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Information and Earth Observation (ITC), University of Twente, AE Enschede, Netherlands
Understanding vegetation stability is essential for evaluating ecosystem resilience

and informing adaptive land management under changing climatic conditions.

This study investigated the spatiotemporal patterns and climatic drivers of

vegetation stability across Jiangsu Province, China. Vegetation productivity was

assessed using the annual maximum kernel normalized difference vegetation

index, while stability was quantified through two indicators: proportional

variability (PV) and lag-one autocorrelation (AR). Results revealed that 15.77% of

the province experienced increases in PV and AR, indicating growing vegetation

instability, particularly in the south-central and southeastern regions. In contrast,

84.23% of the area showed declining PV and AR trends, suggesting enhanced

stability, mainly in the southwestern, northern, and central regions. Spatially, high

AR values were observed in western and southern Jiangsu, while high PV values

were concentrated along the eastern coast and near Lake Taihu. More stable

areas—characterized by low PV and AR—were primarily located in the central and

northwestern regions. An interpretable machine learning model identified

background solar radiation and its temporal variability as the dominant drivers

of vegetation stability, followed by vapor pressure deficit (VPD). Precipitation

variability had minimal influence. SHAP dependence plots revealed nonlinear

responses: moderate radiation and higher soil moisture promoted stability, while

elevated VPD and radiation variability reduced it. Most regions were in favorable

ecological condition, although ~20% were classified as poor and another ~20%

remained uncertain. These findings highlight the key roles of radiation and

moisture in regulating vegetation stability and offer insights for climate-resilient

land management in intensively cultivated landscapes.
KEYWORDS

vegetation stability, explainable machine learning (XAI), climate–vegetation interaction,
Jiangsu province, resilience, temporal variability, extreme gradient boosting(XGBoost)
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1 Introduction

Vegetation stability is a key attribute of ecosystem resilience,

particularly under increasing climatic variability and human-

induced disturbances (Pennekamp et al., 2018). Stable vegetation

systems maintain consistent productivity and recover efficiently

from perturbations, ensuring long-term delivery of essential

ecosystem services such as carbon sequestration, climate

regulation, and food production (Ives and Carpenter, 2007).

Conversely, vegetation instability may signal ecosystem

degradation, reduced agricultural reliability, and heightened

vulnerability to extreme climate events.

While previous studies have explored trends in vegetation

greenness and productivity (Li et al., 2024), the stability of peak

vegetation growth—especially its long-term trajectory and climate

sensitivity—remains poorly understood. Annual peak vegetation

activity, indicated by the maximum kernel-based normalized

difference vegetation index (kNDVImax), serves as a robust proxy

for seasonal photosynthetic potential and carbon uptake (Testolin

et al., 2020). Unlike traditional NDVI, which saturates in high-

biomass regions, kNDVI applies a nonlinear transformation to red

and near-infrared reflectance, enhancing sensitivity across a wide

range of canopy conditions (Camps-Valls et al., 2021). This index

enables improved monitoring of vegetation performance across

heterogeneous landscapes (Feng et al., 2025; Yang and Liu, 2025).

Vegetation stability is not only relevant to ecological theory

(Scheffer et al., 2009), but also central to sustainable land

management and climate adaptation planning (Fernández-Martıńez

et al., 2023). Stable vegetation systems exhibit consistent productivity

and resistance to climate perturbations, thereby supporting long-term

ecosystem service provision (Donohue et al., 2013; Hoover et al.,

2014; Sun et al., 2022; Yao et al., 2024). In contrast, instability in

vegetation can signal ecosystem degradation, reduced agricultural

yield reliability, and increased vulnerability to extreme weather events

(Liu et al., 2025a; Wang et al., 2025). However, measuring vegetation

stability is challenging due to its inherently multidimensional nature

(Donohue et al., 2013). It involves capturing both the amplitude of

interannual variability and the persistence of system dynamics,

including recovery from perturbations (Han et al., 2023; Bathiany

et al., 2024; Wang et al., 2024; Shi et al., 2025). These stability

dimensions can be quantified using time-series statistics such as

proportional variability (PV) and lag-one autocorrelation (AR). PV

measures the relative magnitude of interannual fluctuations, with

higher values indicating increased sensitivity to environmental

variability (P. Heath, 2006; Fernández-Martıńez et al., 2018). AR

reflects the memory effect, where higher values suggest slower

recovery and a tendency for the system to remain in altered states

(Dakos et al., 2015). When used jointly, PV and AR provide a more

complete characterization of ecosystem stability, enabling the

detection of early-warning signals of critical transitions or tipping

points (Fernández-Martıńez et al., 2023). Such indicators are

particularly valuable for monitoring systems under growing

environmental stress.

To better understand the climatic regulation of vegetation

stability, we applied an explainable machine learning framework
Frontiers in Plant Science 02
combining Extreme Gradient Boosting (XGBoost) with SHapley

Additive exPlanations (SHAP). This approach allows for accurate

modeling of nonlinear relationships and interpretable

quantification of the contribution of individual climate variables

to vegetation stability patterns. In this study, we analyzed annual

kNDVImax time series (1984–2023) to assess the spatiotemporal

dynamics of vegetation stability across Jiangsu Province. Our

objectives were to: (1) map the spatial distribution and trends of

vegetation stability; (2) identify regional hotspots of increasing

instability; and (3) quantify the relative importance of

background climate conditions and climate variability in shaping

stability patterns. By integrating remote sensing, time-series

metrics, and interpretable machine learning, this study advances

understanding of climate–vegetation interactions in intensively

managed subtropical landscapes and supports data-driven land-

use and climate adaptation planning.
2 Materials and methods

2.1 Study area

Jiangsu Province is located on the eastern coast of China (116°

E–122°E, 30°N–36°N), covering ~1.07 × 105 km2 with flat terrain

and elevations mostly below 50 m (Figure 1). The region lies in the

northern Yangtze River Delta and features a dense river–lake

network, including the Yangtze and Huaihe Rivers and Lake

Taihu. It has a transitional monsoon climate between subtropical

and warm temperate zones, with annual temperatures of 13–16 °C

and precipitation of 600–1200 mm. As a key region in China’s

ecological and dual-carbon strategies, Jiangsu represents a typical

intensively managed agroecosystem. Its biophysical and

socioeconomic characteristics provide a representative context for

assessing vegetation stability in response to climate variability and

land-use change using remote sensing and climate data.
2.2 Datasets

In this study, we used the annual maximum kernel NDVI

(kNDVImax) as a proxy for maximum vegetation growth, which

is strongly correlated with biophysical vegetation properties and

serves as an indicator of photosynthetic activity (Gao et al., 2019).

To assess the long-term stability of terrestrial vegetation in Jiangsu

Province, we employed a high-resolution annual vegetation index

dataset developed for the Yangtze River Delta region, covering the

period from 1984 to 2023 (Zeng et al., 2024). The dataset provides

annual kNDVImax values at a spatial resolution of 30 m, enabling

detailed analysis of vegetation dynamics across a heterogeneous

landscape. The decision to use an annual dataset was motivated by

the need to capture long-term trends and regional patterns of

vegetation stability. By aggregating data annually, we obtained a

stable and robust representation of interannual variability, which

helped mitigate the influence of short-term fluctuations (Testolin

et al., 2020; Zou et al., 2025). Such fluctuations, which can arise
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from seasonal variations or extreme weather events, might obscure

broader, more significant trends in vegetation dynamics. This

approach was particularly beneficial for analyzing vegetation

stability, as it allowed for the identification of overall changes in

productivity and resilience over time. The annual maximum

kNDVI values reflect the peak productivity of each pixel during

the growing season, independent of within- and between-year

climatic variations. Although the length of the growing season

(LOS) varies with latitude, affecting total annual productivity, this

variability is not captured by our methodology (Testolin et al.,

2020). However, previous studies have shown that changes in the

length of the growing season were minimal (Jiao et al., 2020) and

contributed only marginally to the enhancement of vegetation

productivity (Liu et al., 2025b).

kNDVI is a recently developed remote sensing index that

improves upon the conventional NDVI by applying a nonlinear

kernel transformation (Equation 1), which enhances its sensitivity

to vegetation changes, particularly in high-biomass environments

where NDVI typically saturates (Camps-Valls et al., 2021). This

improvement allows for more accurate characterization of
Frontiers in Plant Science 03
vegetation vigor and interannual variability across diverse land

cover types.

kNDVI = tanh(NDVI2) (1)

The vegetation dataset was derived from Landsat surface

reflectance imagery acquired by the TM, ETM+, and OLI sensors

from the United States Geological Survey (USGS). The imagery was

processed using a standardized workflow that included atmospheric

correction, cloud masking, and pixel-level quality control. Annual

maximum kNDVI values were extracted using a compositing

method that selected the highest-quality, peak-growing-season

observations for each pixel and year. The dataset covers the

entirety of Jiangsu Province as part of the broader Yangtze River

Delta region and has been extensively validated to ensure

consistency across sensors and temporal continuity. It enables

high-resolution assessment of vegetation condition and stability at

both local and regional scales, providing a robust empirical

foundation for analyzing spatiotemporal patterns and the climatic

and land-use drivers of vegetation stability.
FIGURE 1

Geographic information of Jiangsu Province. (a) Spatial distribution of land use patterns. (b) Multi-year annual mean temperature. (c) Multi-year
annual total precipitation.
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Climate variables, including air temperature, precipitation,

relative humidity, and shortwave radiation, were obtained from

daily meteorological observations at ground-based stations

provided by the China Meteorological Administration (http://

data.cma.cn/). These station data were interpolated into

continuous gridded surfaces using spatial interpolation methods,

including thin plate spline (ANUSPLIN) and inverse distance

weighting (IDW), with a power parameter of 2 and 10 nearest

neighbors (Tan et al., 2021).

Vapor Pressure Deficit (VPD) was calculated from temperature

and relative humidity (Equation 2) (Yuan et al., 2019). Annual soil

moisture data were obtained from the Global Land Evaporation

Amsterdam Model (GLEAM) (Miralles et al., 2025). All variables

were aggregated to annual means and resampled to match the 30 m

kNDVI grid using a nearest-neighbor method.

VPD = 0:611� e
17:27�T
T+237:3 � (100 − RH) (2)

where T and RH are the temperature (unit: °C) and relative

humidity (unit: %).
2.3 Stability analyses

We used two complementary indicators to assess distinct

dimensions of stability across Jiangsu Province, named temporal

variability and ecosystem resilience. Temporal variability was

measured using the proportional variability (PV) index, which

characterizes the average relative difference between all pairs of

annual values within a time series. Compared to conventional

metrics such as variance or coefficient of variation (CV), PV is

less sensitive to outliers and does not assume normality, making it

more robust for ecological time series analysis (Fernández-

Martıńez, Vicca et al., 2018). PV was calculated as follows

(Equation 3):

PV =
2

n(n − 1)oi = 1n − 1oj = i + 1n
xi − xj
�
�

�
�

xi + xj
(3)

where xi and xj are the observed variable values in year i and j,

respectively; and n is the number of years. The range of PV values is

from 0 to 1, with higher values indicating greater temporal

variability and hence lower temporal stability.

Based on critical slowing down (CSD) theory, ecosystem

resilience was evaluated through temporal lag-one autocorrelation

(AR). AR can reflect the degree to which current vegetation

conditions are influenced by those of the preceding year, which

also measures the system’s capacity to recover from disturbances

and avoid critical transitions (Scheffer et al., 2009). AR was

calculated as follows (Equation 4):

AR = o
n−1
t=1 (xt − �x)(xt+1 − �x)

on
t=1(xt − �x)2

(4)

where xt is the observed variable values in year t; �x is the mean

of the time series; and n is the number of years. The range of AR

values is from -1 to 1, noting that a higher AR value indicates
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stronger autocorrelation, often interpreted as a signal of weak

resilience or recovery capacity.

Prior to calculating PV and AR, a linear detrending procedure

was applied to each pixel-level time series. This step removed long-

term directional trends that could artificially inflate temporal

metrics, ensuring that the stability assessment reflects short-term

variability and persistence rather than long-term changes (Zhang

et al., 2022). Vegetation stability levels were then classified based on

the median (50th percentile) thresholds of PV and AR across all

land grid cells (Gu et al., 2025). Four stability regimes were defined

by combining the variability and memory components: (1) high PV

and high AR, indicating instability; (2) low PV and low AR,

indicating stability; and (3) mixed conditions—high PV with low

AR or low PV with high AR—representing intermediate stability.

These non-stable areas may warrant closer monitoring due to their

ambiguous stability states and potential susceptibility to

environmental stressors.

To identify hotspot regions of vegetation stability changes

across Jiangsu Province, we analyzed pixel-level temporal trends

in the two key stability metrics—proportional variability (PV) and

lag-one autocorrelation (AR)—using a moving window approach.

A 15-year moving window was applied to calculate trends in AR

and PV (DAR and DPV) over the study period (1984–2023). This

window length, slightly less than half the total period, ensures

independence between the earliest and latest segments of the time

series and reduces the likelihood of false trend detection. The

moving window approach was also used to examine short- to

medium-term trends and fluctuations in proportional variability

(PV) and autocorrelation (AR), providing a temporal lens on

ecosystem stability transitions. By applying a 15-year moving

window, we were able to smooth short-term noise while

preserving meaningful interannual dynamics. This method

enhances the detection of temporal inflection points, especially in

rapidly changing agroecosystems.

The Theil–Sen robust regression method was used to estimate

monotonic trend slopes of AR and PV time series at pixel scale

(Mann, 1945; Sen, 1968). Compared to ordinary least squares

regression, the Theil–Sen estimator is less sensitive to outliers and

skewed distributions, making it well-suited for long-term ecological

data. An increasing trend in both AR and PV was interpreted as a

signal of declining vegetation stability, reflecting either greater

interannual variability (DPV > 0) or reduced resilience (DAR > 0).

Conversely, decreasing trends in both metrics indicated

improving stability.

To further identify areas of significant change, we developed a

composite index (DAR PV) combining the normalized trends of AR

and PV using the following steps (Fernández-Martıńez et al., 2023):
1. Pixels with opposing trend directions (i.e., one positive, one

negative) were excluded;

2. DAR and DPV were normalized by dividing each value by

the maximum absolute value of the respective variable

across all pixels;

3. The two normalized values were summed for each pixel to

obtain the composite DAR PV index.
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This approach integrates both the direction and magnitude of

changes while eliminating scale effects, enabling robust detection of

vegetation stability hotspots. Positive DAR PV values indicate

increased instability—characterized by rising variability and declining

resilience—while negative values suggest enhanced stability.
2.4 Attribution analyses

To investigate the drivers of spatial variation in vegetation

stability across Jiangsu Province, we employed an interpretable

machine learning approach. Specifically, we used the Extreme

Gradient Boosting (XGBoost) algorithm to model the

relationships between vegetation stability metrics—DAR, DPV,
and the aggregated DAR PV index derived from kNDVI—and a

set of potential explanatory variables (Chen and Guestrin, 2016;

Lartey et al., 2021). To interpret model outputs, we applied SHapley

Additive exPlanations (SHAP), which quantify the marginal

contribution of each predictor based on game-theoretic principles

(Jabeur et al., 2024). The explanatory variables were grouped into

two categories: (1) climatic background conditions, represented by

long-term means of precipitation, air temperature, soil moisture,

vapor pressure deficit (VPD), and solar radiation; and (2) climatic

stability, represented by the temporal stability metrics (DAR, DPV,
and DAR PV) of the same climate variables. Separate XGBoost

regression models were developed for each vegetation stability

metric, using 60% of the spatial samples for training and 40% for

validation. Hyperparameters were optimized using grid search with

five-fold cross-validation. Model performance was evaluated using

the coefficient of determination (R2). XGBoost was chosen for its

capacity to model complex, nonlinear interactions without

requiring assumptions about data distributions (Wang et al.,

2024). A grid search was performed over a parameter space

covering learning_rate ∈ {0.01, 0.05, 0.1}, max_depth ∈ {4, 6, 8},

and n_estimators ∈ {300, 500, 700}, with 5-fold cross-validation to

select the optimal model based on RMSE minimization. All model

settings, learning_rate = 0.05, max_depth = 8, n_estimators = 500,

have been made available to facilitate reproducibility. SHAP

analysis was used to identify the relative importance of individual

predictors and to explore potential nonlinear and threshold

responses, such as diminishing returns or tipping points

associated with changing climatic conditions (Jin et al., 2025). All

models were trained on normalized variables. Data processing and

analysis were conducted using ArcGIS, MATLAB, and Python.
3 Results

3.1 Spatial patterns of variability and
resilience

Trends in annual maximum kNDVI revealed a widespread

greening across Jiangsu Province from 1984 to 2023

(Supplementary Figure S1). Over 70% of vegetated areas exhibited

positive trends, with 45.67% showing statistically significant
Frontiers in Plant Science 05
increases, indicating enhanced vegetation productivity. In contrast,

27.46% of areas showed declining trends, but only 11.84% were

significant, suggesting limited or spatially variable degradation.

Notably, significant increases were concentrated in northern

Jiangsu, likely linked to intensified agriculture and improved

irrigation, while declines were mainly observed in the south,

potentially associated with urban expansion and climatic constraints.

Figure 2 shows the spatial distribution of temporal variability

and resilience in vegetation productivity across Jiangsu Province.

High lag-one autocorrelation (AR > 0.3), indicating low resilience,

was observed in approximately 25% of the region, mainly in western

and southern areas (Figure 2a). In contrast, AR values were

generally lower near urban centers, suggesting reduced ecological

memory under urbanization pressure. Areas with high AR tended

to be more vulnerable to external disturbances, increasing the

likelihood of abrupt ecological shifts. The spatial pattern of

proportional variability (PV) differed markedly (Figure 2b). Low

PV values (< 0.2), reflecting stable productivity, were concentrated
FIGURE 2

Maps show the spatial pattern of mean (a) AR and (b) PV in Jiangsu.
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in central, southeastern, and northwestern Jiangsu. Moderate PV

levels (0.3–0.4) appeared in the southwest and far northwest, while

high PV values (> 0.4), indicating elevated interannual variability,

were mainly distributed along the eastern coast and southern

margins near Lake Taihu.

Based on the median thresholds of AR and PV, three vegetation

stability regimes were identified: stable, moderately stable, and

unstable ecosystems (Figure 3). AR is commonly used to assess

vegetation resilience and recovery potential, while PV reflects

temporal variability partially influenced by ecological memory.

Despite their conceptual differences, AR and PV exhibited spatial

concordance in certain regions (Supplementary Figure S2). Stable

areas, defined by low AR and PV values, were primarily located in

the northwest, southeast, and parts of central Jiangsu, comprising

approximately 32% of vegetated land. These areas showed low

variability and high resilience, indicating stronger capacity to

maintain ecological function under climate change. Unstable

regions, with both high AR and PV, also accounted for about

32% of the area and were concentrated in the southwest, northwest,

and areas near major water bodies. These zones exhibited high

variability and low recovery potential. Moderately stable regions,

where only one indicator exceeded the threshold, were widely

distributed, particularly across central and northeastern Jiangsu.
3.2 Hot-spots and risk areas of
destabilization

Vegetation productivity in Jiangsu Province showed a general

upward trend over the past four decades. We defined the hotspots of
Frontiers in Plant Science 06
destabilization as increased AR and PV (AR↑ PV↑), and cold spots

as decreased AR and PV (AR↓ PV↓). Lag-one autocorrelation (AR)

increased in 34.22% of vegetated pixels, with 6% exhibiting

statistically significant increases (Figure 4a). In contrast, 65.78%

of pixels showed decreasing AR trends, 27.56% of which were

significant. Increases in AR were mainly observed in central

regions and along major rivers, while declines occurred primarily

near Lake Taihu and in the northwest. For proportional variability

(PV), 27.11% of the region exhibited increasing trends, with 4% of

pixels showing significant changes (Figure 4b). Notable PV

increases were concentrated in the south-central region, whereas

significant decreases occurred in the southwest. Joint analysis of

DAR and DPV trends revealed that 57% of vegetated areas exhibited

consistent directional changes in both indicators, highlighting

hotspots of vegetation stability shifts (Supplementary Figure S3).

Among these, 15.77% of hotspots—mainly in south-central and

southeastern Jiangsu—showed concurrent increases in AR and PV,

indicating rising instability. Although these areas had relatively low

baseline AR and PV values, the synchronized upward trends suggest

an elevated risk of destabilization Figure 4c. In contrast, 84.23% of

hotspot areas exhibited simultaneous declines in both indicators,

suggesting enhanced stability. These areas were primarily

distributed across the southwestern, northern, and central

regions. The joint reductions in PV and AR reflect improved

vegetation resilience and may indicate a strengthening of

ecosystem carbon sequestration capacity across much of the

province. Spatial autocorrelation analysis based on Moran’s I

confirmed significant spatial clustering in vegetation stability

metrics, consistent with the identified patterns of hot-spots and

risk areas of destabilization (Supplementary Figure S5).
FIGURE 3

Spatial distribution of stability level in Jiangsu defined by the spatial percentage of mean AR and PV.
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3.3 Controls of the stability changes

To identify the drivers of vegetation stability, we developed

three interpretable machine learning models to evaluate the relative

importance of key climatic variables. Model performance, indicated
Frontiers in Plant Science 07
by explained variance, ranged from 55% to 65% (Figure 5). SHAP

summary plots revealed that background solar radiation and

climatic stability were the most influential predictors, jointly

contributing well above the theoretical mean importance of 20%

(Supplementary Figure S4). Background vapor pressure deficit

(VPD) ranked next, explaining approximately 10% of the

variance. In contrast, precipitation stability metrics consistently

showed low importance (< 5%) across all stability indices. Among

secondary variables, the effects varied by metric: background

temperature strongly influenced AR but had limited effect on PV

and DAR PV, whereas background soil moisture primarily affected

DAR PV.

Relationships between the top three predictors and vegetation

stability metrics are shown in Figure 6. SHAP dependence plots

illustrate both the direction and magnitude of predictor effects.

Several variables exhibited nonlinear or threshold-like responses.

For instance, SHAP values for AR declined with increasing

background radiation, indicating enhanced resilience under

higher radiation levels. For PV and DAR PV, radiation effects

were non-monotonic—initially increasing, then decreasing, and

rising again—suggesting that moderate radiation levels optimize

stability. VPD showed a consistent destabilizing effect, with SHAP

values increasing alongside VPD intensity. In contrast, SHAP values

for DAR PV declined with increasing soil moisture, highlighting the

stabilizing role of moisture availability. Radiative stability (AR, PV

or AR PV in the corresponding stability indices) exhibited

uniformly negative SHAP values across all metrics, underscoring

its consistent stabilizing influence on vegetation productivity.

Specifically, Radiative Stability (srad.ar) represents the persistence

of solar radiation influencing ecosystem resilience, Radiative

Stability (srad.pv) reflects radiation variability shaping short-term

fluctuations, and Radiative Stability (srad.ar pv) integrates both

components to describe overall ecosystem stability.
4 Discussion

4.1 Spatial patterns for vegetation stability
and explanations

Our analysis revealed that while the agroecosystem productivity

in Jiangsu Province was generally increasing over the past 40 years

(Supplementary Figure S1), the stability of this productivity showed

spatial heterogeneity and signs of potential deterioration in

some regions.

Regions with significant increases in AR were primarily located

in central Jiangsu and along major river corridors, whereas areas

with declining AR were concentrated near Lake Taihu and in the

northwest. This spatial pattern reflects differential responses of

vegetation systems to climate changes under varying ecological

settings and anthropogenic pressures. The central and riverine

zones were characterized by intensive agricultural activity and

rapid urbanization, with cropping systems dominated by rice and

wheat. These regions were highly sensitive to climatic fluctuations

due to their high planting intensity and frequent human
FIGURE 4

Hot-spots of instability in Jiangsu indicated by the consistent
increase or decrease in both DAR and DPV. spatial distribution of (a)
DAR, (b) DPV, and (c) aggregated DAR PV.
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FIGURE 5

Contribution of climatic stability and background to DAR, DPV and aggregated DAR PV. The left one subfigure is the explanation of validation for
three stability indices based on XGBoost models. The right three subfigures are predictors of stability indices and corresponding variable importance
based on SHAP value. The two categories of climatic predictors are identified with different hatched fill patterns; whereas the colors distinguish the
different variables.
FIGURE 6

Dependence of DAR, DPV and aggregated DAR PV on the top 3 ranked predictors.
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interventions—such as adjustments in crop rotation schemes,

irrigation practices, and land conversion (Yang et al., 2020). The

amplification of AR may signal a reduction in ecological resilience,

as it indicates slower recovery from disturbances and potential

regime shifts under persistent stress (Bathiany et al., 2024). In

contrast, areas surrounding Lake Taihu and parts of the northwest

—dominated by wetlands, natural vegetation, and peri-urban green

spaces—showed decreasing AR trends. A decreasing AR may

suggest enhanced system resilience, though this relationship

should be interpreted cautiously and verified through long-term

monitoring. Areas with increasing AR were typically associated

with high cropland density, while decreasing AR corresponded to

regions dominated by natural vegetation, water bodies, or ecological

protection zones. These findings suggested that regions with rising

AR, especially in central and river-adjacent areas, should be

prioritized as potential instability hotspots for targeted

monitoring and adaptive land management.

In southwestern Jiangsu, PV exhibited a significant decline,

indicating enhanced interannual stability. The regional topographic

and policy complexity—featuring hilly and low mountainous

terrain—combined with active afforestation, red-line zoning,

wetland conservation, and improved urban greening, has

contributed to the recovery and stabilization of natural vegetation

(Chuai et al., 2015; Zhong et al., 2025). Moreover, abundant water

resources and the presence of a dense river-lake network provide

strong hydrological buffering, further dampening the impacts of

interannual climate fluctuations (Yang et al., 2022). By contrast, the

south-central region experienced a marked increase in PV,

suggesting increased vegetation instability. This can be attributed

to the dual pressures of intensive farmland use and expanding

urban infrastructure (Jiang et al., 2013). The area is dominated by

highly productive cropland with high cropping frequency and

dynamic management regimes, making vegetation highly sensitive

to environmental changes. Additionally, the expansion of urban

belts and transport corridors has introduced “edge effects” at the

rural–urban interface, which disrupt microclimates and amplify

temporal fluctuations in vegetation dynamics (Hou et al., 2022; Wei

et al., 2023). Climatically, the south-central region lies in the

subtropical–temperate transition zone, making it especially

vulnerable to radiation and precipitation variability. In contrast,

the southwest, situated at the confluence of mountainous and

aquatic landscapes, benefits from greater ecological containment

and climate buffering, further stabilizing vegetation productivity.

These contrasting patterns underscore the importance of

considering both ecological context and anthropogenic intensity

when assessing vegetation stability. The divergent trends in AR and

PV reflect not only biophysical drivers but also management

legacies and spatial development trajectories. From a policy

perspective, central and south-central Jiangsu—identified as areas

of rising AR and PV—require targeted interventions to reduce

sensitivity and enhance resilience, such as crop diversification,

ecological zoning, and the strategic expansion of natural buffers.

Meanwhile, regions showing stability improvement should be

protected as reference zones and resilience reservoirs under

climate change.
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Approximately 15.77% of the vegetated area—primarily located

in the south-central and southeastern regions—was identified as

potential instability hotspots. Notably, while the long-term average

AR and PV values in these areas remained relatively low, their

simultaneous upward trends suggest an emerging risk of

destabilization in ecosystems that were previously stable. In

contrast, 84.23% of the region, including large portions of the

southwest, north, and central Jiangsu, exhibited concurrent

declines in AR and PV, indicating enhanced ecosystem stability.

These areas were mostly characterized by moderate baseline

stability, and the observed trend implies that they are

transitioning toward a more resilient state. The co-occurrence of

decreasing interannual variability (PV-) and enhancing recovery

capacity (AR-) suggested that vegetation productivity in these

regions was becoming more resistant to disturbances and better

able to maintain carbon sequestration functions over time. These

findings highlighted the spatial heterogeneity of vegetation stability

trajectories within an intensively cultivated and rapidly developing

region. While most areas show signs of stabilization, the presence of

localized destabilization trends in the south-central and

southeastern regions warrants close attention. Targeted

monitoring and adaptive land-use management in these emerging

hotspots are essential to prevent potential ecological degradation

and to sustain long-term ecosystem functioning under increasing

environmental pressures (Sparrow et al., 2020).
4.2 Identification of the nonlinear climate-
driven mechanisms

The SHAP analysis results further confirmed the critical role of

solar radiation in regulating the stability of farmland vegetation

(Figure 5). In the XGBoost models explaining both variability and

resilience of vegetation productivity, radiation-related variables

consistently ranked among the top predictors across the

dominant farmland regions, indicating that solar radiation is a

key driver of stability changes. SHAP summary plots revealed that

higher mean annual solar radiation and increased interannual

variability in radiation were both associated with elevated PV and

AR values—implying a higher degree of temporal fluctuation and

memory, and thus greater instability in the vegetation system. These

results align with crop physiological principles: large fluctuations in

solar radiation can disrupt photosynthesis and biomass

accumulation, especially during sensitive phenological stages,

leading to increased year-to-year variability and reduced system

resilience. SHAP dependence plots illustrated a clear nonlinear

threshold effect (Figure 6). Stability indicators remained relatively

unresponsive to moderate variability in solar radiation; however,

once radiation levels exceeded a critical threshold, both PV and AR

values increased markedly. This non-linear response pattern

suggests the existence of tipping-point behavior within

agroecosystems—where incremental increases in external stressors

can abruptly shift system dynamics when critical thresholds are

crossed (Dakos et al., 2019; Gurgel et al., 2021). Such threshold

effects, long postulated in the ecological resilience literature, are
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here empirically supported in a regional cropland context

(Berryman, 1983; Groffman et al., 2006; Hillebrand et al., 2020).

These findings underscore the necessity of integrating radiation

thresholds into agroecological risk assessment frameworks and

early-warning systems to enhance the resilience of intensively

managed agricultural landscapes.

Our results reveal that radiative stability and vapor pressure

deficit (VPD) are dominant drivers of vegetation stability across

Jiangsu. These relationships are consistent across multiple stability

metrics and regions. From a mechanistic perspective, stable solar

radiation supports consistent photosynthetic activity, canopy

development, and plant energy balance, especially in intensively

managed croplands where productivity is often light-limited. In

contrast, fluctuations in radiation—caused by changing cloud

patterns or anthropogenic aerosols—may result in photosynthetic

inefficiencies and yield volatility. Elevated VPD, often associated with

warming and drying trends, limits stomatal opening, reduces

transpiration efficiency, and disrupts carbon assimilation,

particularly during critical growth stages (Yuan et al., 2019). These

physiological constraints increase interannual variability and reduce

the system’s ability to recover from stress, thus weakening ecosystem

stability (Yuan et al., 2025). While our SHAP-based framework

provides interpretable insights into variable importance, we

acknowledge that the relationships are fundamentally correlational.

Establishing causal links would require the integration of process-

based ecosystem models, controlled experiments, or emerging causal

inference methods in machine learning. These avenues represent

important directions for future research.

Our findings notably differed from other studies, which typically

identify temperature as the dominant driver of vegetation stability

(Forzieri et al., 2022; Smith et al., 2022; Fernández-Martıńez et al.,

2023; Smith and Boers, 2023; Bathiany et al., 2024). In contrast,

farmland ecosystems in Jiangsu exhibit heightened sensitivity to solar

radiation, aligning with regional findings (Zhou et al., 2020; Gong

et al., 2024; Wang et al., 2025; Zhang et al., 2025). This regional

distinction is rooted in the ecological characteristics of cropland

systems and their dependence on radiation-driven processes. First,

primary productivity in these systems is strongly regulated by

photosynthetically active radiation (PAR), which directly determines

crop photosynthetic rates and yield potential (Wang et al., 2025). As

crops in Jiangsu—such as rice and wheat—undergo their critical

growth stages during peak radiation periods, anomalies in radiation

during these windows can significantly impact vegetation vigor and

stability. This aligns with studies showing that radiation anomalies

during the reproductive stages of crops can lead to yield failure and

ecosystem stress, even in the absence of extreme temperature or

precipitation events (Zhan et al., 2019; Fu et al., 2022; Guo et al.,

2024; Le Roux et al., 2024; Edmundo et al., 2025; Siddique et al., 2025).

Second, farmland ecosystems are structurally simple and possess low

functional redundancy, which limits their capacity to buffer against

environmental perturbations. Unlike natural ecosystems with diverse

species assemblages and complex feedback mechanisms, croplands are

typically monocultures lacking internal ecological regulation. This

amplifies the influence of external drivers, allowing radiation

variability to exert a more direct and pronounced destabilizing effect
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(Serreze and Barry, 2011; Baldocchi et al., 2020). Furthermore, the

close coupling between crop phenology and seasonal radiation

patterns increases the vulnerability of agroecosystems to solar

anomalies (Wang et al., 2012; Liu et al., 2025). In regions such as

Jiangsu, where climatic conditions already fluctuate at the subtropical–

temperate boundary, this tight dependence increases the risk of

decoupling between crop development and environmental

suitability. In addition to direct effects on physiological processes,

radiation may also influence vegetation stability through indirect

pathways, particularly by modifying surface energy balance and soil

water availability (Wang et al., 2025). Increased solar radiation

enhances evapotranspiration, which can reduce soil moisture

availability, especially in the absence of adequate precipitation or

irrigation (Mo et al., 2015; Sun et al., 2022). This leads to a compound

effect where radiation not only directly affects photosynthesis but also

indirectly affects water stress—both of which contribute to vegetation

instability (Mo et al., 2015; Sun et al., 2022; Liu et al., 2025c). This

radiation–moisture–stability linkage is particularly relevant under

future climate scenarios characterized by higher radiation loads and

increasing drought frequency, suggesting that radiative drivers may

become even more critical under warming trends (Zeng et al., 2023; Li

et al., 2024; Liu et al., 2025d).
4.3 Assessing ecosystem state by coupling
functioning and stability

Our findings provide valuable insights for ecosystem assessment

and the development of evidence-based restoration strategies.

Conventional evaluation approaches often emphasize short-term

responses to climatic disturbances, overlooking long-term ecosystem

dynamics (Yu et al., 2024). We further classified vegetated areas into

five ecosystem states by integrating both ecosystem functioning (EF),

as indicated by the Theil-Sen slope of kNDVI, and ecosystem stability

(ES), derived from proportional variability (PV) and autocorrelation

(AR). This classification framework allowed us to distinguish between

ideal, acceptable, poor, abysmal, and unknown states based on

whether EF and ES were improving, declining, or stable

(Supplementary Table S1). This multi-dimensional typology was

used to interpret the ecological significance of observed trends and

to provide targeted management recommendations aligned with

regional ecological policies. Results show that the majority of

vegetation ecosystems are in favorable condition, with 44% classified

as ideal and 17% as acceptable, primarily in northern and

southwestern Jiangsu (Figure 7). In contrast, less than 20% of the

area exhibited unsatisfactory conditions—6% in abysmal and 11% in

poor condition—mainly located in the southeast. An additional 20%

of regions, largely along the Yangtze River, remain unclassified due to

ambiguous ecosystem states.

Policy recommendations are proposed for the four discernible

ecosystem states. In areas with ideal conditions, current ecological

integrity should be preserved through natural restoration planning

and long-term management. Where stability has declined but

functioning remains intact, targeted measures to enhance resilience

are warranted, particularly under increasing climate pressure. In
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regions with declining functioning and uncertain stability, restoration

efforts should emphasize species selection tailored to site-specific

conditions. For ecosystems exhibiting declines in both functioning

and stability, integrated strategies are needed to simultaneously restore

ecological processes and improve system resilience. Lastly, for areas

showing no significant change in either metric, sustained in-situ

monitoring is recommended to support early detection of future shifts.
4.4 Limitations of this study

Despite the robust analytical framework and consistent results

across multiple stability indicators, several limitations should be

acknowledged to contextualize the findings and guide future

improvements. First, the 30 m resolution climate datasets were

generated through spatial interpolation of meteorological station

records, primarily to match the spatial granularity of remote

sensing-derived vegetation indices. While this approach ensures

spatial consistency, it inevitably smooths microclimatic variability,

particularly in areas with complex terrain or fragmented land cover.

Consequently, fine-scale driver analyses may be subject to spatial

uncertainty, especially in transitional agro-urban zones. Second, the

stability indices were computed using annual maximum values of

vegetation productivity (kNDVI), which may obscure intra-annual

dynamics and important phenological transitions. In particular, the

omission of Length of Growing Season (LOS) as an explicit factor

limits the capacity to capture seasonal variations that influence
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vegetation stability. LOS, driven by climate warming or agricultural

management, can alter both resilience and variability patterns. For

instance, an extended growing season may initially enhance

productivity but also increase exposure to late-season drought or

disease stress; conversely, a shortened season may heighten

interannual fluctuations in cropping systems. Future research should

incorporate phenological metrics—such as start-of-season (SOS), end-

of-season (EOS), or growing degree days—derived from high-

temporal-resolution NDVI or land surface temperature datasets to

improve the ecological fidelity of stability assessments. Third, while the

XGBoost–SHAP framework provides strong explanatory power and

interpretability, its reliability ultimately depends on the quality of

input data and the availability of ground observations. The absence of

high-frequency, in-situ validation data limits the reproducibility and

ecological calibration of the model in certain sub-regions. Fourth,

non-climatic influences, such as urbanization, land-use change, and

agricultural intensification, were not explicitly included in the driver

model. This omission constrains the capacity to disentangle the

relative contributions of human and climatic factors to vegetation

stability. Given the intensively managed landscapes of Jiangsu

Province, integrating human drivers using land-use trajectory

datasets, urban expansion maps, or socio-economic indicators

would be essential for future studies aiming to assess coupled

human–natural system dynamics. Finally, while some trends, such

as decreasing autocorrelation (AR), are interpreted as indicative of

enhanced ecosystem resilience, such conclusions must be treated with

caution. Theoretical and empirical validation is needed to confirm the
FIGURE 7

Spatial patterns of the ecosystem state through coupling between the ecosystem functioning (DkNDVImax) and ecosystem stability (DAR PV) over
Jiangsu province.
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ecological meaning of temporal metrics like AR and PV, particularly

across diverse vegetation types and disturbance regimes. Taken

together, addressing these limitations in future work will help

advance a more comprehensive and ecologically grounded

understanding of vegetation stability, particularly in regions facing

complex climate and anthropogenic pressures.
5 Conclusion

This study assessed the temporal stability of vegetation

productivity across Jiangsu Province over the past four decades

using aggregated stability indices, spatial mapping, and hotspot

identification. Stable regions—characterized by low proportional

variability (PV) and low autocorrelation (AR)—were concentrated in

the northwest, southeast, and parts of central Jiangsu. In contrast,

unstable areas, where both PV and AR were elevated, were primarily

located in the southwest, northwest, and along major rivers and lakes.

Moderately stable zones, defined by instability in either PV or AR,

were widely distributed across central and northeastern areas. Trend

analysis showed that 34.22% of vegetated pixels experienced increasing

AR and 27.11% exhibited rising PV, indicating localized risks of

destabilization. Instability hotspots were mainly located in the south-

central and southeastern regions, covering 15.77% of the vegetated

area. In contrast, 84.23% of the province showed simultaneous declines

in AR and PV—especially in the southwest, north, and central regions

—reflecting broad improvements in ecosystem stability and potential

enhancement of regional carbon sequestration capacity. Interpretable

machine learning models identified background solar radiation and its

temporal variability as the dominant drivers of vegetation stability,

exerting nonlinear effects across all metrics. Other climatic variables—

such as temperature, soil moisture, and vapor pressure deficit (VPD)—

showed metric-specific influences. Notably, both radiative instability

and elevated background VPD were consistently associated with

reduced resilience, particularly in intensively managed cropland

systems. Overall, most areas were classified as ecologically favorable,

while approximately 20% were in poor condition and another 20%

remained uncertain. These findings improve our understanding of

vegetation stability under coupled climate and land-use pressures and

offer guidance for ecological monitoring, climate adaptation, and

precision management in rapidly urbanizing, climate-sensitive

agroecosystems such as Jiangsu Province.
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Testolin, R., Attorre, F., and Jiménez-Alfaro, B. (2020). Global distribution and
bioclimatic characterization of alpine biomes. Ecography 43, 779–788. doi: 10.1111/
ecog.05012

Wang, H., Ciais, P., Sitch, S., Green, J. K., Tao, S., Fu, Z., et al. (2024). Anthropogenic
disturbance exacerbates resilience loss in the Amazon rainforests. Global Change Biol.
30, e17006. doi: 10.1111/gcb.17006

Wang, S., Fu, B. J., Gao, G. Y., Yao, X. L., and Zhou, J. (2012). Soil moisture and
evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol.
Earth Syst. Sci. 16, 2883–2892. doi: 10.5194/hess-16-2883-2012

Wang, Y., Tong, X., Li, J., Yang, M., and Wang, Y. (2025). Impacts of climate change
and human activities on vegetation productivity in China. Remote Sens. 17, 1724.
doi: 10.3390/rs17101724

Wang, L., Wei, Z., Zhang, B., Wang, Y., Zhang, X., and Chen, A. (2025). Exploiting
the modified surface energy balance system (mSEBS) model and monitoring actual land
surface evapotranspiration in China. J. Hydrol. 661, 133596. doi: 10.1016/
j.jhydrol.2025.133596

Wang, W., Zhang, Z., Zhou, Z., Jia, Q., Liu, Z., Zhang, S., et al. (2025). Projecting
cropland climatic potential productivity change in China under human activity and
climate force. Environ. Impact. Assess. Rev. 115, 108038. doi: 10.1016/j.eiar.2025.108038

Wei, G., He, B.-J., Sun, P., Liu, Y., Li, R., Ouyang, X., et al. (2023). Evolutionary trends
of urban expansion and its sustainable development: Evidence from 80 representative
cities in the belt and road initiative region. Cities 138, 104353. doi: 10.1016/
j.cities.2023.104353

Yang, D., and Liu, Y. (2025). Human activities unevenly disturbed climatic impacts
on vegetation dynamics across natural-anthropogenic-integrated ecosystem types in
China. Habitat. Int. 162, 103451. doi: 10.1016/j.habitatint.2025.103451
Frontiers in Plant Science 14
Yang, T., Siddique, K. H. M., and Liu, K. (2020). Cropping systems in agriculture and
their impact on soil health-A review. Global Ecol. Conserv. 23, e01118. doi: 10.1016/
j.gecco.2020.e01118

Yang, S., Wan, R., and Li, B. (2022). Hydrological connectivity research in Lake
Taihu Basin: Status, progress and future challenges (in Chinese). J. Lake. Sci. 34, 1055–
1074. doi: 10.18307/2022.0402

Yao, Y., Liu, Y., Song, J., Tao, S., Li, Y., Wu, T., et al. (2024). Declining tradeoff
between resistance and resilience of ecosystems to drought. Earth’s. Future 12,
e2024EF004665. doi: 10.1029/2024EF004665

Yu, Y., Hua, T., Chen, L., Zhang, Z., and Pereira, P. (2024). Divergent changes in
vegetation greenness, productivity, and rainfall use efficiency are characteristic of
ecological restoration towards high-quality development in the yellow river basin,
China. Engineering 34, 109–119. doi: 10.1016/j.eng.2023.07.012

Yuan, W., Tian, J., Wang, M., Wang, S., Xu, W., Wang, Y., et al. (2025). Impacts of
rising atmospheric dryness on terrestrial ecosystem carbon cycle. Nat. Rev. Earth
Environ. 6, 712–727. doi: 10.1038/s43017-025-00726-2

Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., et al. (2019).
Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci.
Adv. 5, eaax1396. doi: 10.1126/sciadv.aax1396

Zeng, K., Mengyao, C., Zhu, H., et al. (2024). A dataset of annual maximum
vegetation indices at a 30-meter resolution for the Yangtze River Delta region from
1984 to 2023. Science Data Bank. doi: 10.57760/sciencedb.j00001.01149

Zeng, Z., Wu, W., Li, Y., Huang, C., Zhang, X., Peñuelas, J., et al. (2023). Increasing
meteorological drought under climate change reduces terrestrial ecosystem
productivity and carbon storage. One Earth 6, 1326–1339. doi: 10.1016/
j.oneear.2023.09.007

Zhan, P., Zhu, W., Zhang, T., Cui, X., and Li, N. (2019). Impacts of sulfate
geoengineering on rice yield in China: results from a multimodel ensemble. Earth’s.
Future 7, 395–410. doi: 10.1029/2018EF001094

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., et al. (2022). Increasing
sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric
CO2. Nat. Commun. 13, 4875. doi: 10.1038/s41467-022-32631-3

Zhang, L., Sun, R., Xiao, Z., and Yao, X. (2025). Assessing the impacts of urban
expansion and climate change on net primary productivity over the past three decades
in Bei j ing , China. GISci . Remote Sens . 62, 2511503. doi : 10 .1080/
15481603.2025.2511503

Zhong, R., Pu, L., Xie, J., Yao, J., Qie, L., He, G., et al. (2025). Carbon storage in typical
ecosystems of coastal wetlands in Jiangsu, China: Spatiotemporal patterns and
mechanisms. Catena 254, 108882. doi: 10.1016/j.catena.2025.108882

Zhou, Y., Wu, X., Ju, W., Zhang, L., Chen, Z., He, W., et al. (2020). Modeling the
effects of global and diffuse radiation on terrestrial gross primary productivity in China
based on a two-leaf light use efficiency model. Remote Sens. 12, 3355. doi: 10.3390/
rs12203355

Zou, L., Tian, F., Liang, T., Fensholt, R., He, T., Schaepman-Strub, G., et al. (2025).
Topographic effects on vegetation greening and area expansion in global alpine zones
under climate change. Int. J. Appl. Earth Obs. Geoinf., 14, 104727. doi: 10.1016/
j.jag.2025.104727
frontiersin.org

https://doi.org/10.1016/j.stress.2025.100888
https://doi.org/10.1038/s41559-023-02194-7
https://doi.org/10.1038/s41558-022-01352-2
https://doi.org/10.1038/s41558-022-01352-2
https://doi.org/10.1111/brv.12636
https://doi.org/10.1126/sciadv.abl9526
https://doi.org/10.1016/j.agrformet.2022.109118
https://doi.org/10.1016/j.agrformet.2022.109118
https://doi.org/10.1016/j.jhydrol.2021.126270
https://doi.org/10.1111/ecog.05012
https://doi.org/10.1111/ecog.05012
https://doi.org/10.1111/gcb.17006
https://doi.org/10.5194/hess-16-2883-2012
https://doi.org/10.3390/rs17101724
https://doi.org/10.1016/j.jhydrol.2025.133596
https://doi.org/10.1016/j.jhydrol.2025.133596
https://doi.org/10.1016/j.eiar.2025.108038
https://doi.org/10.1016/j.cities.2023.104353
https://doi.org/10.1016/j.cities.2023.104353
https://doi.org/10.1016/j.habitatint.2025.103451
https://doi.org/10.1016/j.gecco.2020.e01118
https://doi.org/10.1016/j.gecco.2020.e01118
https://doi.org/10.18307/2022.0402
https://doi.org/10.1029/2024EF004665
https://doi.org/10.1016/j.eng.2023.07.012
https://doi.org/10.1038/s43017-025-00726-2
https://doi.org/10.1126/sciadv.aax1396
https://doi.org/10.57760/sciencedb.j00001.01149
https://doi.org/10.1016/j.oneear.2023.09.007
https://doi.org/10.1016/j.oneear.2023.09.007
https://doi.org/10.1029/2018EF001094
https://doi.org/10.1038/s41467-022-32631-3
https://doi.org/10.1080/15481603.2025.2511503
https://doi.org/10.1080/15481603.2025.2511503
https://doi.org/10.1016/j.catena.2025.108882
https://doi.org/10.3390/rs12203355
https://doi.org/10.3390/rs12203355
https://doi.org/10.1016/j.jag.2025.104727
https://doi.org/10.1016/j.jag.2025.104727
https://doi.org/10.3389/fpls.2025.1678262
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Mapping stability and instability hotspots in Jiangsu’s vegetation: an explainable machine learning approach to climatic and anthropogenic drivers
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Datasets
	2.3 Stability analyses
	2.4 Attribution analyses

	3 Results
	3.1 Spatial patterns of variability and resilience
	3.2 Hot-spots and risk areas of destabilization
	3.3 Controls of the stability changes

	4 Discussion
	4.1 Spatial patterns for vegetation stability and explanations
	4.2 Identification of the nonlinear climate-driven mechanisms
	4.3 Assessing ecosystem state by coupling functioning and stability
	4.4 Limitations of this study

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


