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Introduction: Relative humidity (RH) is critical for regulating transpiration, plant

morphology, and the biosynthesis of secondary metabolites in crops. However,

its specific impacts on cannabis (Cannabis sativa L.) genotypes, especially

concerning optimal growth and cannabinoid concentration, remain

inadequately understood.This study aimed to investigate the effects of canopy-

level RH on plant development and cannabinoid concentration in a CBD–

dominant strain.

Methods: Plants were cultivated under controlled conditions at two distinct RH

ranges: low RH (37-58%) and high RH (78-98%). Growth metrics, including stem

length, trunk diameter, number of nodes, apical internode spacing, and flowering

time, were recorded weekly. Upon floral maturation and harvest, biomass and

cannabinoid concentrations were measured. A total of 14 cannabinoids were

quantified via high-performance liquid chromatography (HPLC) to assess

compositional shifts under different RH conditions.

Results: Cultivation under high RH resulted in a reduced vapor pressure deficit

(VPD) ranging from 0.62 kPa to 0.25 kPa during flowering, indicating values

outside the optimal range for cannabis cultivation. This environment led to

significant reductions in total biomass (-75.3%), flower biomass (-71.0%), trunk

diameter (-0.4%), and node count (29.3%), compared to low RH conditions (n =

10 per range, p < 0.001). Conversely, stem length increased by 9.7%, and apical

internodal spacing expanded by 0.04% under high RH (n = 10, p < 0.0001).

Flowering was delayed by three weeks with high RH, accompanied by notable

reductions in both vegetative growth and inflorescence production.

Furthermore, high RH significantly suppressed cannabinoid accumulation:

cannabidiolic acid (CBD-A), cannabidiol (CBD), and cannabichromenic acid

(CBC-A) levels decreased by approximately 4.9-fold, 3.2-fold, and 13-fold,

respectively. Total cannabinoid concentrations of CBD and CBC were similarly

diminished by 4.6-fold and 1.5-fold (n = 10, p < 0.0001).
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Discussion: This study highlights that elevated canopy-level humidity, outside

optimal VPD thresholds, can significantly delay flowering, reduce biomass

accumulation, and negatively impact cannabinoid concentrations in Cannabis

sativa L. cv. Cherry Berry.
KEYWORDS
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1 Introduction

Cannabis sativa L. is an annual and dioecious flowering plant

traditionally cultivated for fibers, seeds, oil production, and

medicinal purposes (Innes and Vergara, 2023). The plant’s

adaptive traits have been crucial in sustaining human societies for

thousands of years. However, recent accelerated domestication,

primarily targeting increased fiber and cannabinoids yields, has

reduced genetic variability and divergence while enhancing yield

potential (Ren et al., 2021).

The growth and development of Cannabis sativa are primarily

influenced by genetic factors; however, environmental conditions

and management practices also play a critical role. Numerous

studies have provided valuable insights into the impact of

environmental variables, including light intensity, wavelength,

photoperiod, temperature, drought, rainfall, flooding, and relative

humidity, on cannabis growth and cannabinoid concentration

(Alter et al., 2024; Carranza-Ramıŕez et al., 2025; Fleming et al.,

2023; Holweg et al., 2025; Park et al., 2022; Rodriguez-Morrison

et al., 2021; Preprint Shenhar et al., 2025). While light and

photoperiod are discussed in detail below to provide necessary

context, this study focuses on relative humidity, which remains a

comparatively underexplored environmental factor in cannabis

cultivation. Among these factors, relative humidity remains one

of the least studied despite its significant effects on plant growth and

cannabinoid biosynthesis.

Light intensity affects cannabis genotypes differently, with

distinct responses observed among chemotypes. For example, D9-

tetrahydrocannabinol (THC)-dominant chemotype exhibits

increased leaf-level of photosynthesis, and improved water-use

efficiency, when Photosynthetic Photon Flux Density (PPFD)

levels were increased between 1,600–2,000 μmol m−2 s−1

(Chandra et al., 2015). However, these measurements do not

necessarily reflect the final yield and crop performance. Similarly,

‘Critical CBD’, characterized by a THC/CBD (cannabidiol) ratio of

0.5, exhibited abundances exceeding 41% for CBD, THC,

cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG),

and tetrahydrocannabivarin (THCV) under a PPFD of 1,000 μmol

m-² s-¹ compared to 600 μmol m−2 s−1 (Sae-Tang et al., 2024). In the

high-THC genotype ‘Meridian’, the same PPFD increased

cannabinoid yield in biomass 1.5 times, dry weight 1.6 times, and
02
harvest index by 7% compared to 600 μmol m−2 s−1 (Llewellyn et al.,

2022). Notably, THC-rich genotype ‘Gelato’ showed well-saturated

leaf photosynthesis and linear increase in dry inflorescence weight

as PPFD increased from 120 to 1,800 μmol m−2 s−1. No adverse

effects on cannabinoid potency were observed, with inflorescence

yields reaching 501 g m-2, total cannabinoid concentration of 83.5 g

m-2,and a total equivalent cannabidiolic acid (CBD-A) content of

214 mg g-1 of dry inflorescence at the highest PPFD level

(Rodriguez-Morrison et al., 2021).

As light intensity influences cannabinoid concentration, the

light spectrum also plays a critical role in cannabis cultivation.

Studies investigating blue:red light ratios (1:1 and 1:4) in

comparison to full-spectrum LED lighting revealed higher

inflorescence yield, alongside notable alterations in plant

morphology, physiology, biomass accumulation, and cannabinoid

composition, including cannabigerolic acid (CBG-A), CBD, THC,

and CBC (Danziger and Bernstein, 2021). These effects varied by

genotype, particularly among genotypes with differing TCH-A:

CBD-A ratios, underscoring the importance of genetic

background in plant responses (Danziger and Bernstein, 2021).

Studies investigating the red to far-red (R:FR) ratio (1:11) in CBD-

rich cannabis genotypes significantly increased the concentration of

CBD (0.035%), CBG-A (0.017%), and THCV-A (0.033%) compared

to a low R:FR ratio (1:1) (Kotiranta et al., 2024). In contrast, UVA

and UVB exposure have demonstrated no significant effects on

biomass accumulation or cannabinoid concentration in indoor-

grown THC-dominant genotypes (Llewellyn et al., 2022).

Additionally, LED lighting with a low blue-to-red ratio has been

shown to influence plant morphology, improved photosynthetic

efficiency, and modulate both CBD and THC content in non-

psychoactive hemp varieties (Carranza-Ramıŕez et al., 2025).

Beyond light intensity and spectral quality, photoperiod

critically influences cannabis growth, physiology, and cannabinoid

biosynthesis (Ahsan et al., 2024). As a facultative short-day

genotype- species, cannabis requires day lengths between 9 and

15 hours to initiate flowering (Dowling et al., 2021, 2024). This latter

process is governed by internal regulatory mechanisms such as

gibberellic acid (GA) signaling, circadian rhythm, flowering-related

gene expression, and modulated by external cues including nutrient

availability, plant architecture, and ambient temperature (Ahsan

et al., 2024; Alter et al., 2024; Spitzer-Rimon et al., 2019, 2022).
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Recent studies on photoperiod in cannabis genotypes have shown

that a minimum of three days of short photoperiod exposure,

accompanied by reduced levels of GA4 and auxin at the shoot

apex, is required to initiate and sustain inflorescence formation

(Alter et al., 2024).

Interestingly, the initiation of solitary flowers and bract

development can still occur under long-day photoperiods,

suggesting partial independence from photoperiodic cues (Alter

et al., 2024; Spitzer-Rimon et al., 2022).

A recent study has shown that a 12-hour photoperiod effectively

optimizes CBD production, increasing its concentration while

simultaneously enhancing dry biomass yield (Xu et al., 2024).

Similarly, tropical hemp genotypes exhibited elevated levels of

both CBD and THC under a 12.5-hour photoperiod, whereas

temperate genotypes showed minimal sensitivity to changes in

photoperiod (De Prato et al., 2022).

In fiber-type cannabis varieties, the combined effects of

photoperiod and light spectrum were assessed using white LED

light (380–750 nm) and purple LED light (200–400 nm). A 16-hour

photoperiod of white light followed by eight hours of darkness

increased photosynthetic efficiency, while purple light improved

photoprotective responses (Šrajer Gajdosǐk et al., 2022). In contrast,

24-hour light exposure, regardless of the light type, caused thylakoid

membrane damage, underscoring the need for further research on

antioxidant responses and light-induced stress (Šrajer Gajdosǐk

et al., 2022). Synergistic effects of photoperiod and light regimes

play significant roles in the physiology of cannabis varieties for

industrial uses, altering plant development.

Temperature greatly affects cannabis cultivation, with optimal

growth at 25–35 °C. In the low-THC hemp genotype ‘V4’, a

moderate day/night temperature regime (day: 27 °C/night: 21 °C)

resulted in the highest concentrations of cannabinoids in dry-

weight inflorescences. Under these conditions, the levels of CBD-

A (40.3 mg g−1), CBC-A (2.60 mg g−1), and THC-A (2.12 mg g

−1) increased by 28.75%, 43.6% and 41.3%, respectively, compared

to the values of a constant 24 °C day/night schedule (Bok et al.,

2023). In contrast, for THC- and CBD-rich genotypes, increasing

day/night temperatures from 25 °C/21 °C to 31 °C/27 °C under a

short-day photoperiod reduced total cannabinoid yields from over

400 and 200 g m-2 to less than 100 g m-2, at a PPFD of 1,200 μmol

m−2 s−1 (Holweg et al., 2025). The study concluded that elevated

temperatures also disrupted inflorescence development, decreased

biomass, and altered cannabinoid concentration (Holweg

et al., 2025).

Heat stress is a common environmental challenge in cannabis

cultivation, yet its effects on cannabinoid concentration and gene

expression remain relatively underexplored. In a study of 75-day-

old plant leaves of industrial genotypes, ‘Hot Blonde’, ‘Cherry

Blossom’, and ‘Queen Dream’, exposure to heat stress of 45 °C-50

°C for 48 hours resulted in increases in CBD levels by 38.4-fold,

35.07-fold, and 22.92-fold, respectively, and in CBN by 5.08-, 13.40-

, and 11.05-fold, respectively (Hahm et al., 2025). These

temperature ranges also increased the expression of MYB, AP2,

OLS, OAC, PT, THCAS, CBDS, and CBCAS in the terminal

inflorescences (Hahm et al., 2025). Similarly, Park et al. (2022)
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reported that CBD-rich genotypes exposed to sustained heat (45–50

°C) for seven days exhibited an 83% decrease in CBG-A and a 40%

increase in CBG in immature hemp flowers (Park et al., 2022).

Cold stress adversely affects secondary metabolism, physiology,

and yield in cannabis. In hemp genotypes, exposure to 4 °C for 7–14

days led to cell membrane damage, as indicated by electrolyte

leakage. In contrast, tolerant genotypes exhibited upregulation of

cold-response (COR) genes and activation of DNA methylation

pathways (Mayer et al., 2015). Likewise, in CBD-dominant

genotypes exposed to different combinations of cold stresses.

Some plants were acclimated to cooler temperatures of 10 °C,

then all plants were exposed to freezing stress 0 to 3 times at

-0.5% for three hours per event. Acclimated and non-acclimated

plants reduced cannabinoid concentrations of CBD and THC, with

limited frost tolerance (Galic et al., 2022). In contrast, cold stress at

4 °C for 0, 12, 24, and 48 hours did not produce significant changes

in their cannabinoid concentration in industrial genotypes (Hahm

et al., 2025). In addition, moderately cool temperatures (8–15 °C)

improved anthocyanin accumulation, though CBD yield and

biomass depended more on maturity (Kim, 2024). Under 4 °C,

lipidomic analysis revealed dry weight reductions (37% to 22%),

increased osmoprotectants and stress enzymes, and membrane

remodeling with galactolipids reaching 70% of total lipids (Yan

et al., 2025). Collectively, these findings illustrate the complex

molecular and physiological responses and strategies of Cannabis

sativa genotypes to low-temperature stress.

In addition to thermal stress, water stress substantially alters

cannabinoid accumulation and plant biomass in Cannabis sativa.

Under moderate drought conditions, defined by a 50% reduction in

transpiration compared to well-watered controls, CBD and CBG-A

levels increased by approximately 25% and 10–15%, respectively

(Dimopoulos et al., 2024). In substrates with low water retention,

the production of the PIP (Intrinsic plasma membrane proteins)

subfamily was augmented, particularly the aquaporin isoforms

PIP1.4, PIP2.3, and PIP2.1, thereby increasing water transport,

resulting in greater inflorescence development as well as a 2.8%

rise in CBD content (Ortiz Delvasto et al., 2023). In contrast, severe

drought stress, marked by a 70-80% reduction in normal

transpiration or the complete withholding of water irrigation,

caused significant reductions in both cannabinoid concentration

and plant biomass. THC-A and CBG-A levels were reduced by 40%

and 48% (Preprint Shenhar et al., 2025). Similarly, water stress

applied during early flowering led to a reduction of 70–80% in both

CBD and THC content (Park et al., 2022). Despite these adverse

effects, certain genotypes such as Ivory and Santhica 27

demonstrated resilience by maintaining relatively high biomass

yields under dry conditions (Herppich et al., 2020).

Although a wide range of environmental factors influencing

cannabis cultivation has been well documented, the role of relative

humidity (RH) remains comparatively understudied. RH is defined

as the ratio of atmospheric vapor pressure to saturation vapor

pressure at a given temperature (Campbell and Norman, 1998;

Fairbridge, 1987). This parameter reflects the degree of air

saturation with water vapor, and has a direct effect on key

physiological processes, including transpiration rates, stomatal
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behavior, and vapor pressure deficit (VPD) level, which collectively

regulate plant water status and photosynthetic performance (Taiz

et al., 2015).

Beyond its role in water relations, RH also plays a crucial role in

determining plant morphology, biomass accumulation, nutrient

uptake, pathogen development, and secondary metabolite

production (Grossiord et al., 2020; Gui et al., 2021; Mortensen,

1986). Optimal RH requirements for C. sativa vary by

developmental stage, with recommended ranges of 65-75% during

the clonal and seedling stages, 50-70% during vegetative growth,

and 40-60% during the flowering period (Chandra et al., 2017;

Fleming et al., 2023; Jin et al., 2019).

While direct studies onC. sativa are limited, research in other plant

species suggests that RH can significantly influence physiological and

biochemical traits. For example, high RH levels of approximately 80%

have been shown to increase leaf biomass and modify nutrient content

in tomato plants (Suzuki et al., 2015). Similarly, a study on the effects of

climate change, involving night-warm temperatures and elevated

atmospheric water saturation, negatively impacted the flowering

responses in 184 plant species from the Amazonian forest,

decreasing flowering biomass (Vleminckx et al., 2024). Likewise,

elevated humidity in silver birch (Betula pendula) has been

associated with changes in hydraulic architecture, leaf morphology,

and metabolite profiles, ultimately contributing to improved stress

resilience (Lihavainen et al., 2016; Sellin et al., 2015). Interestingly,

studies on high RH of 80% at a constant temperature in petunia

showed longer vegetative stages and delayed flowering development

(Hoang and Kim, 2018). These findings suggest that C. sativa may

exhibit comparable responses to RH variation, potentially affecting

both biomass production and cannabinoid biosynthesis.

In the context of ongoing climate change, increasing global

temperatures and altered precipitation patterns are leading to

elevated atmospheric humidity levels (Lahlali et al., 2024). In

regions such as Colorado, where Cannabis cultivation is widespread,

these environmental changes highlight the importance of identifying

and cultivating genotypes that can perform well under variable RH

conditions ((EPA) United States Environmental Protection Agency,

2016). Despite this need, the direct effects of RH on C. sativa

genotypes adapted to temperate climates have not been

thoroughly investigated.

Therefore, this study aims to assess the impact of canopy-

relative humidity on the morphometry, biomass production, and

cannabinoid concentration of a type III CBD-dominant chemotype

under controlled conditions. The findings will contribute to

optimizing cultivation practices and enhancing quality and yield

in commercial hemp production.
2 Materials and methods

2.1 Plant material and cultivation

A type III CBD-dominant chemotype that typically produces

between 14–18% CBD and contains 0.2–0.3% THC was used.
Frontiers in Plant Science 04
Uniform clones (10–12 cm in length) were taken from a six-month-

old mother plant. Cuttings were treated by dipping the basal end in a

0.3% indole-3-butyric acid (IBA) gel (Clonex®) (Growth Technology

Ltd., Vista, CA), and subsequently inserted into (stone wool) rock

wool cubes (Root Riot®) (Hydrodynamics International, Medford,

OR) within an aeroponic cloning system following the procedure and

recommendations of Regas et al., 2021) (Supplementary Table 1). A

nutrient solution composed of a three-part formulation (General

Hydroponics®: FloralGro®, FloralMicro®, FloralBloom®) was

manually applied over a four-week rooting period following the

commercial recommendation of dosage for every stage, from clones,

vegetative, and flowering stages (Supplementary Table 1).

After the root system reached 25–30 cm in length, the plantlets

were transplanted into 3.78 l soil pots for two-week acclimation. A

mixture of soils and substrates was used during the plant’s growth

(Supplementary Table 1); each plant received 900 ml of nutrient

solution twice to three times a week during the plant’s growth

(Supplementary Table 1). Plants were grown without trimming or

insecticide spray to prevent any unintended effects on growth and

secondary metabolism.

The study used a randomized complete block design with 20

feminized type III CBD-dominant clones, grown under two

canopy-level relative humidity (RH) conditions: low RH (37–

58%) and high RH (78–98%). Each treatment group included ten

plants placed in growth chambers (SciBrite®, Percival, LED36L1-

120V; Percival, Iowa, U.S.) with an interior volume of 0.84 m³ and

outside dimensions of 85.09 cm (width) × 85.34 cm (length) ×

196.09 cm (height).

Since these chambers lack integrated humidity control systems,

RH levels were adjusted manually. To achieve low RH, the chamber

door was left slightly open, and the lid was adjusted to create a small

0.5 cm opening, allowing more air exchange with the outside and

preventing moisture buildup inside. For high RH, the chamber was

fully sealed, and an additional 900 ml container of water was placed

near the soil pots to increase moisture around the plant canopy.

The study followed a randomized complete block design using

20 feminized type III CBD-dominant clones, grown under two

canopy-level relative humidity (RH) treatments: low RH (37–58%)

and high RH (78–98%). Each treatment group consisted of ten

plants housed in growth chambers (SciBrite®, Percival, LED36L2-

120V; Percival, Iowa, U.S.) with an interior volume of 0.84 m³ and

exterior dimensions of 85.09 cm (width) × 85.34 cm (length) ×

196.09 cm (height).

Because these chambers do not have integrated humidity

control systems, RH levels were manually manipulated. The low

RH condition was achieved by leaving the chamber door slightly

open and adjusting the lid to create a controlled 0.5 cm opening,

which allowed for greater air exchange with the external

environment and prevented moisture accumulation inside the

chamber. Conversely, for the high RH condition, the chamber

was fully sealed and additional 900 ml containers of water were

placed near the soil pots to increase moisture around the

plant canopy.

The low-humidity range was selected as the control treatment,

reflecting the typical growing conditions used by Colorado growers
frontiersin.org
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for this genotype. During the experiment, the growth chambers

were set to control light, temperature, and photoperiod. Each

chamber was equipped with a 30.48 cm AeroWave A6 fan

(Vivosun, Ontario, California, U.S.), operating at 60 Hz to

maintain consistent air circulation, with one fan in each chamber.

Morphometric and biomass variables, including stem height,

node count, trunk diameter, internodal spacing, were measured

weekly and biomass weights (wet and dry) were measured at the end

of the 14 (low RH) and 15 (high RH) weeks. The total above- and

below-ground dry biomass and biomass by structure were recorded

independently for each plant (e.g., inflorescences, leaves, branches,

roots, and stems). Cannabinoid concentrations of 14 cannabinoids,

expressed as a percentage (% W/W) and mg g -1 of each

cannabinoid based on dry weight in the harvested inflorescences,

were measured using High-Performance Liquid Chromatography

(HPLC). The cannabinoids, including acidic, decarboxylated,

oxidized, and degraded forms of cannabigerol (CBG), cannabidiol

(CBD), tetrahydrocannabinol (THC), cannabichromene (CBC),

tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), the

oxidized form of D9-THC (D8-THC), and degraded forms such as

cannabinol (CBN) were studied. Analyses were performed using

HPLC with three replicates per plant (n=90), totaling 180 analysis

replicates (Global Hemp Innovation Center, Oregon State

University, 2022).

During the 8-week vegetative stage, plants received General

Hydroponics Floral Series® as a soil drench (900 ml per plant, three

times weekly), with solution volumes adjusted for growth stages.

During the 6-week flowering stage, the same nutrient package was

applied 2–3 times weekly (900 ml per plant) until 40–70% of the

inflorescence developed an amber color for harvesting (Punja et al.,

2023; Tran et al., 2025).

Harvesting and Post-Harvesting: Above-ground and below-

ground biomass were collected in weeks 14 (low RH) and 15

(high RH), and both wet and dry biomass were recorded. Plants

were dried upside down in a dark room (T: 15–21 °C, RH: 40–55%)

for 15 days, until brittle (~11%) (Das et al., 2022). Storage moisture

was maintained at approximately 80% (Das et al., 2022; Lazarjani

et al., 2021). Whole trimmed inflorescences per plant were wrapped

in kraft paper and plastic bags and stored in the dark at room

temperature (15-18 °C) until cannabinoid analysis. Plant root

biomass maintained in trays was gathered using 3- and 12-mm

sieves (Gilson, Lewis Center, OH) and rinsed thoroughly until soil

and substrate residue were removed. Roots were exposed to sunlight

and ambient temperature until they became brittle, a process that

took 15–20 days.

2.1.1 Photoperiod and light regimen
PPFD was monitored throughout all growth stages using a PAR

Meter (Photobio Quantum) (Phantom, Hydropharm, Shoemakerville,

PA). During rooting in aeroponics, plants were exposed to a 24-hour

light cycle with AgroBrite T5 lights at 200-225 mmol m-² s-1for four

weeks. During the acclimation stage, a 24-hour photoperiod with a

PPFD of 300 mmol m-² s-1was maintained for two weeks. For the early

vegetative stage, a 15-hour light/9-hour dark cycle was applied for four

weeks, with a PPFD of 400-600 mmol m-² s-1. In the late vegetative
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stage, the photoperiod was shifted to 13.5 hours light/10.5 hours dark

for another four weeks, maintaining the same PPFD. During the early

flowering stage, a 12.5-hour light/11.5-hour dark cycle was

implemented for three weeks with a PPFD of 400-600 mmol m-² s-1,

corresponding to pistil formation. Finally, at the flowering stage, a

PPFD of 600–800 mmol m−2 s−1 was applied for three weeks, ending

when approximately 70% of the inflorescences had turned amber.
2.2 Environmental parameters in controlled
conditions

Environmental parameters, including temperature (T), dew

point (DP), humidity ranges, soil temperature, and conductivity,

were continuously (hourly) monitored throughout the plant growth

stages (Supplementary Table 2). Hourly canopy-level data were

collected using a data logger (EL-USB-2-LCD) (Lascar, Erie, PA).

Soil conductivity and temperature were measured weekly with the

Gro Line Soil Test™ Direct Soil Conductivity Tester (HI98331)

(Hanna Instruments, Woonsocket, RI). Two canopy relative

humidity ranges were tracked hourly through the entire study

(14–15 weeks), with ranges of low RH (37-58%) and high RH

(78%-98%).

The Vapor Pressure Deficit (VPD) and Leaf Vapor Pressure Deficit

(LVPD) were initially estimated by calculating the Saturated Vapor

Pressure (SVP), which is the pressure exerted by water vapor in the air

when it is saturated at 100% RH at a specific T (Equation 1). The VPD

is determined based on temperature and canopy relative humidity data,

which identifies the quantity of water vapor in the air at a given RH

(Equation 2) (Grossiord et al., 2020). The LVPD is defined as the

difference between the SVP inside the leaf and the actual vapor pressure

of the surrounding air (Equation 3). Psychrometric tables specific to

cannabis, based on parameters defined by Breit et al. (2019), were

referenced to determine optimal growth conditions. The VPD and

LVPD were calculated using the formulas provided by Breit et al.

(2019) and Grossiord et al. (2020):

SVP = 610:78� e 
T

(T+238:3)�17:2694 (1)

Where SVP represents the saturated vapor pressure, e= 2.71828

is a Mathematical constant of Euler’s Number (e), T is the

temperature in °C, the SVP result should be given in pascals, then

divided by 1000 to get kPa.

VPD =
100 − RH

100
� SVP (2)

Where VPD represents the vapor pressure deficit, RH is the

relative humidity, and SVP represents saturated vapor pressure.

LEAF VPD = LSVP −
(ASVP� RH)

100
(3)

Where Leaf VPD represents the leaf vapor pressure deficit,

ASVP represents the adjusted saturated vapor pressure, and ASVP

represents the assumption that leaf and ambient temperature

difference is between 1-3°C.
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2.3 Cannabinoid analysis

2.3.1 Sample preparation
To determine the cannabinoid concentration of the selected

genotype, inflorescences from both high RH and low RH at the

canopy level were analyzed using liquid chromatography on a

Thermo Scientific Dionex UltiMate 3000 HPLC system (Thermo

Fisher Scientific, Waltham, MA). For sample preparation, dried

flowers were ground with a mortar and pestle and then sieved

through a wire mesh with a pore size of 1.18 mm to remove plant

debris. The extraction process followed the methods outlined by the

Standard Operating Procedures for Hemp – Cannabinoid Analyses

(Global Hemp Innovation Center, Oregon State University, 2022).

In each case, 500 mg of genotype samples from both canopy RH

ranges were added to a 5 ml glass scintillation tube containing 5 ml

of methanol: chloroform (9:1 v/v). Samples were vortexed for 10

seconds, followed by 5-minute sonication in a bath at 40 kHz

(Branson 3510) (Branson Ultrasonics Corp, Brookfield, CT) for 5,

10, and 15 minutes. Subsequently, a final centrifugation at 1900 × g

for 15 minutes was conducted (Ultra-8V) (L-W Scientific,

Lawrenceville, GA) (UNODC, United Nations of Drugs and

Crime, 2009). The samples were left overnight for 18 hours in the

darkness at room temperature. The supernatant was then collected

and filtered using HPLC natural hydrophilic × Nylon 66 membrane

syringe filters with a diameter of 13 mm and a pore size of 0.45 mm
for sterilization and removal of plant debris (Global Hemp

Innovation Center, Oregon State University, 2022).

Three replicates were prepared per plant (n = 10 plants per

canopy relative humidity condition, total = 90 samples). For the

final solution preparation, each replicate underwent two dilutions of

1:10 (900 ml of methanol and 100 ml of the sample) and 1:100 (990

ml of methanol and 10 ml of the sample) (UNODC, United Nations

of Drugs and Crime, 2009).

2.3.2 High-performance liquid chromatography
This HPLC system operated with a temperature-controlled

autosampler, a column oven compartment, and a diode array

detector (DAD) set to detect at 220 nm (DAD 3000 and multi-

wavelength detector ‘MWD 3000’). It was controlled by

Chromeleon 7.2 software, version 7.2 SR5 (Thermo Fisher

Scientific, Waltham, MA). The decarboxylation process was not

used, and the elution order of CBD, CBN, THC, and THC-A

was followed.

The HPLC system included a polar Encapped column with an

I.D. of 100 mm x 2.1 mm and a particle size of 2.6 mm, maintained

at 50 °C (Accucore AQ C18, Thermo Scientific). A 20 ml sample was

injected, and the flow rate through an IntertSustain C18, 3 mm, 2.1 x

100 mm column (GL Sciences, Inc., IntertSustain-ods-3-micron-

100-x-2–1 mm) was 1.2 mg l-1. Two mobile phases were used:

mobile phase A, consisting of 0.1% formic acid in 5.0 mM

ammonium formate and ultra-pure water (18 MW), and mobile

phase B, containing 0.1% formic acid in methanol. Equilibration

was reached at 2.5 minutes at 60% B, followed by the gradient: 0–2
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min, 70% B; 2–8 min, 75% B; 8–9 min, 100% B; 9–10 min, 100% B;

and 10–15 min, 60% B, with a step at 10.5–11 min at 60% B

followed by 2.5 min of equilibration at 60% B between injections.

The total analysis time was 13.5 minutes. The autosampler chamber

and column were maintained at 8 °C and 50 °C, respectively. Under

these conditions, CBD-A, CBG-A, CBG, CBD, D9-THC, and

THCA-A eluted at 3.171 min (± 0.050 min), 3.401 min (± 0.050

min), 3.611 min (± 0.050 min), 3.673 min (± 0.050 min), 5.234 min

(± 0.050 min), and 5.860 min (± 0.050 min), respectively. Five-point

calibration curves (1, 5, 10, 50, and 100 mg l-1) were generated for

the cannabinoids at 228 nm using DAD, with peak integrations

analyzed using software (Global Hemp Innovation Center, Oregon

State University, 2022).

A set of 14 commercial cannabinoids standards solutions GBG-

A (99.3%), CBG (99.2%), CBD-A(99.3%), CBD (99.2%), CBC-A

(99.8%), CBC (98.8%), THC-A (99.1%), D9-THC (99.3%), CBDV-A

(99.3%), CBDV (99.2%), THCV-A (97.9%), THCV (99.1%)

(Cerilliant, San Antonio, TX) were prepared with a volume of 1.0

mg l-1 in methanol solution (Cayman Chemical Company, Ann

Arbor, MI)genotype. The sample concentration of each

cannabinoid is determined from a calibrated linear response

curve (R² > 0.99) in the total extraction volume and adjusted

according to the sample weight (Global Hemp Innovation Center,

Oregon State University, 2022).

Posterior calculations were employed to determine the mg l-1,

the density, the dilution factor, the mg/hemp, and the total

cannabinoid percentage.

Then, we determined the total cannabinoid percentage of CBG,

THC, CBD, CBC, THCV, and CBDV in the assessed samples by

using the following Equation 4:

TC( % ) = %
w
w
½N  C� + (%

w
w
½A  C�x   w

w
M  R

NC
AC

 

� �� �
) (4)

Where TC represents total cannabinoid %, NC represents

neutral cannabinoids such as CBG, THC, CBD, CBC, THCV, and

CBDV, AC represents acidic cannabinoids such as CBG-A, THC-A,

CBD-A, CBC-A, THCV-A, CBDV-A, M R = mass ratio, it is the

ratio of the molecular weight of cannabinoids; Decarboxylation:

acidic cannabinoids that lost a CO2 molecule to form

neutral structures.
2.4 Statistical analysis

Environmental parameters (temperature, humidity, and dew

point) were monitored hourly and averaged for the vegetative stage

(8 weeks) and total growth period (14–15 weeks). Morphometry,

biomass, and cannabinoid data were analyzed using unpaired t-tests

to detect significant differences between RH at canopy levels. One-

way ANOVA evaluated individual cannabinoid differences (% w/w)

across humidity conditions. Data analysis and visualizations were

conducted in GraphPad Prism 9® (GraphPad Software, Inc., La

Jolla, Ca).
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3 Results

3.1 Canopy humidity-induced variations in
temperature, dew point, and vapor
pressure deficit during cannabis growth

In addition to maintaining canopy RH at high (78–98%) and

low (37–58%) levels, other atmospheric variables, including dew

point (DP) and air temperature (T), were monitored hourly

during the 14th week of the genotype’s growth under controlled

conditions. Air temperature (T) averaged 20.30 ± 3.60 °C in the

low RH range and 21.60 ± 1.40 °C in the high RH range,

remaining stable across both humidity conditions (n = 105

days, p > 0.005). The maximum and minimum values for T

were 7 - 23 °C for the low RH range and 21-23 °C for the high RH

(Figure 1). The DP averaged 8.20 ± 0.50 °C in the low canopy RH

and 20 ± 0.40 °C in the high RH (n = 105 days, p < 0.0001). The

maximum and minimum values for DP were 8 - 9 °C for the low

RH range and 19-20 °C for the high RH (Figure 1). No significant

differences were observed in soil conductivity or soil temperature

be tween the two RH range s (n = 56 , p > 0 .0001 )

(Supplementary Table 2).

High RH (78-98%) resulted in low VPD values of 0.05 kPa and

0.25 kPa (Equations 1, 2) during the later vegetative (8 weeks of

duration) and flowering stages (6 weeks of duration) of the

genotype. Similarly, the leaf VPD (LVPD) was recorded at 0.13

kPa and -0.04 kPa under high RH conditions (Table 1). The dew

points also increased, reaching 20.40°C and 20.10°C during the

vegetative and flowering stages (Equation 3) (Table 1). The low RH

(37-58%) yielded VPD values of 1.29 kPa and 0.92 kPa, with a

minimum LVPD of 1.02 kPa and 0.60 kPa during the vegetative and

flowering stages of the genotype (Table 1).
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3.2 High relative humidity impacts the
genotype biomass and morphometric traits

The dry biomass of the genotype, including floral, stem, and foliar

tissues, was significantly influenced by RH conditions. Under low RH

(37-58%), the average dry weight offlowers plus leaves was 48 g ± 6.70,

and flowers averaged 33.80 g ± 2.20. In contrast, plants grown under

high RH (78-98%) produced significantly lower flower plus leaves, and

flower biomass, measuring 11.50 g ± 2.60, and 9.90 g ± 2.20,

respectively (n = 10, p < 0.0001) (Figure 2A). This represents a 76%

increase in floral plus leaves biomass and a 71% increase in flower

biomass under low RH compared to high RH. Overall, total dry

biomass was 2.71 times greater under low RH conditions (n = 10, p

< 0.0001) (Figure 2A). Root biomass did not significantly change

between the low and high RH (n = 10, p > 0.0001) (Figure 2A).

Morphological traits also varied substantially in response to

humidity treatment. The genotype plants grown under low RH

exhibited a greater stem diameter (1.40 cm ± 0.07) and a higher

number of nodes (43 ± 2.10) than those under high RH, which

averaged 1.00 cm ± 0.05 in stem diameter and 32 ± 2.70 nodes (n =

10, p < 0.0001) (Figures 2B, 3C, Supplementary Figure 1).

Conversely, elongation of the apical region was more pronounced

under high RH, with the upper three-fourths of the main stem

averaging 117 cm ± 4.30, compared to 107 cm ± 4.00 in low RH (n =

10, p < 0.0001) (Figures 2B, 3A, B, Supplementary Figure 1).
3.3 High relative humidity at the canopy
level delayed the flowering time

Under controlled environmental conditions, the genotype

exhibited distinct differences in observable floral development
FIGURE 1

Atmospheric variables measured at the canopy level during the 14th week of the development of the type III (CBD-dominant) cannabis chemotype
under controlled conditions, including relative humidity, dew point, and temperature. Labels show the maximum and minimum values recorded in
the study. CRH, canopy relative humidity; low RH, 37-58%; high RH, 78-98%; T (°C), temperature; DP (°C), dew point. Based on Corredor Perilla
(2024), updated and modified by the author.
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depending on RH. At a low RH, flowering was observable in week

10 with visible shoot apex differentiation. By week 11, bract

emergence and pistil development were evident. Inflorescence

expansion continued through weeks 12 and 13, during which

approximately 40% glandular trichomes exhibited oxidation. By

week 14, when plants reached condensed floral maturity and 60–

70% of the inflorescence displayed amber coloration, they were

harvested (Figure 4).

In contrast, plants grown under high RH showed delayed

phenological progression. Flowering onset was not observed until

week 13. followed by bract and pistil development in week 14. By

week 15, only 20–30% trichome oxidation has occurred. Harvest

was delayed until week 15 to ensure sufficient floral biomass for

cannabinoid quantification and to mitigate guttation-related tissue

damage, which spread more aggressively under high humidity

conditions (Figure 4).

Notably, inflorescence formation per branch was significantly

reduced under high RH compared to low RH. Quantitative analysis

revealed decreases of 14.30% and 25.60% in weeks 13 and 14,

respectively, indicating a marked suppression of floral development

in elevated humidity environments (n = 10, p < 0.0001) (Figure 4).
3.4 Cannabinoid concentrations drastically
decreased in high relative humidity

To assess the impact of canopy-level RH on cannabinoid

composition, a total of 14 phytocannabinoids were quantified

under low (37-58%) and high (78-98%) RH conditions during the

flowering stage. Cannabinoids predominantly remained in their

acidic forms by weeks 14 and 15 across both humidity ranges

(Equation 4) (Figures 5A, C).

Exposure to high RH resulted in substantial reductions in key

acidic and neutral cannabinoids. Compared to low RH content, the

CBD-A decreased by 20.50%, from 27.80 mg g-1 to 5.70 mg g-1,

CBD exhibited a 31.20% reduction, from 3.20 mg g-1 to 1.0 mg g-1,

and CBC-A declined by 7.70%, from 3.90 mg g-1 to 0.30 mg g-1 (n =

10, p < 0.0001) (Figure 5A). Following decarboxylation, total neutral

cannabinoid concentration also showed a significant reduction

under high RH. CBD content declined from 2.80% ± 0.20 to
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0.61% ± 0.03, and CBC decreased from 0.42% ± 0.13 to 0.04% ±

0.003 (n = 10, p < 0.0001) (Equation 4) (Figure 5B).

The ratio of acidic to neutral forms also varied markedly

between the RH treatments. Under low and high RH, the ratios

were elevated for CBD from 0.12 ± 0.04 to 0.19 ± 0.04, CBG from

0.22 ± 0.01 to 0.95 ± 0.30, THCV from 0.07 ± 0.001 to 0.24 ± 0.05,

respectively. In contrast, other cannabinoid ratios decreased, such

as D9-THC from 0.41 ± 0.40 to 0.18 ± 0.01, and CBDV from 0.80 ±

0.02 to 0.50 ± 0.03 (n = 10, p < 0.0001) (Figure 5C). No significant

changes were observed when comparing CBC ratios across

humidity conditions. Notably, the oxidative cannabinoid D8-THC

was undetected under low RH conditions, and no degradation

products such as CBN were observed under either humidity

regime (Figures 5A, C).
4 Discussion

Relative humidity is a key environmental factor that influences

the growth, productivity, and secondary metabolism of C. sativa,

including cannabinoid biosynthesis. While general cultivation

guidelines recommend maintaining RH within the range of 55%

to 60% during vegetative and flowering stages (Das et al., 2022; Jin

et al., 2019), the effects of high canopy-level RH on genotype-

specific morphology and cannabinoid concentration remain largely

unexplored. Understanding these responses is essential for

optimizing production under variable humidity conditions.

One crucial factor influenced by RH is the vapor pressure deficit

(VPD), which governs the driving force for transpiration and plays

a key role in plant water relations and metabolic efficiency. For C.

sativa, optimal VPD ranges are generally reported as 0.50–1 kPa

during cloning and seedling stages, 0.70 -1.20 kPa during the

vegetative stage, and 1.00 -1.50 kPa during flowering (Breit et al.,

2019; Galindo et al., 2023; Vernon et al., 2023).

In the present study, cannabis plants grown under high RH

exhibited markedly reduced VPD values, remaining below optimal

thresholds by 89% during the vegetative stage and 75% during

flowering. Sustained low VPD can limit transpiration, impair

nutrient uptake, and reduce photosynthesis efficiency, while also

increasing vulnerability to pests and diseases (Ding et al., 2022;
TABLE 1 Vapor pressure deficit, leaf vapor pressure deficit, and dew point in the type III (CBD-dominant) chemotype in low RH at the canopy (37-
57%) and high RH (78-98%) at the canopy level after 14th weeks of plant growth in controlled conditions (Equations 1–3).

Low RH 37-58% CRH (%) Temperature (°C) Dew point (°C) VPD kPa LVPD kPa

Initial Vegetative Stage 37.3 24 8.8 1.87 1.04

Later Vegetative Stage 45 20.2 8 1.29 1.02

Flowering Stage 58 17 7.8 0.92 0.6

High RH 78-98% CRH (%) Temperature (°C) Dew point (°C) VPD kPa LVPD kPa

Initial Vegetative Stage 77.8 23 19.5 0.62 0.41

Later Vegetative Stage 97.9 20 20.4 0.05 0.13

Flowering Stage 90 21 20.1 0.25 -0.04
CRH, canopy relative humidity, VPD, vapor pressure deficit, LVPD, leaf vapor pressure deficit, (°C), degrees Celsius, kPa, kilopascals. Based on Corredor Perilla (2024), updated and modified by
the author.
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López et al., 2021). These findings underscore the importance of

understanding how high-humidity environments alter VPD

dynamics and their broader impact on cannabis physiology

and productivity.

The impact of high canopy RH on the flowering stage of the

genotype was particularly evident. Under low RH conditions,
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flowering nutrition and photoperiod treatments began in week

nine, with visible floral initiation, specifically shoot apex

differentiation, occurring by week 10. In contrast, high RH

conditions delayed the onset of flowering until week 13. This

delay suggests that reduced transpiration associated with low

VPD may impair the transport of essential nutrients, such as
FIGURE 2

Effect of canopy relative humidity ranges on the type III CBD-dominant chemotype structures after 14 and 15 weeks of plant growth in controlled
conditions. (A) Fresh and dry biomass weight (g per plant) at low (37-58%) and high (78-98%) canopy relative humidity. This includes biomass of
plant structures such as flowers & leaves, flowers, and roots. (B) Measurements of plant structures: stem length, trunk diameter, and apical internodal
length (cm), as well as the number of nodes in both humidity ranges. **** p < 0.0001. Based on Corredor Perilla (2024), updated and modified by
the author.
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phosphorus and magnesium, which are critical for flower

development (Chia and Lim, 2022; Ding et al., 2022).

Additionally, increased stomatal aperture under high RH can

disrupt internal water flow and nutrient homeostasis, further

inhibiting reproductive progression. Similar effects have been

observed in Chrysanthemum morifolium, where low VPD delayed

flowering by approximately four days (Mortensen, 1986, 2000).

The effects of high RH extended beyond flowering delays to

changes in plant morphology. Compared to low RH, this genotype

exhibited a significant increase in apical internode length (from 0

mm to 0.42 mm) and stem length (from 107 cm to 117.4 cm).

Similar responses have been reported in ornamental crops, such as

chrysanthemum, kalanchoe, and poinsettia, where increased

humidity promotes stem elongation (Mortensen, 2000). This is

likely due to the search for radiation in high-humidity

environments to increase photosynthesis and nutrient allocation,

contributing to elongated apical and stem growth. The dynamic

interplay between nutrient allocation and hydraulic functioning
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under elevated humidity conditions has also been documented in

silver birch trees (Sellin et al., 2015), suggesting a broader

physiological relevance to these findings. At the canopy level, the

presented results demonstrate that elevated RH ranging from78%

to 98% promotes stem elongation and increased internodal spacing

in the studied genotype. Nevertheless, optimal plant density

remains a critical determinant for achieving substantial foliar

biomass accumulation.

Furthermore, elevated RH significantly influenced aerial shoot

structures and perturbed the soil-water balance, resulting in anoxic

conditions within the root zone. Such hypoxic stress is known to

induce hormonal signaling cascades involving ethylene and

gibberellins (GA), which facilitate physiological adaptations to

low-oxygen environments (Waadt et al., 2022). In flood-adapted

rice, GA promotes stem elongation by stimulating internodal

growth, enabling the plant to maintain access to atmospheric

oxygen during submergence (Panda and Barik, 2021). It is

plausible that analogous mechanisms are at play in this genotype,
FIGURE 3

Development of Type III CBD-dominant chemotype during the 14th and 15th weeks in low RH (37-58%) and high RH (78-98%) at the canopy, in
controlled conditions. (A, B) The flowering stage in both humidity conditions exhibits different inflorescence development at low humidity (37-58%)
and high RH (78-98%). (C) Plants showing differences in plant height between low RH (37-58%) and high RH (78-98%). RH: Relative humidity. Based
on Corredor Perilla (2024), updated and modified by the author.
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where atmospheric water saturation may activate ethylene signaling

pathways and GA biosynthesis, thereby facilitating stem elongation

and internode expansion under high humidity stress.

Although elevated RH stimulated stem elongation in this

genotype, it had a detrimental effect on biomass accumulation.

Both fresh and dry biomass were significantly reduced across all

plant organs under high RH conditions (78-98%). Comparable

reductions in biomass have been reported in CBG-dominant

hemp varieties cultivated in Florida’s high-humidity environment,

underscoring the critical influence of atmospheric moisture on

overall plant productivity (Chiluwal et al., 2023). These

observations are consistent with findings in other species, such as

Begonia, where excessive RH similarly limited biomass

accumulation (Mortensen, 2000). However, not all stressors exert

equivalent effects; for example, drought stress in C. sativa

chemotype II did not alter the dry weight of inflorescences

(Caplan et al., 2019), highlighting the distinctive physiological

consequences of high humidity stress on biomass production.

High RH also influenced key structural traits, including trunk

diameter. In the studied genotype elevated RH conditions were

associated with a reduction in trunk thickness (Figure 2B),

paralleling findings in Betula pendula Roth, where stem diameter

decreased due to reduced mechanical loading in high-humidity

environments (Sellin et al., 2015). This observation supports the
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hypothesis that during the vegetative stage, high RH may increase

root hydraulic conductance in this cannabis genotype, contributing

to altered stem development and reduced root growth.

Another notable response to high RH was a reduction in the

number of nodes and lateral branches in the studied genotype. This

decline is likely attributable to guttation observed in lower canopy,

which led to premature leaf senescence during the flowering stage

(weeks 10 to 14) (Figure 4). The phenomenon aligns with findings

in silver birch trees, where increased root hydraulic conductance

under humid conditions was associated with a decrease in leaf area,

promoting stem elongation and extended internodal length (Sellin

et al., 2015). Supporting this, studies on guttation in various crops

under low VPDs and high RH have shown that the accumulation

and breakdown of guttation exudates (e.g., minerals, hormones,

enzymes, etc.) can discolor leaf tips from green to yellow, followed

by necrosis and senescence, particularly in older foliage (Singh,

2014; Zheng et al., 2021).

Beyond its adverse effects on biomass and morphology, high RH

had a pronounced impact on cannabinoid concentration in this

cannabis genotype. Elevated humidity delayed the onset of

flowering by approximately three weeks and significantly reduced

the concentration of total CBD and CBC, as well as their acidic

precursors, CBD-A, CBC-A (Figures 5A, B). These findings are

consistent with previous studies, which have shown that
FIGURE 4

Cannabis flowering development under low RH (37-58%) and high RH (78-98%) showed significant differences in the number of branches with
inflorescence development (Mann-Whitney Test, n = 10, ****p < 0.0001) from the 10th to the 14th and 15th weeks. RH: Relative humidity.
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FIGURE 5

Effect of canopy relative humidity ranges on total cannabinoid concentration, after decarboxylation, and cannabinoid ratios in the type III
CBD-dominant strain following 14 (low RH) and 15 (high RH) weeks of plant growth under controlled conditions. Cannabinoids were assessed in
low and high canopy RH ranges (n = 10, p < 0.0001). (A) Comparisons of cannabinoid concentration before decarboxylation in mg g-1 per plant
at the evaluated humidity ranges; (B) Comparison of total cannabinoid percentage after decarboxylation at the assessed humidity ranges (Equation
4). (C) Comparison of cannabinoid ratios at the evaluated humidity ranges. RH, Relative Humidity; Acidic and Neutral cannabinoids: Cannabidiol
(CBD-A/CBD), Cannabichromene (CBC-A/CBC), Tetrahydrocannabinol (THC-A/D9-THC), isomers of THC (D8-THC), Cannabigerol (CBG-A/CBG),
THCV, Tetrahydrocannabivarin, CBDV, Cannabidivarin, Oxidized and degraded molecules: Cannabichromene (CBN). **** p < 0.0001, * p < 0.01.
Based on Corredor Perilla (2024), updated and modified by the author.
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environmental stressors reduce cannabinoid yield. For instance,

under drought conditions, the early flowering stage of the CBD

genotype ‘Green-Thunder’ exhibited reduced THC and CBD levels

(Park et al., 2022). Similarly, a six-year field study involving eight

industrial hemp varieties reported diminished CBD content

following periods of precipitation, although no significant

cannabinoid changes were detected within a moderate RH range

of 45–65% (Sikora et al., 2011). Likewise, broader climatic factors

such as wind and flood have been shown to reduce phytochemical

diversity and shift cannabinoid concentration, primarily leading to

reductions in CBD content (Kay et al., 2025). Collectively, these

findings suggest that abiotic stressors, including drought, excessive

rainfall, wind, flooding, and high relative humidity, can impair

cannabinoid biosynthesis in a genotype-specific manner, with

outcomes strongly influenced by environmental conditions,

cultivation practices, and the timing of stress relative to anthesis.

Elevated RH also influenced cannabinoid composition,

particularly the ratios between acidic and neutral forms (e.g.,

CBD: CBD-A and CBG: CBG-A), as well as the CBD: THC ratio,

all of which were higher under high RH conditions compared to low

RH (Figure 5C). This increase may be attributed to a delayed

flowering onset—observed as a three-week shift post-anthesis—

followed by the inflorescence harvest. The extended flowering

duration likely allowed for additional decarboxylation,

contributing to elevated ratios of neutral cannabinoids.

In support of this, several field-based studies conducted in high-

humidity regions or seasons have reported that cannabinoid

concentration during flowering vary depending on both genotype

genetics and environmental conditions. These studies documented

shifts in the CBD: THC ratio in outdoor-grown plants, further

highlighting the interaction between genotype response and

environmental context (Chiluwal et al., 2023; Stack et al., 2021;

Trancoso et al., 2022; Yang et al., 2020). Such variability

underscores the importance of standardizing cannabinoid

profi l ing across deve lopmental s tages under defined

environmental and cultivation parameters to optimize yields and

accurately identify peak cannabinoid concentration windows.

Notably, this study also revealed a substantial decline in CBC

levels under high RH, with levels dropping from 0.42% in low RH to

0.04% in high RH (Figure 5B). Existing predictive and real-time

studies suggest that CBC accumulation is favored by an extended

vegetative phase and an earlier harvest during flowering (Naim-Feil

et al., 2023).The impact of high RH significantly altered the VPD

values, influencing growth, morphology, and cannabinoid

composition of this genotype. In this study, the vegetative stage

lasted eight weeks, which is slightly longer than typical growth

chamber conditions, and may have affected the cannabinoid

composition. Further research is needed to determine optimal

harvest timing and environmental conditions for maximizing

specific cannabinoids under different humidity regimes.

Because this study focused on a single genotype, future research

should investigate the effects of elevated humidity across multiple

CBD-rich hemp varieties. This work will help identify differences in
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growth, morphology, cannabinoid concentration, and physiology,

providing critical insights for selecting climate-adaptive genotypes

and developing region-specific management strategies to improve

cannabis production amid increasing climate variability.
5 Conclusions

This study is the first to examine how two different canopy-level

relative humidity (RH) ranges impact morphology, biomass, and

cannabinoid concentration in CBD-rich hemp grown under

controlled conditions. Elevated RH significantly altered plant

structure, reduced biomass, and hampered inflorescence

development, while low vapor pressure deficit (VPD) caused

physiological stress symptoms such as guttation, tip burn, and

leaf rot. These combined effects delayed flowering and lowered

overall cannabinoid concentration, particularly CBD and CBC.

The low RH range used in this study reflects typical humidity

levels during cannabis cultivation seasons in Colorado and was

chosen as the control condition. However, this range should not be

seen as the ideal environment for cannabis growth. While it offers a

realistic baseline for comparison, additional research is necessary to

see if slightly higher or lower RH levels could improve plant health

and maximize cannabinoid production across different genotypes.

Relative humidity is a crucial factor affecting VPD and must be

carefully managed throughout cannabis growth. If environmental

conditions are not consistent at each stage, VPD imbalances

can harm plant physiology, morphology, and cannabinoid

concentration. Further research is needed to identify optimal

RH ranges and temperatures that maximize cannabinoid

concentrations across different genotypes.

Since cannabis is cultivated in various production systems,

understanding humidity thresholds is essential for selecting

climate-adapted genotypes and developing effective management

strategies. Automated humidity control and strategic plant spacing

can improve airflow, reduce disease risk, and boost yields, leading to

more sustainable and resilient cannabis cultivation.
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Carranza-Ramıŕez, J. E., Borda, A. M., and Moreno-Fonseca, L. P. (2025). LED light
modifies plant architecture, physiological parameters and cannabinoid concentration
in three varieties of Cannabis sativa L. S. Afr. J. Bot. 176, 231–240. doi: 10.1016/
j.sajb.2024.11.023

Chandra, S., Lata, H., and ElSohly, M. A. (2017). “Cannabis sativa L.-botany and
biotechnology,” in Cannabis sativa L. -botany and bioctechnology. Eds. S. Chandra, H.
Lata and M. ElSohly (Springer, Cham). doi: 10.1007/978-3-319-54564-6_3

Chandra, S., Lata, H., Mehmedic, Z., Khan, I. A., and ElSohly, M. A. (2015). Light
dependence of photosynthesis and water vapor exchange characteristics in different
high D9-THC yielding varieties of Cannabis sativa L. J. App. Res. Med. Aromt Plants 2,
39–47. doi: 10.1016/j.jarmap.2015.03.002

Chia, S., and Lim, M. (2022). A critical review on the influence of humidity for plant
growth forecasting. IOP Conf. Series: Mater. Sci. Eng. 1257, 12001. doi: 10.1088/1757-
899X/1257/1/012001

Chiluwal, A., Sandhu, S. S., Sandhu, H., Irey, M., Johns, F., and Sanchez, R. (2023).
Cannabidiol industrial hemp growth, biomass, and temporal cannabinoids
accumulation under different planting dates in southern Florida. Agrosyst. Geosci.
Environ. 6, e20347. doi: 10.1002/agg2.20347
frontiersin.org

https://repositorio.unal.edu.co/handle/unal/87226
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678142/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1678142/full#supplementary-material
https://doi.org/10.3390/plants13192774
https://doi.org/10.1093/hr/uhae245
https://doi.org/10.3390/agronomy13102636
https://doi.org/10.1007/978-1-4612-1626-1_3
https://doi.org/10.21273/HORTSCI13510-18
https://doi.org/10.1016/j.sajb.2024.11.023
https://doi.org/10.1016/j.sajb.2024.11.023
https://doi.org/10.1007/978-3-319-54564-6_3
https://doi.org/10.1016/j.jarmap.2015.03.002
https://doi.org/10.1088/1757-899X/1257/1/012001
https://doi.org/10.1088/1757-899X/1257/1/012001
https://doi.org/10.1002/agg2.20347
https://doi.org/10.3389/fpls.2025.1678142
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Corredor-Perilla et al. 10.3389/fpls.2025.1678142
Corredor Perilla, I. (2024). Evaluation of factors that shape the development of
Cannabis sativa L., and the production of its cannabinoids in the context of
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