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Optimization of deficit irrigation
system for drip-irrigated
corn in northern Xinjiang using
dynamic reconstruction and dual
physics-informed neural
networks to drive AquaCrop
Haonan Zhang1,2, Jinghua Zhao1,2*, Ming Hong1,2

and Liang Ma1,2

1College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang, China,
2Xinjiang Key Laboratory of Water Engineering Safety and Water Disaster Prevention, Urumqi,
Xinjiang, China
Introduction: To optimize the irrigation schedule for corn in northern Xinjiang

and save water resources while maintaining stable production.

Methods: Based on the actual water shortage in northern Xinjiang during

summer 2024, this study set up different deficit irrigation gradient treatments

according to the crop water requirement (ETc) of each growth stage of corn.

Combined with the corn growth and yield data of farmers from 2022 to 2024, the

model parameters were calibrated and validated through global sensitivity

analysis using AquaCrop-OS MATLAB. Then, the Dynamic Reconstruction and

Dual Physics-Informed Neural Networks (DR-DPINNs) were integrated with

water balance constraints during the corn growth period to optimize the

deficit irrigation system for corn in northern Xinjiang.

Results: The results showed that in the global sensitivity analysis of the AquaCrop

model, the water productivity (wp) and canopy growth coefficient (cgc)

parameters had a significant impact on biomass accumulation (STi>0.10), and

the canopy senescence parameter (psen) had a marked effect on yield (Si>0.05).

The model parameters obtained through sensitivity analysis could meet the

application requirements for simulating biomass, canopy cover, soil water

content, and yield in the AquaCrop model. After optimization with DR-DPINNs,

when the total irrigation amount was 472 mm, the yield increased by 10.8% and

the water use efficiency rose by 11.15% compared with the conventional scheme.

The DR-DPINNs method, by combining physical mechanisms with dynamic

feature extraction, could significantly enhance the solving capability for high-

dimensional nonlinear irrigation optimization problems. The optimized spatial

and temporal irrigation distribution under a total water volume of 472 mm could

achieve a simultaneous increase in yield and water use efficiency.
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Discussion: This study can provide theoretical methods with both mechanistic

interpretability and decision-making accuracy for the dynamic optimal systems

of drip-irrigated corn under water resource constraints in arid regions, and offer

theoretical support and technical reference for agricultural water management in

arid regions.
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1 Introduction

Maize is one of the most widely grown and high-yielding crops

globally and plays a vital role in food supply, energy production,

feed manufacturing, and industrial applications (Hammad et al.,

2018; Erenstein et al., 2022). In northern Xinjiang, China, located in

an inland arid zone with scant precipitation and intense

evaporation, agriculture relies heavily on irrigation. Here, water

resource shortages and uneven distribution severely restrict maize

production (Shen et al., 2013).

Water is not only essential for maize’s physiological and

biochemical processes but also indirectly affects yield formation by

influencing root activity, nutrient uptake, and the allocation of

photosynthetic products (Du et al., 2013; Pettigrew, 2016; Zhang

et al., 2023) Tables 1 and 2. During its growth, maize is subject to

multiple factors: fluctuating meteorological elements, soil moisture

heterogeneity, and crop-environment interactions. During its growth,

maize is subject to multiple factors: fluctuating meteorological

elements, soil moisture heterogeneity, and crop-environment

interactions. These factors are linked by complex nonlinear

relationships and exhibition evolution characteristics (Zhou et al.,

2020; Chen et al., 2021). Deficit irrigation, a strategy to balance water

conservation and stable production by regulating water supply, shows

great potential for alleviating water resource conflicts. Yet, its precise

implementation hinges on a deep understanding of crop-water

dynamics and reliable model predictions (Ahmadpour et al., 2022;

Geerts and Raes, 2009). The AquaCrop model stands out for its

mechanistic approach to crop-water relationships and relatively low

data requirements, making it widely used in irrigation strategy

evaluations. However, it falls short in extreme water scarcity

conditions and regional parameter optimization (Fidencio Cruz-

Bautista et al., 2023; Ghazouan et al., 2019). Traditional static models

also struggle to capture the dynamic responses of complex

environment-crop-soil systems, especially their spatiotemporal

variations. They have difficulties in accurately quantifying the

cascading effects of water deficits on crop growth, yield formation,

and water use efficiency across different growth stages, leading to

lagging and empirical irrigation strategy optimization (Tolomio and

Casa, 2020). In the context of sustainable agricultural development,

enhancing the precision of irrigation management, understanding the

water requirements of maize at different growth stages, and developing
02
precise irrigation decisionmodels based on physiological and ecological

processes to achieve efficient water use and increased yields remain key

challenges in agricultural water resource management.

Physics-Informed Neural Networks (PINNs) can simulate

complex nonlinear processes using fully connected neural networks

while incorporating physical information constraints. This ensures that

the neural network approximates the solution of the physical system

and aligns its outputs with physical laws, thus avoiding the “black box”

problem (Li, 2025; Guo et al., 2023). This approach effectively combines

mechanistic models with data-driven methods, enhancing the

interpretability and predictive accuracy for complex nonlinear

systems. It also improves the precision and reliability of irrigation

decisions (Oikawa and Saito, 2024). In studies integrating crop models

with data-driven approaches, the high-dimensional parameter space of

AquaCrop outputs can represent the mechanisms of crop-soil-

atmosphere interactions. However, direct coupling with PINNs often

leads to dimensionality and parameter conflicts (Oulaid et al., 2024).

Research shows that high-dimensional outputs dramatically increase

the number of nodes in the neural network input layer. This not only

increases model complexity and computational burden but also causes

multicollinearity and overfitting risks in parameter optimization due to

redundant features (Advani et al., 2020). Dynamic Reconstruction

(DR), on the other hand, can reduce model complexity by performing

dimensionality reduction and feature extraction on high-dimensional

and complex data while retaining key system characteristics (Mainali

et al., 2021). Studies have demonstrated that DR can map the high-

dimensional parameter space of outputs to low-dimensional intrinsic

dynamic patterns through dimensionality reduction and feature

extraction. This approach preserves the physical core of mechanistic

models and provides structured inputs for neural networks (Lumbut

and Ponnoprat, 2024).

Previous studies have made progress in integrating process-based

crop models with data-driven methods. However, further research is

needed on irrigation optimization across multidimensional scales and

dynamic scenarios, particularly on dynamically unraveling the water

response mechanisms of maize under multi-stage compounded deficit

irrigation. Although the AquaCrop model is one of the most

commonly used tools for simulating maize growth dynamics, few

studies have explored the coupling mechanisms of non-steady-state

irrigation and crop stage-specific sensitivity responses for irrigation

optimization. Understanding the compounded effects of water deficits
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and stage-specific sensitivity differences in maize growth stages is

crucial for constructing precision irrigation decision models based on

crop mechanistic processes. This study focuses on drip-irrigated maize

in Xinjiang. It integrates DR with Double Physics-Informed Neural

Networks (DR-DPINNs) to establish a dual-driven framework for

optimizing irrigation systems based on process and data. According to

the actual water shortage in northern Xinjiang in summer 2024,

different water deficit irrigation treatments were set up in 2024 based

on the water requirements of each growth stage of maize. This was

combined with the growth and yield data of maize from farmer

practice from 2022 to 2024.Global sensitivity analysis was carried out

using AquaCrop-OS MATLAB to screen key parameters and

complete regional adaptive calibration. Specifically, we utilized DR

tomap the high-dimensional parameter space of AquaCrop outputs to

a low-dimensional intrinsic dynamic space. This allowed us to extract

dominant feature modes with explicit agronomic meanings. These

modes served as the input basis for the double neural network.

Furthermore, we constructed a physically constrained irrigation

optimization method by coupling soil water balance equations with

stage-sensitive crop water production functions. This method

comprehensively analyzed the effects of water deficit thresholds on

yield and water use efficiency across different maize growth stages.

Ultimately, it clarified a dynamic irrigation scheduling system suitable

for drip-irrigated maize under water resource constraints in northern

Xinjiang. This study offers theoretical support and technical guidance

for agricultural water management in arid regions.
2 Materials and methods

2.1 Physical overview of the experimental
area

The experiment was conducted from April to September 2024 at

the Agricultural Integrated Development Area in Karamay, Xinjiang

Uygur Autonomous Region, China (85°33′E, 45°46′N, elevation
270.00 m). The area has a typical continental arid desert climate:

mean annual temperature, 8.1 °C; annual radiation, 5430–6670 MJ/

cm²; mean annual wind speed, 3.7 m/s; mean annual precipitation,

101.1 mm; mean annual evaporation, 3545.2 mm; annual sunshine

duration, 2600–3400 h; frost-free period, 197–268 days. The soil has a

mean dry bulk density of 1.47 g/cm³, a field water capacity (volumetric)

of 36.07%, and a groundwater depth of 2–4 m. Before maize planting,

the fertility of the topsoil (0–20 cm) was: pH 8.32, soil organic matter

17.69 g/kg, alkaline nitrogen 59.82 mg/kg, available phosphorus 13.55

mg/kg, and available potassium 135.32 mg/kg.
2.2 Experimental materials and
experimental design

This study sampled data from farmer-managed drip-irrigated

maize fields in Karamay for three consecutive years from 2022 to

2024 and conducted a deficit irrigation experiment during different

maize growth stages in 2024, using the Xinnong 008 variety. The

sowing date was April 30, with the harvest date being September 13 in
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2022; the sowing date was May 30, with the harvest date being

September 13 in 2023; and the sowing date was April 25, with the

harvest date being September 2 in 2024. An alternating wide-narrow

row planting pattern was used. The drip tape spacing was 1.1 m, the

narrow row spacing was 0.4 m, the wide row spacing was 0.7 m, and

the plant spacing within the row was 0.2 m. The dripper spacing was

25 cm, with a flow rate of 2.8 L/h and a rated working pressure of 0.1

MPa. The seeding density was 80, 000 plants per hectare. The deficit

irrigation experiment set three irrigation levels: 60%, 80%, and 100% of

crop evapotranspiration (ETc). Based on past field trials in northern

Xinjiang, water shortages mainly occur in early and mid-summer. The

growth stages were defined using the FAO-56 method (Allen D. G.

et al., 1998): early growth (sowing to jointing), rapid growth (jointing to

tasseling), mid-growth (tasseling to milk stage), and late growth (milk

stage to harvest). Deficit Irrigation Treatments in 2024 and Farmer

Control Irrigation Treatments for Corn from 2022 to 2024 are

presented in Tables 1 and 2, respectively. Each experimental group

had two randomized block repeats, totaling three repeats. There were

ninemain-factor experimental plots and 27 secondary plots. Eachmain

plot was 4m × 6m × 3 = 72m2, with a total experimental area of 72m2

× 9 = 648 m2. During the growing period, irrigation was carried out

every 7 days for a total of 12 times, and nitrogen (urea) at 500 kg/ha,

phosphorus (monopotassium phosphate) at 180 kg/ha, and potassium

(potassium sulfate) at 135 kg/ha were applied through drip irrigation

without basal fertilizer. The fertilizer was applied in three stages: 30% at

jointing, 30% at tasseling, and 40% at grain filling.
2.3 Measurement of leaf area index and
canopy coverage

Measure soil moisture before and after each irrigation. Take the

7th fully expanded leaf from the top before tasseling, and ear leaves

after tasseling. Measure chlorophyll content at the leaf tip, center,

and base, and average the values. Calculate leaf area index (LAI)

using Equation 1 and canopy cover (CC) using Equation 2 (Hsiao

et al., 2009).

LAI =
1
moN

i=1Li � Di � K � Dr

S
(1)

CC = 1:005½1 − EXP( − 0:6LAI)�1:2 (2)

In the formula, LAI is the leaf area index; m is the number of

sampled plants; n is the total number of leaves on the sampled

plants; Liis the leaf length in cm; Di is the leaf width in cm; K is the

leaf area correction coefficient, taken as 0.75; Dr is the plant density

in plants per m²; S = 10000 cm²/m².
2.4 Determination of dry matter
accumulation in maize

Before and after each irrigation, the dry matter accumulation of

corn was measured using the destructive sampling method. Three

uniformly growing plants were selected, and the stems, roots, leaves,
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and ears of the corn were separately weighed for dry weight. For dry

weight measurement, samples were killed green at 105°C for 30

minutes, then dried at 70°C until a constant weight was achieved

before being weighed.
2.5 Determination of soil water content
and crop water consumption

At each irrigation, soil samples from 0–100 cm depth were taken to

measure soil water content by drying. Crop water consumption was

calculated from pre - and post - irrigation soil water content

measurements, accounting for irrigation, precipitation, and percolation.
2.6 Measurement of maize yield and water
use efficiency

At harvest, 10 representative maize plants from the middle of

each plot were manually selected, with three replicates. Within each

replicate, a 1 m² area was randomly selected for sampling. After

threshing, the fresh weight was measured using an electronic

balance with an accuracy of 0.01 g. The samples were then dried

in an oven at 60°C until a constant weight was achieved and

weighed again. The data obtained from each plot were averaged

to calculate the yield per unit area.
Frontiers in Plant Science 04
he calculation of water consumption employed Equation 3,

obtained through the water balance method:

ET = P + I − DSWS − R − D (3)

where ET is the crop water consumption, P is the rainfall during

the maize growing period, I is the total irrigation amount during the

maize growing period, DSWS is the soil water storage change, R is

the surface runoff, and D is the deep percolation of soil water. The

units of all parameters are mm. Since the water flux changes are very

small under the experimental conditions, surface runoff and deep

percolation are not considered.

Water use efficiency (WUE) is calculated using Equation 4:

WUE =
Y
ET

(4)

whereWUE is the water use efficiency (kg hm-2 mm-1), and Y is

the maize yield per unit area (kg hm−2).
2.7 Meteorological conditions

The weather station at the experimental site monitored daily

average temperature (Tavg, °C), maximum temperature (Tmax, °C),

minimum temperature (Tmin, °C), precipitation (P, mm), sunshine

duration (SSD, h), wind speed at 2 m (W, m/s), and relative humidity

(RHU, %). The reference evapotranspiration (ET0) for the model was
TABLE 1 Deficit irrigation treatments in 2024.

Year Number
Stage specific irrigation management

Initial growth stage Rapid growth stage Mid growth stage Late growth stage

2024

CK NC 100%ETc 100%ETc NC

T1 NC 80%ETc 100%ETc NC

T2 NC 60%ETc 100%ETc NC

T3 NC 100%ETc 80%ETc NC

T4 NC 100%ETc 60%ETc NC

T5 NC 80%ETc 80%ETc NC

T6 NC 80%ETc 60%ETc NC

T7 NC 60%ETc 80%ETc NC

T8 NC 60%ETc 60%ETc NC
NC stands for equal amount of non-regulated irrigation. The same applies to the following table.
TABLE 2 Farmer control irrigation treatments for corn from 2022 to 2024.

Year Number
Stage specific irrigation management

Initial growth stage Rapid growth stage Mid growth stage Late growth stage

2022 QC NC NC NC NC

2023 QC NC NC NC NC

2024 QC NC NC NC NC
QC stands for the farmers’ control irrigation.
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calculated using the Penman-Monteith equation from the FAO

Irrigation and Drainage Paper 56 (Allen R. at al., 1998). Figure 1

shows the precipitation (P) and mean temperature (Tavg) during the

growing period.
2.8 AquaCrop model database

The AquaCrop model, a typical water - driven model for

simulating crop biomass and yield, is widely used in agricultural

water management (Steduto et al., 2009). Unlike light - or CO2 -

driven models, it can predict crop productivity under water stress

and rainfed conditions, and simulate yields under various irrigation

regimes. Its core equations, evolved from those in FAO’s Irrigation

and Drainage Paper 33, estimate crop growth - stage water use and

yield based on cumulative water deficits (Doorenbos and Kassam,

1979). We used the AquaCrop - OS - MATLAB version

for simulations.

Model performance was evaluated using four metrics: the

coefficient of determination (R²), root mean square error (RMSE),

Nash - Sutcliffe coefficient (EF), and Willmott’s index of

agreement (d).
2.9 Data analysis and simulation

This study employs the Extended Fourier Amplitude Sensitivity

Test (EFAST) method and the AquaCrop model to analyze and

simulate the dry biomass, canopy cover, soil moisture content, and

yield of maize in the experimental area. Based on the EFAST

method, parameters with a first-order sensitivity index (Si)

greater than 0.05 and a total sensitivity index (STi) greater than

0.10 (Si + STi > 0.15) were selected. The parameters were randomly

sampled using the Monte Carlo method, with a sample size of 3, 500

(EFAST requires a sample size greater than the number of

parameters × 65). Batch calculations (3, 500 × 42 × 3 times) were

performed using Matlab, with parallel processing. The results were

statistically analyzed, and the crop parameters of the model were

determined and validated through sensitivity analysis. After model

validation, DR-DPINNs framework was constructed. Latin
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Hypercube Sampling (LHS) designed AquaCrop model data was

used as input for DR-DPINNs. By constructing a loss function with

physical constraints, the complex nonlinear relationship between

learning and irrigation strategies was captured. This transformed

the deficit irrigation optimization problem into a fixed-water-

volume optimization task. The irrigation water allocation was

dynamically optimized to meet the water requirements of maize,

aiming to maximize yield and WUE. Subsequently, the optimized

plan was re-input into the AquaCrop model for simulation and

comparison with the original plan. The model was simulated using

farmer control crop data and yield from 2022 to 2023, validated

using farmer control crop data and yield from 2024, and tested with

data obtained from the field deficit irrigation experiment conducted

in 2024.
2.10 PINNs framework construction

PINNs can simulate complex nonlinear processes using fully

connected neural networks while incorporating physical

constraints. This ensures solutions align with physical laws. In

this study, a double-layer, multi-dimensional neural network

forms the basis of the deficit irrigation optimization model. The

network’s equation is presented as Equation 5:

y(i) = f (x(i), q) = bg(wx(i) + b) (5)

In the equation, y(i) represents the model’s predicted output; f

(xi, q) enotes the neural network’s representation function; q is the

set of neural network parameters; bis the weight vector linking the

input and hidden layers; g(t)=(et-e-t)/(et+e-t) is the tanh activation

function of the model; w is the weight matrix connecting the input

and hidden layers; and b is the bias vector of the hidden layer.
2.11 Agricultural soil and water physical
constraints

Compared to PINNs, DPINNs excel in capturing nonlinear

relationships and multi-scale features in complex physical

phenomena. They can automatically learn hierarchical feature
frontiersin.org
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representations from input data. In DPINNs, the agricultural soil and

water physical constraint loss term (lh) is calculated by comparing the

predicted and actual values of the soil water balance and crop water

production functions, derived from partial differential equations

ensuring time-continuous conservation. The detailed derivation

process is shown in Equation 6:

Ii + Pi + Gi = ETi + Di + Ri ± DWi

Ya
Ym

=
Yn
i=1

(
ETa,i

ETm,i
)li

9>=
>; (6)

In the equation, Ii, Pi and Gi, are the soil irrigation amount,

rainfall, and groundwater recharge for stage i, respectively, ETiis the

total evapotranspiration for stage i, Di and Ri are the deep

percolation and surface runoff for stage i, respectively, △wi is the

change in soil water storage for stage i, Ya is the actual yield, Ym is

the maximum achievable yield under full irrigation conditions, ETa,

iand ETm, i are the actual and maximum evapotranspiration for

stage i, respectively, li is the water stress sensitivity coefficient for

stage i.

To achieve continuous water balance in time and space, we

introduce the vertical profile differential dz and the time differential

dt. After simplifying the differentials, the equation can be expressed

as:

∂ q(z,t)
∂ t = − ∂ q(z,t)

∂ z + S(z, t)

Ya
Ym

= exp
Z T

0
l(t)f (q(t),CC(t))dt

� �
9>=
>; (7)

In the equation, q(z, t) represents the soil water content at depth
z;q(z, t) is the water flux in the z-direction; S(z, t) represents the

source and sink term. In solving the equation, Ya
Ym

is treated as a

small time interval and approximated as a Riemann sum over time

t.In the limit, this allows Ya
Ym

to be simplified for easier explanation:

Y(t) = G(q(t),CC(t), p) (8)

In the equation, p is a constant that represents all the

empirical parameters.

After transforming the original discrete model into a partial

differential equation with continuous time conservation form using

Equations 7 and 8, the agricultural soil and water physical

constraint loss term lhis represented by the corresponding

agricultural soil and water physical constraint residual.

lh =
∂ qpred
∂ t

+
∂ q(qpred)

∂ z
− S(qpred)

����
����
2

+ Ŷ pred − G(qpred ,CCpred)
�� ��2

(9)
2.12 Dynamic reconstruction

In agricultural water management and irrigation scheduling

optimization, crop growth is influenced by dynamic factors like
Frontiers in Plant Science 06
weather, soil moisture, and growth stages, which have complex

nonlinear relationships. Traditional static models often fail to capture

these dynamics, leading to low prediction accuracy and limiting

irrigation strategy optimization. DR, which reduces dimensionality

and extracts features from high-dimensional and complex data, can

capture the system’s dynamic evolution, simplify the model, and retain

key information. The added physical constraints provide extra

information, ensuring reasonable predictions even with limited data,

and ensuring the network output aligns with crop production

physiology and soil water movement mechanisms, avoiding the

“black box” issue. The DR formula is expressed as:

u(t) = fNN (x, t; q) + D(z(t)) (10)

In the equation, u(t) represents the comprehensive output at

time t after integrating dynamic features, fNN is the neural

network mapping function, which takes (x, t) as its input, In

Equation 10, D(.) represents the function mapping the reduced -

dimension dynamic features z(t) to the output space. During

training, if the loss in Equation 11 doesn’t converge for a long

time, the network adaptively adjusts parameters to enhance the

physical equation’s performance. The adaptive adjustment

formula is expressed as:

q(m+1)
NN = Adapt(q(m)

NN , rwater , rproduction,…) (11)

In the equation, Adapt(…) denotes the adaptive adjustment

strategy.
2.13 DR-DPINNs optimization modeling

In the DR-DPINNs model, the loss function has non-

differentiable constraints, making traditional backpropagation

algorithms ineffective for neural network parameter optimization.

Therefore, this study uses a double-layer evolutionary algorithm—

Covariance Matrix Adaptive Evolutionary Strategy and Genetic

Algorithm (CMA-ES-GA). CMA-ES is a stochastic gradient-free

optimization method, particularly suitable for solving continuous

black-box optimization problems (Nomura et al., 2025). This

algorithm adjusts the search distribution by adaptively modifying

the covariance matrix, effectively handling ill-conditioned and

nonlinear problems (Cheng et al., 2021). The learning mechanism

of CMA-ES makes it invariant to any invertible linear transformation

of the search space (Li et al., 2017). In contrast, GA is an optimization

algorithm inspired by biological evolution. GA evolves the population

through selection, crossover, and mutation operations, suitable for

parameter selection and automatic search of neural networks (Mishra

and Kane, 2023). The performance of PINNs is affected by

hyperparameters and structural choices. CMA-ES-GA can be used

to automatically search for and optimize the architecture of PINNs,

enhancing their performance in solving partial differential equations

and inverse problems, and further improving the training outcomes of

PINNs (Kaplarevic-Malisic et al., 2023). Figure 2 shows the Irrigation

Optimization.Process Flowchart.
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3 Results

3.1 Biomass parameter sensitivity

Figure 3 shows the parameter sensitivity analysis for biomass.

Parameters like wp, mat, kcb, stbio, cgc, mcc, psen, and cdc have Si

above 0.05. Globally, STi values over 0.10 also include hilen, eme,

and rtexlw. Wp stands out as a key parameter due to its significant

main and interactive effects.

To assess parameter impacts on biomass over the growth cycle,

a time - varying sensitivity analysis was done. Figure 4 highlights the

top 10 parameters with Si above 0.05 and STi above 0.10, namely

stbio, wp, kcb, cgc, eme, mcc, cdc, mat, psen, and hilen. Simulating

their Si and STi dynamics shows stbio, wp, kcb, and cgc as the most

sensitive. eme is sensitive in the early stage. stbio becomes crucial

for biomass accumulation in the vigorous growth phase. kcb has

high global sensitivity in the middle stage. After 80 d, wp becomes
Frontiers in Plant Science 07
more elastic to water changes. STi rises between 90 and 120 d,

indicating increased parameter interactions. cgc consistently

influences biomass throughout the growth cycle.
3.2 Parameter sensitivity of canopy cover
over time

Figure 5 shows the time - varying parameter sensitivity analysis

for canopy cover. Parameters like mcc, den, ccs, eme, kcb, rtx, mat,

and psen, with Si over 0.05 and STi over 0.10, were chosen. The

analysis reveals that eme and ccs have high initial sensitivity but

stabilize later, indicating strong main effects on early canopy cover

with limited interaction with other parameters. Between days 15 and

60, cge dictates canopy expansion, crucial for mid - season canopy

closure and photosynthetic efficiency. During this period, it shows

both main effects and strong interactions with other parameters.
FIGURE 3

First order and global sensitivity analysis results of AquaCrop model parameters (biomass).
FIGURE 2

Irrigation optimization process flowchart.
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From day 60 to 100, psen’s influence on canopy senescence increases;

frequent soil water deficits below its threshold accelerate canopy

decline, shortening the high - cover period. In the late growth stage,

most parameters affecting canopy expansion show reduced sensitivity
Frontiers in Plant Science 08
as expansion ends and canopy enters maintenance or decline.

Canopy cover development and decline depend on multiple

parameters: eme, ccs, and den in the early stage; cge, mcc, and kcb

in the middle stage; and mat and psen in the late decline stage.
FIGURE 5

First order (A) and global (B) sensitivity analysis results of canopy cover over time.
FIGURE 4

First order (A) and global (B) sensitivity analysis results of biomass over time.
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3.3 Parameter sensitivity of soil water
content

As shown in Figure 6, the parameter sensitivity analysis of soil

water content is crucial for understanding the relationship between

crop growth and water use. Compared to the sensitivity analyses of

biomass and canopy cover, it shows a broader parameter impact range.

This indicates that soil water content is influenced not only by

parameters directly related to water dynamics but also by many

indirect factors, such as crop root growth, soil physical properties,

and irrigation and precipitation patterns. The crop parameters with STi

above 0.10 are puexp, plexp, psen, stbio, kcb, rtx, rtexhw, mcc, wp, eme,

cgc, cdc, and hilen. These parameters affect soil water content both

individually and through complex interactions with other parameters,

collectively determining soil moisture distribution and changes. By

precisely adjusting these key parameters, soil moisture management

can be enhanced, improving crop WUE and achieving water - saving

and yield - increasing goals.
3.4 Parameter sensitivity of yield

As shown in Figure 7, the parameter sensitivity analysis of yield

reveals a broader parameter impact range compared to biomass and

canopy cover. Some parameters that only significantly affect biomass

in the late growth stage also stand out in yield sensitivity. The crop

parameters with a first-order sensitivity index (Si) above 0.05 include

flo, psen, mat, hi, kcb, wp, and cdc. Those with a global sensitivity

index (STi) above 0.10 further add hilen, flolen, hinc, sen, psenshp,

and elvadc. Stress thresholds like wp, psto, and psen remain highly

sensitive in yield simulation and are vital for optimizing irrigation

schedules and model calibration to achieve high yield.
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3.5 Interactions among the sensitive
parameters of biomass, canopy cover, and
soil water

The interaction analysis of parameters affecting biomass,

canopy cover, and soil moisture is shown in Figure 8. Biomass

has significantly more determining parameters than canopy cover

and soil moisture. For the same parameter, the contribution

patterns to these three variables differ. Parameters directly related

to canopy expansion and transpiration have a more significant first-

order effect on canopy cover simulation. In biomass simulation,

their interaction effects increase, indicating coupling with factors

like WUE, root water uptake, and senescence rate. The

contributions of key parameters to canopy cover, biomass, and

soil moisture involve both strong first-order dominance and

significant interaction differences. The interaction effects between

key parameters and others account for a large proportion of the

total contribution of jointly sensitive parameters. This indicates that

the formation of canopy cover results from the synergistic effects of

multiple factors. For biomass, although interaction effects are

greater than first-order effects, the proportion is relatively lower

than that for canopy cover. This suggests that precisely calibrating

or managing the first-order effects of key parameters can

significantly regulate biomass accumulation. Soil moisture is

influenced by multiple factors such as precipitation, evaporation,

and crop water consumption. Its sensitivity shows both first-order

responses and interactions with other processes through effects on

crop growth and transpiration. Therefore, priority should be given

to calibrating and observing parameters with significant first-order

contributions, while parameters with prominent interaction

contributions require systematic optimization in combination

with related factors.
FIGURE 6

First-order and global sensitivity analysis results of AquaCrop model parameters (soil water content).
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3.6 Parameter selection and parameter
calibration

The integrated sensitivity analysis lists the crop parameters in

the AquaCrop model that are sensitive to maize biomass, canopy

cover, and yield in the Northern Xinjiang region across different

growth stages. During model localization, preset fixed values for

insensitive parameters and only calibrate parameters sensitive to

output variables. The parameter calibration is shown in Table 3.
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3.7 Simulation and validation of maize
canopy cover at experimental stations

Figure 9 shows the simulated canopy cover under different

treatments and provides farmer practice validation results. The

simulated and observed canopy cover trends were generally

consistent across the maize growth period, especially under water -

deficient conditions, indicating the model maintained good accuracy.

The model also showed good predictive ability under farmer practice
FIGURE 8

First order and interaction sensitivity index contribution rates of commonly sensitive parameters for biomass, canopy cover, and soil moisture content.
FIGURE 7

First order and global sensitivity analysis results of AquaCrop model parameters (yield).
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TABLE 3 Calibration of AquaCrop model parameters.

Parameter name Parameter description Unit Calibrated value

mat Thermal Time from Sowing to Maturity GDD 2521

eme Thermal Time from Sowing to Emergence GDD 151

sen Thermal Time from Sowing to Start of Senescence GDD 1822

flo Thermal Time from Sowing to Flowering GDD 1607

flolen Thermal Time for Flowering Duration GDD 270

cgc Canopy Growth Coefficient Frac GDD-1 0.006

cdc Canopy Senescence Coefficient Frac GDD-1 0.004

hilen Duration for Establishing Harvest Index During Yield Formation GDD 900

stbio Minimum Thermal Time Requirement for Biomass Formation GDD 12

root Thermal Time to Reach Maximum Root Depth GDD 1516

rinx Minimum Effective Root Depth m 0.3

rtx Maximum Effective Root Depth m 2.05

rtexup Maximum Water Extraction in Top 1/4 of Root Zone m3·(m3soil)-1·d-1 0.025

rtexhw Maximum Water Extraction in Bottom 1/4 of Root Zone m2·(m2soil)-1·d-1 0.007

rtshp Shape Factor for Root Zone Expansion – 15

kcb Crop Coefficient at Full Cover but Not Senescent – 1.1

kcdcl Coefficient for Crop Coefficient Reduction Due to Senescence Deficit – 0.3

evladc Coefficient for Canopy Suppression of Soil Evaporation in Late Growing Season – 50

wp Normalized Water Productivity g·m-2 39.7

h Reference Harvest Index % 49

exc Potential Excess Fruit % 100

puexp Upper Soil Water Depletion Threshold Limiting Canopy Expansion fraction TAW 0.2

plexp Lower Soil Water Depletion Threshold Limiting Canopy Expansion fraction TAW 0.65

pexshp Shape Factor for Water Stress on Canopy Expansion – 3

psto Upper Soil Water Depletion Threshold Limiting Stomatal Conductance fraction TAW 0.65

pstoshp Shape Factor for Stomatal Conductance Water Stress – 2.5

psen Upper Soil Water Depletion Threshold Inducing Premature Canopy Senescence fraction TAW 0.5

psenshp Shape Factor for Premature Canopy Senescence Due to Water Stress – 3

ppol Upper Soil Water Depletion Threshold Limiting Pollination fraction TAW 0.8

anaer Anaerobic Point % 5

polmn Minimum Temperature Threshold for Pollination °C 5

polmx Maximum Temperature Threshold for Pollination °C 35

hinsveg Coefficient for Negative Impact on Harvest Index When Crop Growth is Limited – 4

hinc Maximum Allowed Increase in Harvest Index % 15

hipsflo Positive Impact of Water Stress on Harvest Index Before Flowering % 3

uelecon Lower Soil Salinity Conductivity Threshold dS·m-1 5

elecon Upper Soil Salinity Conductivity Threshold dS·m-1 20

utemp Upper Temperature Threshold for Crop Development °C 30

(Continued)
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conditions, with a strong correlation between simulated and observed

data.From 2022 to 2024, the R², RMSE, EF, and d values for simulated

and actual maize canopy cover ranged from 0.905 to 0.945, 3.29% to

4.40%, 0.895 to 0.936, and 0.971 to 0.985, respectively. AquaCrop

simulations showed good accuracy and reliability under various

irrigation treatments and across different years, with high fitness to

dynamic canopy cover changes.
3.8 Simulation and validation of maize
biomass at experimental stations

Biomass, a key indicator of crop growth and yield, was

simulated under different deficit irrigation schedules to enhance

maize WUE. Figure 10 presents the simulation results and the

farmer practice validation. The simulated and observed biomass

showed an “S” - shaped increase over days after sowing, with the

model curve closely matching the observed data. The model also

accurately simulated biomass trends under various irrigation

treatments and farmer practice, with high fitness between

simulated and observed values. The calibrated AquaCrop model

demonstrated excellent performance in simulating above - ground

biomass, with R², RMSE, EF, and d values ranging from 0.89 to 0.98,

0.816 to 4.31, 0.87 to 0.96, and 0.894 to 0.985, respectively. Overall,

the AquaCrop model can precisely simulate dynamic biomass

accumulation under different deficit irrigation and farmer

practice conditions.
3.9 Simulation and validation of soil
moisture content for maize at
experimental stations

Soil moisture, a key indicator of crop growth environment and

soil health, was simulated in this study. Figure 11 present the

dynamics and discrepancies between simulated and observed soil

moisture content. Under various treatments, the observed soil

moisture content showed specific trends over time, closely tied to

the crop growth cycle and irrigation strategies. The model -

simulated soil moisture curves aligned well with observed data

points, indicating the model’s ability to accurately capture the

dynamic fluctuations of soil moisture content. The trends in soil

moisture increase and decrease were closely related to irrigation

amounts, evapotranspiration, and water uptake by crop roots. The
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calibrated AquaCrop model showed excellent performance in

simulating soil moisture, with R², RMSE, EF, and d values

ranging from 0.811 to 0.924, 6.47 to 14.62, 0.689 to 0.98, and

0.906 to 0.980, respectively. Overall, the AquaCrop model can

accurately simulate the temporal changes in soil moisture under

deficit irrigation across different irrigation systems. The model

demonstrated a high degree of fit and good trend consistency

with observed data, effectively reflecting the actual status of

soil moisture.
3.10 Simulation and validation of maize
yield at experimental stations

Figure 12 and Table 4 shows the differences between simulated

and actual yield values. The relative errors for all treatments ranged

from 0.88% to 10.87%, with an average below 4.17%, indicating a

good fit between simulated and observed values. The model slightly

overestimated yields for T3, T5, 2022QC, and 2023QC, with

overestimation ranging from 0.88% to 3.23%. In contrast, the

model underestimated yields for the other treatments, with

underestimation ranging from 1.42% to 10.87%. Overall, the

model demonstrated high accuracy in simulating maize yield.
3.11 Deficit irrigation scheduling
optimization based on DR-DPINNs

After conducting sensitivity analysis and calibration of key

AquaCrop model parameters, this study employed a DR-DPINNs

- based model to optimize deficit irrigation scheduling for maize in

Northern Xinjiang. To ensure good initial convergence and physical

consistency, initial parameters were set for the physics-informed

neural network. Table 5 lists these initial parameters.

During the optimization of deficit irrigation scheduling using

DPINNs, strong spatiotemporal dependencies and nonlinear

characteristics were observed. To address the problems of

gradient disappearance and local convergence in the later stages

of training, DR was employed. It performed dimensionality

reduction and feature extraction on key parameters during

network training. This allowed the network to capture

spatiotemporal dynamics while minimizing redundant noise.

On one hand, meteorological conditions, soil moisture, and

crop water consumption are highly nonlinear and fluctuate
TABLE 3 Continued

Parameter name Parameter description Unit Calibrated value

den Plant Density plants·ha-1 250516

mcc Maximum Canopy Cover % 96.7

ccs Area Covered per Plant at 90% Emergence cm² 1.5

cge Canopy Expansion Rate Coefficient Frac GDD-1 0.0062
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significantly over time. On the other hand, traditional static

networks often fail to adequately capture the complex water stress

effects in the mid - to late - stages of training. To tackle these issues,

DR - DPINNs incorporates a universal feature mapping layer and

conducts dimensionality reduction and multi - scale feature

extraction on high - dimensional inputs. When the partial

differential constraint between soil water balance and crop water

production functions fails to converge, an adaptive diffusion process

is activated. This enables updates to certain weights and activation

function parameters within a larger search space, diffusing the
Frontiers in Plant Science 13
network’s response patterns across different growth stages (as

shown in Figure 13). If the constraint residual remains high after

several iterations, the system increases the weight of the

corresponding physical residual and performs random diffusion

on parameters in the output and intermediate layers. This strategy

allows the network to flexibly allocate feature information across

stages, effectively reducing overfitting and pseudo - convergence in

DPINNs when dealing with complex spatiotemporal data.

The loss function of DPINNs includes differentiable and non -

differentiable constraints, and the temporal decision variables of
FIGURE 9

Simulation of maize canopy cover.
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irrigation scheduling are essentially discrete, making traditional

gradient descent unsuitable. This study adopted a CMA - ES -

GA double - layer iteration. In the inner network(as shown in

Figure 14), CMA - ES performs adaptive evolution of network

weights, biases, and activation function parameters under DR. CMA

- ES updates the network structure globally by adaptively adjusting

the covariance matrix of the initial population, reducing the

deviation between soil water balance and crop water production

functions. After 17, 600 iterations, the network weights stabilized,
Frontiers in Plant Science 14
and physical constraints and observed data achieved a good fit. In

the outer network, GA optimizes the irrigation decision variables

globally to enhance yield and WUE. Given a fixed total irrigation

quota, GA efficiently searches for the optimal irrigation allocation

across growth stages. After 18, 000 iterations, the loss residual

stabilized and fitness plateaued, indicating convergence of

parameter updates and irrigation solutions.

To validate the DR and DPINNs method for optimizing deficit

irrigation in drip - irrigated maize in Northern Xinjiang, nine
frontiersin.o
FIGURE 10

Simulation of maize aboveground biomass.
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irrigation - amount scenarios were tested as optimization schemes,

each discretizing irrigation scheduling into four growth stages (A

total of twelve irrigation events were carried out during the entire

growth period, specifically on days 1 to 12.) for water allocation.
Frontiers in Plant Science 15
Figure 15 presents the optimal irrigation distribution results from

DPINNs, considering crop water sensitivity and soil - water balance.

When water was relatively abundant, more was allocated to the

rapid - growth and mid - growth stages to avoid critical - stage water
frontiersin.or
FIGURE 12

Simulation of maize yield under different treatments by the AquaCrop model.
FIGURE 11

Simulation of deficit soil water content for maize.
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stress. Under water scarcity, some irrigation was shifted forward to

meet seedling and early - rapid - growth - stage demands,

minimizing late - stage irreversible growth losses.

The optimal irrigation schedule from Figure 15 was used in the

AquaCrop model to simulate yield, with results compared to a

conventional unoptimized schedule and shown in Table 6. DR-

DPINNs optimized the irrigation distribution to match maize water

requirements, enhancing yield under all tested irrigation volumes.

Yields increased by 8.35% to 10.08%, with the most significant boost

at the 472 mm irrigation volume — from 13, 924.62 kg hm-2 to 15,

328.70 kg hm-2, a 10.08% rise. This mainly occurred because DR

increased the model’s physical constraint weight in the jointing to

tasseling stages, ensuring efficient dry matter accumulation during

rapid root water uptake and high grain-filling water sensitivity.

Even at the higher 507 mm irrigation volume, yields rose by 9.15%,

indicating that DR-DPINNs fine-tuned irrigation for each growth

stage to unlock more crop productivity. However, yield gains were

more limited at lower irrigation volumes, as severe water deficits

required prioritizing water for early growth stages to ensure

seedling development, with mid-to-late-stage water stress being
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harder to offset. Still, DR-DPINNs optimized the irrigation

sequence across growth stages to varying degrees, delivering yield

improvements across the board.

The optimized irrigation strategy also significantly improved

WUE. At high irrigation levels of 472 mm and 507 mm, WUE

increased from 28.99 and 30.47 to 31.34 and 33.87 kg hm−2 mm−1,

respectively, with a maximum increase of 11.15%. At low irrigation

levels of 334 mm and 369 mm, WUE still showed slight

improvements, indicating that optimized scheduling can enhance

water efficiency even when water is scarce. Most notably, at a total

irrigation volume of 472 mm, WUE rose from 30.47 to 33.87 kg

hm−2 mm−1, achieving the highest growth rate. In summary, DR-

DPINNs performed well across all irrigation levels. At high levels, it

better met maize growth needs, boosting yield and WUE. At

medium levels, it improved both yield and WUE through rational

water distribution. At low levels, it significantly enhanced yield and

WUE by efficiently allocating limited water. DR-DPINNs

dynamically adjusts irrigation allocation based on maize water

requirements at different growth stages. At 472 mm, it achieved

the best balance between maintaining high yield and improving

WUE. At 507 mm, while yield increased further, the rise in WUE

was smaller, suggesting that moderate deficit irrigation can yield

more significant water-saving and production-enhancing effects

when water is abundant.
4 Discussion

Crop model parameters interact significantly with regional

environments. This study used global sensitivity analysis to

identify key parameters affecting maize biomass, canopy cover,

soil moisture, and yield, and then calibrated and validated the

model using local data. AquaCrop is a model with high simulation

accuracy and wide application. But its parameters must be locally

calibrated. Due to differences in climate, soil, and crop varieties

across regions, this calibration is needed to enhance the model’s

applicability and accuracy in specific areas (Montoya et al., 2016;

Coudron et al., 2023). Calibration ensures the model accurately

reflects local crop growth and yield mechanisms, providing reliable

support for agricultural management decisions (Akbari E. et al.,

2024a; Cao et al., 2024; Han et al., 2020). Global sensitivity analysis

can identify parameters with the greatest impact on model outputs.

These parameters need more attention in model calibration and

optimization, as their slight changes can significantly affect the

model’s results. By pinpointing these key parameters, resources and

efforts can be better allocated, improving the efficiency and accuracy

of model calibration (Lu et al., 2021). In this study, global sensitivity

analysis revealed that water productivity (wp), canopy growth

coefficient (cge), and canopy senescence threshold (psen) are

critical for biomass accumulation and yield. The sensitivity of wp

increases in the late growth stage, reflecting the lagged impact of

water stress on photosynthetic assimilate allocation. In contrast, cge

dominates canopy expansion in the middle and early stages, with its

interactive effects peaking during the rapid growth phase. This

aligns with the findings of Jin et al. (2016) and Nasrolahi et al.
TABLE 4 Simulation performance of the AquaCrop model for yield
under different treatments.

Treament
Observed value

(kg hm-2)
Simulated value

(kg hm-2)
RE/%

CK 14545.68 14339.73 -1.42%

T1 14383.15 13924.62 -3.19%

T2 13807.71 12703.77 -8.00%

T3 13251.24 13367.36 0.88%

T4 12847.3 11450.82 -10.87%

T5 12782.28 12947.36 1.29%

T6 12183.15 11436.24 -6.13%

T7 12437.72 11458.47 -7.87%

T8 10843.33 9736.75 -10.21%

2022QC 12266.04 12437.94 1.40%

2023QC 13316.36 13746.3 3.23%

2024QC 12266.04 11964.37 -2.46%
TABLE 5 Physics-informed neural network parameters.

Parameter Physical meaning Value

layers Number of hidden layers 2

n Number of neurons 17

q Learning rate 0.00208

epoch Number of iterations 20000

Nf Number of collocation points 8000

wf Weight of physical residua 1

wd Weight of data residual 500-1
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(2024). Psen significantly affects yield (Si>0.05) by regulating the

leaf senescence rate and the duration of grain filling. Root

parameters are highly sensitive to soil moisture dynamics,

underscoring the importance of optimizing root zone water

extraction for water - saving and yield enhancement. However,

the sensitivity of rtx and rtexkw to soil moisture dynamics was

higher than expected, contradicting Akbari E. et al. (2024b), who

found root parameters to be less important in a global sensitivity

analysis of silage maize AquaCrop parameters. This discrepancy

may stem from the unique root spatial distribution and water

extraction patterns of different maize varieties under drip
Frontiers in Plant Science 17
irrigation, and in - situ root zone observations are needed for

further validation.

Simulations with the calibrated AquaCrop model show high

accuracy in simulating maize canopy cover, above - ground

biomass, and yield under various treatments. The model aligns

well with water supply levels across growth stages, effectively

capturing crop growth dynamics even under water - deficient

conditions. This aligns with the findings of Yin et al. (2023) and

Jin et al. (2020), confirming AquaCrop’s suitability in the arid

Northern Xinjiang region and its potential as a reliable tool for

maize water management.
FIGURE 14

Optimization process of DR-DPINNs.
FIGURE 13

Dynamic reconstruction of the diffusion process.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1678277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1678277
However, the model’s precision in simulating soil moisture

content is relatively low. This may stem from heavy rains during

the maize rapid - growth stage in the experimental area, which

increased water content in farmer - practice plots beyond

experimental levels. Coupled with poor field management in

some areas, these factors likely account for the discrepancies with

the results of Akbari A. et al. (2024).

The experimental results show that maize is most sensitive to

water deficits during the rapid growth stage, which is closely related to

its physiological characteristics. During this stage, maize grows rapidly

and has high water demands, and water deficits can directly affect

physiological processes such as photosynthesis, nutrient absorption,
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and cell expansion (Li et al., 2024). Mild water deficits during this stage

can slightly reduce canopy cover, but yield losses can be mitigated by

compensation irrigation in the mid-to-late stages. This suggests that

irrigation strategies can be flexibly adjusted in practice based on

weather conditions and soil moisture to achieve water conservation

and efficiency enhancement (Suriadi et al., 2024). Severe water deficits

in the mid - growth stage can lead to irreversible drymatter losses. The

reproductive growth stage is crucial for maize yield formation. Water

stress can significantly affect pollen viability, pollination success, and

grain development, resulting in reduced dry matter accumulation and

yield declines. Adequate water supply should be ensured during the

reproductive growth stage to avoid severe water deficits (Song et al.,
FIGURE 15

Optimization allocation results of DR-DPINNs. (A–I) in the figure correspond to the irrigation amounts of treatments CK–T8. Each pie chart illustrates
the distribution of irrigation allocations under DR-DPINNs optimization across different growth stages: two irrigations during the early growth stage, four
during the rapid growth period, three during the metaphase of growth, and three during the late growth stage. The total of 12 irrigations spanning days
1–12 is represented by percentages shown in the pie charts, indicating the proportion of total irrigation applied at each event.
TABLE 6 Comparison of optimized and unoptimized yields and WUE.

Irrigation
treatment (mm)

Corresponding
plan

Unoptimized yield
(kg hm-2)

Optimized yield
(kg hm-2)

Unoptimized WUE
(kg hm-2 mm-1)

Optimized WUE
(kg hm-2 mm-1)

507 CK 14339.73 15651.27 28.99 31.34

472 T1 13924.62 15328.70 30.47 33.87

437 T2 12703.77 13982.48 29.32 31.69

456 T3 13367.36 14608.87 27.59 30.30

404 T4 11450.82 12566.50 28.52 30.23

421 T5 12947.36 14182.96 25.85 28.19

369 T6 11436.24 12564.25 25.22 26.72

386 T7 11458.47 12586.35 26.62 28.74

334 T8 9736.75 10550.24 25.51 27.09
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2019). This is supported by the findings of Reemala et al. (2024)

regarding the impact of water stress on the critical period of

reproductive growth. The study by Kögler and Söffker (2020) using

an open-loop control method shows that moderate water stress can

trigger adaptive adjustments such as reduced stomatal conductance

and restructured root architecture. These changes prompt the plant to

prioritize resource allocation to reproductive organs, which may

underpin the compensation of yield losses. Thus, in the face of

future climate change challenges, moderate deficit irrigation is more

conducive to maize production, which is basically consistent with the

research results of Melkie et al. (2024).

The DR-DPINNs method, through DR and dual physical

constraints, effectively addresses the limitations of traditional

data-driven models in capturing mechanistic information in

irrigation scheduling optimization and the neglect of deficit

irrigation in physical-principle-based studies (Mortazavizadeh et

al., 2025). DR, using multi-scale feature extraction and adaptive

dimensionality reduction (Figure 15), maps high-dimensional

nonlinear spatiotemporal data to low-dimensional feature spaces.

This preserves key crop growth dynamics while significantly

reducing model sensitivity to redundant noise. This mechanism is

implemented through the dynamic feature mapping function D(Z

(t)) in Equation 11, enabling the network to adaptively capture the

coupled effects of weather fluctuations and soil moisture dynamics

throughout the crop growth period. The dual physical constraints,

via dual residual terms from the soil water balance partial

differential equation and crop water production function in

Equation 10, integrate crop physiological mechanisms and soil

hydrodynamics into the neural network training. Unlike single -

physical - embedding methods, this study dynamically couples crop

growth and water migration processes by discretizing the time -

continuous conservation equation (Equations 7, 8), ensuring

physical consistency in deficit irrigation conditions (Zheng et al.,

2023). The DR-DPINNs optimization results indicate that, with a

total irrigation of 472 mm, the yield increased by 10.08% and WUE

improved by 11.05%. The optimized irrigation scheduling

effectively eased water stress during critical growth stages.

According to the CMA-ES-GA algorithm, the model dynamically

adjusted the irrigation weights for each growth stage within the

constraints of the total water volume. The proportion of irrigation

during the rapid growth stage increased from 30.8% (in the low

irrigation scheme) to 36%, while the proportion in the late growth

stage decreased from 12.4% to 10%.By reallocate irrigation timing,

this strategy takes full advantage of the active new root growth and

high nutrient absorption efficiency during the rapid growth stage.

The dry matter conversion efficiency per unit of water input is

higher than in other stages (Nawaz et al., 2024), which is likely the

main reason for the increase in yield. This is consistent with the

findings of Comas et al. (2019). The DR optimization strategy in

this study enables multi-stage, multi-objective collaborative

optimization, offering a new technical approach for precision

irrigation management in arid regions. By dynamically adjusting

irrigation ratios across growth stages, a high WUE is maintained

even under low irrigation quotas. Despite limited yield increases

due to total water constraints, the adaptive diffusion mechanism in
Frontiers in Plant Science 19
Equation 9 prioritizes water allocation to the early and late growth

stages, keeping WUE at 26.72–26.09 kg·hm-²·mm-¹. This ‘protect

the start and end, control the middle’ strategy aligns with the

findings of Painagan and Ella (2022). on alleviating seasonal

drought pressure through precise water scheduling. Notably, the

model automatically limits over-irrigation during rapid growth

under low quotas. This is likely due to oxygen reduction in

saturated soils causing root hypoxia, inhibiting root growth and

nutrient absorption, and thus impairing reproductive organ

development, which is consistent with Yang’s research (Yang

et al., 2023).

It should be noted that while the DR-DPINNs method performs

well in irrigation optimization, it has high computational complexity

and does not account for the sudden impacts of extreme weather

events on crop growth. In addition, model parameter calibration

relies on local experimental data. Future research should combine

multi - regional and multi - year data to verify its generalization

ability. It is recommended that future studies integrate climate change

scenarios to simulate adaptive irrigation strategies under future water

resource stresses and combine remote sensing data with crop models

to improve strategies. This can achieve real - time monitoring and

optimization of regional water dynamics. This approach is consistent

with the recommendations of Wang et al. (2024) and can provide

more comprehensive decision - making support for sustainable

agricultural development.
5 Conclusions

In the AquaCrop model, wp, cge, and psen are key factors for

biomass accumulation and yield. The eme parameter is crucial for

the formation of early canopy cover, while the sen parameter

significantly impacts late-stage canopy senescence and yield

formation. The cgc parameter significantly affects canopy

expansion and photosynthetic efficiency during the middle

growth stage, while the cdc parameter plays an important role in

late-stage canopy senescence and yield formation.

The model parameters obtained through sensitivity analysis are

capable of meeting the application requirements for simulating

biomass, canopy cover, soil water content, and yield in the

AquaCrop model. After optimization with DR-DPINNs, the

WUE of yield under different treatments was significantly

improved. In the experimental optimal scenario with a total

irrigation volume of 472 mm, the yield increased by 10.08% and

WUE improved by 11.15% compared to conventional methods.

The DR-DPINNs method, by combining physical mechanisms

and dynamic feature extraction, enhances the ability to solve high-

dimensional nonlinear irrigation optimization problems,

achieving simultaneous increases in yield and WUE. This study

confirms the high reliability of AquaCrop in simulating the

dynamic response of maize to water in northern Xinjiang and

demonstrates that its integration with DR-DPINNs provides a

theoretical method with mechanistic interpretability and decision-

making precision for optimizing irrigation schedules in

arid regions.
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