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Understanding vegetation stability is essential for evaluating ecosystem resilience
and informing adaptive land management under changing climatic conditions.
This study investigated the spatiotemporal patterns and climatic drivers of
vegetation stability across Jiangsu Province, China. Vegetation productivity was
assessed using the annual maximum kernel normalized difference vegetation
index, while stability was quantified through two indicators: proportional
variability (PV) and lag-one autocorrelation (AR). Results revealed that 15.77% of
the province experienced increases in PV and AR, indicating growing vegetation
instability, particularly in the south-central and southeastern regions. In contrast,
84.23% of the area showed declining PV and AR trends, suggesting enhanced
stability, mainly in the southwestern, northern, and central regions. Spatially, high
AR values were observed in western and southern Jiangsu, while high PV values
were concentrated along the eastern coast and near Lake Taihu. More stable
areas—characterized by low PV and AR—were primarily located in the central and
northwestern regions. An interpretable machine learning model identified
background solar radiation and its temporal variability as the dominant drivers
of vegetation stability, followed by vapor pressure deficit (VPD). Precipitation
variability had minimal influence. SHAP dependence plots revealed nonlinear
responses: moderate radiation and higher soil moisture promoted stability, while
elevated VPD and radiation variability reduced it. Most regions were in favorable
ecological condition, although ~20% were classified as poor and another ~20%
remained uncertain. These findings highlight the key roles of radiation and
moisture in regulating vegetation stability and offer insights for climate-resilient
land management in intensively cultivated landscapes.
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1 Introduction

Vegetation stability is a key attribute of ecosystem resilience,
particularly under increasing climatic variability and human-
induced disturbances (Pennekamp et al., 2018). Stable vegetation
systems maintain consistent productivity and recover efficiently
from perturbations, ensuring long-term delivery of essential
ecosystem services such as carbon sequestration, climate
regulation, and food production (Ives and Carpenter, 2007).
Conversely, vegetation instability may signal ecosystem
degradation, reduced agricultural reliability, and heightened
vulnerability to extreme climate events.

While previous studies have explored trends in vegetation
greenness and productivity (Li et al.,, 2024), the stability of peak
vegetation growth—especially its long-term trajectory and climate
sensitivity—remains poorly understood. Annual peak vegetation
activity, indicated by the maximum kernel-based normalized
difference vegetation index (kNDVI,,,.y), serves as a robust proxy
for seasonal photosynthetic potential and carbon uptake (Testolin
et al,, 2020). Unlike traditional NDVI, which saturates in high-
biomass regions, KNDVI applies a nonlinear transformation to red
and near-infrared reflectance, enhancing sensitivity across a wide
range of canopy conditions (Camps-Valls et al., 2021). This index
enables improved monitoring of vegetation performance across
heterogeneous landscapes (Feng et al., 2025; Yang and Liu, 2025).

Vegetation stability is not only relevant to ecological theory
(Scheffer et al., 2009), but also central to sustainable land
management and climate adaptation planning (Fernandez-Martinez
et al., 2023). Stable vegetation systems exhibit consistent productivity
and resistance to climate perturbations, thereby supporting long-term
ecosystem service provision (Donohue et al, 2013; Hoover et al,
2014; Sun et al,, 20225 Yao et al, 2024). In contrast, instability in
vegetation can signal ecosystem degradation, reduced agricultural
yield reliability, and increased vulnerability to extreme weather events
(Liu et al,, 2025a; Wang et al., 2025). However, measuring vegetation
stability is challenging due to its inherently multidimensional nature
(Donohue et al., 2013). Tt involves capturing both the amplitude of
interannual variability and the persistence of system dynamics,
including recovery from perturbations (Han et al., 2023; Bathiany
et al, 2024; Wang et al, 2024; Shi et al, 2025). These stability
dimensions can be quantified using time-series statistics such as
proportional variability (PV) and lag-one autocorrelation (AR). PV
measures the relative magnitude of interannual fluctuations, with
higher values indicating increased sensitivity to environmental
variability (P. Heath, 2006; Fernandez-Martinez et al, 2018). AR
reflects the memory effect, where higher values suggest slower
recovery and a tendency for the system to remain in altered states
(Dakos et al., 2015). When used jointly, PV and AR provide a more
complete characterization of ecosystem stability, enabling the
detection of early-warning signals of critical transitions or tipping
points (Fernandez-Martinez et al., 2023). Such indicators are
particularly valuable for monitoring systems under growing
environmental stress.

To better understand the climatic regulation of vegetation
stability, we applied an explainable machine learning framework
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combining Extreme Gradient Boosting (XGBoost) with SHapley
Additive exPlanations (SHAP). This approach allows for accurate
modeling of nonlinear relationships and interpretable
quantification of the contribution of individual climate variables
to vegetation stability patterns. In this study, we analyzed annual
KNDVI,,.x time series (1984-2023) to assess the spatiotemporal
dynamics of vegetation stability across Jiangsu Province. Our
objectives were to: (1) map the spatial distribution and trends of
vegetation stability; (2) identify regional hotspots of increasing
instability; and (3) quantify the relative importance of
background climate conditions and climate variability in shaping
stability patterns. By integrating remote sensing, time-series
metrics, and interpretable machine learning, this study advances
understanding of climate-vegetation interactions in intensively
managed subtropical landscapes and supports data-driven land-
use and climate adaptation planning.

2 Materials and methods

2.1 Study area

Jiangsu Province is located on the eastern coast of China (116°
E-122°E, 30°N-36°N), covering ~1.07 X 10° km? with flat terrain
and elevations mostly below 50 m (Figure 1). The region lies in the
northern Yangtze River Delta and features a dense river-lake
network, including the Yangtze and Huaihe Rivers and Lake
Taihu. It has a transitional monsoon climate between subtropical
and warm temperate zones, with annual temperatures of 13-16 °C
and precipitation of 600-1200 mm. As a key region in China’s
ecological and dual-carbon strategies, Jiangsu represents a typical
intensively managed agroecosystem. Its biophysical and
socioeconomic characteristics provide a representative context for
assessing vegetation stability in response to climate variability and
land-use change using remote sensing and climate data.

2.2 Datasets

In this study, we used the annual maximum kernel NDVI
(KNDVImax) as a proxy for maximum vegetation growth, which
is strongly correlated with biophysical vegetation properties and
serves as an indicator of photosynthetic activity (Gao et al,, 2019).
To assess the long-term stability of terrestrial vegetation in Jiangsu
Province, we employed a high-resolution annual vegetation index
dataset developed for the Yangtze River Delta region, covering the
period from 1984 to 2023 (Zeng et al,, 2024). The dataset provides
annual kNDVImax values at a spatial resolution of 30 m, enabling
detailed analysis of vegetation dynamics across a heterogeneous
landscape. The decision to use an annual dataset was motivated by
the need to capture long-term trends and regional patterns of
vegetation stability. By aggregating data annually, we obtained a
stable and robust representation of interannual variability, which
helped mitigate the influence of short-term fluctuations (Testolin
et al., 2020; Zou et al.,, 2025). Such fluctuations, which can arise
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FIGURE 1

Geographic information of Jiangsu Province. (a) Spatial distribution of land use patterns. (b) Multi-year annual mean temperature. (c) Multi-year

annual total precipitation.

from seasonal variations or extreme weather events, might obscure
broader, more significant trends in vegetation dynamics. This
approach was particularly beneficial for analyzing vegetation
stability, as it allowed for the identification of overall changes in
productivity and resilience over time. The annual maximum
KNDVT values reflect the peak productivity of each pixel during
the growing season, independent of within- and between-year
climatic variations. Although the length of the growing season
(LOS) varies with latitude, affecting total annual productivity, this
variability is not captured by our methodology (Testolin et al.,
2020). However, previous studies have shown that changes in the
length of the growing season were minimal (Jiao et al., 2020) and
contributed only marginally to the enhancement of vegetation
productivity (Liu et al., 2025b).

KNDVI is a recently developed remote sensing index that
improves upon the conventional NDVI by applying a nonlinear
kernel transformation (Equation 1), which enhances its sensitivity
to vegetation changes, particularly in high-biomass environments
where NDVT typically saturates (Camps-Valls et al, 2021). This
improvement allows for more accurate characterization of
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vegetation vigor and interannual variability across diverse land

cover types.

KNDVI = tanh(NDVI?) (1)

The vegetation dataset was derived from Landsat surface
reflectance imagery acquired by the TM, ETM+, and OLI sensors
from the United States Geological Survey (USGS). The imagery was
processed using a standardized workflow that included atmospheric
correction, cloud masking, and pixel-level quality control. Annual
maximum kNDVI values were extracted using a compositing
method that selected the highest-quality, peak-growing-season
observations for each pixel and year. The dataset covers the
entirety of Jiangsu Province as part of the broader Yangtze River
Delta region and has been extensively validated to ensure
consistency across sensors and temporal continuity. It enables
high-resolution assessment of vegetation condition and stability at
both local and regional scales, providing a robust empirical
foundation for analyzing spatiotemporal patterns and the climatic
and land-use drivers of vegetation stability.
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Climate variables, including air temperature, precipitation,
relative humidity, and shortwave radiation, were obtained from
daily meteorological observations at ground-based stations
provided by the China Meteorological Administration (http://
data.cma.cn/). These station data were interpolated into
continuous gridded surfaces using spatial interpolation methods,
including thin plate spline (ANUSPLIN) and inverse distance
weighting (IDW), with a power parameter of 2 and 10 nearest
neighbors (Tan et al., 2021).

Vapor Pressure Deficit (VPD) was calculated from temperature
and relative humidity (Equation 2) (Yuan et al., 2019). Annual soil
moisture data were obtained from the Global Land Evaporation
Amsterdam Model (GLEAM) (Miralles et al., 2025). All variables
were aggregated to annual means and resampled to match the 30 m
KNDVI grid using a nearest-neighbor method.

VPD = 0.611 x €775 x (100 — RH) )

where T and RH are the temperature (unit: °C) and relative
humidity (unit: %).

2.3 Stability analyses

We used two complementary indicators to assess distinct
dimensions of stability across Jiangsu Province, named temporal
variability and ecosystem resilience. Temporal variability was
measured using the proportional variability (PV) index, which
characterizes the average relative difference between all pairs of
annual values within a time series. Compared to conventional
metrics such as variance or coefficient of variation (CV), PV is
less sensitive to outliers and does not assume normality, making it
more robust for ecological time series analysis (Fernandez-
Martinez, Vicca et al.,, 2018). PV was calculated as follows
(Equation 3):

PV=— 2 Eizln—lzj:i+1n—|xi_xj} (3)
n(n-1) i+ X

X+X]

where x; and x; are the observed variable values in year i and j,
respectively; and 7 is the number of years. The range of PV values is
from 0 to 1, with higher values indicating greater temporal
variability and hence lower temporal stability.

Based on critical slowing down (CSD) theory, ecosystem
resilience was evaluated through temporal lag-one autocorrelation
(AR). AR can reflect the degree to which current vegetation
conditions are influenced by those of the preceding year, which
also measures the system’s capacity to recover from disturbances
and avoid critical transitions (Scheffer et al, 2009). AR was
calculated as follows (Equation 4):

E::ll (xt - k)(le - 92)
S = %)

where x; is the observed variable values in year t; X is the mean

AR = (4)

of the time series; and 7 is the number of years. The range of AR
values is from -1 to 1, noting that a higher AR value indicates
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stronger autocorrelation, often interpreted as a signal of weak
resilience or recovery capacity.

Prior to calculating PV and AR, a linear detrending procedure
was applied to each pixel-level time series. This step removed long-
term directional trends that could artificially inflate temporal
metrics, ensuring that the stability assessment reflects short-term
variability and persistence rather than long-term changes (Zhang
etal, 2022). Vegetation stability levels were then classified based on
the median (50th percentile) thresholds of PV and AR across all
land grid cells (Gu et al., 2025). Four stability regimes were defined
by combining the variability and memory components: (1) high PV
and high AR, indicating instability; (2) low PV and low AR,
indicating stability; and (3) mixed conditions—high PV with low
AR or low PV with high AR—representing intermediate stability.
These non-stable areas may warrant closer monitoring due to their
ambiguous stability states and potential susceptibility to
environmental stressors.

To identify hotspot regions of vegetation stability changes
across Jiangsu Province, we analyzed pixel-level temporal trends
in the two key stability metrics—proportional variability (PV) and
lag-one autocorrelation (AR)—using a moving window approach.
A 15-year moving window was applied to calculate trends in AR
and PV (AAR and APV) over the study period (1984-2023). This
window length, slightly less than half the total period, ensures
independence between the earliest and latest segments of the time
series and reduces the likelihood of false trend detection. The
moving window approach was also used to examine short- to
medium-term trends and fluctuations in proportional variability
(PV) and autocorrelation (AR), providing a temporal lens on
ecosystem stability transitions. By applying a 15-year moving
window, we were able to smooth short-term noise while
preserving meaningful interannual dynamics. This method
enhances the detection of temporal inflection points, especially in
rapidly changing agroecosystems.

The Theil-Sen robust regression method was used to estimate
monotonic trend slopes of AR and PV time series at pixel scale
(Mann, 1945; Sen, 1968). Compared to ordinary least squares
regression, the Theil-Sen estimator is less sensitive to outliers and
skewed distributions, making it well-suited for long-term ecological
data. An increasing trend in both AR and PV was interpreted as a
signal of declining vegetation stability, reflecting either greater
interannual variability (APV > 0) or reduced resilience (AAR > 0).
Conversely, decreasing trends in both metrics indicated
improving stability.

To further identify areas of significant change, we developed a
composite index (AAR PV) combining the normalized trends of AR
and PV using the following steps (Fernandez-Martinez et al., 2023):

1. Pixels with opposing trend directions (i.e., one positive, one
negative) were excluded;

2. AAR and APV were normalized by dividing each value by
the maximum absolute value of the respective variable
across all pixels;

3. The two normalized values were summed for each pixel to
obtain the composite AAR PV index.
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This approach integrates both the direction and magnitude of
changes while eliminating scale effects, enabling robust detection of
vegetation stability hotspots. Positive AAR PV values indicate
increased instability—characterized by rising variability and declining
resilience—while negative values suggest enhanced stability.

2.4 Attribution analyses

To investigate the drivers of spatial variation in vegetation
stability across Jiangsu Province, we employed an interpretable
machine learning approach. Specifically, we used the Extreme
Gradient Boosting (XGBoost) algorithm to model the
relationships between vegetation stability metrics—AAR, APV,
and the aggregated AAR PV index derived from kNDVI—and a
set of potential explanatory variables (Chen and Guestrin, 20165
Lartey et al,, 2021). To interpret model outputs, we applied SHapley
Additive exPlanations (SHAP), which quantify the marginal
contribution of each predictor based on game-theoretic principles
(Jabeur et al., 2024). The explanatory variables were grouped into
two categories: (1) climatic background conditions, represented by
long-term means of precipitation, air temperature, soil moisture,
vapor pressure deficit (VPD), and solar radiation; and (2) climatic
stability, represented by the temporal stability metrics (AAR, APV,
and AAR PV) of the same climate variables. Separate XGBoost
regression models were developed for each vegetation stability
metric, using 60% of the spatial samples for training and 40% for
validation. Hyperparameters were optimized using grid search with
five-fold cross-validation. Model performance was evaluated using
the coefficient of determination (R?). XGBoost was chosen for its
capacity to model complex, nonlinear interactions without
requiring assumptions about data distributions (Wang et al,
2024). A grid search was performed over a parameter space
covering learning_rate € {0.01, 0.05, 0.1}, max_depth € {4, 6, 8},
and n_estimators € {300, 500, 700}, with 5-fold cross-validation to
select the optimal model based on RMSE minimization. All model
settings, learning rate = 0.05, max_depth = 8, n_estimators = 500,
have been made available to facilitate reproducibility. SHAP
analysis was used to identify the relative importance of individual
predictors and to explore potential nonlinear and threshold
responses, such as diminishing returns or tipping points
associated with changing climatic conditions (Jin et al., 2025). All
models were trained on normalized variables. Data processing and
analysis were conducted using ArcGIS, MATLAB, and Python.

3 Results

3.1 Spatial patterns of variability and
resilience

Trends in annual maximum kNDVI revealed a widespread
greening across Jiangsu Province from 1984 to 2023
(Supplementary Figure S1). Over 70% of vegetated areas exhibited
positive trends, with 45.67% showing statistically significant
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FIGURE 2

Maps show the spatial pattern of mean (a) AR and (b) PV in Jiangsu.

increases, indicating enhanced vegetation productivity. In contrast,
27.46% of areas showed declining trends, but only 11.84% were
significant, suggesting limited or spatially variable degradation.
Notably, significant increases were concentrated in northern
Jiangsu, likely linked to intensified agriculture and improved
irrigation, while declines were mainly observed in the south,
potentially associated with urban expansion and climatic constraints.

Figure 2 shows the spatial distribution of temporal variability
and resilience in vegetation productivity across Jiangsu Province.
High lag-one autocorrelation (AR > 0.3), indicating low resilience,
was observed in approximately 25% of the region, mainly in western
and southern areas (Figure 2a). In contrast, AR values were
generally lower near urban centers, suggesting reduced ecological
memory under urbanization pressure. Areas with high AR tended
to be more vulnerable to external disturbances, increasing the
likelihood of abrupt ecological shifts. The spatial pattern of
proportional variability (PV) differed markedly (Figure 2b). Low
PV values (< 0.2), reflecting stable productivity, were concentrated
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Spatial distribution of stability level in Jiangsu defined by the spatial percentage of mean AR and PV.

in central, southeastern, and northwestern Jiangsu. Moderate PV
levels (0.3-0.4) appeared in the southwest and far northwest, while
high PV values (> 0.4), indicating elevated interannual variability,
were mainly distributed along the eastern coast and southern
margins near Lake Taihu.

Based on the median thresholds of AR and PV, three vegetation
stability regimes were identified: stable, moderately stable, and
unstable ecosystems (Figure 3). AR is commonly used to assess
vegetation resilience and recovery potential, while PV reflects
temporal variability partially influenced by ecological memory.
Despite their conceptual differences, AR and PV exhibited spatial
concordance in certain regions (Supplementary Figure S2). Stable
areas, defined by low AR and PV values, were primarily located in
the northwest, southeast, and parts of central Jiangsu, comprising
approximately 32% of vegetated land. These areas showed low
variability and high resilience, indicating stronger capacity to
maintain ecological function under climate change. Unstable
regions, with both high AR and PV, also accounted for about
32% of the area and were concentrated in the southwest, northwest,
and areas near major water bodies. These zones exhibited high
variability and low recovery potential. Moderately stable regions,
where only one indicator exceeded the threshold, were widely
distributed, particularly across central and northeastern Jiangsu.

3.2 Hot-spots and risk areas of
destabilization

Vegetation productivity in Jiangsu Province showed a general
upward trend over the past four decades. We defined the hotspots of
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destabilization as increased AR and PV (AR? PV1), and cold spots
as decreased AR and PV (AR| PV]). Lag-one autocorrelation (AR)
increased in 34.22% of vegetated pixels, with 6% exhibiting
statistically significant increases (Figure 4a). In contrast, 65.78%
of pixels showed decreasing AR trends, 27.56% of which were
significant. Increases in AR were mainly observed in central
regions and along major rivers, while declines occurred primarily
near Lake Taihu and in the northwest. For proportional variability
(PV), 27.11% of the region exhibited increasing trends, with 4% of
pixels showing significant changes (Figure 4b). Notable PV
increases were concentrated in the south-central region, whereas
significant decreases occurred in the southwest. Joint analysis of
AAR and APV trends revealed that 57% of vegetated areas exhibited
consistent directional changes in both indicators, highlighting
hotspots of vegetation stability shifts (Supplementary Figure S3).
Among these, 15.77% of hotspots—mainly in south-central and
southeastern Jiangsu—showed concurrent increases in AR and PV,
indicating rising instability. Although these areas had relatively low
baseline AR and PV values, the synchronized upward trends suggest
an elevated risk of destabilization Figure 4c. In contrast, 84.23% of
hotspot areas exhibited simultaneous declines in both indicators,
suggesting enhanced stability. These areas were primarily
distributed across the southwestern, northern, and central
regions. The joint reductions in PV and AR reflect improved
vegetation resilience and may indicate a strengthening of
ecosystem carbon sequestration capacity across much of the
province. Spatial autocorrelation analysis based on Moran’s I
confirmed significant spatial clustering in vegetation stability
metrics, consistent with the identified patterns of hot-spots and
risk areas of destabilization (Supplementary Figure S5).
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FIGURE 4

Hot-spots of instability in Jiangsu indicated by the consistent
increase or decrease in both AAR and APV. spatial distribution of (a)
AAR, (b) APV, and (c) aggregated AAR PV.

3.3 Controls of the stability changes
To identify the drivers of vegetation stability, we developed

three interpretable machine learning models to evaluate the relative
importance of key climatic variables. Model performance, indicated
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by explained variance, ranged from 55% to 65% (Figure 5). SHAP
summary plots revealed that background solar radiation and
climatic stability were the most influential predictors, jointly
contributing well above the theoretical mean importance of 20%
(Supplementary Figure S4). Background vapor pressure deficit
(VPD) ranked next, explaining approximately 10% of the
variance. In contrast, precipitation stability metrics consistently
showed low importance (< 5%) across all stability indices. Among
secondary variables, the effects varied by metric: background
temperature strongly influenced AR but had limited effect on PV
and AAR PV, whereas background soil moisture primarily affected
AAR PV.

Relationships between the top three predictors and vegetation
stability metrics are shown in Figure 6. SHAP dependence plots
illustrate both the direction and magnitude of predictor effects.
Several variables exhibited nonlinear or threshold-like responses.
For instance, SHAP values for AR declined with increasing
background radiation, indicating enhanced resilience under
higher radiation levels. For PV and AAR PV, radiation effects
were non-monotonic—initially increasing, then decreasing, and
rising again—suggesting that moderate radiation levels optimize
stability. VPD showed a consistent destabilizing effect, with SHAP
values increasing alongside VPD intensity. In contrast, SHAP values
for AAR PV declined with increasing soil moisture, highlighting the
stabilizing role of moisture availability. Radiative stability (AR, PV
or AR PV in the corresponding stability indices) exhibited
uniformly negative SHAP values across all metrics, underscoring
its consistent stabilizing influence on vegetation productivity.
Specifically, Radiative Stability (srad.ar) represents the persistence
of solar radiation influencing ecosystem resilience, Radiative
Stability (srad.pv) reflects radiation variability shaping short-term
fluctuations, and Radiative Stability (srad.ar pv) integrates both
components to describe overall ecosystem stability.

4 Discussion

4.1 Spatial patterns for vegetation stability
and explanations

Our analysis revealed that while the agroecosystem productivity
in Jiangsu Province was generally increasing over the past 40 years
(Supplementary Figure S1), the stability of this productivity showed
spatial heterogeneity and signs of potential deterioration in
some regions.

Regions with significant increases in AR were primarily located
in central Jiangsu and along major river corridors, whereas areas
with declining AR were concentrated near Lake Taihu and in the
northwest. This spatial pattern reflects differential responses of
vegetation systems to climate changes under varying ecological
settings and anthropogenic pressures. The central and riverine
zones were characterized by intensive agricultural activity and
rapid urbanization, with cropping systems dominated by rice and
wheat. These regions were highly sensitive to climatic fluctuations
due to their high planting intensity and frequent human
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interventions—such as adjustments in crop rotation schemes,
irrigation practices, and land conversion (Yang et al., 2020). The
amplification of AR may signal a reduction in ecological resilience,
as it indicates slower recovery from disturbances and potential
regime shifts under persistent stress (Bathiany et al, 2024). In
contrast, areas surrounding Lake Taihu and parts of the northwest
—dominated by wetlands, natural vegetation, and peri-urban green
spaces—showed decreasing AR trends. A decreasing AR may
suggest enhanced system resilience, though this relationship
should be interpreted cautiously and verified through long-term
monitoring. Areas with increasing AR were typically associated
with high cropland density, while decreasing AR corresponded to
regions dominated by natural vegetation, water bodies, or ecological
protection zones. These findings suggested that regions with rising
AR, especially in central and river-adjacent areas, should be
prioritized as potential instability hotspots for targeted
monitoring and adaptive land management.

In southwestern Jiangsu, PV exhibited a significant decline,
indicating enhanced interannual stability. The regional topographic
and policy complexity—featuring hilly and low mountainous
terrain—combined with active afforestation, red-line zoning,
wetland conservation, and improved urban greening, has
contributed to the recovery and stabilization of natural vegetation
(Chuai et al., 2015; Zhong et al., 2025). Moreover, abundant water
resources and the presence of a dense river-lake network provide
strong hydrological buffering, further dampening the impacts of
interannual climate fluctuations (Yang et al., 2022). By contrast, the
south-central region experienced a marked increase in PV,
suggesting increased vegetation instability. This can be attributed
to the dual pressures of intensive farmland use and expanding
urban infrastructure (Jiang et al.,, 2013). The area is dominated by
highly productive cropland with high cropping frequency and
dynamic management regimes, making vegetation highly sensitive
to environmental changes. Additionally, the expansion of urban
belts and transport corridors has introduced “edge effects” at the
rural-urban interface, which disrupt microclimates and amplify
temporal fluctuations in vegetation dynamics (Hou et al., 2022; Wei
et al., 2023). Climatically, the south-central region lies in the
subtropical-temperate transition zone, making it especially
vulnerable to radiation and precipitation variability. In contrast,
the southwest, situated at the confluence of mountainous and
aquatic landscapes, benefits from greater ecological containment
and climate buffering, further stabilizing vegetation productivity.
These contrasting patterns underscore the importance of
considering both ecological context and anthropogenic intensity
when assessing vegetation stability. The divergent trends in AR and
PV reflect not only biophysical drivers but also management
legacies and spatial development trajectories. From a policy
perspective, central and south-central Jiangsu—identified as areas
of rising AR and PV—require targeted interventions to reduce
sensitivity and enhance resilience, such as crop diversification,
ecological zoning, and the strategic expansion of natural buffers.
Meanwhile, regions showing stability improvement should be
protected as reference zones and resilience reservoirs under
climate change.
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Approximately 15.77% of the vegetated area—primarily located
in the south-central and southeastern regions—was identified as
potential instability hotspots. Notably, while the long-term average
AR and PV values in these areas remained relatively low, their
simultaneous upward trends suggest an emerging risk of
destabilization in ecosystems that were previously stable. In
contrast, 84.23% of the region, including large portions of the
southwest, north, and central Jiangsu, exhibited concurrent
declines in AR and PV, indicating enhanced ecosystem stability.
These areas were mostly characterized by moderate baseline
stability, and the observed trend implies that they are
transitioning toward a more resilient state. The co-occurrence of
decreasing interannual variability (PV-) and enhancing recovery
capacity (AR-) suggested that vegetation productivity in these
regions was becoming more resistant to disturbances and better
able to maintain carbon sequestration functions over time. These
findings highlighted the spatial heterogeneity of vegetation stability
trajectories within an intensively cultivated and rapidly developing
region. While most areas show signs of stabilization, the presence of
localized destabilization trends in the south-central and
southeastern regions warrants close attention. Targeted
monitoring and adaptive land-use management in these emerging
hotspots are essential to prevent potential ecological degradation
and to sustain long-term ecosystem functioning under increasing
environmental pressures (Sparrow et al., 2020).

4.2 ldentification of the nonlinear climate-
driven mechanisms

The SHAP analysis results further confirmed the critical role of
solar radiation in regulating the stability of farmland vegetation
(Figure 5). In the XGBoost models explaining both variability and
resilience of vegetation productivity, radiation-related variables
consistently ranked among the top predictors across the
dominant farmland regions, indicating that solar radiation is a
key driver of stability changes. SHAP summary plots revealed that
higher mean annual solar radiation and increased interannual
variability in radiation were both associated with elevated PV and
AR values—implying a higher degree of temporal fluctuation and
memory, and thus greater instability in the vegetation system. These
results align with crop physiological principles: large fluctuations in
solar radiation can disrupt photosynthesis and biomass
accumulation, especially during sensitive phenological stages,
leading to increased year-to-year variability and reduced system
resilience. SHAP dependence plots illustrated a clear nonlinear
threshold effect (Figure 6). Stability indicators remained relatively
unresponsive to moderate variability in solar radiation; however,
once radiation levels exceeded a critical threshold, both PV and AR
values increased markedly. This non-linear response pattern
suggests the existence of tipping-point behavior within
agroecosystems—where incremental increases in external stressors
can abruptly shift system dynamics when critical thresholds are
crossed (Dakos et al., 2019; Gurgel et al, 2021). Such threshold
effects, long postulated in the ecological resilience literature, are
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here empirically supported in a regional cropland context
(Berryman, 1983; Groffman et al.,, 2006; Hillebrand et al., 2020).
These findings underscore the necessity of integrating radiation
thresholds into agroecological risk assessment frameworks and
early-warning systems to enhance the resilience of intensively
managed agricultural landscapes.

Our results reveal that radiative stability and vapor pressure
deficit (VPD) are dominant drivers of vegetation stability across
Jiangsu. These relationships are consistent across multiple stability
metrics and regions. From a mechanistic perspective, stable solar
radiation supports consistent photosynthetic activity, canopy
development, and plant energy balance, especially in intensively
managed croplands where productivity is often light-limited. In
contrast, fluctuations in radiation—caused by changing cloud
patterns or anthropogenic aerosols—may result in photosynthetic
inefficiencies and yield volatility. Elevated VPD, often associated with
warming and drying trends, limits stomatal opening, reduces
transpiration efficiency, and disrupts carbon assimilation,
particularly during critical growth stages (Yuan et al,, 2019). These
physiological constraints increase interannual variability and reduce
the system’s ability to recover from stress, thus weakening ecosystem
stability (Yuan et al, 2025). While our SHAP-based framework
provides interpretable insights into variable importance, we
acknowledge that the relationships are fundamentally correlational.
Establishing causal links would require the integration of process-
based ecosystem models, controlled experiments, or emerging causal
inference methods in machine learning. These avenues represent
important directions for future research.

Our findings notably differed from other studies, which typically
identify temperature as the dominant driver of vegetation stability
(Forzieri et al.,, 2022; Smith et al., 2022; Fernandez-Martinez et al.,
2023; Smith and Boers, 2023; Bathiany et al, 2024). In contrast,
farmland ecosystems in Jiangsu exhibit heightened sensitivity to solar
radiation, aligning with regional findings (Zhou et al., 2020; Gong
et al, 2024; Wang et al, 2025; Zhang et al, 2025). This regional
distinction is rooted in the ecological characteristics of cropland
systems and their dependence on radiation-driven processes. First,
primary productivity in these systems is strongly regulated by
photosynthetically active radiation (PAR), which directly determines
crop photosynthetic rates and yield potential (Wang et al., 2025). As
crops in Jiangsu—such as rice and wheat—undergo their critical
growth stages during peak radiation periods, anomalies in radiation
during these windows can significantly impact vegetation vigor and
stability. This aligns with studies showing that radiation anomalies
during the reproductive stages of crops can lead to yield failure and
ecosystem stress, even in the absence of extreme temperature or
precipitation events (Zhan et al., 2019; Fu et al., 2022; Guo et al,
2024; Le Roux et al., 2024; Edmundo et al., 2025; Siddique et al., 2025).
Second, farmland ecosystems are structurally simple and possess low
functional redundancy, which limits their capacity to buffer against
environmental perturbations. Unlike natural ecosystems with diverse
species assemblages and complex feedback mechanisms, croplands are
typically monocultures lacking internal ecological regulation. This
amplifies the influence of external drivers, allowing radiation
variability to exert a more direct and pronounced destabilizing effect
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(Serreze and Barry, 2011; Baldocchi et al., 2020). Furthermore, the
close coupling between crop phenology and seasonal radiation
patterns increases the vulnerability of agroecosystems to solar
anomalies (Wang et al., 2012; Liu et al, 2025). In regions such as
Jiangsu, where climatic conditions already fluctuate at the subtropical-
temperate boundary, this tight dependence increases the risk of
decoupling between crop development and environmental
suitability. In addition to direct effects on physiological processes,
radiation may also influence vegetation stability through indirect
pathways, particularly by modifying surface energy balance and soil
water availability (Wang et al., 2025). Increased solar radiation
enhances evapotranspiration, which can reduce soil moisture
availability, especially in the absence of adequate precipitation or
irrigation (Mo et al., 2015; Sun et al., 2022). This leads to a compound
effect where radiation not only directly affects photosynthesis but also
indirectly affects water stress—both of which contribute to vegetation
instability (Mo et al, 2015; Sun et al., 2022; Liu et al., 2025¢). This
radiation-moisture-stability linkage is particularly relevant under
future climate scenarios characterized by higher radiation loads and
increasing drought frequency, suggesting that radiative drivers may
become even more critical under warming trends (Zeng et al., 2023; Li
et al., 2024; Liu et al., 2025d).

4.3 Assessing ecosystem state by coupling
functioning and stability

Our findings provide valuable insights for ecosystem assessment
and the development of evidence-based restoration strategies.
Conventional evaluation approaches often emphasize short-term
responses to climatic disturbances, overlooking long-term ecosystem
dynamics (Yu et al, 2024). We further classified vegetated areas into
five ecosystem states by integrating both ecosystem functioning (EF),
as indicated by the Theil-Sen slope of KNDVI, and ecosystem stability
(ES), derived from proportional variability (PV) and autocorrelation
(AR). This classification framework allowed us to distinguish between
ideal, acceptable, poor, abysmal, and unknown states based on
whether EF and ES were improving, declining, or stable
(Supplementary Table S1). This multi-dimensional typology was
used to interpret the ecological significance of observed trends and
to provide targeted management recommendations aligned with
regional ecological policies. Results show that the majority of
vegetation ecosystems are in favorable condition, with 44% classified
as ideal and 17% as acceptable, primarily in northern and
southwestern Jiangsu (Figure 7). In contrast, less than 20% of the
area exhibited unsatisfactory conditions—6% in abysmal and 11% in
poor condition—mainly located in the southeast. An additional 20%
of regions, largely along the Yangtze River, remain unclassified due to
ambiguous ecosystem states.

Policy recommendations are proposed for the four discernible
ecosystem states. In areas with ideal conditions, current ecological
integrity should be preserved through natural restoration planning
and long-term management. Where stability has declined but
functioning remains intact, targeted measures to enhance resilience
are warranted, particularly under increasing climate pressure. In
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Spatial patterns of the ecosystem state through coupling between the ecosystem functioning (AkNDVI,,) and ecosystem stability (AAR PV) over

Jiangsu province.

regions with declining functioning and uncertain stability, restoration
efforts should emphasize species selection tailored to site-specific
conditions. For ecosystems exhibiting declines in both functioning
and stability, integrated strategies are needed to simultaneously restore
ecological processes and improve system resilience. Lastly, for areas
showing no significant change in either metric, sustained in-situ
monitoring is recommended to support early detection of future shifts.

4.4 Limitations of this study

Despite the robust analytical framework and consistent results
across multiple stability indicators, several limitations should be
acknowledged to contextualize the findings and guide future
improvements. First, the 30 m resolution climate datasets were
generated through spatial interpolation of meteorological station
records, primarily to match the spatial granularity of remote
sensing-derived vegetation indices. While this approach ensures
spatial consistency, it inevitably smooths microclimatic variability,
particularly in areas with complex terrain or fragmented land cover.
Consequently, fine-scale driver analyses may be subject to spatial
uncertainty, especially in transitional agro-urban zones. Second, the
stability indices were computed using annual maximum values of
vegetation productivity (KNDVI), which may obscure intra-annual
dynamics and important phenological transitions. In particular, the
omission of Length of Growing Season (LOS) as an explicit factor
limits the capacity to capture seasonal variations that influence
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vegetation stability. LOS, driven by climate warming or agricultural
management, can alter both resilience and variability patterns. For
instance, an extended growing season may initially enhance
productivity but also increase exposure to late-season drought or
disease stress; conversely, a shortened season may heighten
interannual fluctuations in cropping systems. Future research should
incorporate phenological metrics—such as start-of-season (SOS), end-
of-season (EOS), or growing degree days—derived from high-
temporal-resolution NDVT or land surface temperature datasets to
improve the ecological fidelity of stability assessments. Third, while the
XGBoost-SHAP framework provides strong explanatory power and
interpretability, its reliability ultimately depends on the quality of
input data and the availability of ground observations. The absence of
high-frequency, in-situ validation data limits the reproducibility and
ecological calibration of the model in certain sub-regions. Fourth,
non-climatic influences, such as urbanization, land-use change, and
agricultural intensification, were not explicitly included in the driver
model. This omission constrains the capacity to disentangle the
relative contributions of human and climatic factors to vegetation
stability. Given the intensively managed landscapes of Jiangsu
Province, integrating human drivers using land-use trajectory
datasets, urban expansion maps, or socio-economic indicators
would be essential for future studies aiming to assess coupled
human-natural system dynamics. Finally, while some trends, such
as decreasing autocorrelation (AR), are interpreted as indicative of
enhanced ecosystem resilience, such conclusions must be treated with
caution. Theoretical and empirical validation is needed to confirm the
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ecological meaning of temporal metrics like AR and PV, particularly
across diverse vegetation types and disturbance regimes. Taken
together, addressing these limitations in future work will help
advance a more comprehensive and ecologically grounded
understanding of vegetation stability, particularly in regions facing
complex climate and anthropogenic pressures.

5 Conclusion

This study assessed the temporal stability of vegetation
productivity across Jiangsu Province over the past four decades
using aggregated stability indices, spatial mapping, and hotspot
identification. Stable regions—characterized by low proportional
variability (PV) and low autocorrelation (AR)—were concentrated in
the northwest, southeast, and parts of central Jiangsu. In contrast,
unstable areas, where both PV and AR were elevated, were primarily
located in the southwest, northwest, and along major rivers and lakes.
Moderately stable zones, defined by instability in either PV or AR,
were widely distributed across central and northeastern areas. Trend
analysis showed that 34.22% of vegetated pixels experienced increasing
AR and 27.11% exhibited rising PV, indicating localized risks of
destabilization. Instability hotspots were mainly located in the south-
central and southeastern regions, covering 15.77% of the vegetated
area. In contrast, 84.23% of the province showed simultaneous declines
in AR and PV—especially in the southwest, north, and central regions
—reflecting broad improvements in ecosystem stability and potential
enhancement of regional carbon sequestration capacity. Interpretable
machine learning models identified background solar radiation and its
temporal variability as the dominant drivers of vegetation stability,
exerting nonlinear effects across all metrics. Other climatic variables—
such as temperature, soil moisture, and vapor pressure deficit (VPD)—
showed metric-specific influences. Notably, both radiative instability
and elevated background VPD were consistently associated with
reduced resilience, particularly in intensively managed cropland
systems. Overall, most areas were classified as ecologically favorable,
while approximately 20% were in poor condition and another 20%
remained uncertain. These findings improve our understanding of
vegetation stability under coupled climate and land-use pressures and
offer guidance for ecological monitoring, climate adaptation, and
precision management in rapidly urbanizing, climate-sensitive
agroecosystems such as Jiangsu Province.
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