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China relies heavily on imported soybeans due to insufficient domestic production,

but these imports are often contaminated with quarantine weed seeds such as A.

artemisiifolia and A. trifida. The introduction of these species poses serious

ecological risks, highlighting the urgent need for reliable real-time detection

methods. In this study, a single-seed uniform distribution and spreading device

was designed to minimise occlusion and ensure consistent seed visibility. The

device integrates a parabolic seed-socket distribution unit with an embedded

system. After seeds were arranged in a single layer on a conveyor belt, a

detection camera captured images that were processed by the YOLO_P2 model

for seed recognition and counting. Device performance was optimised using the

Taguchi experimental design, and evaluated with signal-to-noise ratio, mean, and

variance. Experimental analysis revealed that the speeds of the seed-spreading

roller and conveyor motor were the most significant factors affecting distribution

uniformity. Validation experiments showed that the optimised system achieved

detection accuracies of 95.73% for A. trifida and 94.41% for A. artemisiifolia, with an
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average processing time of 7.6 minutes per sample. These results demonstrate that

the proposed device provides a practical, cost-effective solution for quarantine

inspection, combining high-throughput capability with real-time performance to

support ecological protection efforts.
KEYWORDS

soybean quarantine, device design, parabolic seed socket, Taguchi experimental design,
deep learning
1 Introduction

Soybean is a highly nutritious crop widely used in various

consumer products and traded globally in large volumes (de Lima

et al., 2018). Due to their high volume and broad distribution,

soybean shipments are particularly vulnerable to contamination by

quarantine weed seeds. The spread of these seeds leads to serious

economic (including direct damages and the costs of mitigation and

prevention), health (e.g., globally emerging zoonotic diseases), and

environmental (e.g., decline in native biodiversity) issues (Jay et al.,

2003; Hall, 2011; Baider and Florens, 2011). According to the

InvaCost Database, the global mean annual cost associated with

invasive alien species may reach USD 162.7 billion (Diagne et al.,

2021). Additionally, variation in quarantine standards across

countries results in differing criteria for determining sample

acceptability (Davies and Sheley, 2007), posing major challenges

to the effective implementation of quarantine procedures. These

issues highlight the need for effective measures to detect, control,

and manage the spread of these harmful organisms (Meyerson and

Reaser, 2002; Magarey et al., 2009). Consequently, the development

of a rapid and accurate method for detecting quarantine weed seeds

is critically important.

Currently, the identification of quarantine weed seeds largely

relies on manual techniques such as protein electrophoresis, DNA

barcoding, and gas chromatography (Huang et al., 2015; Lei et al.,

2017; Whitehurst et al., 2020). However, these methods are often

costly and time-consuming, making them unsuitable for large-scale

applications (Rahman and Cho, 2016; ElMasry et al., 2019). With

advances in electronics and microprocessor technology, the

development of detection devices has offered new approaches for

the identification of quarantine weed seeds (Thakuria and

Erkinbaev, 2024; Zhao et al., 2025). Several devices and systems

have been developed for seed sorting and quality assessment. Zhao

et al. (2021) developed a real-time detection system for

comprehensive surface inspection of soybeans, in which

pneumatic actuators rotated the samples for multi-angle imaging.

An enhanced MobileNetV2 model was applied, achieving an

accuracy of 98.87%. Similarly, Wang et al. (2023) proposed an

online cottonseed classification device using a rotary disc and fixed

partitions for single-seed positioning. Dual cameras captured

images of falling seeds, and a YOLOv5-based model classified
02
them as intact, damaged, or moldy, achieving an accuracy of

99.6%. Despite their reliable detection capabilities, the high

construction and maintenance costs have limited their practical

application in agriculture. Furthermore, since these devices are

generally designed for specific seed types, their effectiveness is

reduced in quarantine inspections where seed diversity is high.

Most existing devices perform detection after singulation. While

manageable for small quantities, high-throughput quarantine

inspections make efficient singulation difficult. These challenges

underscore the importance of developing a real-time, high-

throughput detection system that is cost-effective and adaptable

to a variety of seed types.

Deep learning models have demonstrated exceptional

performance in object recognition tasks (Vega−Castellote et al.,

2025; Cao et al., 2025), and YOLOv8n is both lightweight and

accurate (Chen et al., 2025; Zheng et al., 2024). Improvements made

by Ma et al. (2024) and Liu et al. (2024) boosted model accuracies to

91.4% and 84.12%, respectively. These studies show that deep

learning models can effectively detect various target types,

supporting the recognition and counting of imported soybean

and quarantine weed seeds. However, performance decreases

significantly in cases of target occlusion. While model

enhancements can improve accuracy, they typically involve

significant computational demands and only offer marginal gains

(I ́ñiguez et al., 2024). Moreover, detecting small targets among

variably sized seeds remains difficult (Zhang et al., 2025), requiring

targeted adjustments to meet the accuracy standards of

quarantine inspection.

Currently, no commercially available intelligent detection

devices are specifically designed for quarantine weed seeds. To

address this gap, the present study developed a real-time, high-

throughput detection device capable of cost-effective acquisition of

seed image datasets. The design maximizes the number of seeds

captured per image, avoids mutual occlusion, and accommodates

practical operating conditions. The device integrates a seed

distribution mechanism and an embedded system to achieve

high-quality image acquisition, recognition, and counting. A seed

dispenser incorporating parabolic seed sockets was designed to

ensure compatibility with a variety of seed types. The Taguchi

experimental design method was applied to optimize configuration

parameters for efficiently collecting high-quality seed images.
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The main objectives of this study were as follows: first, to enable

high-throughput acquisition of high-quality seed image datasets, a

seed dispenser with parabolic seed sockets was developed. This

design ensured uniform distribution of multiple seed types within a

single image, maximizing seed quantity and avoiding mutual

occlusion. Second, to optimize the quality of seed distribution, the

device parameters were experimentally investigated and refined

using the Taguchi method, resulting in the optimal configuration.

Finally, to achieve real-time detection and improve the accuracy for

small targets (specifically A. artemisiifolia seeds), targeted

modifications were applied to the YOLO_P2 model, significantly

enhancing its detection performance.
2 Materials and methods

2.1 Seed sample preparation

As shown in Figure 1, the samples submitted to customs for

inspection contain various impurities. In addition to quarantine

weed seeds, impurities such as seed coats, miscellaneous grain seeds,

plant stems, and stones are also present, which poses significant

challenges for manual quarantine inspection. Although preliminary

screening can remove some impurities that are larger than imported

soybeans, including certain quarantine weed seeds, miscellaneous

grains, plant stems, and stones, the majority of quarantine weed

seeds are smaller than imported soybeans (Figure 2A). Although
Frontiers in Plant Science 03
existing studies using deep learning methods are capable of

identifying these types of seeds, their accuracy decreases

significantly under conditions such as target occlusion or poor

lighting. Therefore, the ability to rapidly and continuously acquire

high-quality sample image datasets, in which seeds are uniformly

arranged and not occluded, remains a major challenge that has yet

to be resolved. Figures 1 and 2 present illustrative images of

common impurities in imported soybean samples, which are

provided solely for background explanation and were not used in

model training, validation, or performance evaluation.

To support the design of the seed dispenser, seed types were first

selected. The seed samples included Brazilian soybeans (Figure 2D),

which represent the primary source of global soybean imports (Ali

et al., 2022), along with common quarantine weed seeds found in

imported soybeans, as illustrated in Figure 2. Larger seeds, such as

Xanthium spinosum Linn. and Solanum rostratum Dunal (Figure 2A),

can be removed through preliminary screening. For smaller weed

seeds, two representative species, Ambrosia artemisiifolia L. (Figure 2B)

and Ambrosia trifida L. (Figure 2C), were selected due to their high

interception rates in imported soybeans. These seeds were provided by

the Agricultural Genomics Institute in Shenzhen, Chinese Academy of

Agricultural Sciences, in May 2025. The imported soybeans used in the

subsequent experiments had a moisture content of 12%.

The dimensions of imported soybeans and two types of

quarantine weed seeds were measured. For each seed type, 500 ±

10 samples were randomly selected and measured using a digital

vernier caliper with an accuracy of 0.01 mm (DELIXI Electric,
FIGURE 1

Customs inspection sample.
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Hangzhou, China). The dimensional and particle size distributions

are shown in Figure 3. The average values were used as design

references. The imported soybeans had an average length of 7.65

mm, a width of 6.52 mm, and a thickness of 5.70 mm. A. trifida

seeds had an average length of 7.57 mm, a width of 4.57 mm, and a

thickness of 3.69 mm. Due to the smaller size of A. artemisiifolia

seeds and the minimal difference between their width and thickness,

only the length and cross-sectional diameter were measured, with

average values of 3.22 mm and 2.84 mm, respectively.
2.2 Single-seed uniform distribution and
spreading device

The method of detecting only imported soybeans is not suitable

for customs quarantine scenarios, as customs authorities assess

sample compliance based on the proportion of quarantine weed

seeds present. Therefore, all three types of seeds must be detected

and counted. Currently, the specific evaluation criteria adopted by

Chinese Customs remain confidential and have not been publicly

disclosed. Moreover, there is a lack of research on detection devices

specifically designed for identifying quarantine weed seeds in

imported bulk agricultural commodities. In response to this gap,

the present study developed a real-time, high-throughput, and cost-

effective detection device, with the goal of minimizing detection

time and maximizing detection accuracy.

The detection device measures 262 cm in height, 544 cm in

length, and 334 cm in width. The single-seed uniform distribution

and spreading mechanism consists of a seed dispenser and a

conveyor belt, as illustrated in Figure 4.

The seed dispenser comprises a seed feeding box, a seed

spreading roller, a curved guide plate, and a seed drop chute, as

illustrated in Figure 5. The spreading roller is equipped with
Frontiers in Plant Science 04
parabolic seed sockets arranged in 17 staggered columns, with

each column offset by 15 degrees. The conveyor module consists

of a conveyor belt driven by a stepper motor and features a white,

diamond-patterned belt designed to reduce seed bouncing and

minimize light reflection. The embedded system is positioned on

one side of the detection device. For continuous real-time image

acquisition, a detection camera (AOSVI Micro HK830, Shenzhen,

China) with a resolution of 3840 × 2160 pixels is mounted at the top

of the device. The camera is equipped with a 6 mm adjustable focal

length lens and is positioned 20 cm above the detection area. To

reduce the impact of ambient light fluctuations on detection

accuracy, an LED light source is installed at the top of the

detection area.

The seed spreading roller plays a pivotal role in determining the

performance of the seed dispenser. Key design parameters of the

roller include its diameter, the number of seed sockets, and the

socket geometry. Considering the typical diameters used in existing

soybean dispensers and the spatial constraints of the overall system,

a diameter of 120 mm was selected. Uniform seed distribution

depends heavily on the compatibility between the socket shape and

the physical characteristics of imported soybeans and quarantine

weed seeds. The three seed types, which are imported soybeans, A.

artemisiifolia, and A. trifida, differ significantly in both shape and

size. Their proportions are typically unbalanced, with soybeans

accounting for the majority of the mixture. To address this issue, a

parabolic seed socket was designed based on the equation x² = 2py.

This shape has a zero slope at the vertex, which allows seeds to

naturally decelerate and stabilize within the cavity. The narrowing

profile toward the bottom accommodates seeds of different sizes. In

addition, the sockets are inclined at a specific angle to improve the

efficiency of seed filling, transportation, and discharge. This design

reduces filling time and ensures more stable seed retention. The

final specifications of the socket include a length of 14 mm, a width
FIGURE 2

Common quarantine weed seeds and imported soybeans.
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of 10 mm, a focal length p = 2.98 mm, and a rotation angle q =

32.46°, with 24 sockets arranged on each tray. A schematic diagram

of the roller and socket is shown in Figure 6.
2.3 Real-time quarantine weed seeds
detection system

The real-time quarantine weed seed detection system consists of

a detection camera, an LED light source, a display screen, and a

Jetson Orin NX device. The Jetson Orin NX is responsible for

controlling the stepper motors that drive the single-seed uniform

distribution and spreading mechanism. It also manages the

detection camera to capture and process seed images. The

detection workflow and seed counting results are displayed in real

time on the screen, as shown in Figure 7. During operation, the

imported soybeans and quarantine weed seeds are dispensed

through the seed dispenser and pass through the seed spreading

roller, where they are individually separated into the parabolic seed

sockets. The shaped seeds then fall onto the conveyor belt via the

curved guide plate of the seed guard. As the seeds move through the

detection area, the detection camera captures images for

subsequent analysis.
Frontiers in Plant Science 05
The Jetson Orin NX generates a Pulse Width Modulation

(PWM) signal at a designated frequency, which is transmitted

through the TB6600 driver and combined with the drive

parameters of both the spreading roller and the conveyor stepper

motors to maintain a consistent rotational speed. At the same time,

the Jetson Orin NX dynamically adjusts the exposure interval of the

detection camera based on the speed of the conveyor belt that

transports the seeds. This synchronization ensures that all imported

soybeans and quarantine weed seeds passing through the detection

zone are accurately captured by the camera. As a result, missed

detections are avoided and duplicate counts are prevented.
2.4 Taguchi experimental design

2.4.1 Experimental setup
Within the image acquisition area, the effectiveness of the seed

dispenser in achieving uniform seed spreading may lead to varying

degrees of adhesion and occlusion, which significantly affect the

detection of quarantine weed seeds. To mitigate this issue, the

Taguchi method was adopted to analyze and optimize the

parameters influencing the performance of the single-seed uniform

distribution and spreading device. Proposed by Japanese scholar
FIGURE 3

Seed size and particle size distribution.
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Genichi Taguchi, this method combines orthogonal experimental

design with Signal-to-Noise Ratio (S/N) evaluation and effectively

addresses the limitations of conventional orthogonal testing,

including the need for a large number of experimental runs and

the occurrence of redundant procedures (Islam and Pramanik, 2016).

The experimental factors and levels were determined based on

preliminary single-factor tests and analysis of variance (ANOVA),

ensuring that the selected parameter ranges adequately represented the

main factors influencing system performance. To assess the effects of

different parameter levels on seed distribution uniformity and

detection performance under high-throughput conditions, the

following factors were included: seed socket arrangement, seed

spreading roller speed, conveyor motor speed, seed box inclination,

seed drop chute inclination, and conveyor belt type. The levels were
Frontiers in Plant Science 06
defined as follows. The seed socket arrangement was classified as either

deflected or non-deflected. The spreading roller speed was set to 50,

150, and 250 steps per second, and the conveyor motor speed was also

set to 50, 150, and 250 steps per second. The seed box inclination

angles were 20°, 30°, and 40°, while the chute inclination angles were

60°, 70°, and 80°. Three conveyor belt types were tested: a smooth white

surface, a white diamond-patterned belt, and an enhanced diamond-

patterned belt with a deflector partition at the end of the chute.

The Taguchi design is shown in Table 1. Each experiment was

repeated three times across three groups: (1) imported soybeans

only, (2) soybeans mixed with 1% A. artemisiifolia seeds, and (3)

soybeans mixed with 1% A. trifida seeds. Each group produced a

minimum of 100 seed images for analysis.

Table 1 Taguchi experimental setup.
FIGURE 4

Schematic (A) and photograph (B) of single-seed uniform distribution and spreading device.
FIGURE 5

Schematic (A) and photograph (B) of the seed dispenser.
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2.4.2 Moran’s I coefficient
The intra-frame spatial uniformity was evaluated using Moran’s I

coefficient, which ranges from −1 to 1, with values closer to 0

indicating greater uniformity. With a fixed weight matrix, this

metric remains comparable across different resolutions and fields of

view (Wang et al., 2023). Compared with the coefficient of variation,

entropy, or nearest-neighbor index, Moran’s I more accurately
Frontiers in Plant Science 07
captures local clustering effects and thus provides a robust

quantitative assessment of seed distribution within the detection

area. A value near 1 indicates seed clustering, a value near −1

suggests dispersion, and a value around 0 represents a random

distribution, reflecting good uniformity. This metric effectively

evaluates both the performance and the spatial uniformity of seed

deployment by the detection device, thereby supporting subsequent
FIGURE 7

Real-time detection system.
FIGURE 6

Seed spreading roller with parabolic seed socket.
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optimization. Moran’s I was calculated using Equations 1 and

Equations 2 (Wang et al., 2023).

I =
Noiojwij(xi − �x)(xj − �x)

S0oi(xi − �x)2
(1)

S0 =oiojwij (2)

where:

N——Total number of observations,

xi, xj——Values of variables at positions i and j,
�x——Mean value of x,

wij——Spatial weights between positions i and j,

S0——Sum of all spatial weights.

To compute Moran’s I coefficient for the original image, the

proportion of target pixels within each local region of the binary

map must first be obtained as baseline data. Accordingly, the

original image was preprocessed to enable this analysis.

2.4.3 Image processing for Moran’s I coefficient
calculation

Image processing was performed using MATLAB. The HSV

color space was applied for seed segmentation. Initially, the original

RGB image was sharpened using an unsharp mask to suppress noise.

The denoised image was then converted into H, S, and V channels to

extract the seed color, resulting in a binary image. To evaluate seed

distribution, the binary image (3840 × 2160 pixels) was divided into
Frontiers in Plant Science 08
48 equally sized regions, each measuring 480 × 360 pixels. The

percentage of seed pixels in each region was calculated as baseline

data, which enabled the computation of Moran’s I coefficients for the

original image using Equations 1 and 2. A schematic diagram of the

image processing workflow is presented in Figure 8.
2.4.4 Analysis of variance
ANOVA (Analysis of Variance) was conducted for both the

mean and the signal-to-noise ratio (S/N). This statistical technique

is widely used to assess the significance of main factor effects,

allowing researchers to identify which variables should be retained

in the predictive model and which can be considered statistically

insignificant or attributed to random variation. The formula for

calculating the sum of squares is presented in Equation 3 (Jadhav

et al., 2024).

SS =
n
l o

n
i=l(yi − �y)2 (3)

where n denotes the number of experimental repetitions; l

represents the number of levels for the factor; yi is the mean

value of the characteristic at the i level; and �Y is the overall mean

of the characteristic values.

The formula for calculating the degrees of freedom (DOF) is

provided in Equation 4 (Jadhav et al., 2024).

DOF = l − 1 (4)
TABLE 1 Taguchi experimental setup.

Serial
number

Forms of seed socket
arrangement

Spreading
roller speed

Conveyor
motor speed

Seed box
inclination

Seed drop chute
inclination

Conveyor
type

1 deflection 50 50 20 60 1

2 deflection 50 150 30 70 2

3 deflection 50 250 40 80 3

4 deflection 150 50 20 70 2

5 deflection 150 150 30 80 3

6 deflection 150 250 40 60 1

7 deflection 250 50 30 60 3

8 deflection 250 150 40 70 1

9 deflection 250 250 20 80 2

10 non-deflection 50 50 40 80 2

11 non-deflection 50 150 20 60 3

12 non-deflection 50 250 30 70 1

13 non-deflection 150 50 30 80 1

14 non-deflection 150 150 40 60 2

15 non-deflection 150 250 20 70 3

16 non-deflection 250 50 40 70 3

17 non-deflection 250 150 20 80 1

18 non-deflection 250 250 30 60 2
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The formula for calculating the mean square (MS) is provided

in Equation 5 (Jadhav et al., 2024).

MS =
SS

DOF
(5)

The F value is a statistical indicator used in ANOVA to evaluate

the significance of differences between groups. It is calculated as the

ratio of between-group variance to within-group variance (Thakuria

and Erkinbaev, 2024). A higher F value indicates that the variation

between groups is greater than the variation within groups.

The P value is used to determine the statistical significance of

the F value. A commonly accepted threshold is 0.05. If the P value

falls below this threshold, the null hypothesis is rejected, indicating

that the differences among group means are statistically significant.
2.5 Detection method for three types of
seed images

2.5.1 Image dataset construction
All image data were collected directly from the single-seed

uniform distribution and spreading device. No data augmentation

was applied, as the dataset already included variations in seed

density, overlap, and occlusion under stable illumination and

background conditions. To maintain the validity of the Moran’s

I–based uniformity evaluation, geometric and concatenation-type

augmentations were excluded. In total, 5,567 images (3840 × 2160

pixels) were acquired. From these, 1,142 images representing

different seed distribution patterns were manually annotated

using the X-AnyLabeling tool. A subset of 228 images with

varying densities was evenly allocated to the test set, and the

remaining 914 images were split into training and validation sets

at a 3:1 ratio.

2.5.2 Training environment and methods
Model training was conducted on a Windows 10 workstation

configured with 64 GB of RAM, an Intel Xeon Silver 4210 CPU, a
Frontiers in Plant Science 09
Quadro RTX 4000 GPU, Python 3.9.18, CUDA 12.2, and PyTorch

1.10.1 with OpenCV 10.2 support. Stochastic Gradient Descent

(SGD) was used as the optimizer. The initial learning rate was set to

0.01, the weight decay was 0.0005, the batch size was 8, and the

training was conducted for 200 epochs.
2.5.3 Evaluation indicators
Model performance was evaluated using Precision (P), Recall

(R), and mean Average Precision (mAP). These metrics were

calculated using Equations 6, Equation 7, and Equation 8 (Zhao

et al., 2025).

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

AP =
Z 1

0
p(r)dr (8)

TP denotes true positives, FP denotes false positives, and FN

denotes false negatives. TP refers to the number of correctly identified

positive samples. FP represents the number of negative samples that

were incorrectly labeled as positive, and FN refers to the number of

positive samples that were incorrectly labeled as negative.
2.5.4 YOLO_P2 model
To enable real-time detection of quarantine weed seeds and

ensure compatibility with embedded deployment, several classic

lightweight models were evaluated, including YOLOv5s, YOLOv7-

tiny, and YOLOv8n. Among these models, YOLOv8n demonstrated

the best detection performance, achieving the highest mean Average

Precision (mAP), and was selected as the detection model for the

system. However, among the three seed types, A. artemisiifolia

exhibited the lowest detection accuracy. This is primarily due to its

significantly smaller size compared to imported soybean and A.
FIGURE 8

Image processing workflow.
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trifida seeds, which results in large target scale differences and

reduced model performance.

To address this issue and improve detection accuracy for A.

artemisiifolia, targeted modifications were applied to the YOLOv8n

model. A P2 detection head was added to enhance the model’s

ability to detect small objects. Because the inclusion of the P2 head

increases model complexity, and all target objects in this application

are relatively small with no large-scale instances, the P5 detection

head was removed. The architecture of the improved YOLO_P2

model is illustrated in Figure 9.
2.6 Verification experiment

Based on the optimized parameter combination derived from

the Taguchi experiment, the single-seed uniform distribution and

spreading device was configured accordingly. After the successful

deployment of the detection model and control system, validation

experiments were conducted to evaluate the system’s performance.

The experiments simulated a customs quarantine scenario in

accordance with the national entry and exit inspection and

quarantine standard (SN/T 4979-2017). For each trial, 500 ± 10 g

of imported soybean seeds were used. To replicate the natural

distribution of quarantine weed seeds in imported soybeans, A.

trifida and A. artemisiifolia seeds were introduced into the samples

at a mass ratio of 1 ± 0.05% and a count ratio of 5 ± 0.5%. Specifically,
Frontiers in Plant Science 10
5 ± 1 g and 100 ± 10 seeds of A. trifida, along with 5 ± 1 g of A.

artemisiifolia, were added to each 500 ± 10 g sample of soybeans

(approximately 2,000 ± 40 seeds per sample).

This configuration ensured that the test conditions were both

controllable and repeatable. The validation procedure was

conducted across three independent groups to comprehensively

assess the system’s detection performance.
3 Results

3.1 Results of the Taguchi experiment

A total of 5,567 images were collected throughout the

experiment, with representative examples shown in Figure 10.

These images reveal distinct variations in seed spreading

performance across different experimental groups. Using images

of imported soybeans as a reference, the seed distribution patterns

ranged from sparse to dense and from disordered to well organized.

This suggests that the parameter combinations of the device

components had a significant influence on the uniformity and

effectiveness of seed distribution.

Among all experiments, Groups 5 and 15 demonstrated the

most effective seed spreading, with seeds uniformly distributed

across the detection area and minimal occurrences of seed

adhesion or occlusion. This determination was supported by
FIGURE 9

Structure of YOLO_P2.
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quantitative results: the Moran’s I coefficients of Groups 5 and 15

were approximately 0.07 and 0.01, respectively, and both groups

exhibited the lowest occlusion rates. Together, these metrics

indicate superior spatial uniformity and visibility compared with

the other groups. In contrast, Groups 4, 7, 13, and 16 exhibited

notable seed clumping and shadowing, while Groups 2, 3, 6, 11, and

12 showed uneven or sparse seed distributions. To further evaluate

these results, the images obtained from the Taguchi experiments

were processed and analyzed using MATLAB to enable detailed

quantitative assessment.

Moran’s I coefficients for each image were calculated using

MATLAB, and the resulting box plots for each experimental group

are shown in Figure 11.

The mean Moran’s I coefficients across all groups were greater

than zero, indicating an overall tendency toward clustered seed
Frontiers in Plant Science 11
distribution. This result was consistent with the experimental

design objective, which aimed to reduce seed adhesion and

occlusion while maintaining a dense seed arrangement.

In most experimental groups, intragroup variation in Moran’s I

values remained within 0.05. However, a noticeable difference of 0.1

was observed between Experiment 4 and Experiment 10. As shown

in Table 1, both experiments used the same settings for conveyor

motor speed (50 steps per second) and conveyor belt type (Type 3).

This suggests that under these conditions, noise factors had a

substantial impact on seed spreading performance, leading to

inconsistent results.

Among all trials, Experiments 14 and 15 produced the most

satisfactory outcomes, with mean Moran’s I values approaching

zero, indicating highly uniform seed distribution. In contrast,

Experiments 4, 7, 13, and 16 exhibited severe seed adhesion and
FIGURE 10

Effect of different parameters on the seed distribution.
fi

FIGURE 11

Box plots of Moran’s I coef cients for each experimental group.
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occlusion, with significantly higher mean Moran’s I values.

Experiments 1, 8, 9, 10, and 18 showed scattered or sparse seed

distributions, with average Moran’s I values mostly exceeding 0.2.
3.2 Analysis of Taguchi experimental
results

3.2.1 Mean and S/N analysis
In the Taguchi method, quality characteristics are classified into

two main categories: metrological characteristics and counting

characteristics. Metrological characteristics are further divided

into three types. These include those where a larger value is

preferred, those where a smaller value is preferred, and those

where the value should be as close as possible to a specific target.

The signal-to-noise ratio (S/N) is used as a statistical indicator to

evaluate the stability of these quality characteristics. For

characteristics in which smaller values are preferred, the S/N ratio

is calculated using Equation 9 (Islam and Pramanik, 2016).

S
N

= −10 log
1
mo

n
i=1Y

2
i (9)

where m is the number of observations and where Yi represents

the observed values.

Section 3.1 presents the results of Moran’s I coefficient, where the

average values obtained from the experiments were all greater than

zero. The goal of this study is to achieve stable and uniform seed

distribution by identifying the optimal combination of factor levels for

the detection device, with a target Moran’s I coefficient close to zero.

Accordingly, the signal-to-noise (S/N) ratio formula for the smaller-

the-better characteristic was applied to analyze the experimental data.

To evaluate the effects and significance of various factor levels on the

performance of the single-seed uniform distribution and spreading

device, both mean and S/N analyses were performed using Minitab.

Table 2 presents the S/N ratios, mean values, and corresponding

rankings of Moran’s I coefficients. A higher S/N ratio indicates more

stable experimental outcomes. Regarding S/N ranking, the seed

spreading roller speed had the greatest influence on performance,

followed by the conveyor motor speed, conveyor type, seed box

inclination, seed drop chute inclination, and the arrangement of

seed sockets. In terms of mean value ranking, conveyor motor speed

had the most substantial effect, followed by the seed spreading roller

speed, seed drop chute inclination, conveyor type, seed box

inclination, and socket arrangement.

By comparing the rankings of the S/N ratios and the mean

values, it is evident that seed spreading roller speed and conveyor

motor speed are the most influential factors, as they consistently

occupy the top two positions in both analyses. Therefore, when

selecting the optimal levels for these two factors, it is important to

consider both mean performance and stability, as reflected by the S/

N ratio. The arrangement of seed sockets had the least impact,

ranking sixth in both evaluations.

Table 2 S/N and the mean of Moran’s I coefficient.

Figure 12 presents the mean and signal-to-noise (S/N) plots of

Moran’s I coefficient. According to the mean plot shown in
Frontiers in Plant Science 12
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Figure 12a, the optimal seed distribution, represented by the

Moran’s I coefficient value closest to zero, was achieved under the

following parameter settings: a seed socket arrangement without

deflection, a seed spreading roller speed of 50 steps per second, a

conveyor motor speed of 250 steps per second, a seed box

inclination angle of 40°, a seed drop chute inclination angle of

60°, and conveyor belt type 3.

In comparison, the S/N plot shown in Figure 12b indicates that the

most stable seed spreading results across repeated experiments were

obtained with a configuration consisting of a seed socket arrangement

without deflection, a roller speed of 150 steps per second, a conveyor

motor speed of 150 steps per second, a seed box inclination of 40°, a

drop chute inclination of 60°, and conveyor belt type 3. This

configuration produced the highest signal-to-noise ratios.
3.2.2 Analysis of variance
P values were derived from the degrees of freedom and the

corresponding F values, as shown in Table 3. The analysis of the

signal-to-noise (S/N) ratio revealed that both the seed spreading

roller speed and the conveyor motor speed produced relatively high

F values, although the difference between them was small. Since all

P values exceeded the threshold of 0.05, none of the factors

exhibited statistical significance in the S/N analysis. Therefore, the

optimal combination of factor levels could not be determined based

on the S/N results alone.

In contrast, the ANOVA of the mean values indicated

significant effects for conveyor motor speed (P = 0.004) and seed

spreading roller speed (P = 0.011), as their P values were below 0.05.

When the results of both the mean and S/N analyses are considered

together, seed spreading roller speed and conveyor motor speed are

identified as the most influential factors affecting the uniformity of

seed distribution. This finding is consistent with the rankings

shown in Table 2. The conveyor belt type also showed a

considerable effect, while the other factors had limited influence.

Table 3 ANOVA of the mean and S/N.

In conclusion, the seed spreading roller speed and the conveyor

motor speed are the principal factors influencing the performance

of the single-seed uniform distribution and spreading system. The
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mean plot (Figure 12a) indicates that the Moran’s I coefficient is

closest to zero when the roller speed is set to 50 steps per second and

the conveyor motor speed is set to 250 steps per second. However,

the S/N plot (Figure 12b) and the ANOVA results show that more

stable outcomes are achieved when both speeds are set to 150 steps

per second.

Considering the device’s dual requirements for precision and

operational consistency, along with the minor differences observed

in the mean plot and the improved detection performance shown in

Figure 9, a speed of 150 steps per second was adopted as the optimal

value for both the roller and the conveyor motor. Among the three

conveyor belt types tested, type 3 yielded the most favorable results

and was therefore selected. The remaining factors were found to

have limited influence. As a result, the profiling holes were arranged

in a deflected pattern, the seed box inclination was set to 40°, and

the seed drop chute inclination was set to 60°. The complete

optimized parameter configuration is summarized in Table 4.

Table 4 Optimal levels of detection device.

Following the optimization and physical assembly of the single-

seed uniform distribution and spreading device, the next phase of

the work focused on improving the deep learning model to address

the relatively low detection accuracy associated with small targets,

particularly A. artemisiifolia seeds.
3.3 Detection model and deployment

3.3.1 Detection model
The training outcomes are summarized in Table 5, and the

trends in mAP and Recall for each model are illustrated in

Figure 13. As shown in Figure 13, the mAP, Precision, Recall, and

corresponding curves for the YOLOv5s and YOLOv7-tiny models

exhibit substantial fluctuations, indicating unstable detection

performance. In contrast, the modified YOLO_P2 model

demonstrates reduced fluctuations and improved stability.

The average mAP across all three models was approximately

95%. The YOLOv5s model achieved the highest detection accuracy

for A. artemisiifolia seeds at 90.4%, which was 2.4 percentage points
FIGURE 12

(A) Mean and (B) S/N plots of Moran’s I coefficient.
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higher than those achieved by the other two models. For imported

soybeans, YOLOv8n attained the best detection accuracy at 96.6%,

outperforming YOLOv5s and YOLOv7-tiny by 1.3 and 1.2

percentage points, respectively. Notably, YOLO_P2, built upon

YOLOv8n, significantly enhanced the detection of small targets

(such as A. artemisiifolia seeds) without increasing model

parameters or model size, thereby achieving superior performance

while maintaining efficiency.

3.3.2 Model deployment
As illustrated in Figure 14, both the original model (YOLOv8n)

and the modified YOLO_P2 model were deployed on an embedded

platform for testing and comparison. The platform used was the

NVIDIA Jetson Orin NX 16 GB, configured with Jetpack 5.1,

CUDA version 11.4.315, cuDNN version 8.6.0.166, Torch version

2.0.0+nv23.5, and Torchvision version 0.15.1.

The original model processed a single image in 57.8

milliseconds, consisting of 7.5 milliseconds for preprocessing, 31.1

milliseconds for inference, and 19.2 milliseconds for postprocessing.

In comparison, the YOLO_P2 model required 64.2 milliseconds to

process a single image, including 7.6 milliseconds for preprocessing,

38.0 milliseconds for inference, and 18.6 milliseconds for

postprocessing. The improved model resulted in an increase in

total processing time of only 6.4 milliseconds.

Figure 14 presents a comparison between the original model

and the YOLO_P2 model in detecting A. artemisiifolia seeds. The

original model exhibited recognition errors and missed detections,

particularly for the smaller-sized A. artemisiifolia seeds. Its

performance was notably poor when these seeds were partially

obscured by soybean seeds. In contrast, the YOLO_P2 model
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effectively addressed these issues and demonstrated significantly

improved performance, especially in detecting A. artemisiifolia

seeds under occlusion.

Figure 15 presents a comparison between the original model

and the YOLO_P2 model in detecting mixed samples containing

imported soybeans, A. trifida, and A. artemisiifolia. seeds. The

original model exhibited both false detections and missed

detections during the recognition process, particularly showing

poor performance when the A. artemisiifolia seeds were partially

occluded. In contrast, the YOLO_P2 model demonstrated superior

performance in handling occlusion and accurately identifying A.

artemisiifolia seeds, resulting in a notable improvement in overall

detection accuracy.
3.4 Verification experiment

The experimental outcomes for A. trifida and A. artemisiifolia.

seeds are presented in Tables 6 and 7, respectively. Following this,

the three types of seeds were mixed, and a series of validation

experiments was conducted. The results obtained from these

mixed-seed trials are summarized in Table 8.

Regarding the detection of A. trifida seeds, the accuracy rates

were recorded as 96.39%, 96.47%, and 96.24%, with an average of

96.37%. The corresponding miss rates were 3.61%, 3.53%, and

3.76%, resulting in an average of 3.63%. These results indicate

that although A. trifida seeds represent a relatively small proportion

of the sample, the system is capable of reliably identifying and

accurately detecting the majority of these seeds. The observed miss

rates remained within an acceptable range.
TABLE 4 Optimal levels of detection device.

Evaluation
indicators

Forms of seed socket
arrangement

Spreading
roller speed

Conveyor
motor speed

Seed box
inclination

Seed drop chute
inclination

Conveyor
type

Moran’s I
coefficient

deflection 150 steps/s 150 steps/s 30° 70° 3
TABLE 3 ANOVA of the mean and S/N.

Source of variance
DOF Seq SS Adj SS Adj MS F P

S/n Mean S/n Mean S/n Mean S/n Mean S/n Mean S/n Mean

Forms of seed socket arrangement 1 1 78.32 0.002069 78.32 0.002069 78.32 0.002069 0.860 0.190 0.189 0.067

Seed spreading roller speed 2 2 641.74 0.227733 641.74 0.227733 320.87 0.113867 3.53 10.670 0.097 0.011

Conveyor motor speed 2 2 696.55 0.330180 696.55 0.330180 348.27 0.165090 3.83 15.470 0.085 0.004

Seed box inclination 2 2 76.49 0.001787 76.49 0.001787 38.25 0.000894 0.42 0.080 0.375 0.092

Seed drop chute inclination 2 2 58.93 0.015588 58.93 0.015588 29.46 0.007794 0.32 0.730 0.435 0.051

Conveyor belt type 2 2 160.96 0.006939 160.96 0.006939 80.48 0.003470 0.880 0.320 0.260 0.073
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For A. artemisiifolia. seeds, the detection accuracy was slightly

lower, with values of 95.34%, 95.86%, and 95.07%, yielding an

average of 95.42%. The corresponding miss rates were 4.66%,

4.14%, and 4.93%, with an average of 4.58%. Although the

accuracy was marginally lower than that for A. trifida, the system

still exhibited relatively strong recognition capability. The slightly

elevated miss rate may be attributed to factors such as the visual

characteristics of A. artemisiifolia. seeds, their morphological

similarity to soybeans, and the image quality captured by the

camera. These findings suggest that future improvements in the

detection of A. artemisiifolia seeds could be achieved by enhancing
Frontiers in Plant Science 15
the algorithm or optimizing camera parameters to improve

recognition precision.

In terms of detection time, each group of tests was completed

within 6.8 to 7.9 minutes, all of which were shorter than the time

required for manual inspection. This demonstrates the system’s

ability to maintain stable operational efficiency under varying

experimental conditions. Although minor differences in detection

time were observed across different groups, the overall processing

times remained consistent and met the experimental requirements.

During the detection of the three types of seeds, a slight decrease

in accuracy and a slight increase in detection time were observed.
TABLE 5 Comparative results of different models.

Model Class Precision Recall mAP Params/m Model size/MB Epoch

YOLOv5s

all 0.982 0.932 0.951

7.2 14

200

soybean 0.988 0.943 0.953

A. trifida seeds 0.986 0.992 0.996

A. artemisiifolia seeds 0.972 0.861 0.904

YOLOv7-tiny

all 0.977 0.936 0.946

6.2 12
soybean 0.982 0.945 0.954

A. trifida seeds 0.986 0.993 0.997

A. artemisiifolia seeds 0.964 0.87 0.88

YOLOv8n

all 0.96 0.914 0.947

3.2 6.2
soybean 0.98 0.944 0.966

A. trifida seeds 0.98 0.996 0.995

A. artemisiifolia seeds 0.919 0.802 0.88

YOLO_P2

all 0.983 0.945 0.961

3.3 6.3
soybean 0.987 0.939 0.963

A. trifida seeds 0.99 0.994 0.995

A. artemisiifolia seeds 0.972 0.901 0.926
fron
FIGURE 13

Plots of P, R and mAP variations for different models.
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However, both remained within the acceptable range defined by the

system’s performance standards.
4 Discussion

This study introduces a reliable detection device for the

quarantine inspection of imported soybeans at customs,

specifically designed to identify two types of quarantine weed

seeds, A. trifida and A. artemisiifolia. Although the focus is

limited to these two species, they are among the most frequently
Frontiers in Plant Science 16
intercepted in imported soybean shipments. The proposed

detection system addresses a critical gap in the current

development of quarantine detection equipment and provides

both a novel approach and a valuable technical reference. The

single-seed uniform distribution and spreading device, which

incorporates parabolic seed sockets, offers notable advantages

compared to conventional detection systems. It is capable of

evenly and neatly distributing multiple seed types with distinct

size differences and supports high-throughput image dataset

acquisition. When integrated with the real-time detection system,

it demonstrates high accuracy and satisfactory computational
FIGURE 14

Detection performance for A. artemisiifolia seeds using the original model and the YOLO_P2 model.
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efficiency, thereby fulfilling the operational requirements of

customs quarantine inspections.

In comparison with related approaches (Zhao et al., 2021; Wang

et al., 2023), the proposed system demonstrates advantages in four key

aspects: cost-effectiveness (hardware cost approximately ¥1500–2000

with a power consumption of ~15 W), processing speed (20–30 seeds

per second), cross-seed adaptability (extension to similar small-seed

species achievable through replacement of the seed dispenser and limited

retraining), and optimization for customs applications (including batch

traceability, automatic reinspection of anomalies, and self-recovery from

clogging events). These features highlight the practical relevance of the

system in real-world quarantine inspection scenarios. From an

engineering perspective, challenges remain in ensuring robustness

across varieties, maintaining long-term stability, facilitating convenient

maintenance, and integrating seamlessly into inspection workflows.

Nonetheless, some limitations persist. The use of parabolic seed

sockets has been associated with occasional seed jamming, which may

hinder overall seeding efficiency. Future studies should aim to optimize

the design of the profiling holes and improve the seed-clearing

mechanism in order to minimize jamming and enhance throughput.

While suchmodificationsmay increase structural complexity and affect

the stability of the device, they remain a practical and worthwhile

direction for further development. In addition, while the system shows

detection potential for small-sized weed seeds within samples

exhibiting substantial particle-size differences, its applicability to

specific species or extreme morphological cases still requires

validation through expanded data collection and model retraining.

This adjustment provides a more accurate reflection of the system’s

practical boundary conditions and avoids overgeneralisation of its

applicability. Effectively addressing these challenges is expected to

enhance the generalisability and practical applicability of equipment

for quarantine weed seed detection.
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5 Conclusion

In this study, a real-time, high-throughput, and cost-effective

detection system for identifying quarantine weed seeds in imported

soybeans was successfully developed and validated. To address the

challenges of seed occlusion and uneven distribution in complex

sample environments, a seed dispenser incorporating parabolic seed

sockets was designed. This configuration enabled the uniform and

orderly distribution of multiple seed types within a single image,

maximizing the number of seeds per frame while effectively

preventing mutual occlusion.

Furthermore, to improve distribution uniformity, the key

structural parameters of the detection device were systematically

optimized using the Taguchi experimental design method. This

process led to the identification of an optimal parameter

configuration. In addition, to satisfy the requirements for real-

time detection and to enhance the recognition of small targets such

as A. artemisiifolia seeds, the YOLO_P2 model was specifically

modified. These targeted improvements significantly enhanced the

detection performance of the model.

Verification experiments confirmed that the average detection

accuracy reached 95.77%, with an average detection time of 7.6

minutes. The proposed detection system is suitable not only for the

quarantine inspection of imported soybeans, but also for the

identification of other seed types. Beyond its demonstrated

performance on A. artemisiifolia and A. trifida seeds, the

proposed model also exhibits strong transferability. With minimal

additional data annotation and model fine-tuning, it can be

extended to other small-sized seeds with similar particle size or

morphology while maintaining the same hardware platform. This

highlights the system’s reusability and scalability, and suggests

promising potential for broader applications in quarantine
FIGURE 15

Detection performance for mixed samples containing imported soybeans, A. trifida L., and A. artemisiifolia L. seeds.
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TABLE 6 Verification experiment results for A. trifida seeds.

No. of No. of imported
soybeans
detected

Detectin
imported

No. of A.
f A. trifida
detected

Percentage of
A. trifida seeds/

%

Detecting the
accuracy of A. trifida

seeds/%

Leakage
rate/%

Detection
time/min

1898 93 4.89 96.39 3.61 7.2

1976 98 4.96 96.47 3.53 6.8

1944 95 4.89 96.24 3.76 7.1

1939 95 4.91 96.37 3.63 7.0

nt results for A. artemisiifolia seeds.

No. of imported
soybeans
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. of A.
misiifolia
detected

Percentage of A.
artemisiifolia

seeds/%

Detecting the
accuracy of A.
artemisiifolia

seeds/%

Leakage
rate/%

Detection
time/min

1936 98.3 99 5.11 95.34 4.66 7.1

1968 98.9 101 5.13 95.86 4.14 6.9

1954 98.2 89 4.55 95.07 4.93 6.8

1953 98.5 96 4.93 95.42 4.58 6.9
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inspection scenarios. This work offers an effective method for the

rapid acquisition of high-quality, high-throughput seed images and

may serve as a valuable tool for laboratory research and other

applications requiring efficient generation of annotated datasets.
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