Convolutional Neural
Network (ConvNeXtTiny). They trained their system on a dataset
of 1,350 images to recognize nine date types. The deep learning
model they developed achieved an outstanding accuracy of 99.44%
on the test set. This high precision highlighted the model’s
effectiveness in classifying diverse date varieties, which varied in
size, shape, and sugar content, promising significant advancements
in date fruit production and consumption.

Albarrak et al (Albarrak et al.,, 2022). also introduced a deep
learning-based approach for classifying date fruits, aiming to
develop an automated system using machine learning techniques.
Their study incorporated methods such as image augmentation,
decaying learning rates, model checkpointing, and hybrid weight
adjustments to enhance accuracy. They compiled a dataset
comprising eight date fruit varieties (Safawi, Khudri, Shishi,
Ambir, Raziz, Mabroom, Khalas, and Lubana) to train the model.
The proposed system, built on the MobileNetV2 architecture,
achieved an impressive accuracy of 99%.

These classification models possess considerable real-world
applicability. For instance, Faisal et al (Faisal et al., 2020).
developed a harvesting system to estimate date fruit type and
maturity level using computer vision (CV) and deep learning
(DL). Their approach incorporated four different deep learning
architectures: ResNet, VGG-19, Inception-V3, and NASNet. They
utilized an online dataset of 8079 high-resolution images, covering
five distinct date types and their maturity levels. The system
demonstrated strong performance, with the ResNet model
proving to be the most effective. Meanwhile, Adnan and
Nasharuddin (2024) introduced an innovative Android-based
mobile application designed to facilitate rapid identification of
date fruit varieties and enhance user knowledge. By employing a
transfer learning technique with a pre-trained neural network, their
app successfully categorized nine date types, such as Ajwa, Medjool,
and Rutab, achieving a remarkable 94.2% accuracy rate.

Morover, Almutairi et al (Almutairi et al., 2024). utilized the
famous algorithm You Only Look Once (YOLO). They trained
various models like YOLOv5, YOLOv7, and YOLOVS on a dataset
of 1735 images, representing nine distinct types of dates. They
achieved remarkable results using YOLOVS, with a mean recall of
0.99%, precision of 0.991%, and a mean average precision (mAP) of
0.994%. On the other hand, Oznur Ozaltin (2024) suggested image-
feature-based machine learning algorithms to classify date fruit. The
study used decision tree, K-nearest neighbors, artificial neural
networks, and support vector machine algorithms, with different
hyperparameters employed to classify date fruit. The results showed
that the best algorithm was a 25-layer neural network, achieving a
93.85% test accuracy.

Additionally, Rybacki et al (Rybacki et al., 2024). proposed
DateNET, an automatic classification model for different varieties of
date palm fruits using a convolutional neural network (CNN). Their
model focused on two key factors: geometric parameters and color
differences of the dates. The dataset they used contained 500 images,
with 100 images for each variety. Color-based classification
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achieved 85.24%, geometric classification 87.62%, and an
impressive 93.41% when both factors were combined.

While these studies demonstrate impressive accuracy in
classifying date varieties, it is important to note that most of them
focus on the Tamar stage, where visual differences between varieties
are more pronounced. Tamar dates typically exhibit distinct color,
texture, and dryness, which provide clearer cues for image-based
models. In contrast, Rutab dates, which are semi-ripe, often share
similar color tones and smooth textures, making them harder to
distinguish. This visual similarity among Rutab varieties introduces
greater intra-class ambiguity and inter-class overlap, which can
reduce classification performance even with advanced models. Our
study in this paper addresses this gap by focusing specifically on the
Rutab stage, where classification remains underexplored and
more complex.

2.2 Classification techniques in other fruit
and plant species

Other studies that are not directly related to dates can provide
general insights into new algorithms and mechanisms. For example,
Momeny et al (Momeny et al, 2020). presented a CNN-based
hybrid pooling approach that can accurately classify cherry fruit
into two classes. The research used an innovative CNN architecture
that combines multiple pooling techniques, including average and
max pooling. The model was evaluated using the CIFAR-10 dataset.
As a result, the CNN model achieved a high classification accuracy
rate of 99.4%. Also, Phan et al (Phan et al., 2023). proposed a system
to classify tomatoes into three classes: mature, unripe, and damaged
by utilizing four different deep learning models: YOLOVS5,

10.3389/fpls.2025.1678757

ResNet50, ResNet-101, and EfficientNet-B0. With 4,500 images in
the dataset, YOLOv5 with ResNet-101 achieved the best
performance among other combinations.

Moreover, Gulzar Yonis (Gulzar, 2023) developed a fruit image
classification model using transfer learning with MobileNet-v2. The
dataset comprised 26,149 images across 40 fruit classes. Through
experimentation, their TL-MobileNetV2 model achieved 99%
accuracy, effectively demonstrating its capability for robust fruit
classification. Moreover, Safran et al (Safran et al., 2024). introduced
DPXception, a lightweight CNN model designed for classifying date
palm trees. They utilized a dataset of 2358 images representing four
different date palm species. When tested against seven well-known
CNN models, including ResNet50 and DenseNet201, DPXception
achieved the highest accuracy at 92.9%.

Additionally, Zhang et al (Zhang et al., 2021). developed a deep
learning-based model for classifying tree species using RGB optical
images captured by an unmanned aerial vehicle (UAV). The
approach combined advanced deep learning techniques with
aerial imagery to identify individual tree species. The study
employed CNN architectures such as AlexNet, VGG-16,
and ResNet-50, using a dataset that included tree canopy images
with both simple and complex backgrounds. The performance of
these models was compared against traditional methods like K-
nearest neighbor (KNN) and backpropagation (BP) neural
networks. The analysis demonstrated that ResNet-50 was
particularly effective for urban tree species classification based on
RGB imagery.

Table 1 provides a summary of the reviewed literature, detailing
the domain, the number of images and classes in the datasets used,
and the applied model that achieved the highest accuracy in
each study.

TABLE 1 Comparative summary of related work, highlighting key aspects including the application domain, dataset size, and the classification models

employed.
Work Domain

(Koklu et al., 2021) Date Classification

Dataset Adopted model

Logistic Regression and Artificial

898 images (7 classes) Neural Network
Wi

(Sababa and Abu-Naser, 2024) Date Classification 1350 images (9 classes) ConvNeXtTiny
(Albarrak et al., 2022) Date Classification 1717 images (8 classes) MobileNetV2
(Faisal et al., 2020) Date Classification 8079 images (5 classes) ResNet

(Adnan and Nasharuddin, 2024) Date Classification

(Almutairi et al., 2024) Date Classification
(Ozaltin, 2024) Date Classification

(Rybacki et al., 2024) Date Classification

1658 (9 classes) Pre-trained TensorFlow Lite

1735 images (9 classes) YOLOvVS
898 images (7 classes) Artificial Neural Network

500 images (5 classes) DateNET (CNN)

(Momeny et al., 2020) Cherry Classification

(Phan et al., 2023) Tomato Classification
(Gulzar, 2023) Fruit Classification
(Safran et al., 2024) Palm Tree Classification

(Zhang et al., 2021) Tree Classification

719 images (2 classes) Convolutional Neural Network

4500 images (3 classes) YOLOV5 and ResNet
26,149 images (40 classes) MobileNetV2
2358 images (4 classes) DPXception (CNN-based)

19,302 images (10 classes) ResNet-50

This comparison provides context for the current study and underscores the novelty of focusing specifically on Rutab date classification using a custom-curated dataset and state-of-the-art deep

learning techniques.
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FIGURE 2

An overview of the proposed methodological pipeline, illustrating the seven key stages from data acquisition to deployment.

3 Materials and methods

Our approach to classifying Rutab date varieties involves a
multi-stage pipeline, as illustrated in Figure 2. The process begins
with the construction of our own custom dataset, which we
collected manually under controlled conditions. Following data
acquisition, we applied a series of preprocessing steps. These
included cropping to isolate the date fruit and resizing the images
to a standardized input dimension suitable for deep learning
models. To enhance model generalization, we employed various
data augmentation techniques such as horizontal flipping and
random rotation. The dataset was then partitioned into training,
validation, and testing subsets using a stratified split to preserve
class distribution across sets. Subsequently, we fine-tuned several
state-of-the-art deep learning architectures, including CNN,
YOLOVS, ResNet50, EfficientNetBO, and YOLOv12. The best-
performing model—YOLOvV12 in our case—was selected for
integration into a mobile application designed for public use,
enabling users to classify Rutab dates in real time. The following
sections provide detailed descriptions of each step in our
methodology, including dataset collection, data cleaning, data
augmentation, data splitting, model training, model evaluation,
and mobile development.

3.1 Data collection

To develop a robust and reliable classification system for Rutab
dates, we first constructed our own custom dataset, as publicly
available datasets focusing specifically on this intermediate ripening
stage are currently lacking. The absence of such datasets presents a
gap in the literature and limits the development of machine learning
models tailored to this crucial phase of date fruit maturity.

Our dataset comprises a total of 1659 high-resolution images.
These images represent eight widely recognized Rutab date varieties
that are commonly cultivated and consumed in the Middle East.
The selected varieties include Khalas, Sullaj, Alhlwah, Red Sukkari,
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Barhi, Ruthanah, Meneifi, and Shishi—all of which are culturally
and commercially significant in the region.

To ensure the accuracy and reliability of class labels, each image
was reviewed and verified by individuals with expert knowledge in
dates classification, including local farmers and agricultural
specialists familiar with the characteristics of Rutab varieties.
Table 2 presents the distribution of images across the eight Rutab
types within our dataset.

To ensure consistency and quality in image collection, Rutab
date images were captured using a 12-megapixel smartphone
camera in JPEG format at a resolution of 4032 x 3024 pixels. The
photos were taken in a closed indoor room under bright lighting
conditions provided by overhead fluorescent lights. The camera was
positioned approximately 30 cm above the samples, and a plain
white background was used to minimize visual distractions and
enhance contrast.

TABLE 2 Distribution of the 1659 images in our collected dataset across
the eight Rutab date varieties.

Rutab date type Number of images

Alhalwah 109
Barhi 253
Khalas 229
Meneifi 208
Red Sukkari 133
Ruthana 271
Shishi 248
Sullaj 208
Total 1659

frontiersin.org


https://doi.org/10.3389/fpls.2025.1678757
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Alfarhood et al.

3.2 Data cleaning

To ensure consistency in input dimensions and image quality,
all collected images underwent a systematic preprocessing pipeline
prior to model training, resulting in a final collected dataset of 1659
high-quality images. The preprocessing stage consisted of three
main steps: image filtering, cropping, and resizing, as
outlined below:

* Image Filtering: We performed a manual inspection of the
initially collected dataset to remove images that did not
meet quality standards. This included excluding images that
were blurry, underexposed, overexposed, or exhibited
significant occlusions. Additionally, images with distorted
color profiles, irregular shapes, or excessively uniform
backgrounds were excluded to improve the diversity and
representativeness of the dataset. This filtering process was
essential for ensuring that the deep learning models trained
on this dataset could generalize well to real-world scenarios.

* Image Cropping: To maintain a consistent aspect ratio and
eliminate unnecessary background variations, each image
was cropped to a square format centered around the date
fruit. This step helped focus the model’s attention on the
relevant features of the Rutab dates.

+ Image Resizing: Following cropping, all images were resized
to a fixed resolution of 224 x 224 pixels. This dimension was
selected to comply with the input size requirements of
standard convolutional neural network architectures such
as ResNet and EfficientNet, while also optimizing
computational efficiency.

3.3 Data augmentation

To improve the model’s generalization to varied real-world
scenarios, a consistent set of geometric data augmentation
techniques was applied throughout the training process. This also
helped reduce overfitting caused by the dataset’s limited size. The
specific augmentation settings included the following:

* Rotation: Random rotation within a range of +20° to
account for angular variation during image acquisition.

* Translation: Random shift of up to +10% along both
horizontal and vertical axes to simulate positional variance.

* Scaling: Uniform scaling by up to +10% to introduce
scale invariance.

* Shearing: Geometric shearing up to +5° to reflect distortions
that may occur during handheld photography.

* Horizontal Flip: Applied with a probability of 50% to
augment viewpoint diversity.

Color-based augmentations such as changes in hue, saturation,

brightness, as well as composite techniques like mixup and mosaic,
were deliberately excluded. This was based on the need to preserve
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the subtle chromatic and textural cues that are essential for
distinguishing between Rutab types, many of which differ
primarily in surface coloration and translucency. As such, the
augmentation strategy prioritized geometric transformations that
generalize spatial features while maintaining the color fidelity
necessary for fine-grained classification.

3.4 Data splitting

Our dataset was partitioned into three different subsets to
facilitate robust model development and evaluation, as follows:

* 70% for training, used to learn the model parameters.

* 10% for validation, used for hyperparameter tuning and for
early-stopping training.

* 20% for testing, reserved exclusively for final
performance evaluation.

The split was performed using a randomized sampling strategy
to ensure that each subset maintained a representative distribution
of the eight Rutab classes. This approach helps preserve class
balance and ensures that all Rutab types are present across
training, validation, and testing sets, thereby supporting
generalizability and fair evaluation.

3.5 Model training

To develop a robust classification system for Rutab date
varieties, we adopted and fine-tuned five well-established deep
learning architectures. Each model was evaluated under the same
experimental conditions to determine the most eftective solution for
deployment in the mobile application. The selected models are:
Convolutional Neural Networks (CNNs) (LeCun et al., 1998),
ResNet-50 (He et al., 2016), EfficientNet (Tan and Le, 2019),
YOLOV8 (Varghese and Sambath, 2024), and YOLOvI2 (Tian
etal., 2025). A brief overview of each architecture is provided below:

* Convolutional Neural Networks (CNNs) (LeCun et al,
1998) are a category of deep learning architectures
tailored for image analysis. They utilize convolutional
layers to extract spatial hierarchies of features from input
images, followed by pooling and fully connected layers for
classification tasks. CNNs have achieved notable success in
areas such as object recognition, facial identification, and
handwritten digit classification.

* Residual Networks (ResNet-50) (He et al., 2016) introduce
“skip connections” that allow the model to bypass certain
layers, effectively addressing the vanishing gradient issue.
This innovation enables the training of much deeper
networks without compromising performance. ResNet-50,
consisting of 50 layers, is widely adopted in image
classification tasks and is frequently used as a feature
extractor in computer vision applications.
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FIGURE 3

Architecture of our fine-tuned YOLOvV12 model applied to our collected Rutab dataset, illustrating key components such as backbone, neck, and
head, along with modifications introduced during fine-tuning for improved classification performance.

» EfficientNet (Tan and Le, 2019) represents a class of CNN
architectures that employ a compound scaling strategy to
proportionally adjust the model’s depth, width, and
resolution. This balanced scaling results in a highly efficient
architecture that achieves strong accuracy while using fewer
parameters and less computation than traditional models. Its
lightweight nature makes it ideal for deployment in mobile
and resource-constrained environments.

* You Only Look Once (YOLO) (Redmon et al, 2016;
Varghese and Sambath, 2024; Tian et al,, 2025) is a state-
of-the-art real-time object detection framework. Unlike
conventional approaches that apply classification within a
sliding window or region proposal mechanism, YOLO
reformulates object detection as a single end-to-end
regression task. It simultaneously predicts bounding box
coordinates and class probabilities in a single forward pass,
resulting in high-speed inference and strong accuracy. For
the adopted YOLOv12 model (Jegham et al., 2025; Tian
et al., 2025), we utilized its classification variant. Figure 3
illustrates the architecture of YOLOv12, highlighting the
detailed structure of its backbone, neck, and
head components.

Each of these models was fine-tuned on the collected Rutab

dataset and evaluated using the same evaluation metrics, enabling a
rigorous comparison of their effectiveness for our application.

Frontiers in Plant Science

3.6 Model evaluation

To evaluate and compare the performance of each fine-tuned
state-of-the-art model, we employed three widely used classification
metrics: precision, recall, and the Fl-score. The results of this
evaluation directly informed our selection of the optimal model
for integration into the final mobile application. The evaluation
metrics are described as follows:

Precision: Precision measures the proportion of correctly
identified Rutab samples among all instances predicted as a
particular class. The formula for precision is given by:

TP

P . -
recision TP + FP

Recall: Recall assesses the proportion of actual Rutab samples
that were correctly identified by the model. The formula for recall is:

TP

Recall = ——.
T TPy EN

F1-Score: The Fl-score represents the harmonic mean of
precision and recall, offering a unified measure that balances the
trade-off between false positives and false negatives. It is calculated
using the following formula:

Precision x Recall

F1-Score=2 X ——m——————
Precision + Recall
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TABLE 3 A summary of the training hyperparameter settings used for all deep learning models evaluated in this study.

Parameter CNN ResNet-50 EfficientNetBO YOLOvS YOLOv12

Epochs 50 75 100 50 100
Batch Size 16 16 16 16 16
Learning Rate 0.001 0.001 0.001 0.001 0.001
Optimizer Adam Adam Adam SGD Adam
3.7 Hyperparameter settings 3.9 Software environment
In this section, we explicitly present the key hyperparameters The data preprocessing stage was implemented in Python using

used for training the selected deep learning models. A batch size of ~ the Pillow library, where all images were resized to a unified
16 and an initial learning rate of 0.001 were consistently applied  resolution of 224 x 224 pixels to standardize input dimensions
across all models. The number of training epochs varied by model,  for training. Data augmentation was also performed using Pillow.
based on preliminary experiments and the point at which validation Model training was conducted using both PyTorch and
performance converged: 50 epochs for both the CNN and YOLOv8,  TensorFlow frameworks. PyTorch was used for ResNet, RNN,
75 epochs for ResNet-50, and 100 epochs for EfficientNetBO and  and YOLO implementations (with Ultralytics serving as the
YOLOVI12. These choices reflect an empirical balance between  backend for YOLO). TensorFlow was used for training
training time and performance stability. Table 3 provides a  EfficientNet and CNN models. For mobile application
summary of the training hyperparameter configurations employed  deployment, the system was built using Flutter SDK with
for all models evaluated in this study. Dart, incorporating Hive for local storage, Camera and Image

Picker packages for image input, an HTTP client for API

communication, and OpenAlI GPT-4 API integration for
3.8 Mobile application development intelligent user interaction.

Our objective extends beyond theoretical exploration; therefore,
we have integrated the best-performing model —YOLOv12— into a 4 Results and ana l.yS is
fully developed, user-friendly mobile application. This application is
publicly available, enabling users to classify Rutab date varieties in This section details the experimental outcomes, beginning with
real-time, thereby bridging the gap between research and practical ~ a performance comparison of the evaluated models on the Rutab
use. Figure 4 presents sample screenshots of the deployed mobile  date classification task. We then analyze the confusion matrix of the
application, demonstrating its real-time classification capability and ~ top-performing model to assess its per-class accuracy and detail the
intuitive interface. key hyperparameter settings used to achieve these results.

Home

Tamer

W fm Tomee pour
dave expert amsstant

Ruths Subkar,
8 Nhweh end Mered

FIGURE 4
Sample screenshots from our developed mobile application, showcasing the integration of the best-performing classification model—YOLOvV12 in
our case—demonstrate the system’s real-time capability in accurately identifying Rutab date varieties.
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TABLE 4 A comparative analysis of the five deep learning architectures
based on their performance on our test dataset.

Model Precision Recall Fl-score
CNN 44.5% 47.5% 44.8%
ResNet-50 69.9% 68.7% 68.5%
EfficientNetB0 70.6% 70% 68.5%
YOLOv8 84.7% 82.5% 82.4%
YOLOvV12 93% 93% 93%

The results indicate that YOLOv12 outperforms competing models across all three evaluation
metrics: Precision, Recall, and F-1 score.

4.1 Comparative performance analysis

Table 4 presents a comparative evaluation of five deep learning
models based on their performance on our test dataset. The baseline
CNN model yielded the lowest scores across all metrics, reflecting
its limited capacity for complex feature extraction. Both ResNet-50
and EfficientNetBO demonstrated improved performance, with
EfficientNetBO slightly outperforming ResNet-50 in precision and
recall, though both models achieved the same F1-score.

A substantial performance gain is observed with YOLOVS,
which achieved over 82% in both precision and recall,
highlighting its effectiveness in object detection tasks. Notably,
YOLOVI2 outperformed all other models, achieving 93% across
precision, recall, and Fl-score. This consistent and significant
improvement underscores YOLOvV12’s robustness and accuracy,
justifying its inclusion in our developed mobile application.
Figure 5 presents sample classification results from the YOLOv12
model, showing the predicted Rutab varieties with their class labels
on test images.

To evaluate model efficiency, we report both training and
inference times across all architectures. Training durations varied
significantly depending on model complexity and number of
epochs: CNN required 25 seconds per epoch, EfficientNet took 24
seconds per epoch, ResNet-50 required 163 seconds per epoch,
YOLOVS finished in 19 seconds per epoch, and YOLOv12 trained
for around 20 seconds per epoch. In terms of inference speed,
YOLO models were the fastest (104 images/sec), followed by
EfficientNet (37 images/sec), ResNet-50 (23 images/sec), and
CNN (19 images/sec). These results highlight the trade-offs

10.3389/fpls.2025.1678757

between model complexity, training time, and real-time
performance, with YOLO models offering the most favorable
balance for practical applications. To contextualize these metrics,
model training was performed on a workstation equipped with an
NVIDIA GeForce RTX 3080 GPU (10 GB VRAM), an Intel Core i7
CPU, and 32 GB RAM.

4.2 In-depth analysis: YOLOv12
performance

Across the five evaluated models—CNN, EfficientNetBO0,
ResNet-50, YOLOvS, and YOLOv12—the confusion matrices
reveal distinct patterns in classification performance for Rutab
date varieties, as shown in Figure 6. YOLOvV12 outperforms all
previous models, achieving near-perfect recall across most classes:
100% for Berhi, and Red Sukkari; 98% for Menefi; 96% for Shishi;
95% for Alhlwah; and 93% for Ruthana. It also significantly
improves classification of Khalas (87% recall) and Sullaj (78%
recall), which were previously challenging for other models.
YOLOV8 had already shown strong performance, especially on
Berhi, Red Sukkari, Ruthana, Alhlwah, and Shishi, but YOLOv12
further reduces confusion and boosts accuracy across all classes.
EfficientNetBO and ResNet-50 showed moderate success, with
EfficientNet performing well on Berhi and Red Sukkari, while
ResNet handled Meneifi more effectively. The CNN model
struggled significantly, failing to correctly classify Ruthana and
Sullaj altogether and showing high misclassification rates among
visually similar brown varieties like Khalas and Meneifi.

Common confusion patterns emerged across models,
particularly among the yellow-colored varieties—Khalas, Sullaj,
Meneifi, and Ruthana—due to their similar appearance at the
Rutab stage. Alhlwah and Red Sukkari also showed minor
confusion, likely because of their shared yellow-golden hue.
YOLOv12 demonstrated the strongest ability to separate these
classes, with minimal cross-class misclassification: for example,
only 5% of Alhlwah were misclassified, and Sullaj confusion was
reduced to small percentages across Khalas, Meneifi, Ruthana, and
Shishi. Compared to YOLOVS, which still showed some confusion
between Khalas and Sullaj, YOLOv12’s attention-centric
architecture and refined feature aggregation clearly enhance its
ability to distinguish visually similar agricultural products.

FIGURE 5

—

Sample classification outputs generated by the YOLOv12 model, illustrating the predicted Rutab varieties along with their corresponding class labels

on the test images.

Frontiers in Plant Science

09

frontiersin.org


https://doi.org/10.3389/fpls.2025.1678757
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Alfarhood et al.

10.3389/fpls.2025.1678757

&

o

(61 CNN

TG bt Vo vahied Gt Mt s

(6K) EfficientNetBO

FIGURE 6

ATy ed Covsan Vatre - Resvets o

- ™ w  au M
as
] o am e au em
3
i as
;.. e [ om  em oo EESH o en
0
Mo tew  Den  meen Metete Arew S Sew
S
(6)) ResNet-50
Norrmedved Confumian Matric .
i o om  am sl am  m e
1
1 oo ] e 2% " " (] s
§- e oue n e am  a® 1w e
as
l e oce  om s PRSN in em
g
3 em oce . e
K “os
1
!‘ oo oce o 000
I oem o em am oz

au aco

ax

00
e
-

(61) YOLOvE

o

Normakzed Confuson Matrte

——

Tue

[T

s LS

Mrechced

(6m) YOLOvI2

The confusion matrices for all evaluated models on the test dataset, highlighting YOLOvV12 as the best-performing model.

Overall, YOLOVI12 proves to be the most robust and accurate model
for Rutab date classification in our study.

To assess YOLOV12’s learning stability, Figure 7 illustrates its
accuracy on the validation set across training epochs. The curve
shows a consistent upward trend, converging smoothly without
unexpected fluctuations or divergence. The absence of instability
and the sustained improvement in accuracy suggest that the model
generalizes well to unseen data, offering strong evidence against
overfitting throughout the training process. Also, Figure 8 presents

Frontiers in Plant Science

10

the training and validation loss curves over the same epochs. The
loss steadily decreases for both sets, further confirming the model’s
effective learning and stable training process without divergence.
Overall, the analysis confirms that YOLOv12 provides the best
balance between accuracy and generalization. The model
successfully learned to differentiate between all eight Rutab
varieties — a challenging task given their high intra-class
similarity and inter-class overlap, particularly among varieties
with comparable color and shape profiles. Although YOLOvI2
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The validation accuracy over 100 epochs showing convergence of the YOLOv12 model.
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The training and validation loss over 100 epochs demonstrating stable model optimization.

achieved strong performance on our Rutab dataset (93% precision,
recall, and F1-score), the task remains inherently more difficult than
Tamar classification. Prior studies on Tamar-stage classification
often report higher accuracy because fully ripened fruits exhibit
more distinctive visual features, such as darker hues and surface
wrinkling, which aid model classification. These findings support
the model’s deployment in our developed mobile application, where
reliability and real-world performance are essential.
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Despite the promising results achieved in this study, several
limitations should be acknowledged. First, the dataset used—while
carefully collected—remains relatively small, which may affect the
generalizability of the model across broader contexts. Additionally,
all images were collected under controlled indoor lighting
conditions against a uniform white background, which do not
fully reflect the variability encountered in real-world agricultural
environments. Factors such as fluctuating natural light, diverse
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environmental conditions, and inconsistent backgrounds in farm
scenarios could impact model performance.

5 Conclusions

This paper introduces a novel machine learning-based
approach for the classification of “Rutab” dates, a ripening stage
that holds both cultural and commercial importance yet remains
largely underexplored in current literature. By focusing on this
intermediate phase rather than the more commonly studied
“Tamar” stage, our work provides new insights and tools for the
classification of date varieties. The development of a custom image
dataset and the successful implementation of deep learning models
—particularly YOLOv12, which achieved a recall of 93%—
demonstrate the potential of our pipeline in supporting
agricultural and cultural applications. The integration of our
classification pipeline into a mobile application further enhances
its practical value, offering an accessible tool for farmers,
researchers, and the public.

Although the proposed methodology demonstrates promising
results in classifying Rutab date varieties, several avenues remain
open for future exploration and enhancement. For example, the
current dataset, while representative, is limited in size. Future work
will focus on collecting a larger and more diverse dataset,
encompassing various environmental conditions (e.g., lighting,
background, occlusion) to improve the model’s robustness and
generalization in real-world scenarios. In addition, the current
classification framework includes eight commonly consumed
Rutab types. Expanding the taxonomy to include lesser known or
region-specific varieties will enhance the model’s
comprehensiveness and cultural relevance.

Furthermore, future work will investigate the integration of
explainable AI techniques to enhance transparency and trust in
agricultural applications. Leveraging larger pre-trained models
through transfer learning may further improve classification
accuracy and generalization. Moreover, investigating multimodal
approaches—such as combining image data with sensor inputs like
moisture or temperature—could provide richer context and lead to
more robust classification systems. These future directions aim to
broaden the system’s applicability, improve performance, and
contribute to the broader goal of using Al for agricultural and
cultural heritage preservation.
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