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Soil microbial biomass and microbial entropy are used as important indicators of
soil quality. However, the effects of forest-stand types remain poorly understood.
This study focused on three stands of Cryptomeria japonica var. sinensis (CJ),
Liquidambar formosana (LF), and their mixed forests (CL) in Guizhou Province,
China. Soil samples were collected from three depths to investigate variations in
soil microbial biomass C, N, P (MBC, MBN, MBP), as well as microbial entropy C,
N, P (gMBC, gMBN, gMBP) among different forest stands. Additionally, the
influence of soil organic C (SOC), total N (TN), total P (TP), and their
stoichiometry, along with soil microbial C:N:P stoichiometry and soil-microbial
stoichiometric imbalances on soil microbial biomass and microbial entropy are
analyzed. The variance analysis revealed, compared to pure stands, the mixed
forest exhibited significantly higher MBC (38.84%), MBC stocks (46.72%), MBC/
MBN (52.23%), MBC/MBP (52.23%), and gMBC (23.49%; p < 0.05). Pure stand LF
showed approximately 30% higher soil microbial stoichiometric imbalances (C/
Nimb: C/Pimp, and N/P;p) than the other two stand types (p < 0.05). While the
pure CJ stand exhibited significantly higher gMBN and gMBP (19.62% and 17.26%,
respectively; p < 0.05). MBC, MBN, MBP, and their storage decreased significantly
with increasing soil depth (p < 0.05), no significant effect on microbial
stoichiometric ratios or microbial entropy. Correlation and redundancy
analyses demonstrated that MBC, MBN, and MBP were highly significantly
positively correlated with SOC, TN, and TP contents (p < 0.01), whereas qMBC
and gMBN exhibited highly significant negative correlations with SOC, TP, SOC/
TP, TN/TP, C/Pjmp, and N/Pjmp (p < 0.01). Soil TP and MBC/MBP were identified as
the primary factors influencing soil microbial biomass variation, with explanatory
rates of 42.8% and 14.8%, respectively. Furthermore, C/N;n, and C/P;, emerged
as key determinants affecting microbial entropy dynamics, accounting for 31.5%
and 14.2% of the observed variation, respectively. This study provided valuable
data and insights for developing mixed forest management strategies in
karst areas.

karst, forest type, soil microbial biomass, soil microbial entropy, ecological
stoichiometry characteristics
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1 Introduction

As core drivers of soil ecosystem functions, soil microorganisms
play crucial roles in decomposing organic matter, regulating
nutrient cycles, storing C, maintaining soil productivity, and
determining soil fertility (Hartmann and Six, 2023). Soil
microbial biomass refers to the total biomass of living
components of soil organic matter with a volume smaller than
5.0x10° wm?, primarily including bacteria, fungi, algae, and
protozoa (Li et al., 2018). Its content reflects the mineralization
capacity of the soil and soil vitality, serving as an important
parameter for characterizing material cycles and energy flows in
soil ecosystems. MBC, MBN and MBP are highly sensitive to
environmental changes and exhibit rapid turnover rates, making
them common indicators for assessing changes in soil fertility and
soil quality (Song et al, 2022; G. H. Zhang et al, 2023). Soil
microbial entropy refers to the proportion of microbial biomass
C, N, and P in soil organic C (SOC), total N (TN), and total P (TP),
respectively. It effectively measures the level of microbial biomass
sustained per unit resource (Heuck et al., 2015). Owing to its high
sensitivity to nutrient utilization efficiency, it serves as a reliable
biological indicator for evaluating dynamic changes in soil
ecosystems and can also reflect the evolution of soil quality and
the characteristics of nutrient accumulation (Ji et al., 2020).

The soil-microbial stoichiometric imbalance measures the
discrepancy between microbial biomass and the chemical
composition of soil resources. A smaller value indicates higher
soil resource quality and greater microbial growth efficiency,
helping to clarify the dynamic nutrient balance between the soil
and microorganisms (Mooshammer et al., 2014). Research on the
ecological stoichiometry of soil microbial C, N, and P can enhance
our understanding of microbial ecological processes and their
underlying mechanisms (X. Z. Wu et al,, 2019). Since soil C:N:P
ratios significantly influence microbial community structure,
biomass, and microbial entropy, elucidating the relationships
among soil microbial biomass, microbial entropy, soil C-N-P
stoichiometry (Zechmeister-Boltenstern et al,, 2015; Zhou and
Wang, 2016), and soil-microbial stoichiometric imbalance is
crucial for uncovering the mechanisms of soil nutrient balance
(Zhang et al., 2019).

Forest ecosystems are the core of Earth’s life-support system
and play a vital role in climate regulation, biodiversity conservation,
water retention, and environmental stability (Spiridonov et al,
2025). Soil microorganisms act as engines for forest health and
productivity by facilitating nutrient cycling, maintaining soil
structure, and enhancing plant stress resistance through processes
such as N fixation, P solubilization, soil particle aggregation via
hyphae and secretions, and symbiotic relationships with plants via
mycorrhizal fungi (Hu et al, 2024). Extensive research has been
conducted on soil microbial biomass and its stoichiometric
characteristics in forest ecosystems, with focus on various factors,
including climate change (Tian et al., 2023), litter input (Jing et al.,
2021), forest fires (Singh et al., 2021), altitude (R. Q. Wang et al,,
2024), land-use changes (Jiang et al, 2024), and tree species
composition (Babur et al., 2021).
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Specifically, the influence of tree species on soil microbial
biomass has garnered significant attention. The tree species
composition fundamentally determines forest ecosystem
characteristics (Shi et al., 2022). Furthermore, distinct stand types
composed of different tree species significantly alter soil microbial
communities through variations in root exudates, quantity and
quality of litter/root inputs, and differences in litter decomposition
rates and growth patterns (Song et al., 2020). However, because of
species-specific nutrient acquisition strategies that substantially
affect litter production, chemical composition, and decomposition
dynamics, comparative studies of soil microbial biomass across
various stand types have yielded inconsistent results (Siwach et al,
2024). Significant differences were observed in the soil microbial
biomass and community structure between Pinus massoniana
forests and citrus plantations on Jinyun Mountain (Zeng et al,
2015). Studies demonstrated that in subtropical mature forests,
broad-leaved forests exhibited a higher MBP content than
coniferous and mixed coniferous broad-leaved forests (Hou et al.,
2014). In the Central Himalayas, a study of five coniferous and
broad-leaved forest types revealed that oak and deodar cedar forests
contain the highest levels of MBC, MBN, and MBP (Siwach et al.,
2024). The study of pine camphor mixed forests and monocultures
revealed that mixed forests had higher soil MBC and MBN values
than pure forests (Dong et al., 2017). Xu et al. (2014) investigated
the effects of vegetation on soil microbial biomass and observed that
microbial biomass varied significantly among tree species and was
negatively correlated with the soil C:N ratio.

Current research on soil microbial entropy remains primarily
focused on its responses to factors such as land-use patterns (Chi
et al., 2023), farming practices in agricultural ecosystems (Li et al.,
2024), afforestation in severely degraded areas (Liu et al., 2012), and
tea plantation chronosequences (G. H. Zhang et al., 2023).
However, studies on how forest stand type affects soil microbial
entropy and its driving factors are lacking. Xu et al. (2014) identified
soil temperature, moisture, and substrate quality as key regulators of
microbial entropy. Hu et al. (2021) investigated the subalpine
natural secondary forests of western Sichuan, finding that gMBC
decreased with increasing soil N/P ratio, whereas qMBP showed
positive correlations with both soil C/P and N/P ratios. These
findings suggest that future studies on stand-type effects on soil
microbial biomass and entropy should incorporate comprehensive
analyses that consider regional variations, soil types, and tree
species characteristics.

Karst landforms are widespread globally, covering
approximately 12-15% of the Earth’s terrestrial surface. Karst
regions in China are predominantly distributed in the southwest,
spanning approximately 550,000 km?, making it one of the world’s
three largest concentrated karst distribution areas (Zhang et al,
2022). Guizhou Province, located at the core of the ecologically
fragile southwest karst region, has exposed and covered karst areas
that account for 73.8% of the total land area (Zhong et al., 2021).
This region’s unique eco-geological environment contributes to its
ecological vulnerability, which is characterized by high ecological
sensitivity, low environmental carrying capacity, weak disturbance
resistance, and poor stability (Peng et al., 2023). Since the 1990s,
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China has implemented comprehensive national forestry projects in
the southwest karst region, including the Grain-for-Green Program,
Natural Forest Protection Program, and Shelterbelt Development
Program, to address rocky desertification. By the end of 2023, the
province’s forest area reached 11.1 million ha, with a forest coverage
rate of 63%. Cryptomeria japonica var. sinensis (CJ), pure stands of
Liquidambar formosana (LF) are pioneering tree species for
ecological restoration in karst areas. The afforestation area of CJ
forest is 143800 hectares, and the afforestation area of LF forest is
117200 hectares, accounting for 2.2% and 1.8% of the total area of
tree forests in Guizhou Province (6.68 million hectares),
respectively (Zhang and Ding, 2019; Zhang and Guo, 2020).
Currently, the mixed afforestation model of CJ and LF has been
successfully implemented in the Zhazuo Experimental Forest Farm,
optimizing the forest structure. Previous studies have focused on
afforestation in karst areas, which has improved soil
physicochemical properties (Jian et al., 2006), promoted the
accumulation of glomalin-related soil protein (Ling et al., 2025),
enhanced soil carbon sequestration and water retention capacity
(Pang et al., 2025), and altered the migration characteristics of
nitrogen and phosphorus nutrients (Zheng et al., 2023). Some
scholars have also found that mixed forests show higher shrub-
layer species richness and greater beta diversity than pure forests
(Kumilamba et al., 2025). However, research on how different forest
stand types affect soil microbial biomass and microbial quotient
under similar site conditions, stand characteristics, and
management histories in the karst areas of Guizhou
remains limited.

To address these limitations, this study investigated three forest
stand types in the Zhazuo Experimental Forest Farm in Guizhou
Province: pure stands of Cryptomeria japonica var. sinensis (CJ),
pure stands of Liquidambar formosana (LF), and mixed stands of
Cryptomeria japonica var. sinensis and Liquidambar formosana
(CL). This study aimed to (1) investigate the variation patterns of
soil microbial biomass, microbial entropy, and stoichiometric
characteristics across different forest types and (2) analyze the
influences of soil C-N-P stoichiometry, microbial stoichiometric
ratios, and soil-microbial stoichiometric imbalance on soil
microbial biomass and entropy. These findings provide theoretical
references and fundamental data for supporting forest ecological
restoration and sustainable development in karst regions.

2 Materials and methods
2.1 Overview of the study area

The study area is located in Zhazuo Forest Farm, Xiuwen
County, Guiyang City, Guizhou Province, (106°36’~107°3’E and
26°2’-26°59’N), with a total operating area of 10786.73 hm?, of
which the forest ecosystem occupies a dominant position and the
vegetation coverage is 89.21%. The average altitude is 1290m, which
corresponds to a typical karst plateau area. The climate type is
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subtropical monsoon humid climate, with an average annual
temperature of 12.8-14.6°C, rainfall of 877-1121 mm, 1300
average sunshine hours, and frost-free period of 261 d (Wang
et al, 2023). The soil types were mostly acidic or slightly acidic
yellow loam. The vegetation types of the forest farm were mostly
artificial vegetation. The trees mainly included Cryptomeria
japonica var. Sinensis Miq., Pinus massoniana Lamb., and
Liquidambar formosana Hance. The shrubs mainly included
Serissa serissoides (DC.) Druce, Viburnum dilatatum Thunb., and
Corylus heterophylla Fisch. exTrautv. The herbs mainly included
Hypolepis punctata (Thunb.) Mett., Diplazium donianum (Mett.)
Tardieu, and Ophiopogon bodinieri H. Lev.

2.2 Plot setting and sample collection

Three typical stand types (CJ, LF, and mixed (CJxLF)) were
selected from a forest farm, and sample plots were constructed
based on the principle of consistency of topography, altitude, slope,
slope aspect, and forest age. Three replicate plots were established
for each stand type, with nine standard plots established. The plots
were set up in 20 x 20 m (400 m?) squares and the DBH, tree height,
and stand density of the trees in the tree layer were investigated.
Basic information on the sampling sites is presented in Table 1.

In the sample plot, the “S” type sampling method was used. Soil
samples at 0-20 cm, 20-40 cm, and 40-60 cm depth were collected
using a ring knife at 5 points and impurities such as gravel, plant
roots, and animal remains were manually removed. The samples
were passed through a 2-mm pore size sieve and stored at 4°C for
soil microbial biomass determination.

2.3 Sample determination

Quantitative analysis of C, N, and P in the soil microbial
biomass was performed using the chloroform fumigation-K,SO,/
NaHCOj; extraction method based on the principle of biomass
intracellular material release. SOC, TN, and TP in the extract were
detected using the potassium dichromate external heating, semi-
trace Kjeldahl determination, and molybdenum-antimony anti-
colorimetric methods, respectively. The MBC, MBN, and MBP
contents were calculated using the following formulas (Wu et al,
2006):

MBC = EC/kEc
MBN = EN/kEN
MBP = EPt/kp

where EC, EN, and EPt are the differences between the SOC,
TN, and TP of the fumigated and unfumigated soils, respectively,
and kgc, kgn, and kp are the conversion coefficients of MBC, MBN,
and MBP, with values of 0.45, 0.54, and 0.40, respectively.
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TABLE 1 Basic characteristics of sample plots in the study area.

Latitude and
longitude

Forest
age (m)

Forest
types

Sample
plot

106°41° 28.68”E

Altitude

10.3389/fpls.2025.1678667

Slope  Average
©) TH(m)

Average DBH
(cm)

Stand density
(plant/hm

2)

1 21 13 17.71 21.72 2
o 26°49" 16.68"N 33 » 625
106°42° 33.12°E
2 o] ; . 21 1349 45 16.77 236 725
26°45 33.84°N
106°43’ 10.92”E
3 o] ; N 23 1323 54 16.54 23.94 850
26°43 13.08"N
4 LF 106°43" 09.84°5 22 1317 53 18.14 2681 650
26°53" 13.92°N : i
106°42° 11.88”E
5 LF 06 ; 8% 21 1317 48 15.97 27.98 725
26°46" 16.68"N
106°40° 30.72”E
6 LF : . 21 1317 60.5 16.62 28.25 750
26°46" 10.92°N
103°40° 13.92”E 550
7 CL : N 22 1337 585 19.32 26.58
26°51° 07.92"N CJ:40%; LF: 56%
8 CL 106°40" 30.72°E 21 1339 53.1 15.59 30.97 475
26°46 30.72°N ’ ’ ’ CJ:55%; LF: 36%
106°43° 06.96”E 2
9 CL 067437 06.96 22 1350 40 16.06 2271 o2

26°45 30.96"N

CJ:42%; LF: 45%

CJ is the abbreviation for pure stands of Cryptomeria japonica var. sinensis; LF is the abbreviation for pure stands of Liquidambar formosana; CL is the abbreviation for mixed stands of

Cryptomeria japonica var. sinensis and Liquidambar formosana.

2.4 Data analysis
The formulae for calculating the soil microbial biomass C, N,

and P storage (Mg/hm?), soil microbial entropy, and soil-microbial
stoichiometric imbalance are as follows (Chi et al., 2023):

Soil microbial biomass C stocks(MBCS)

= MBC x SBD x D/10000

Soil microbial biomass N stocks(MBNS)

= MBN x SBD x D/10000
Soil microbial biomass P stocks(MBPS) = MBP x SBD x D/10000
Soil microbial entropy C(qMBC) = MBC/SOC x 100 %
Soil microbial entropy N(qMBN) = MBN/TN x 100 %
Soil microbial entropy P(QMBP) = MBP/TP x 100 %
C/N stoichiometry imbalance(C/Nj,;,) = SOC: TN/MBC: MBN
C/P stoichiometry imbalance(C/Pj;,) = SOC: TP/MBC: MBP

N/P stoichiometry imbalance(N/P;,;,) = TN : TP/MBN : MBP

where SBD is the bulk density of the soil (g/cm?) and D is the
thickness of the soil layer (cm).
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Excel is used for data organization. A one-way variance model
was constructed by SPSS 28.0 statistical software, and multiple
comparisons (significance threshold 0:=0.05) were used to evaluate
the differences of indicators among different forest types.
Simultaneously, a bivariate correlation matrix was constructed,
and the degree of correlation between the parameters was
investigated based on the Pearson correlation analysis. Origin
2024 software was used to complete the drawing of various
statistical charts. Redundancy analysis and mapping were
performed using Canoco5 software to explore the effects of soil
microbial and stoichiometric imbalances on soil microbial biomass
and microbial entropy.

3 Results

3.1 Soil microbial biomass, storage, and
stoichiometry across different stand types

As shown in Table 2, the contents of MBC, MBN, and MBP
ranged from 1.69-4.68, 0.06-0.17, and 0.05-0.13 g/kg, respectively,
while their storage levels ranged from 3.64-9.12, 0.13-0.33, and
0.11-0.24 Mg/hm®. Aggregated data (0-60 cm) revealed that the
mixed forests had significantly higher MBC and storage than the
pure stands (CJ and LF; p < 0.05). Specifically, in the 20-40 and 40-
60 cm soil layers, mixed forests exhibited 52.63-54.44% higher
MBC content and 45.13-66.76% higher MBC storage compared to
CJ and LF (p < 0.05). For MBN and MBP, no significant differences
were observed among the three stand types at 0-60 cm depth (p >
0.05). However, in the 20-40 cm layer, LF exhibited significantly
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TABLE 2 MBC, MBN, MBP and their storage among different forest types.

Forest types

10.3389/fpls.2025.1678667

Soil layers(cm)

20-40 40-60

CJ 3.85 + 0.21Aa 2.47 + 0.14Bb 1.69 + 0.14Bc 2.67 £ 0.18B

MBC(g/kg) LF 3.81 + 0.28Aa 2.47 + 0.14Bb 1.71 + 0.26Bc 2.66 + 0.18B
CL 4.68 + 0.49Aa 3.81 + 0.38Aab 2.61 = 0.34Ab 3.70 £ 0.27A

CJ 0.17 + 0.00Aa 0.10 + 0.01Bb 0.06 + 0.00Ac 0.11 £ 0.01A

MBN(g/kg) LF 0.17 £ 0.01Aa 0.12 + 0.00Ab 0.07 + 0.00Ac 0.12 + 0.01A
CL 0.14 + 0.01Ba 0.10 + 0.01Bb 0.06 + 0.00Ac 0.10 + 0.01A

CJ 0.13 £ 0.01Aa 0.11 + 0.01Ab 0.06 £ 0.01Ac 0.10 £ 0.01A

MBP(g/kg) LF 0.11 £ 0.00Ba 0.09 + 0.00Bb 0.07 £ 0.00Ac 0.09 £ 0.00A
CL 0.13 £ 0.01Aa 0.07 + 0.00Bb 0.05 + 0.00Bc 0.09 + 0.01A

CJ 7.04 + 0.39Ba 5.11 + 0.29Bb 3.64 + 0.33Bc 8.47 £ 0.49B

MBCS(Mg/hm?) LF 7.90 + 0.54ABa 5.54 + 1.02Bb 3.80 + 0.11Bc 8.85 + 0.55B
CL 9.12 + 2.64Aa 8.04 + 0.79Aab 6.07 + 0.82Ab 12.47 £ 0.91A

CJ 0.31 £ 0.01Aa 0.21 + 0.02Bb 0.13 £ 0.01Ac 0.35 £ 0.02A

MBNS(Mg/hmZ) LF 0.31 £ 0.01Aa 0.25 + 0.01Ab 0.15 £ 0.01Ac 0.40 £ 0.02A
CL 0.33 + 0.04Aa 0.20 + 0.01Bb 0.14 £ 0.01Ac 0.35 + 0.02A

CJ 0.23 + 0.01Aa 0.22 £ 0.01Aa 0.13 + 0.01Ab 0.32 + 0.02A

MBPS(Mg/hmZ) LF 0.20 + 0.00Ba 0.18 + 0.00Bb 0.15 + 0.01Ac 0.29 + 0.01A
CL 0.24 £ 0.01Aa 0.16 + 0.01Bb 0.11 + 0.00Bc 0.29 + 0.02A

The data is mean * standard error; Different capital letters indicate significant differences (p < 0.05) among different forest types in the same soil layer; Different lowercase letters indicate
significant differences (p < 0.05) among different soil layers in the same forest type. Same below. MBC, MBN and MBP are the abbreviation for soil microbial biomass C, microbial biomass N and
microbial biomass P, respectively; MBCS, MBNS and MBPS are the abbreviation for soil microbial biomass C stocks, microbial biomass N stocks and microbial biomass P stocks, respectively.

higher MBN content and storage than CJ mixed forests (p < 0.05).
Meanwhile, MBP content and storage followed different trends
across soil layers, showing distinct heterogeneity: in the 0-20 cm
layer, CJ] and mixed forests had significantly higher MBP; in the 20-
40 cm layer, CJ showed significantly higher MBP; and in the 40-60
cm layer, CJ and LF showed significantly higher MBP (p < 0.05).

Table 3 shows that stand type had a significant effect on soil
microbial stoichiometric characteristics. The aggregated data (0-60
cm) showed that the mixed forests had significantly higher MBC/
MBN and MBC/MBP ratios than CJ and LE. The MBC/MBN ratio
followed a consistent trend across 0-20, 20-40, and 40-60 cm soil
layers, with mixed forests exhibiting 1.41-1.81 times higher values
than CJ and LF (p < 0.05). The MBC/MBP ratio was significantly
higher in mixed forests by 81.90-124.01%, particularly in the
subsurface (20-40 cm) and deep soil layers (40-60 cm) (p <
0.05). For the MBN/MBP ratio, the 0-60 cm data revealed that
LF had significantly higher values than CJ, whereas mixed forests
showed no significant differences compared to CJ or LF. However,
the MBN/MBP ratio exhibited heterogeneous patterns across soil
layers and stand types. Specifically, in the 0-20 cm layer, CL had
significantly higher ratios; in the 20-40 cm layer, LF and mixed
forests had higher ratios; and in the 40-60 cm layer, mixed forests
had higher ratios (p < 0.05).
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3.2 Soil microbial entropy and
stoichiometric imbalance across different
stand types

The ranges of soil qMBC, qMBN, and qMBP were 10.97-
19.18%, 9.76-17.59%, and 16.88-33.51%, respectively (Table 4).
The aggregated data (0-60 cm) revealed that mixed forests had a
significantly higher qMBC than LF by 23.49% (p < 0.05). However,
no significant differences in gMBC were observed among the three
stand types within the individual soil layers (0-20, 20-40, and 40—
60 cm). For qMBN, the 0-60 cm data showed that CJ exhibited
significantly higher values than LF and mixed forests (18.10% and
21.13%, respectively; p < 0.05). This pattern was particularly
pronounced in the deep soil layer (40-60 c¢cm). CJ and LF
generally exhibited significantly higher qMBP than mixed forests
(p < 0.05), although with variation across soil layers. In the 0-20 cm
layer, mixed forests showed 21.46% higher gMBP compared than
LF (p < 0.05); in the 20-40 cm layer, CJ had significantly higher
gMBP than LF and mixed forests (p < 0.05), and in the 40-60 cm
layer, QMBP followed the order: LF > CJ > mixed forests, with
significant differences among them (p < 0.05).

Soil C/Nimbs C/Pimp, and N/Pj,, ranged from 0.8-1.13, 1.36-3.04,
and 1.53-3.37, respectively (Table 5). Aggregated data (0-60 cm)
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TABLE 3 Stoichiometric characteristics of soil microbial biomass among different forest types.

Forest types

Soil layers(cm)

20-40 40-60
CJ 23.25+1.65Ba 26.49+2.27Ba 27.91+2.49Ba 25.89+1.26B
MBC/MBN LF 22.84+2.03Ba 20.88+1.49Ca 25.90+1.88Ba 23.21+1.07B
CL 32.77+2.87Aa 37.85+1.61Aa 41.18+5.25Aa 37.26+2.09A
CJ 31.35+2.28Aa 23.37+0.88Bb 27.72+1.61Bab 27.48+1.10B
MBC/MBP LF 35.56+2.74Aa 28.78+1.64Bb 25.12+1.45Bb 29.82+1.35B
CL 35.92+3.67Ab 52.35+5.85Aab 55.99+8.77Aa 48.09+3.90A
CJ 1.38+0.09Aa 0.99+0.12Bb 1.07+0.10Bb 1.14+0.06B
MBN/MBP LF 1.58+0.07Aa 1.40+0.05Ab 0.99+0.04Bc 1.32+0.05A
CL 1.13+0.09Ba 1.35£0.10Aa 1.32+0.08Aa 1.27+0.05AB

qMBC, qMBN and qMBP are the abbreviation for soil microbial entropy C, microbial entropy N and microbial entropy P, respectively.

TABLE 4 Soil microbial entropy among different forest types.

Forest types

Soil layers(cm)

20-40 40-60
CJ 16.47+£1.93Aa 18,33£1.34Aa 16.14£1.13Aa 16.98+0.86AB
qMBC(%) LF 17.45+£1.80Aa 13.82+1.09Aab 10.97+1.21Ab 14.09+0.90B
CL 16.72£2.56Aa 19.18+2.99Aa 16.30£2.76Aa 17.40£1.57A
CJ 14.41+0.56Ab 17.59+1.11Aa 16.17+1.10Aab 16.05+0.58A
qMBN(%) LF 16.22+0.77Aa 14.78+0.82Aa 9.76+0.73Bb 13.59+0.64B
CL 13.26+1.63Aa 14.87+2.02Aa 11.61+1.33Ba 13.25+£0.97B
CJ 28.61£1.69ABa 31.36+1.30Aa 24.43+2.27Bb 28.13£1.12A
qMBP(%) LF 27.59+1.22Ba 27.66+1.40Ba 31.22+1.99Aa 28.82+0.92A
CL 33.51+2.60Aa 21.59+0.71Cb 16.88+0.76Cc 23.99+1.49B

revealed that CJ and LF exhibited significantly higher values than
mixed forests (23.17% and 30.49%, respectively). A similar trend was
observed in the 20-40 cm layer, where LF surpassed mixed forests by
39.51% (p < 0.05). C/Pyyp, was significantly higher in LF than in CJ
and mixed forests and N/P;,,, was significantly higher in LF than in
CJ across the 0-60 cm profile. However, layer-specific heterogeneity
was evident; for example, in the 0-20 cm soil layer, the C/P;,, of
mixed forests was significantly higher (42.29%; p < 0.05) than that
of LF. However, the opposite trend was observed in the 20-40 and
40-60 cm layers, where the C/P;y,;, of mixed forests was 32.85% and
55.26% lower, respectively (p < 0.05), compared to LF. Similarly, in
the 0-20 cm layer, the N/P;,;, ratio of mixed forests was significantly
higher than that of CJ and LF by 52.74% and 77.46%, respectively
(p < 0.05). In contrast, in the 40-60 cm layer, the N/P;,,,;, of mixed
forests was significantly lower (by 50.15%; p < 0.05) than that of LF.
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3.3 Correlations between soil microbial
biomass/microbial quotient and soil/
microbial stoichiometric characteristics

As shown in Figure 1, soil MBC exhibited highly significant
positive correlations with SOC, TN, TP, MBC/MBN, MBC/MBP,
and MBN/MBP (p < 0.01), and highly significant negative
correlations with C/Nj,, and C/P;,, (p < 0.01). Soil MBN
demonstrated highly significant positive correlations with SOC,
TN, TP, and MBN/MBP but significant to highly significant
negative correlations with SOC/TN, MBC/MBN, and N/P;,;,. For
soil MBP, significant to highly significant positive correlations were
observed with SOC, TN, TP, C/P;,p, and N/P;,;, whereas
significant to highly significant negative correlations were
observed with MBC/MBN, MBC/MBP, and MBN/MBP.
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TABLE 5 Soil-microbial stoichiometry imbalance among different forest types.

Forest types

Soil layers(cm)

20-40 40-60
CJ 1.02+0.13Aa 0.99+0.07ABa 1.03£0.08Aa 1.01+0.05A
C/Nimp LF 1.05+0.12Aa 1.13£0.09Aa 1.02£0.13Aa 1.07+0.06A
CL 0.85+0.07Aa 0.81+0.05Ba 0.80+£0.07Aa 0.82+0.04B
CJ 1.97+0.21ABa 1.78+0.12Aab 1.50+0.07Bb 1.75+0.09B
C/Pimb LF 1.75+0.17Bb 2.07+0.09Ab 3.04+0.21Aa 2.29+0.13A
CL 2.49+0.35Aa 1.39+0.16Bb 1.36+0.18Bb 1.75+0.16B
CJ 2.01+0.13Ba 1.82+0.07Aab 1.53+0.12Bb 1.79+0.07B
N/Pipp LF 1.73£0.09Bb 1.92+0.13Ab 3.37+0.31Aa 2.34+0.17A
CL 3.07£0.52Aa 1.73+0.21Ab 1.68+0.21Bb 2.16+£0.22AB

C/Nimb» C/Pimp and N/Pyy,, are the abbreviation for C/N stoichiometry imbalance, C/P stoichiometry imbalance and N/P stoichiometry imbalance, respectively.

soc | ® & o ok !
TN | s . ok . o * 0.8
TP . ‘ ‘ * 0.6
SOC/TN ™ o o o
SOC/TP . . s
TN/TP ok . %
MBC/MBN | % ok * o -
mBCmBP [ @ @ ® = @ 02
MBN/MBP | sk C) * * *ok o 0.4
C/Nimb | G £ 0.6
cpimb | @ ok . o o8
N/Pimb * * o . S ;

MBC MBN MBP

*p<0.05 ** p<0.01

FIGURE 1

Correlation analysis between soil microbial biomass/microbial entropy and soil/microbial stoichiometric characteristics. Circles vary in color from
red to blue indicating positive to negative correlations, with intensity and size showing strength. Asterisks indicate significance levels: single for

p<0.05, double for p<0.01. Color scale bar ranges from -1 to 1.

Soil QMBC showed highly significant negative correlations (p <
0.01) with SOC, TN, SOC/TP, TN/TP, C/Nimp, C/Pimp, and N/Pyy,
and significant to highly significant positive correlations with MBC/
MBN, MBC/MBP, and MBN/MBP. Soil qMBN demonstrated
highly significant negative correlations with SOC, TN, SOC/TP,
TN/TP, C/Pimp, and N/P;y,, but significant positive correlations
with TP, SOC/TN, MBC/MBP, and MBN/MBP. Soil qMBP
displayed significant to highly significant positive correlations
with TN, TN/TP, C/Pjy,, and N/P;.;, and highly significant
negative correlations with SOC/TN, MBC/MBP, and MBN/MBP.
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3.4 Redundancy analysis of soil microbial
biomass and microbial quotients in relation
to soil and microbial stoichiometric
characteristics

A redundancy analysis of soil microbial biomass in relation to
soil and microbial stoichiometric characteristics (Table 6) revealed
that the first and second axes explained 51.93% and 15.31% of the
variation in soil microbial biomass, respectively, with a cumulative
explanatory rate of 67.24%. This indicates that soil nutrients,
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TABLE 6 Redundancy analysis of soil microbial biomass influenced by soil and microbial stoichiometry characteristics.

Soil and
microbial Explain o .
. C.Ob d poa > pseudo-F RDA ordination figure
stoichiometry %
indicators
TP 428 79.2 0.002 o
- MBC/MBP
MBC/MBP 14.8 36.5 0.002 MBC/MBN
MBN/MBP 8.8 272 0.002
C/Nimb 4.6 16.4 0.002
MBN/MBP
C/Pimb 1.9 72 0.006 CIN
_—~
X
TN 13 5.1 0.03 =
@
SOC 0.9 35 0.064 [To)
T
N/Pimb 0.6 25 0.106 ? ™
. . . (a)]
CIN 0.4 L5 0216 e N/Pimb
N/P 0.2 0.6 0.426 €/Nimb MBP
MBC/MBN 0.1 0.4 0.528
C/Pimb
o
c/p <0.1 <0.1 0.894 -
)
0.8 RDA1 (51.93%) 1.0

The blue arrow represents the response variable; The red arrow represents the explanatory variable; The length of the arrow indicates the degree of influence; The angle between the arrows is the
degree of correlation in table 6 and 7.

stoichiometric ratios, microbial stoichiometric ratios, and  0.002), C/Njyy, (F = 16.4; p = 0.002), C/Piyp, (F = 7.2; =0.006), and
stoichiometric imbalances effectively reflect variations in soil TN (F = 5.1; p = 0.03) to soil microbial biomass variation were
microbial biomass. The cumulative explanation rates for soil  42.8%, 14.8%, 8.8%, 4.6%, 1.9%, and 1.3%, respectively. These
nutrients and stoichiometric ratios were 45.6% and 30.8%,  parameters were identified as significant factors influencing soil
respectively. The explanatory contributions of soil TP (F = 79.2; p  microbial biomass dynamics, with soil TP demonstrating
=0.002), MBC/MBP (F = 36.5; p = 0.002), MBN/MBP (F=27.2;p= particularly dominant effects.

TABLE 7 Redundancy analysis of soil microbial entropy influenced by soil and microbial stoichiometry characteristics.

Soil and
microbial . o .
stoichiometry Explains % pseudo-F RDA ordination figure
indicators
C/Pimb 315 48.7 0.002 o
C/Nimb 14.2 275 0.002
C/P 52 11 0.004 NPimb  qMBP
MBC/MBP 5.5 13 0.002 gMBC
9
TP 1.4 3.3 0.084 ?3
N/Pimb 11 2.8 0.098 0
vt MBC/MBP
o~
N 0.9 22 0.132 g CPimb " MBN
MBN/MBP 3 8.1 0.008 x cre
MBN/MBP
C/N 11 3 0.072 GN
N/P 0.2 0.5 0.506
C/Nimb
MBC/MBN <0.1 0.3 0.626 o
N
SOC <0.1 <0.1 0.858 -1.0 RDA1 (40.54%) 1.0
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The redundancy analysis of soil microbial entropy in relation to
soil and microbial stoichiometric characteristics (Table 7) revealed
that the first and second principal component axes explained
40.54% and 15.84% of the variation in soil microbial entropy,
respectively. Soil nutrients and stoichiometric ratios collectively
accounted for 8.8% of the explained variation, and microbial
stoichiometric ratios and imbalances showed a cumulative
explanatory power of 55.3%. Among these factors, C/P;,, (F =
48.7; p = 0.002), C/Nimp (F = 27.5; p = 0.002), MBC/MBP (F = 13; p
= 0.002), C/P (F = 11; p = 0.004), and MBN/MBP (F = 8.1; p =
0.008) were identified as significant determinants of soil microbial
quotients, with explanatory contributions of 31.5%, 14.2%, 5.5%,
5.2%, and 3.0%, respectively.

4 Discussion

4.1 The mixed forest significantly increased
MBC and microbial stoichiometry ratio

As readily available nutrient pools in soils, MBC and MBN serve
as critical agents for organic matter decomposition and
mineralization (Brookes, 2001). Their dynamics are closely related
to soil nutrient cycling and provide sensitive indicators of changes in
soil fertility (Cesarz et al., 2022). Research has shown that the forest
type impacts the distribution pattern of soil microbial biomass and
can significantly alter MBC, MBN, and MBP (Devi and Yadava,
2006). Our 0-60 cm soil analysis demonstrated that conifer-broadleaf
mixed forests exhibited significantly higher soil MBC content and
storage than pure CJ and LF stands (Table 2; p < 0.05). This aligns
with the observations of Yi et al. (2018) in subtropical plantation
ecosystems. A possible reason for this is that mixed coniferous and
broad-leaved forests have a more complex vegetation structure and
richer litter resources, which can provide diverse C sources and living
environments for soil microorganisms (Y. X. Wang et al,, 2024).
However, study demonstrated that monsoon evergreen broadleaf
forests exhibited significantly higher soil MBC than conifer-broadleaf
mixed forests and pure Masson pine stands (Yi et al., 2005). These
contrasting findings may stem from differences in the soil
characteristics, floristic composition, and climatic conditions
between our studies(H. D. Wang et al., 2024). Our study also
indicated that MBN content was relatively high in the 0-20 and
20-40 cm soil layers of the broad-leaved forest (Table 2; p < 0.05),
which is consistent with the findings of previous study (Li et al,
2020). This may be attributed to the abundant N sources in the
broad-leaved forest (such as root exudates and N-rich litter) and the
higher N fixation capacity of the microbial community, further
increasing the N content in the soil (Han et al., 2025).

Soil C/N/P stoichiometry reflects the balance of C, N, and P and
is fundamental to soil fertility and ecosystem productivity (Liu et al.,
2020). Soils with a balanced C:N:P ratio promote healthy microbial
activity and efficient nutrient cycling, which are essential for plant
growth and health (Lasota et al., 2021). Xu et al. (2014) reported that
the average soil microbial biomass C:N:P was 42:6:1. In the present
study, the soil microbial biomass C/N/P was 26.7:1.1:1 in coniferous
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forests, 29.5:1.3:1 in broad-leaved forests, and 41:1.1:1 in mixed
forests, among which MBC/MBP and MBN/MBP were lower than
the global average and MBC/MBN was higher than the global
average. Determining whether an organism is homeostatic or non-
homeostatic is an important issue in ecological stoichiometry. If an
organism maintains a certain C: N: P ratio regardless of the chemical
composition of surrounding resources, it is homeostatic;
Nonhomeostatic organisms will adjust the C: N: P ratio with
changes in the composition of resource elements (Sterner and
Elser, 2002). In the fragile Karst ecosystem, soil microbial
homeostasis is not strong. Other studies also show stoichiometric
variability in the soil microbial biomass (Heuck et al., 2015). Unlike
our research findings, Cleveland and Liptzin found an average MBC/
MBN ratio of 8.6 based on extensive soil microbial biomass
stoichiometry (Cleveland and Liptzin, 2007). The ratio range of
MBC/MBN after afforestation in typical karst ecological areas of
Guangxi Province, China is also between 6.5 and 8.1 (Hu et al., 2016).
The higher MBC/MBN in our study may be due to the high SOM
content of soil organic matter in the study area, whereas the relative
lack of N and P resulted in low soil microbial N and P, resulting in a
high MBC/MBN ratio (X. L. Wu et al, 2019). In N- and P-
constrained environments, microorganisms adjust their biomass
stoichiometric ratios to adapt to resource constraints (Cleveland
and Liptzin, 2007). The MBC/MBN ratio reflects the main
components of the soil microbial community, and its values were
dominated by bacteria at 5:1, actinomycetes at 6:1, and fungi at 10:1
(Zhang et al,, 2025). In this study, the MBC/MBN ratio ranged from
20.88-41.18, much higher than 10:1, indicating that fungi maybe
affect the microbial biomass C and N cycle in this region, and the soil
of these three vegetation types may be in a state of N and P limitation
(X. L. Wu et al,, 2019). Our study also found that the stand type and
had significant effects on MBC/MBN, MBC/MBP, and MBN/MBP
(Table 3), which is consistent with the conclusions of Tian (Tian et al.,
2023) and Cleveland (Cleveland and Liptzin, 2007). Different tree
species may lead to changes in the quantity and quality of litter or the
main composition of microbial communities, whereas changes in soil
microbial community composition may lead to changes in the
ecostoichiometric characteristics of soil microbial biomass,
especially in P-deficient soils (Heuck et al., 2015).

4.2 Mixed forests increased gMBC, but
microbial stoichiometric imbalances were
most pronounced in broad-leaved forest

As a comprehensive parameter for evaluating the sequestration
efficiency of soil microbial organic C, the numerical characteristics of
soil microbial entropy can characterize the efficiency level of the
transformation process of organic matter to microbial mass (Tian
et al,, 2020). Its change is controlled by the synergistic regulation of
multiple factors, such as microbial community composition
characteristics, regional climate factors, and soil physical and
chemical parameters (Li et al., 2024), among which key factors, such
as microbial community diversity, matching degree of hydrothermal
conditions, and soil C/N ratio, constitute the main driving factors (Chi
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etal, 2023). In this study, stand type had a significant effect on qMBC,
qMBN, and qMBP (0-60 cm), qMBC had significant advantages in
mixed forests (Table 4). The increase of gMBC in mixed forests may
be related to changes in soil microbial community structure and
diversity. Fungi have higher substrate utilization efficiency and lower
metabolic quotient than bacteria (Floriani et al., 2024). After the
transformation of forest stand types, the soil microbial community
structure may shift towards higher relative abundance of fungi (Allison
et al, 2007), leading to an increase in qMBC, Our research also
showed that the qMBN of coniferous forest was significantly higher
than that of broad-leaved forest and mixed forest in the 40-60 cm soil
layer (Table 4). Our findings differ from those of Wu et al. (2016), who
observed significant differences in qMBN between different vegetation
types in the 0-40 cm soil layers. This discrepancy may be due to the
differences in N availability gradient and microflora composition
characteristics in the study samples, with spatial heterogeneity
playing an important role in regulating soil biogeochemical
processes (Liu et al, 2017). In the present study, qMBP showed
obvious heterogeneity among the dominant stand types in the
different soil layers (Table 4). This difference may be related to the
differences in the morphology, availability, and microbial utilization
strategies of P in the soil in the study area (Li et al., 2023). In the karst
soil in this study area, the presence of P in various forms was affected
by soil pH, iron and aluminum oxides, and other factors, which
hindered the utilization of P by microorganisms (Qian et al., 2022).

As an ecological indicator to characterize the difference between
microbial demand and substrate supply, the stoichiometric imbalance
of soil and microorganisms can be used as a diagnostic parameter to
analyze the nutrient coupling mechanism of the soil-microbial system
(Zhou and Wang, 2016). Global-scale studies have shown that the
mean values of soil microbial C/N/P imbalances are 2, 7, and 3,
respectively (Mooshammer et al., 2014). In this study, the average
values of soil microbial C/N/P imbalance were 0.97, 1.93, and 2.1,
respectively, lower than the global average, indicating that the
effectiveness of the soil substrate in the study area was higher and
the microbial assimilation efficiency was better. Xiao et al. (2025)
found that the average C/Nj,, and C/Piy, in Cunninghamia
lanceolata forest were significantly higher than those of broad-
leaved and mixed forests, whereas the average N/P;., ratio of
evergreen broad-leaved forest and Cunninghamia lanceolata forest
was significantly higher than that of mixed forest, indicating that the
soil quality of Cunninghamia lanceolata forest was lower than that of
other vegetation types. However, the present study showed that C/
Nimp> C/Pimp, and N/Py,,, had higher ratios in broad-leaved forests
(Table 5), suggesting that the soil nutrient cycling of coniferous and
mixed forests in the study area was somewhat stable, whereas the soil
quality of broad-leaved forests was worse than that of the other
vegetation types (Mooshammer et al., 2014). This may be because
litter in broad-leaved forests is relatively easy to decompose and can
quickly release a large amount of nutrients; thus, soil microorganisms
can obtain abundant nutrients in a short period of time (Pang et al.,
2022). However, the proportion of C, N, and P released in litter does
not match the needs of microorganisms, resulting in an increase in
the imbalance between soil and microorganisms in the use of C, N,
and P (Zhou and Wang, 2016).
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4.3 TP and C/P;y, are the main factors
affecting soil microbial biomass and
microbial entropy, respectively

In this study, there was a significant positive correlation between soil
MBC, MBN, MBP and SOC, TN, and TP content (Figure 1), which is
consistent with the results of previous studies (Allen and Schlesinger,
2004; Wang et al, 2015), indicating that (Késtner et al, 2021). In
addition, we found that TP was the main controlling factor affecting the
change in soil microbial biomass in soil nutrients, with an explanation
rate of 42.8% (Table 6). This may be attributed to the fact that P directly
affects the growth rate, metabolic activity, and community structure of
microorganisms (Hu et al,, 2024). When the P in the soil is sufficient,
microorganisms can better perform energy metabolism, nucleic acid
synthesis, and other life activities, thereby promoting the growth and
reproduction of microorganisms and increasing soil microbial biomass
(Li et al,, 2022). Previous study on karst peaks and depressions showed
that there was no significant correlation between soil MBC, MBN, MBP,
and TP (Huang et al., 2022), which was inconsistent with our results.
This may be due to differences in the soil physical and chemical
properties (such as soil moisture, pH, and salinity), vegetation types,
and land use patterns in the study areas, which impact the relationship
between TP and microbial biomass (Yan et al., 2010).

Consistent with the conclusion of Zhou and Wang (2016), there
were significant negative correlations between soil gMBC and qMBN
and SOC, TN, C/P, and N/P (Figure 1). The internal mechanism of this
negative correlation may be due to the dynamic response strategy of
microbial metabolic activities to the coordinated supply of substrate
resource elements. When the system has high C/N and C/P
characteristics, the microbial community is limited by the supply
threshold of N and P, which directly leads to a significant decrease
in microbial entropy (QMBC and qMBN)(S. Y. Wang et al,, 2024). In
this study, C/Pjy, and C/Nj,, were found to be the core regulatory
parameters affecting microbial entropy variation, with explanatory
rates of 31.5% and 14.2%, respectively. This conclusion is
theoretically corroborated by Zhang’s research on the utilization
efficiency of microbial elements, which revealed that the elemental
coupling state of the soil-microbial system profoundly affects the
material cycle pattern at the ecosystem level by regulating the
metabolic pathways of decomposers (G. Zhang et al., 2023).

5 Conclusion

This study focused on the soils of three forest stand types (pure
Cryptomeria fortunei forest, pure Liquidambar formosana forest,
and mixed Cryptomeria fortunei-Liquidambar formosana forest) in
the Zhazuo Forest Farm, Guizhou Province, China. It investigated
the variations in soil microbial biomass, microbial entropy, and
stoichiometric characteristics and analyzed the relationships
between soil microbial biomass, microbial entropy, and the
stoichiometric characteristics of soil and microorganisms. The
main findings were as follows: (1) compared to pure forests,
mixed forests exhibited significantly increased MBC, MBC/SOC,
MBC/MBN, MBC/MBP, and qMBC. However, microbial
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stoichiometric imbalances (C/Nimnb, C/Pimp, and N/P;,,;,) were most
pronounced in the pure Liquidambar formosana forest, whereas
qMBN and qMBP were highest in the pure Cryptomeria fortunei
forest. (2) MBC, MBN, and MBP showed highly significant positive
correlations with SOC, TN, and TP (p < 0.01), whereas gMBC and
qMBN exhibited highly significant negative correlations with SOC
and TP content (p < 0.01). (3) The primary factors influencing the
soil microbial biomass were TP and MBC/MBP, whereas the key
factors affecting the soil microbial quotient were mainly C/P;y,, and
C/Nimp. Based on the research findings of the article, it is
recommended to promote the planting mode of mixed forests in
karst areas.

This study revealed the differences of soil microbial biomass and
stoichiometry among different forest stands, but their microscopic
mechanisms are still unclear. In the future, high-throughput
sequencing technology needs to be used first to analyze the
structure and key functional groups of bacterial and fungal
communities, clarify the specific driving microbial communities
for the increase in MBC, QMBC, and stoichiometry in mixed forests,
as well as the community causes of stoichiometry imbalance.
Secondly, the activity of enzymes related to carbon, nitrogen, and
phosphorus cycling and their stoichiometric ratios should be
systematically measured to verify the pathways through which C/
Pimp and C/Nj,,;, affect microbial biomass.
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