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Introduction: To optimize the irrigation schedule for corn in northern Xinjiang
and save water resources while maintaining stable production.

Methods: Based on the actual water shortage in northern Xinjiang during
summer 2024, this study set up different deficit irrigation gradient treatments
according to the crop water requirement (ET.) of each growth stage of corn.
Combined with the corn growth and yield data of farmers from 2022 to 2024, the
model parameters were calibrated and validated through global sensitivity
analysis using AquaCrop-OS MATLAB. Then, the Dynamic Reconstruction and
Dual Physics-Informed Neural Networks (DR-DPINNs) were integrated with
water balance constraints during the corn growth period to optimize the
deficit irrigation system for corn in northern Xinjiang.

Results: The results showed that in the global sensitivity analysis of the AquaCrop
model, the water productivity (wp) and canopy growth coefficient (cgc)
parameters had a significant impact on biomass accumulation (STi>0.10), and
the canopy senescence parameter (psen) had a marked effect on yield (Si>0.05).
The model parameters obtained through sensitivity analysis could meet the
application requirements for simulating biomass, canopy cover, soil water
content, and yield in the AquaCrop model. After optimization with DR-DPINNSs,
when the total irrigation amount was 472 mm, the yield increased by 10.8% and
the water use efficiency rose by 11.15% compared with the conventional scheme.
The DR-DPINNs method, by combining physical mechanisms with dynamic
feature extraction, could significantly enhance the solving capability for high-
dimensional nonlinear irrigation optimization problems. The optimized spatial
and temporal irrigation distribution under a total water volume of 472 mm could
achieve a simultaneous increase in yield and water use efficiency.
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Discussion: This study can provide theoretical methods with both mechanistic
interpretability and decision-making accuracy for the dynamic optimal systems
of drip-irrigated corn under water resource constraints in arid regions, and offer
theoretical support and technical reference for agricultural water management in

arid regions.
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1 Introduction

Maize is one of the most widely grown and high-yielding crops
globally and plays a vital role in food supply, energy production,
feed manufacturing, and industrial applications (Hammad et al,
2018; Erenstein et al., 2022). In northern Xinjiang, China, located in
an inland arid zone with scant precipitation and intense
evaporation, agriculture relies heavily on irrigation. Here, water
resource shortages and uneven distribution severely restrict maize
production (Shen et al., 2013).

Water is not only essential for maize’s physiological and
biochemical processes but also indirectly affects yield formation by
influencing root activity, nutrient uptake, and the allocation of
photosynthetic products (Du et al., 2013; Pettigrew, 2016; Zhang
et al, 2023) Tables 1 and 2. During its growth, maize is subject to
multiple factors: fluctuating meteorological elements, soil moisture
heterogeneity, and crop-environment interactions. During its growth,
maize is subject to multiple factors: fluctuating meteorological
elements, soil moisture heterogeneity, and crop-environment
interactions. These factors are linked by complex nonlinear
relationships and exhibition evolution characteristics (Zhou et al,
2020; Chen et al., 2021). Deficit irrigation, a strategy to balance water
conservation and stable production by regulating water supply, shows
great potential for alleviating water resource conflicts. Yet, its precise
implementation hinges on a deep understanding of crop-water
dynamics and reliable model predictions (Ahmadpour et al,, 2022;
Geerts and Raes, 2009). The AquaCrop model stands out for its
mechanistic approach to crop-water relationships and relatively low
data requirements, making it widely used in irrigation strategy
evaluations. However, it falls short in extreme water scarcity
conditions and regional parameter optimization (Fidencio Cruz-
Bautista et al., 2023; Ghazouan et al,, 2019). Traditional static models
also struggle to capture the dynamic responses of complex
environment-crop-soil systems, especially their spatiotemporal
variations. They have difficulties in accurately quantifying the
cascading effects of water deficits on crop growth, yield formation,
and water use efficiency across different growth stages, leading to
lagging and empirical irrigation strategy optimization (Tolomio and
Casa, 2020). In the context of sustainable agricultural development,
enhancing the precision of irrigation management, understanding the
water requirements of maize at different growth stages, and developing
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precise irrigation decision models based on physiological and ecological
processes to achieve efficient water use and increased yields remain key
challenges in agricultural water resource management.

Physics-Informed Neural Networks (PINNs) can simulate
complex nonlinear processes using fully connected neural networks
while incorporating physical information constraints. This ensures that
the neural network approximates the solution of the physical system
and aligns its outputs with physical laws, thus avoiding the “black box”
problem (Li, 2025; Guo et al., 2023). This approach effectively combines
mechanistic models with data-driven methods, enhancing the
interpretability and predictive accuracy for complex nonlinear
systems. It also improves the precision and reliability of irrigation
decisions (Oikawa and Saito, 2024). In studies integrating crop models
with data-driven approaches, the high-dimensional parameter space of
AquaCrop outputs can represent the mechanisms of crop-soil-
atmosphere interactions. However, direct coupling with PINNs often
leads to dimensionality and parameter conflicts (Oulaid et al., 2024).
Research shows that high-dimensional outputs dramatically increase
the number of nodes in the neural network input layer. This not only
increases model complexity and computational burden but also causes
multicollinearity and overfitting risks in parameter optimization due to
redundant features (Advani et al, 2020). Dynamic Reconstruction
(DR), on the other hand, can reduce model complexity by performing
dimensionality reduction and feature extraction on high-dimensional
and complex data while retaining key system characteristics (Mainali
et al,, 2021). Studies have demonstrated that DR can map the high-
dimensional parameter space of outputs to low-dimensional intrinsic
dynamic patterns through dimensionality reduction and feature
extraction. This approach preserves the physical core of mechanistic
models and provides structured inputs for neural networks (Lumbut
and Ponnoprat, 2024).

Previous studies have made progress in integrating process-based
crop models with data-driven methods. However, further research is
needed on irrigation optimization across multidimensional scales and
dynamic scenarios, particularly on dynamically unraveling the water
response mechanisms of maize under multi-stage compounded deficit
irrigation. Although the AquaCrop model is one of the most
commonly used tools for simulating maize growth dynamics, few
studies have explored the coupling mechanisms of non-steady-state
irrigation and crop stage-specific sensitivity responses for irrigation
optimization. Understanding the compounded effects of water deficits
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and stage-specific sensitivity differences in maize growth stages is
crucial for constructing precision irrigation decision models based on
crop mechanistic processes. This study focuses on drip-irrigated maize
in Xinjiang. It integrates DR with Double Physics-Informed Neural
Networks (DR-DPINNSs) to establish a dual-driven framework for
optimizing irrigation systems based on process and data. According to
the actual water shortage in northern Xinjiang in summer 2024,
different water deficit irrigation treatments were set up in 2024 based
on the water requirements of each growth stage of maize. This was
combined with the growth and yield data of maize from farmer
practice from 2022 to 2024.Global sensitivity analysis was carried out
using AquaCrop-OS MATLAB to screen key parameters and
complete regional adaptive calibration. Specifically, we utilized DR
to map the high-dimensional parameter space of AquaCrop outputs to
a low-dimensional intrinsic dynamic space. This allowed us to extract
dominant feature modes with explicit agronomic meanings. These
modes served as the input basis for the double neural network.
Furthermore, we constructed a physically constrained irrigation
optimization method by coupling soil water balance equations with
stage-sensitive crop water production functions. This method
comprehensively analyzed the effects of water deficit thresholds on
yield and water use efficiency across different maize growth stages.
Ultimately, it clarified a dynamic irrigation scheduling system suitable
for drip-irrigated maize under water resource constraints in northern
Xinjiang. This study offers theoretical support and technical guidance
for agricultural water management in arid regions.

2 Materials and methods

2.1 Physical overview of the experimental
area

The experiment was conducted from April to September 2024 at
the Agricultural Integrated Development Area in Karamay, Xinjiang
Uygur Autonomous Region, China (85°33’E, 45°46'N, elevation
270.00 m). The area has a typical continental arid desert climate:
mean annual temperature, 8.1 °C; annual radiation, 5430-6670 MJ/
cm’ mean annual wind speed, 3.7 m/s; mean annual precipitation,
101.1 mm; mean annual evaporation, 3545.2 mm; annual sunshine
duration, 2600-3400 h; frost-free period, 197-268 days. The soil has a
mean dry bulk density of 1.47 g/cm?, a field water capacity (volumetric)
of 36.07%, and a groundwater depth of 2-4 m. Before maize planting,
the fertility of the topsoil (0-20 cm) was: pH 8.32, soil organic matter
17.69 g/kg, alkaline nitrogen 59.82 mg/kg, available phosphorus 13.55
mg/kg, and available potassium 135.32 mg/kg.

2.2 Experimental materials and
experimental design

This study sampled data from farmer-managed drip-irrigated
maize fields in Karamay for three consecutive years from 2022 to
2024 and conducted a deficit irrigation experiment during different
maize growth stages in 2024, using the Xinnong 008 variety. The
sowing date was April 30, with the harvest date being September 13 in
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2022; the sowing date was May 30, with the harvest date being
September 13 in 2023; and the sowing date was April 25, with the
harvest date being September 2 in 2024. An alternating wide-narrow
row planting pattern was used. The drip tape spacing was 1.1 m, the
narrow row spacing was 0.4 m, the wide row spacing was 0.7 m, and
the plant spacing within the row was 0.2 m. The dripper spacing was
25 cm, with a flow rate of 2.8 L/h and a rated working pressure of 0.1
MPa. The seeding density was 80, 000 plants per hectare. The deficit
irrigation experiment set three irrigation levels: 60%, 80%, and 100% of
crop evapotranspiration (ET.). Based on past field trials in northern
Xinjiang, water shortages mainly occur in early and mid-summer. The
growth stages were defined using the FAO-56 method (Allen D. G.
etal., 1998): early growth (sowing to jointing), rapid growth (jointing to
tasseling), mid-growth (tasseling to milk stage), and late growth (milk
stage to harvest). Deficit Irrigation Treatments in 2024 and Farmer
Control Irrigation Treatments for Corn from 2022 to 2024 are
presented in Tables 1 and 2, respectively. Each experimental group
had two randomized block repeats, totaling three repeats. There were
nine main-factor experimental plots and 27 secondary plots. Each main
plot was 4 m x 6 m x 3 =72 m?, with a total experimental area of 72 m*
x 9 = 648 m>. During the growing period, irrigation was carried out
every 7 days for a total of 12 times, and nitrogen (urea) at 500 kg/ha,
phosphorus (monopotassium phosphate) at 180 kg/ha, and potassium
(potassium sulfate) at 135 kg/ha were applied through drip irrigation
without basal fertilizer. The fertilizer was applied in three stages: 30% at
jointing, 30% at tasseling, and 40% at grain filling.

2.3 Measurement of leaf area index and
canopy coverage

Measure soil moisture before and after each irrigation. Take the
7th fully expanded leaf from the top before tasseling, and ear leaves
after tasseling. Measure chlorophyll content at the leaf tip, center,
and base, and average the values. Calculate leaf area index (LAI)
using Equation 1 and canopy cover (CC) using Equation 2 (Hsiao
et al., 2009).

=i2ﬁ1Li><Di><K><D,

LAI
N

(1)

CC = 1.005[1 — EXP( - 0.6LAI)]"* (2)

In the formula, LAI is the leaf area index; m is the number of
sampled plants; 7 is the total number of leaves on the sampled
plants; Ljs the leaf length in cmj; D; is the leaf width in cm; K is the
leaf area correction coefficient, taken as 0.75; D, is the plant density
in plants per m* S = 10000 cm*/m>.

2.4 Determination of dry matter
accumulation in maize
Before and after each irrigation, the dry matter accumulation of

corn was measured using the destructive sampling method. Three
uniformly growing plants were selected, and the stems, roots, leaves,
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TABLE 1 Deficit irrigation treatments in 2024.

10.3389/fpls.2025.1678277

Stage specific irrigation management

Initial growth stage

Rapid growth stage

Mid growth stage Late growth stage

CK NC 100%ET, 100%ET, NC
T1 NC 80%ET, 100%ET, NC
T2 NC 60%ET. 100%ET, NC
T3 NC 100%ET, SO%ET, NC
2024 T4 NC 100%ET, 60%ET, NC
T5 NC 80%ET, SO%ET, NC
T6 NC 80%ET. 60%ET, NC
T7 NC 60%ET, S0%ET, NC
T8 NC 60%ET. 60%ET, NC

NC stands for equal amount of non-regulated irrigation. The same applies to the following table.

and ears of the corn were separately weighed for dry weight. For dry
weight measurement, samples were killed green at 105°C for 30
minutes, then dried at 70°C until a constant weight was achieved
before being weighed.

2.5 Determination of soil water content
and crop water consumption

At each irrigation, soil samples from 0-100 cm depth were taken to
measure soil water content by drying. Crop water consumption was
calculated from pre - and post - irrigation soil water content
measurements, accounting for irrigation, precipitation, and percolation.

2.6 Measurement of maize yield and water
use efficiency

At harvest, 10 representative maize plants from the middle of
each plot were manually selected, with three replicates. Within each
replicate, a 1 m” area was randomly selected for sampling. After
threshing, the fresh weight was measured using an electronic
balance with an accuracy of 0.01 g. The samples were then dried
in an oven at 60°C until a constant weight was achieved and
weighed again. The data obtained from each plot were averaged
to calculate the yield per unit area.

he calculation of water consumption employed Equation 3,
obtained through the water balance method:

ET=P+I-ASWS-R-D 3)

where ET is the crop water consumption, P is the rainfall during
the maize growing period, I is the total irrigation amount during the
maize growing period, ASWS is the soil water storage change, R is
the surface runoff, and D is the deep percolation of soil water. The
units of all parameters are mm. Since the water flux changes are very
small under the experimental conditions, surface runoff and deep
percolation are not considered.

Water use efficiency (WUE) is calculated using Equation 4:

WUE = Y (4)
T ET

where WUE is the water use efficiency (kg hm> mm™), and Y is
the maize yield per unit area (kg hm™2).

2.7 Meteorological conditions

The weather station at the experimental site monitored daily
average temperature (Tavg, °C), maximum temperature (Tmax, °C),
minimum temperature (Tmin, °C), precipitation (P, mm), sunshine
duration (SSD, h), wind speed at 2 m (W, m/s), and relative humidity
(RHU, %). The reference evapotranspiration (ET,) for the model was

TABLE 2 Farmer control irrigation treatments for corn from 2022 to 2024.

Stage specific irrigation management

Initial growth stage Rapid growth stage

Mid growth stage Late growth stage

2022 QC NC NC NC NC
2023 QC ‘ NC ‘ NC ‘ NC NC
2024 QC ‘ NC ‘ NC ‘ NC NC

QC stands for the farmers’ control irrigation.
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calculated using the Penman-Monteith equation from the FAO
Irrigation and Drainage Paper 56 (Allen R. at al, 1998). Figure 1
shows the precipitation (P) and mean temperature (Tavg) during the
growing period.

2.8 AquaCrop model database

The AquaCrop model, a typical water - driven model for
simulating crop biomass and yield, is widely used in agricultural
water management (Steduto et al., 2009). Unlike light - or CO, -
driven models, it can predict crop productivity under water stress
and rainfed conditions, and simulate yields under various irrigation
regimes. Its core equations, evolved from those in FAQ’s Irrigation
and Drainage Paper 33, estimate crop growth - stage water use and
yield based on cumulative water deficits (Doorenbos and Kassam,
1979). We used the AquaCrop - OS - MATLAB version
for simulations.

Model performance was evaluated using four metrics: the
coefficient of determination (R*), root mean square error (RMSE),
Nash - Sutcliffe coefficient (EF), and Willmott’s index of
agreement (d).

2.9 Data analysis and simulation

This study employs the Extended Fourier Amplitude Sensitivity
Test (EFAST) method and the AquaCrop model to analyze and
simulate the dry biomass, canopy cover, soil moisture content, and
yield of maize in the experimental area. Based on the EFAST
method, parameters with a first-order sensitivity index (Si)
greater than 0.05 and a total sensitivity index (STi) greater than
0.10 (Si + STi > 0.15) were selected. The parameters were randomly
sampled using the Monte Carlo method, with a sample size of 3, 500
(EFAST requires a sample size greater than the number of
parameters x 65). Batch calculations (3, 500 x 42 x 3 times) were
performed using Matlab, with parallel processing. The results were
statistically analyzed, and the crop parameters of the model were
determined and validated through sensitivity analysis. After model
validation, DR-DPINNs framework was constructed. Latin

10.3389/fpls.2025.1678277

Hypercube Sampling (LHS) designed AquaCrop model data was
used as input for DR-DPINNSs. By constructing a loss function with
physical constraints, the complex nonlinear relationship between
learning and irrigation strategies was captured. This transformed
the deficit irrigation optimization problem into a fixed-water-
volume optimization task. The irrigation water allocation was
dynamically optimized to meet the water requirements of maize,
aiming to maximize yield and WUE. Subsequently, the optimized
plan was re-input into the AquaCrop model for simulation and
comparison with the original plan. The model was simulated using
farmer control crop data and yield from 2022 to 2023, validated
using farmer control crop data and yield from 2024, and tested with
data obtained from the field deficit irrigation experiment conducted
in 2024.

2.10 PINNs framework construction

PINNs can simulate complex nonlinear processes using fully
connected neural networks while incorporating physical
constraints. This ensures solutions align with physical laws. In
this study, a double-layer, multi-dimensional neural network
forms the basis of the deficit irrigation optimization model. The
network’s equation is presented as Equation 5:

Y0 = £(xD,0) = Bg(wx? + b) (5)

In the equation, ' represents the model’s predicted output; f
(x', 6) enotes the neural network’s representation function; 6 is the
set of neural network parameters; fSis the weight vector linking the
input and hidden layers; g(7)=(e"-¢ )/(e"+e®) is the tanh activation
function of the model; w is the weight matrix connecting the input
and hidden layers; and b is the bias vector of the hidden layer.

2.11 Agricultural soil and water physical
constraints

Compared to PINNs, DPINNs excel in capturing nonlinear
relationships and multi-scale features in complex physical
phenomena. They can automatically learn hierarchical feature
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representations from input data. In DPINNS, the agricultural soil and
water physical constraint loss term (J,) is calculated by comparing the
predicted and actual values of the soil water balance and crop water
production functions, derived from partial differential equations
ensuring time-continuous conservation. The detailed derivation
process is shown in Equation 6:

I;+P;+G; =ET; + D; + R, = AW;

v, 11, ETai 4 (6)
" g( ETm,i )

Y,

In the equation, I;, Pi and G;, are the soil irrigation amount,
rainfall, and groundwater recharge for stage i, respectively, ETiis the
total evapotranspiration for stage i, D; and R; are the deep
percolation and surface runoff for stage i, respectively, Aw; is the
change in soil water storage for stage i, Y, is the actual yield, Y, is
the maximum achievable yield under full irrigation conditions, ET,,
and ET,, ; are the actual and maximum evapotranspiration for
stage i, respectively, Al is the water stress sensitivity coefficient for
stage 1.

To achieve continuous water balance in time and space, we
introduce the vertical profile differential dz and the time differential
dt. After simplifying the differentials, the equation can be expressed
as:

90(zt) _ _ 94q(zt)
N TRl +S(z,t)

7)

T
7- = exp [ A AD)f(O(t), CC(1))dt

In the equation, 6(z, t) represents the soil water content at depth
zq(z, t) is the water flux in the z-direction; S(z, t) represents the
source and sink term. In solving the equation, YL is treated as a
small time interval and approximated as a Riemann sum over time

t.In the limit, this allows 5

to be simplified for easier explanation:

Y(t) = G(6(1), CC(1), p) ®)

In the equation, p is a constant that represents all the
empirical parameters.

After transforming the original discrete model into a partial
differential equation with continuous time conservation form using
Equations 7 and 8, the agricultural soil and water physical
constraint loss term Iis represented by the corresponding
agricultural soil and water physical constraint residual.

2
I pred = G(Bprea» CCprea) ||°

&)

- S( epred)

I = aepred+aq(0pred)
i Y 9z

2.12 Dynamic reconstruction

In agricultural water management and irrigation scheduling
optimization, crop growth is influenced by dynamic factors like
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weather, soil moisture, and growth stages, which have complex
nonlinear relationships. Traditional static models often fail to capture
these dynamics, leading to low prediction accuracy and limiting
irrigation strategy optimization. DR, which reduces dimensionality
and extracts features from high-dimensional and complex data, can
capture the system’s dynamic evolution, simplify the model, and retain
key information. The added physical constraints provide extra
information, ensuring reasonable predictions even with limited data,
and ensuring the network output aligns with crop production
physiology and soil water movement mechanisms, avoiding the
“black box” issue. The DR formula is expressed as:

u(t) = fan (x, £5 0) + D(z(1)) (10)

In the equation, u(t) represents the comprehensive output at
time t after integrating dynamic features, fNN is the neural
network mapping function, which takes (x, t) as its input, In
Equation 10, D(.) represents the function mapping the reduced -
dimension dynamic features z(t) to the output space. During
training, if the loss in Equation 11 doesn’t converge for a long
time, the network adaptively adjusts parameters to enhance the
physical equation’s performance. The adaptive adjustment
formula is expressed as:

1
el(\ImN+ : = Adupt( 91(\]"11\;’ Twater rproductionv . ) (1 1)

In the equation, Adapt(...) denotes the adaptive adjustment
strategy.

2.13 DR-DPINNs optimization modeling

In the DR-DPINNs model, the loss function has non-
differentiable constraints, making traditional backpropagation
algorithms ineffective for neural network parameter optimization.
Therefore, this study uses a double-layer evolutionary algorithm—
Covariance Matrix Adaptive Evolutionary Strategy and Genetic
Algorithm (CMA-ES-GA). CMA-ES is a stochastic gradient-free
optimization method, particularly suitable for solving continuous
black-box optimization problems (Nomura et al, 2025). This
algorithm adjusts the search distribution by adaptively modifying
the covariance matrix, effectively handling ill-conditioned and
nonlinear problems (Cheng et al., 2021). The learning mechanism
of CMA-ES makes it invariant to any invertible linear transformation
of the search space (Li et al., 2017). In contrast, GA is an optimization
algorithm inspired by biological evolution. GA evolves the population
through selection, crossover, and mutation operations, suitable for
parameter selection and automatic search of neural networks (Mishra
and Kane, 2023). The performance of PINNs is affected by
hyperparameters and structural choices. CMA-ES-GA can be used
to automatically search for and optimize the architecture of PINNs,
enhancing their performance in solving partial differential equations
and inverse problems, and further improving the training outcomes of
PINNs (Kaplarevic-Malisic et al., 2023). Figure 2 shows the Irrigation
Optimization.Process Flowchart.
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FIGURE 2
Irrigation optimization process flowchart.

3 Results
3.1 Biomass parameter sensitivity

Figure 3 shows the parameter sensitivity analysis for biomass.
Parameters like wp, mat, keb, stbio, cgc, mec, psen, and cdc have Si
above 0.05. Globally, STi values over 0.10 also include hilen, eme,
and rtexlw. Wp stands out as a key parameter due to its significant
main and interactive effects.

To assess parameter impacts on biomass over the growth cycle,
a time - varying sensitivity analysis was done. Figure 4 highlights the
top 10 parameters with Si above 0.05 and STi above 0.10, namely
stbio, wp, keb, cgc, eme, mcc, cdc, mat, psen, and hilen. Simulating
their Si and STi dynamics shows stbio, wp, keb, and cgc as the most
sensitive. eme is sensitive in the early stage. stbio becomes crucial
for biomass accumulation in the vigorous growth phase. kcb has
high global sensitivity in the middle stage. After 80 d, wp becomes

more elastic to water changes. STi rises between 90 and 120 d,
indicating increased parameter interactions. cgc consistently
influences biomass throughout the growth cycle.

3.2 Parameter sensitivity of canopy cover
over time

Figure 5 shows the time - varying parameter sensitivity analysis
for canopy cover. Parameters like mcc, den, ccs, eme, keb, rtx, mat,
and psen, with Si over 0.05 and STi over 0.10, were chosen. The
analysis reveals that eme and ccs have high initial sensitivity but
stabilize later, indicating strong main effects on early canopy cover
with limited interaction with other parameters. Between days 15 and
60, cge dictates canopy expansion, crucial for mid - season canopy
closure and photosynthetic efficiency. During this period, it shows
both main effects and strong interactions with other parameters.
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FIGURE 3

First order and global sensitivity analysis results of AquaCrop model parameters (biomass).
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First order (A) and global (B) sensitivity analysis results of biomass over time.
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First order (A) and global (B) sensitivity analysis results of canopy cover over time.
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3.3 Parameter sensitivity of soil water
content

As shown in Figure 6, the parameter sensitivity analysis of soil
water content is crucial for understanding the relationship between
crop growth and water use. Compared to the sensitivity analyses of
biomass and canopy cover, it shows a broader parameter impact range.
This indicates that soil water content is influenced not only by
parameters directly related to water dynamics but also by many
indirect factors, such as crop root growth, soil physical properties,
and irrigation and precipitation patterns. The crop parameters with STi
above 0.10 are puexp, plexp, psen, stbio, keb, rtx, rtexhw, mcc, wp, eme,
cgc, cdc, and hilen. These parameters affect soil water content both
individually and through complex interactions with other parameters,
collectively determining soil moisture distribution and changes. By
precisely adjusting these key parameters, soil moisture management
can be enhanced, improving crop WUE and achieving water - saving
and yield - increasing goals.

3.4 Parameter sensitivity of yield

As shown in Figure 7, the parameter sensitivity analysis of yield
reveals a broader parameter impact range compared to biomass and
canopy cover. Some parameters that only significantly affect biomass
in the late growth stage also stand out in yield sensitivity. The crop
parameters with a first-order sensitivity index (Si) above 0.05 include
flo, psen, mat, hi, kcb, wp, and cdc. Those with a global sensitivity
index (STi) above 0.10 further add hilen, flolen, hinc, sen, psenshp,
and elvadc. Stress thresholds like wp, psto, and psen remain highly
sensitive in yield simulation and are vital for optimizing irrigation
schedules and model calibration to achieve high yield.
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3.5 Interactions among the sensitive
parameters of biomass, canopy cover, and
soil water

The interaction analysis of parameters affecting biomass,
canopy cover, and soil moisture is shown in Figure 8. Biomass
has significantly more determining parameters than canopy cover
and soil moisture. For the same parameter, the contribution
patterns to these three variables differ. Parameters directly related
to canopy expansion and transpiration have a more significant first-
order effect on canopy cover simulation. In biomass simulation,
their interaction effects increase, indicating coupling with factors
like WUE, root water uptake, and senescence rate. The
contributions of key parameters to canopy cover, biomass, and
soil moisture involve both strong first-order dominance and
significant interaction differences. The interaction effects between
key parameters and others account for a large proportion of the
total contribution of jointly sensitive parameters. This indicates that
the formation of canopy cover results from the synergistic effects of
multiple factors. For biomass, although interaction effects are
greater than first-order effects, the proportion is relatively lower
than that for canopy cover. This suggests that precisely calibrating
or managing the first-order effects of key parameters can
significantly regulate biomass accumulation. Soil moisture is
influenced by multiple factors such as precipitation, evaporation,
and crop water consumption. Its sensitivity shows both first-order
responses and interactions with other processes through effects on
crop growth and transpiration. Therefore, priority should be given
to calibrating and observing parameters with significant first-order
contributions, while parameters with prominent interaction
contributions require systematic optimization in combination
with related factors.
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FIGURE 6

First-order and global sensitivity analysis results of AquaCrop model parameters (soil water content).
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FIGURE 7

First order and global sensitivity analysis results of AquaCrop model parameters (yield).

3.6 Parameter selection and parameter
calibration

The integrated sensitivity analysis lists the crop parameters in
the AquaCrop model that are sensitive to maize biomass, canopy
cover, and yield in the Northern Xinjiang region across different
growth stages. During model localization, preset fixed values for
insensitive parameters and only calibrate parameters sensitive to
output variables. The parameter calibration is shown in Table 3.

l First orderInteraction

pesn kcb

Canopy cover ‘ ‘

Bionmass

FIGURE 8

First order and interaction sensitivity index contribution rates of commonly sensitive parameters for biomass, canopy cover, and soil moisture content.

Soil moisture content ‘ . ‘ . ‘ ‘

3.7 Simulation and validation of maize
canopy cover at experimental stations

Figure 9 shows the simulated canopy cover under different
treatments and provides farmer practice validation results. The
simulated and observed canopy cover trends were generally
consistent across the maize growth period, especially under water -
deficient conditions, indicating the model maintained good accuracy.
The model also showed good predictive ability under farmer practice
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TABLE 3 Calibration of AQquaCrop model parameters.

Parameter name Parameter description Unit Calibrated value
mat Thermal Time from Sowing to Maturity GDD 2521
eme Thermal Time from Sowing to Emergence GDD 151
sen Thermal Time from Sowing to Start of Senescence GDD 1822
flo Thermal Time from Sowing to Flowering GDD 1607

flolen Thermal Time for Flowering Duration GDD 270
cgc Canopy Growth Coefficient Frac GDD™! 0.006
cdc Canopy Senescence Coefficient Frac GDD™ 0.004

hilen Duration for Establishing Harvest Index During Yield Formation GDD 900
stbio Minimum Thermal Time Requirement for Biomass Formation GDD 12
root Thermal Time to Reach Maximum Root Depth GDD 1516
rinx Minimum Effective Root Depth m 0.3
rtx Maximum Effective Root Depth m 2.05

rtexup Maximum Water Extraction in Top 1/4 of Root Zone m>-(m’soil) .d”! 0.025

rtexhw Maximum Water Extraction in Bottom 1/4 of Root Zone m?(m?soil) ™! 0.007

rtshp Shape Factor for Root Zone Expansion - 15
keb Crop Coefficient at Full Cover but Not Senescent - 1.1

kedcl Coefficient for Crop Coefficient Reduction Due to Senescence Deficit - 0.3

evladc Coefficient for Canopy Suppression of Soil Evaporation in Late Growing Season - 50
wp Normalized Water Productivity gm? 39.7

h Reference Harvest Index % 49
exc Potential Excess Fruit % 100
puexp Upper Soil Water Depletion Threshold Limiting Canopy Expansion fraction TAW 0.2
plexp Lower Soil Water Depletion Threshold Limiting Canopy Expansion fraction TAW 0.65
pexshp Shape Factor for Water Stress on Canopy Expansion - 3
psto Upper Soil Water Depletion Threshold Limiting Stomatal Conductance fraction TAW 0.65
pstoshp Shape Factor for Stomatal Conductance Water Stress - 25
psen Upper Soil Water Depletion Threshold Inducing Premature Canopy Senescence fraction TAW 0.5
psenshp Shape Factor for Premature Canopy Senescence Due to Water Stress - 3

ppol Upper Soil Water Depletion Threshold Limiting Pollination fraction TAW 0.8

anaer Anaerobic Point % 5

polmn Minimum Temperature Threshold for Pollination °C 5

polmx Maximum Temperature Threshold for Pollination °C 35

hinsveg Coefficient for Negative Impact on Harvest Index When Crop Growth is Limited - 4

hinc Maximum Allowed Increase in Harvest Index % 15

hipsflo Positive Impact of Water Stress on Harvest Index Before Flowering % 3

uelecon Lower Soil Salinity Conductivity Threshold dSm™! 5

elecon Upper Soil Salinity Conductivity Threshold ds:m™! 20

utemp Upper Temperature Threshold for Crop Development °C 30
(Continued)
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Parameter name Parameter description Unit Calibrated value
den Plant Density plantsha™ 250516
mcc Maximum Canopy Cover % 96.7
ccs Area Covered per Plant at 90% Emergence cm’® 1.5
cge Canopy Expansion Rate Coefficient Frac GDD™ 0.0062

conditions, with a strong correlation between simulated and observed
data.From 2022 to 2024, the R%, RMSE, EF, and d values for simulated
and actual maize canopy cover ranged from 0.905 to 0.945, 3.29% to
4.40%, 0.895 to 0.936, and 0.971 to 0.985, respectively. AquaCrop
simulations showed good accuracy and reliability under various
irrigation treatments and across different years, with high fitness to
dynamic canopy cover changes.

3.8 Simulation and validation of maize
biomass at experimental stations

Biomass, a key indicator of crop growth and yield, was
simulated under different deficit irrigation schedules to enhance
maize WUE. Figure 10 presents the simulation results and the
farmer practice validation. The simulated and observed biomass
showed an “S” - shaped increase over days after sowing, with the
model curve closely matching the observed data. The model also
accurately simulated biomass trends under various irrigation
treatments and farmer practice, with high fitness between
simulated and observed values. The calibrated AquaCrop model
demonstrated excellent performance in simulating above - ground
biomass, with R?, RMSE, EF, and d values ranging from 0.89 to 0.98,
0.816 to 4.31, 0.87 to 0.96, and 0.894 to 0.985, respectively. Overall,
the AquaCrop model can precisely simulate dynamic biomass
accumulation under different deficit irrigation and farmer
practice conditions.

3.9 Simulation and validation of soil
moisture content for maize at
experimental stations

Soil moisture, a key indicator of crop growth environment and
soil health, was simulated in this study. Figure 11 present the
dynamics and discrepancies between simulated and observed soil
moisture content. Under various treatments, the observed soil
moisture content showed specific trends over time, closely tied to
the crop growth cycle and irrigation strategies. The model -
simulated soil moisture curves aligned well with observed data
points, indicating the model’s ability to accurately capture the
dynamic fluctuations of soil moisture content. The trends in soil
moisture increase and decrease were closely related to irrigation
amounts, evapotranspiration, and water uptake by crop roots. The
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calibrated AquaCrop model showed excellent performance in
simulating soil moisture, with R?%, RMSE, EF, and d values
ranging from 0.811 to 0.924, 6.47 to 14.62, 0.689 to 0.98, and
0.906 to 0.980, respectively. Overall, the AquaCrop model can
accurately simulate the temporal changes in soil moisture under
deficit irrigation across different irrigation systems. The model
demonstrated a high degree of fit and good trend consistency
with observed data, effectively reflecting the actual status of

soil moisture.

3.10 Simulation and validation of maize
yield at experimental stations

Figure 12 and Table 4 shows the differences between simulated
and actual yield values. The relative errors for all treatments ranged
from 0.88% to 10.87%, with an average below 4.17%, indicating a
good fit between simulated and observed values. The model slightly
overestimated yields for T3, T5, 2022QC, and 2023QC, with
overestimation ranging from 0.88% to 3.23%. In contrast, the
model underestimated yields for the other treatments, with
underestimation ranging from 1.42% to 10.87%. Overall, the
model demonstrated high accuracy in simulating maize yield.

3.11 Deficit irrigation scheduling
optimization based on DR-DPINNs

After conducting sensitivity analysis and calibration of key
AquaCrop model parameters, this study employed a DR-DPINNs
- based model to optimize deficit irrigation scheduling for maize in
Northern Xinjiang. To ensure good initial convergence and physical
consistency, initial parameters were set for the physics-informed
neural network. Table 5 lists these initial parameters.

During the optimization of deficit irrigation scheduling using
DPINNS, strong spatiotemporal dependencies and nonlinear
characteristics were observed. To address the problems of
gradient disappearance and local convergence in the later stages
of training, DR was employed. It performed dimensionality
reduction and feature extraction on key parameters during
network training. This allowed the network to capture
spatiotemporal dynamics while minimizing redundant noise.

On one hand, meteorological conditions, soil moisture, and
crop water consumption are highly nonlinear and fluctuate
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FIGURE 9

Simulation of maize canopy cover.

significantly over time. On the other hand, traditional static
networks often fail to adequately capture the complex water stress
effects in the mid - to late - stages of training. To tackle these issues,
DR - DPINNSs incorporates a universal feature mapping layer and
conducts dimensionality reduction and multi - scale feature
extraction on high - dimensional inputs. When the partial
differential constraint between soil water balance and crop water
production functions fails to converge, an adaptive diffusion process
is activated. This enables updates to certain weights and activation
function parameters within a larger search space, diffusing the
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network’s response patterns across different growth stages (as
shown in Figure 13). If the constraint residual remains high after
several iterations, the system increases the weight of the
corresponding physical residual and performs random diftusion
on parameters in the output and intermediate layers. This strategy
allows the network to flexibly allocate feature information across
stages, effectively reducing overfitting and pseudo - convergence in
DPINNs when dealing with complex spatiotemporal data.

The loss function of DPINNS includes differentiable and non -
differentiable constraints, and the temporal decision variables of
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FIGURE 10

Simulati

on of maize aboveground biomass.

Daily Variations of Simulated and Measured Biomass for QC Maize in 2022

Daily Variations of Simulated and Measured Biomass for QC Maize in 2024

irrigation scheduling are essentially discrete, making traditional
gradient descent unsuitable. This study adopted a CMA - ES -
GA double - layer iteration. In the inner network(as shown in
Figure 14), CMA - ES performs adaptive evolution of network
weights, biases, and activation function parameters under DR. CMA
- ES updates the network structure globally by adaptively adjusting
the covariance matrix of the initial population, reducing the
deviation between soil water balance and crop water production
functions. After 17, 600 iterations, the network weights stabilized,
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and physical constraints and observed data achieved a good fit. In
the outer network, GA optimizes the irrigation decision variables
globally to enhance yield and WUE. Given a fixed total irrigation
quota, GA efficiently searches for the optimal irrigation allocation
across growth stages. After 18, 000 iterations, the loss residual
stabilized and fitness plateaued, indicating convergence of
parameter updates and irrigation solutions.

To validate the DR and DPINNs method for optimizing deficit
irrigation in drip - irrigated maize in Northern Xinjiang, nine

frontiersin.org


https://doi.org/10.3389/fpls.2025.1678277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al. 10.3389/fpls.2025.1678277

—— Simulated value —— Simulated value —— Simulated value
k 200 200 E
28 @ Observed value bl o Observed value ) ) 0 o Observed value 20
0 Fieldeapacity | g0 = L . _ _ __ 02 _ _Fedamdy]
248 220 220 180
0 160

8

g
g

g

&

918 RMSE=8.94
.725 d=0.906

R*=0.859 RMSE=6.47

140 RP=0.811 RMSE=10.78 EF=0.859 d=0.964

Soil Water Content (mm)
g
Soil Water Content (mm)
3

Precipitation and Irrigation Amount (mm)
Soil Water Content (mm)
2
2

Precipitation and Irrigation Amount (mm)
Precipitation and Irrigation Amount (mm)

— — 0 120 120
EF=0.801 d=0.943 Witing poin ] 90 60
120 Wilting point{ 40 WO T T T T T T T e e e e "= ga & Piqgp T e e e el e & S e
[ T T |y, itine point 40 w00 f H40
100 f]
14 I A 2 nf o
0, . . 0 60 L | 1 | | 1 | 0 60 L | L | | | | 1 | 0
2 40 0 0 100 120 y T T y T T v T T y T T
20 40 0 80 100 120 20 4 60 80 100 120
Daily Variations of Simulated and Measured Soil Moisture for CK Maize in 2024
Daily Variations of Simulated and Measured Soil Moisture for T1 Maize in 2024 Daily Variations of Simulated and Measured Soil Moisture for T2 Maize in 2024
260 20 260 20 260 220
—— Simulated value 200 § — Simulated value 200 B —— Simulated value 1200 E
240 o Observed value ° E 0 o Observed value ) . E M0r@DTs 9 Observed value ) . &
ield capacity | g9 2 Field eapacity | 199 5 Field eapacity.| 10 2
g z -1y N | S 2 3
£ £E 160 £ 160 &
200 < S200 - diw=
H 180 X 180 mE H 180 0
5 160 Z %160 100 £ 3 160 3 H100 £
= TE 0 B3 s E
210 _ 2 z 140 R°=0.862 RMSE=38.255 SE M0 R=0.924 RMSE=2.46 2
z R=0814 RMSE=14.62 oS3 EF=0.880 d=0.938 60 3 98 d=0.974 °% o 60 £
B0 EF=0.689 d=0915 o %m0 RS E
- i - 40 2 - “E S SE— . 'gpointy 0 Z
100 20 3 10 20 100 §
| | I | £l = Wl LLLL | =
80 v L v L i T 0 8o L v g . v 0 o0 L r '. r T - T 0
2 40 60 80 100 120 20 40 60 80 100 120 20 4 60 80 100 120
Daily Variations of Simulated and Measured Soil Moisture for T3 Maize in 2024 Daily Variations of Simulated and Measured Soil Moisture for T4 Maize in 2024 Daily Variations of Simulated and Measured Soil Moisture for T5 Maize in 2024
261 20 260 20 260 20
—— Simulated value 7 —— Simulated value £ —— Simulated value 7
200
240 @ Observed value Wg 240 @ Observed value wmg e 9 Observed value £
———————————————————— 30 2 B T T L R e i ettt R 2
7 20 Field capacity 5 2 220 Field capacity EI 228, Field capacity H
- 160
) 160 2 Eanp 160 g Eao £
= 140 ¢ = 140 £ 7140 g
S0 EEwm £ Ew £
H 120% B F = 1120 5
S 160 £S5 160 2ol ° &
p ° 100 E % wE o5 . oz
£ 140 78 RMSE=8.33 » B ZUM0F R-0.876 RMSE=9.79 wE £ R'=0912 RMSE=6.62 0 E
= 952 d-0.974 £z EF=0.934 d=0.983 S E ol EF-09s d-0.964 5
Z120 £Z10 s = ° o £
=2 0 3 0 5 3 £
[ S D, . S " - £ 1 I 1.1 3 R £ jejfr T | EeEEEESE= s S g
100 £ 7o i i £ 40 2
40 £ Wilting point{ 40 £ E
g '3 80 {20 &
N wgow w g | [l E
g0 Ll 1 0 & el 1 | | | | L | s - . 0
: ) = X s x L) 20 40 60 80 100 120
20 40 60 80 100 120 20 40 60 80 100 120
Daily Variations of Simulated and Measured Soil Moisture for T8 Maize in 2024
Daily Variations of Simulated and Measured Soil Moisture for T6 Maize in 2024 Daily Variations of Simulated and Measured Soil Moisture for T7 Maize in 2024
280 20 280 m_ w0 20
260 ——— Simulated value 200 260 ——— Simulated value 200 E 260 ~— Simulated value 1200 E
9 Observed value H 9 Observed value & @ Observed value 2 £
240 4180 & 240 ) o 1180 2 240 Field eapacity 180 &
7 ield eapacity £ 7 Field eapacity S Bl e e B
22 T B L - T T T Hwe0 g gm0 160 £
£ £ : <
= 200 140 a = 200 140 s & 200 140 £
£ 180 120 E ‘é 180 mF EW A20, H
S = & 3 k
% 160 100 2 $ 160 w0 E 160 10 =
g2 = 2= -
5 : PR T 0| R-089 RMSE-11.22 80 E
B MO R-0.89 RMSE-52 b EEd 10 L E EF=0.891 d=0.969 %o ° H
Ty | EF=089 d=0.970 2= X 0 £ 10 q60 £
3 Wilting point | ®* £ 3 2 % w0
LT e T T TS [T T e A A R 40 Z 1% =
N | | | | » : u | | | | | | | » 5 p N E
£
60 ! + 0 0 ! . L " Hd . 0 o 0
20 40 60 80 100 120 20 40 60 80 100 120
) ) o Daily Variati i 1d Measured Soil Mo Maize in 2024
Daily Variations of Simulated and Measured Soil Moisture for QC Maize in 2022 Daily Variations of Simulated and Measured Soil Moisture for QC Maize in 2023
FIGURE 11
Simulation of deficit soil water content for maize.
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Simulation of maize yield under different treatments by the AquaCrop model.

irrigation - amount scenarios were tested as optimization schemes,  Figure 15 presents the optimal irrigation distribution results from
each discretizing irrigation scheduling into four growth stages (A~ DPINNS, considering crop water sensitivity and soil - water balance.
total of twelve irrigation events were carried out during the entire ~ When water was relatively abundant, more was allocated to the
growth period, specifically on days 1 to 12.) for water allocation.  rapid - growth and mid - growth stages to avoid critical - stage water
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TABLE 4 Simulation performance of the AquaCrop model for yield
under different treatments.

Simulated value

Observed value

Treament (kg hm™2) (kg hm™) RE/%
CK 14545.68 14339.73 -1.42%
T1 14383.15 13924.62 -3.19%
T2 13807.71 12703.77 -8.00%
T3 13251.24 13367.36 0.88%
T4 12847.3 11450.82 -10.87%
TS5 1278228 12947.36 1.29%
T6 12183.15 11436.24 -6.13%
T7 12437.72 11458.47 -7.87%
T8 10843.33 9736.75 -1021%

2022QC 12266.04 12437.94 1.40%
2023QC 1331636 13746.3 3.23%
2024QC 12266.04 11964.37 -2.46%

stress. Under water scarcity, some irrigation was shifted forward to
meet seedling and early - rapid - growth - stage demands,
minimizing late - stage irreversible growth losses.

The optimal irrigation schedule from Figure 15 was used in the
AquaCrop model to simulate yield, with results compared to a
conventional unoptimized schedule and shown in Table 6. DR-
DPINNS optimized the irrigation distribution to match maize water
requirements, enhancing yield under all tested irrigation volumes.
Yields increased by 8.35% to 10.08%, with the most significant boost
at the 472 mm irrigation volume — from 13, 924.62 kg hm™ to 15,
328.70 kg hm™, a 10.08% rise. This mainly occurred because DR
increased the model’s physical constraint weight in the jointing to
tasseling stages, ensuring efficient dry matter accumulation during
rapid root water uptake and high grain-filling water sensitivity.
Even at the higher 507 mm irrigation volume, yields rose by 9.15%,
indicating that DR-DPINNs fine-tuned irrigation for each growth
stage to unlock more crop productivity. However, yield gains were
more limited at lower irrigation volumes, as severe water deficits
required prioritizing water for early growth stages to ensure
seedling development, with mid-to-late-stage water stress being

TABLE 5 Physics-informed neural network parameters.

Parameter Physical meaning Value
layers Number of hidden layers 2
n Number of neurons 17
0 Learning rate 0.00208
epoch Number of iterations 20000
Ny Number of collocation points 8000
o Weight of physical residua 1
[N Weight of data residual 500"
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harder to offset. Still, DR-DPINNs optimized the irrigation
sequence across growth stages to varying degrees, delivering yield
improvements across the board.

The optimized irrigation strategy also significantly improved
WUE. At high irrigation levels of 472 mm and 507 mm, WUE
increased from 28.99 and 30.47 to 31.34 and 33.87 kg hm™2 mm™,
respectively, with a maximum increase of 11.15%. At low irrigation
levels of 334 mm and 369 mm, WUE still showed slight
improvements, indicating that optimized scheduling can enhance
water efficiency even when water is scarce. Most notably, at a total
irrigation volume of 472 mm, WUE rose from 30.47 to 33.87 kg
hm™? mm™’, achieving the highest growth rate. In summary, DR-
DPINNSs performed well across all irrigation levels. At high levels, it
better met maize growth needs, boosting yield and WUE. At
medium levels, it improved both yield and WUE through rational
water distribution. At low levels, it significantly enhanced yield and
WUE by efficiently allocating limited water. DR-DPINNs
dynamically adjusts irrigation allocation based on maize water
requirements at different growth stages. At 472 mm, it achieved
the best balance between maintaining high yield and improving
WUE. At 507 mm, while yield increased further, the rise in WUE
was smaller, suggesting that moderate deficit irrigation can yield
more significant water-saving and production-enhancing effects
when water is abundant.

4 Discussion

Crop model parameters interact significantly with regional
environments. This study used global sensitivity analysis to
identify key parameters affecting maize biomass, canopy cover,
soil moisture, and yield, and then calibrated and validated the
model using local data. AquaCrop is a model with high simulation
accuracy and wide application. But its parameters must be locally
calibrated. Due to differences in climate, soil, and crop varieties
across regions, this calibration is needed to enhance the model’s
applicability and accuracy in specific areas (Montoya et al., 20165
Coudron et al, 2023). Calibration ensures the model accurately
reflects local crop growth and yield mechanisms, providing reliable
support for agricultural management decisions (Akbari E. et al.,
2024a; Cao et al.,, 2024; Han et al., 2020). Global sensitivity analysis
can identify parameters with the greatest impact on model outputs.
These parameters need more attention in model calibration and
optimization, as their slight changes can significantly affect the
model’s results. By pinpointing these key parameters, resources and
efforts can be better allocated, improving the efficiency and accuracy
of model calibration (Lu et al., 2021). In this study, global sensitivity
analysis revealed that water productivity (wp), canopy growth
coefficient (cge), and canopy senescence threshold (psen) are
critical for biomass accumulation and yield. The sensitivity of wp
increases in the late growth stage, reflecting the lagged impact of
water stress on photosynthetic assimilate allocation. In contrast, cge
dominates canopy expansion in the middle and early stages, with its
interactive effects peaking during the rapid growth phase. This
aligns with the findings of Jin et al. (2016) and Nasrolahi et al.
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Dynamic reconstruction of the diffusion process.

(2024). Psen significantly affects yield (Si>0.05) by regulating the
leaf senescence rate and the duration of grain filling. Root
parameters are highly sensitive to soil moisture dynamics,
underscoring the importance of optimizing root zone water
extraction for water - saving and yield enhancement. However,
the sensitivity of rtx and rtexkw to soil moisture dynamics was
higher than expected, contradicting Akbari E. et al. (2024b), who
found root parameters to be less important in a global sensitivity
analysis of silage maize AquaCrop parameters. This discrepancy
may stem from the unique root spatial distribution and water
extraction patterns of different maize varieties under drip

irrigation, and in - situ root zone observations are needed for
further validation.

Simulations with the calibrated AquaCrop model show high
accuracy in simulating maize canopy cover, above - ground
biomass, and yield under various treatments. The model aligns
well with water supply levels across growth stages, effectively
capturing crop growth dynamics even under water - deficient
conditions. This aligns with the findings of Yin et al. (2023) and
Jin et al. (2020), confirming AquaCrop’s suitability in the arid
Northern Xinjiang region and its potential as a reliable tool for

maize water management.
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Optimization allocation results of DR-DPINNSs. (A=I) in the figure correspond to the irrigation amounts of treatments CK-T8. Each pie chart illustrates
the distribution of irrigation allocations under DR-DPINNs optimization across different growth stages: two irrigations during the early growth stage, four
during the rapid growth period, three during the metaphase of growth, and three during the late growth stage. The total of 12 irrigations spanning days
1-12 is represented by percentages shown in the pie charts, indicating the proportion of total irrigation applied at each event.

However, the model’s precision in simulating soil moisture
content is relatively low. This may stem from heavy rains during
the maize rapid - growth stage in the experimental area, which
increased water content in farmer - practice plots beyond
experimental levels. Coupled with poor field management in
some areas, these factors likely account for the discrepancies with
the results of Akbari A. et al. (2024).

The experimental results show that maize is most sensitive to
water deficits during the rapid growth stage, which is closely related to
its physiological characteristics. During this stage, maize grows rapidly
and has high water demands, and water deficits can directly affect
physiological processes such as photosynthesis, nutrient absorption,

TABLE 6 Comparison of optimized and unoptimized yields and WUE.

and cell expansion (Li et al., 2024). Mild water deficits during this stage
can slightly reduce canopy cover, but yield losses can be mitigated by
compensation irrigation in the mid-to-late stages. This suggests that
irrigation strategies can be flexibly adjusted in practice based on
weather conditions and soil moisture to achieve water conservation
and efficiency enhancement (Suriadi et al., 2024). Severe water deficits
in the mid - growth stage can lead to irreversible dry matter losses. The
reproductive growth stage is crucial for maize yield formation. Water
stress can significantly affect pollen viability, pollination success, and
grain development, resulting in reduced dry matter accumulation and
yield declines. Adequate water supply should be ensured during the
reproductive growth stage to avoid severe water deficits (Song et al,,

Irrigation Corresponding Unoptimized yield = Optimized Xield Unoptimized WUE Optimized WUE

treatment (mm) plan (kg hm™) (kg hm™) (kg hm™2 mm™) (kg hm2 mm™)
507 CK 14339.73 15651.27 28.99 31.34
472 T1 13924.62 15328.70 3047 33.87
437 T2 12703.77 13982.48 29.32 31.69
456 T3 13367.36 14608.87 27.59 3030
404 T4 11450.82 12566.50 2852 3023
421 T5 12947.36 14182.96 25.85 28.19
369 T6 11436.24 12564.25 25.22 26.72
386 T7 11458.47 12586.35 26.62 28.74
334 T8 9736.75 10550.24 2551 27.09
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2019). This is supported by the findings of Reemala et al. (2024)
regarding the impact of water stress on the critical period of
reproductive growth. The study by Kogler and Soffker (2020) using
an open-loop control method shows that moderate water stress can
trigger adaptive adjustments such as reduced stomatal conductance
and restructured root architecture. These changes prompt the plant to
prioritize resource allocation to reproductive organs, which may
underpin the compensation of yield losses. Thus, in the face of
future climate change challenges, moderate deficit irrigation is more
conducive to maize production, which is basically consistent with the
research results of Melkie et al. (2024).

The DR-DPINNs method, through DR and dual physical
constraints, effectively addresses the limitations of traditional
data-driven models in capturing mechanistic information in
irrigation scheduling optimization and the neglect of deficit
irrigation in physical-principle-based studies (Mortazavizadeh et
al,, 2025). DR, using multi-scale feature extraction and adaptive
dimensionality reduction (Figure 15), maps high-dimensional
nonlinear spatiotemporal data to low-dimensional feature spaces.
This preserves key crop growth dynamics while significantly
reducing model sensitivity to redundant noise. This mechanism is
implemented through the dynamic feature mapping function D(Z
(1)) in Equation 11, enabling the network to adaptively capture the
coupled effects of weather fluctuations and soil moisture dynamics
throughout the crop growth period. The dual physical constraints,
via dual residual terms from the soil water balance partial
differential equation and crop water production function in
Equation 10, integrate crop physiological mechanisms and soil
hydrodynamics into the neural network training. Unlike single -
physical - embedding methods, this study dynamically couples crop
growth and water migration processes by discretizing the time -
continuous conservation equation (Equations 7, 8), ensuring
physical consistency in deficit irrigation conditions (Zheng et al,
2023). The DR-DPINNs optimization results indicate that, with a
total irrigation of 472 mm, the yield increased by 10.08% and WUE
improved by 11.05%. The optimized irrigation scheduling
effectively eased water stress during critical growth stages.
According to the CMA-ES-GA algorithm, the model dynamically
adjusted the irrigation weights for each growth stage within the
constraints of the total water volume. The proportion of irrigation
during the rapid growth stage increased from 30.8% (in the low
irrigation scheme) to 36%, while the proportion in the late growth
stage decreased from 12.4% to 10%.By reallocate irrigation timing,
this strategy takes full advantage of the active new root growth and
high nutrient absorption efficiency during the rapid growth stage.
The dry matter conversion efficiency per unit of water input is
higher than in other stages (Nawaz et al., 2024), which is likely the
main reason for the increase in yield. This is consistent with the
findings of Comas et al. (2019). The DR optimization strategy in
this study enables multi-stage, multi-objective collaborative
optimization, offering a new technical approach for precision
irrigation management in arid regions. By dynamically adjusting
irrigation ratios across growth stages, a high WUE is maintained
even under low irrigation quotas. Despite limited yield increases
due to total water constraints, the adaptive diffusion mechanism in
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Equation 9 prioritizes water allocation to the early and late growth
stages, keeping WUE at 26.72-26.09 kg-hm>mm™. This ‘protect
the start and end, control the middle’ strategy aligns with the
findings of Painagan and Ella (2022). on alleviating seasonal
drought pressure through precise water scheduling. Notably, the
model automatically limits over-irrigation during rapid growth
under low quotas. This is likely due to oxygen reduction in
saturated soils causing root hypoxia, inhibiting root growth and
nutrient absorption, and thus impairing reproductive organ
development, which is consistent with Yang’s research (Yang
et al., 2023).

It should be noted that while the DR-DPINNs method performs
well in irrigation optimization, it has high computational complexity
and does not account for the sudden impacts of extreme weather
events on crop growth. In addition, model parameter calibration
relies on local experimental data. Future research should combine
multi - regional and multi - year data to verify its generalization
ability. It is recommended that future studies integrate climate change
scenarios to simulate adaptive irrigation strategies under future water
resource stresses and combine remote sensing data with crop models
to improve strategies. This can achieve real - time monitoring and
optimization of regional water dynamics. This approach is consistent
with the recommendations of Wang et al. (2024) and can provide
more comprehensive decision - making support for sustainable
agricultural development.

5 Conclusions

In the AquaCrop model, wp, cge, and psen are key factors for
biomass accumulation and yield. The eme parameter is crucial for
the formation of early canopy cover, while the sen parameter
significantly impacts late-stage canopy senescence and yield
formation. The cgc parameter significantly affects canopy
expansion and photosynthetic efficiency during the middle
growth stage, while the cdc parameter plays an important role in
late-stage canopy senescence and yield formation.

The model parameters obtained through sensitivity analysis are
capable of meeting the application requirements for simulating
biomass, canopy cover, soil water content, and yield in the
AquaCrop model. After optimization with DR-DPINNS, the
WUE of yield under different treatments was significantly
improved. In the experimental optimal scenario with a total
irrigation volume of 472 mm, the yield increased by 10.08% and
WUE improved by 11.15% compared to conventional methods.

The DR-DPINNs method, by combining physical mechanisms
and dynamic feature extraction, enhances the ability to solve high-
dimensional nonlinear irrigation optimization problems,
achieving simultaneous increases in yield and WUE. This study
confirms the high reliability of AquaCrop in simulating the
dynamic response of maize to water in northern Xinjiang and
demonstrates that its integration with DR-DPINNs provides a
theoretical method with mechanistic interpretability and decision-
making precision for optimizing irrigation schedules in
arid regions.
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