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for real-time detection of
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Ambrosia trifida seeds in
imported soybeans
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China relies heavily on imported soybeans due to insufficient domestic production,
but these imports are often contaminated with quarantine weed seeds such as A.
artemisiifolia and A. trifida. The introduction of these species poses serious
ecological risks, highlighting the urgent need for reliable real-time detection
methods. In this study, a single-seed uniform distribution and spreading device
was designed to minimise occlusion and ensure consistent seed visibility. The
device integrates a parabolic seed-socket distribution unit with an embedded
system. After seeds were arranged in a single layer on a conveyor belt, a
detection camera captured images that were processed by the YOLO_P2 model
for seed recognition and counting. Device performance was optimised using the
Taguchi experimental design, and evaluated with signal-to-noise ratio, mean, and
variance. Experimental analysis revealed that the speeds of the seed-spreading
roller and conveyor motor were the most significant factors affecting distribution
uniformity. Validation experiments showed that the optimised system achieved
detection accuracies of 95.73% for A. trifida and 94.41% for A. artemisiifolia, with an
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average processing time of 7.6 minutes per sample. These results demonstrate that
the proposed device provides a practical, cost-effective solution for quarantine
inspection, combining high-throughput capability with real-time performance to
support ecological protection efforts.

KEYWORDS

soybean quarantine, device design, parabolic seed socket, Taguchi experimental design,

deep learning

1 Introduction

Soybean is a highly nutritious crop widely used in various
consumer products and traded globally in large volumes (de Lima
et al, 2018). Due to their high volume and broad distribution,
soybean shipments are particularly vulnerable to contamination by
quarantine weed seeds. The spread of these seeds leads to serious
economic (including direct damages and the costs of mitigation and
prevention), health (e.g., globally emerging zoonotic diseases), and
environmental (e.g., decline in native biodiversity) issues (Jay et al.,
2003; Hall, 2011; Baider and Florens, 2011). According to the
InvaCost Database, the global mean annual cost associated with
invasive alien species may reach USD 162.7 billion (Diagne et al.,
2021). Additionally, variation in quarantine standards across
countries results in differing criteria for determining sample
acceptability (Davies and Sheley, 2007), posing major challenges
to the effective implementation of quarantine procedures. These
issues highlight the need for effective measures to detect, control,
and manage the spread of these harmful organisms (Meyerson and
Reaser, 2002; Magarey et al., 2009). Consequently, the development
of a rapid and accurate method for detecting quarantine weed seeds
is critically important.

Currently, the identification of quarantine weed seeds largely
relies on manual techniques such as protein electrophoresis, DNA
barcoding, and gas chromatography (Huang et al., 2015; Lei et al.,
2017; Whitehurst et al., 2020). However, these methods are often
costly and time-consuming, making them unsuitable for large-scale
applications (Rahman and Cho, 2016; EIMasry et al., 2019). With
advances in electronics and microprocessor technology, the
development of detection devices has offered new approaches for
the identification of quarantine weed seeds (Thakuria and
Erkinbaev, 2024; Zhao et al., 2025). Several devices and systems
have been developed for seed sorting and quality assessment. Zhao
et al. (2021) developed a real-time detection system for
comprehensive surface inspection of soybeans, in which
pneumatic actuators rotated the samples for multi-angle imaging.
An enhanced MobileNetV2 model was applied, achieving an
accuracy of 98.87%. Similarly, Wang et al. (2023) proposed an
online cottonseed classification device using a rotary disc and fixed
partitions for single-seed positioning. Dual cameras captured
images of falling seeds, and a YOLOv5-based model classified
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them as intact, damaged, or moldy, achieving an accuracy of
99.6%. Despite their reliable detection capabilities, the high
construction and maintenance costs have limited their practical
application in agriculture. Furthermore, since these devices are
generally designed for specific seed types, their effectiveness is
reduced in quarantine inspections where seed diversity is high.
Most existing devices perform detection after singulation. While
manageable for small quantities, high-throughput quarantine
inspections make efficient singulation difficult. These challenges
underscore the importance of developing a real-time, high-
throughput detection system that is cost-effective and adaptable
to a variety of seed types.

Deep learning models have demonstrated exceptional
performance in object recognition tasks (Vega—Castellote et al,
2025; Cao et al, 2025), and YOLOv8n is both lightweight and
accurate (Chen et al., 2025; Zheng et al., 2024). Improvements made
by Ma et al. (2024) and Liu et al. (2024) boosted model accuracies to
91.4% and 84.12%, respectively. These studies show that deep
learning models can effectively detect various target types,
supporting the recognition and counting of imported soybean
and quarantine weed seeds. However, performance decreases
significantly in cases of target occlusion. While model
enhancements can improve accuracy, they typically involve
significant computational demands and only offer marginal gains
(Ifiiguez et al, 2024). Moreover, detecting small targets among
variably sized seeds remains difficult (Zhang et al., 2025), requiring
targeted adjustments to meet the accuracy standards of
quarantine inspection.

Currently, no commercially available intelligent detection
devices are specifically designed for quarantine weed seeds. To
address this gap, the present study developed a real-time, high-
throughput detection device capable of cost-effective acquisition of
seed image datasets. The design maximizes the number of seeds
captured per image, avoids mutual occlusion, and accommodates
practical operating conditions. The device integrates a seed
distribution mechanism and an embedded system to achieve
high-quality image acquisition, recognition, and counting. A seed
dispenser incorporating parabolic seed sockets was designed to
ensure compatibility with a variety of seed types. The Taguchi
experimental design method was applied to optimize configuration
parameters for efficiently collecting high-quality seed images.
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The main objectives of this study were as follows: first, to enable
high-throughput acquisition of high-quality seed image datasets, a
seed dispenser with parabolic seed sockets was developed. This
design ensured uniform distribution of multiple seed types within a
single image, maximizing seed quantity and avoiding mutual
occlusion. Second, to optimize the quality of seed distribution, the
device parameters were experimentally investigated and refined
using the Taguchi method, resulting in the optimal configuration.
Finally, to achieve real-time detection and improve the accuracy for
small targets (specifically A. artemisiifolia seeds), targeted
modifications were applied to the YOLO_P2 model, significantly
enhancing its detection performance.

2 Materials and methods
2.1 Seed sample preparation

As shown in Figure 1, the samples submitted to customs for
inspection contain various impurities. In addition to quarantine
weed seeds, impurities such as seed coats, miscellaneous grain seeds,
plant stems, and stones are also present, which poses significant
challenges for manual quarantine inspection. Although preliminary
screening can remove some impurities that are larger than imported
soybeans, including certain quarantine weed seeds, miscellaneous
grains, plant stems, and stones, the majority of quarantine weed
seeds are smaller than imported soybeans (Figure 2A). Although

10.3389/fpls.2025.1677883

existing studies using deep learning methods are capable of
identifying these types of seeds, their accuracy decreases
significantly under conditions such as target occlusion or poor
lighting. Therefore, the ability to rapidly and continuously acquire
high-quality sample image datasets, in which seeds are uniformly
arranged and not occluded, remains a major challenge that has yet
to be resolved. Figures 1 and 2 present illustrative images of
common impurities in imported soybean samples, which are
provided solely for background explanation and were not used in
model training, validation, or performance evaluation.

To support the design of the seed dispenser, seed types were first
selected. The seed samples included Brazilian soybeans (Figure 2D),
which represent the primary source of global soybean imports (Ali
et al,, 2022), along with common quarantine weed seeds found in
imported soybeans, as illustrated in Figure 2. Larger seeds, such as
Xanthium spinosum Linn. and Solanum rostratum Dunal (Figure 2A),
can be removed through preliminary screening. For smaller weed
seeds, two representative species, Ambrosia artemisiifolia L. (Figure 2B)
and Ambrosia trifida L. (Figure 2C), were selected due to their high
interception rates in imported soybeans. These seeds were provided by
the Agricultural Genomics Institute in Shenzhen, Chinese Academy of
Agricultural Sciences, in May 2025. The imported soybeans used in the
subsequent experiments had a moisture content of 12%.

The dimensions of imported soybeans and two types of
quarantine weed seeds were measured. For each seed type, 500 +
10 samples were randomly selected and measured using a digital
vernier caliper with an accuracy of 0.01 mm (DELIXI Electric,

Sample of imported
Soybeans

A

r

Customs inspection sample

FIGURE 1
Customs inspection sample.
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Ambrosia artemisiifolia L. seeds

FIGURE 2
Common quarantine weed seeds and imported soybeans.

Ambrosia trifida L. seeds

Imported soybeans

Hangzhou, China). The dimensional and particle size distributions
are shown in Figure 3. The average values were used as design
references. The imported soybeans had an average length of 7.65
mm, a width of 6.52 mm, and a thickness of 5.70 mm. A. trifida
seeds had an average length of 7.57 mm, a width of 4.57 mm, and a
thickness of 3.69 mm. Due to the smaller size of A. artemisiifolia
seeds and the minimal difference between their width and thickness,
only the length and cross-sectional diameter were measured, with
average values of 3.22 mm and 2.84 mm, respectively.

2.2 Single-seed uniform distribution and
spreading device

The method of detecting only imported soybeans is not suitable
for customs quarantine scenarios, as customs authorities assess
sample compliance based on the proportion of quarantine weed
seeds present. Therefore, all three types of seeds must be detected
and counted. Currently, the specific evaluation criteria adopted by
Chinese Customs remain confidential and have not been publicly
disclosed. Moreover, there is a lack of research on detection devices
specifically designed for identifying quarantine weed seeds in
imported bulk agricultural commodities. In response to this gap,
the present study developed a real-time, high-throughput, and cost-
effective detection device, with the goal of minimizing detection
time and maximizing detection accuracy.

The detection device measures 262 c¢cm in height, 544 cm in
length, and 334 cm in width. The single-seed uniform distribution
and spreading mechanism consists of a seed dispenser and a
conveyor belt, as illustrated in Figure 4.

The seed dispenser comprises a seed feeding box, a seed
spreading roller, a curved guide plate, and a seed drop chute, as
illustrated in Figure 5. The spreading roller is equipped with
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parabolic seed sockets arranged in 17 staggered columns, with
each column offset by 15 degrees. The conveyor module consists
of a conveyor belt driven by a stepper motor and features a white,
diamond-patterned belt designed to reduce seed bouncing and
minimize light reflection. The embedded system is positioned on
one side of the detection device. For continuous real-time image
acquisition, a detection camera (AOSVI Micro HK830, Shenzhen,
China) with a resolution of 3840 x 2160 pixels is mounted at the top
of the device. The camera is equipped with a 6 mm adjustable focal
length lens and is positioned 20 cm above the detection area. To
reduce the impact of ambient light fluctuations on detection
accuracy, an LED light source is installed at the top of the
detection area.

The seed spreading roller plays a pivotal role in determining the
performance of the seed dispenser. Key design parameters of the
roller include its diameter, the number of seed sockets, and the
socket geometry. Considering the typical diameters used in existing
soybean dispensers and the spatial constraints of the overall system,
a diameter of 120 mm was selected. Uniform seed distribution
depends heavily on the compatibility between the socket shape and
the physical characteristics of imported soybeans and quarantine
weed seeds. The three seed types, which are imported soybeans, A.
artemisiifolia, and A. trifida, differ significantly in both shape and
size. Their proportions are typically unbalanced, with soybeans
accounting for the majority of the mixture. To address this issue, a
parabolic seed socket was designed based on the equation x* = 2py.
This shape has a zero slope at the vertex, which allows seeds to
naturally decelerate and stabilize within the cavity. The narrowing
profile toward the bottom accommodates seeds of different sizes. In
addition, the sockets are inclined at a specific angle to improve the
efficiency of seed filling, transportation, and discharge. This design
reduces filling time and ensures more stable seed retention. The
final specifications of the socket include a length of 14 mm, a width
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FIGURE 3
Seed size and particle size distribution.

of 10 mm, a focal length p = 2.98 mm, and a rotation angle 6 =
32.46°, with 24 sockets arranged on each tray. A schematic diagram
of the roller and socket is shown in Figure 6.

2.3 Real-time quarantine weed seeds
detection system

The real-time quarantine weed seed detection system consists of
a detection camera, an LED light source, a display screen, and a
Jetson Orin NX device. The Jetson Orin NX is responsible for
controlling the stepper motors that drive the single-seed uniform
distribution and spreading mechanism. It also manages the
detection camera to capture and process seed images. The
detection workflow and seed counting results are displayed in real
time on the screen, as shown in Figure 7. During operation, the
imported soybeans and quarantine weed seeds are dispensed
through the seed dispenser and pass through the seed spreading
roller, where they are individually separated into the parabolic seed
sockets. The shaped seeds then fall onto the conveyor belt via the
curved guide plate of the seed guard. As the seeds move through the
detection area, the detection camera captures images for
subsequent analysis.
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The Jetson Orin NX generates a Pulse Width Modulation
(PWM) signal at a designated frequency, which is transmitted
through the TB6600 driver and combined with the drive
parameters of both the spreading roller and the conveyor stepper
motors to maintain a consistent rotational speed. At the same time,
the Jetson Orin NX dynamically adjusts the exposure interval of the
detection camera based on the speed of the conveyor belt that
transports the seeds. This synchronization ensures that all imported
soybeans and quarantine weed seeds passing through the detection
zone are accurately captured by the camera. As a result, missed
detections are avoided and duplicate counts are prevented.

2.4 Taguchi experimental design

2.4.1 Experimental setup

Within the image acquisition area, the effectiveness of the seed
dispenser in achieving uniform seed spreading may lead to varying
degrees of adhesion and occlusion, which significantly affect the
detection of quarantine weed seeds. To mitigate this issue, the
Taguchi method was adopted to analyze and optimize the
parameters influencing the performance of the single-seed uniform
distribution and spreading device. Proposed by Japanese scholar
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A B
1
2
3
4
5
1. Seed-feeding box, 2. Curved plate of the seed guard, 3. Seed spreading roller, 4. Seed drop chute,
5. Deflector partition, 6. Detection camera, 7. Stepper motor, 8. Drive belt, 9. Conveyor belt.
FIGURE 4

Schematic (A) and photograph (B) of single-seed uniform distribution and spreading device.

Genichi Taguchi, this method combines orthogonal experimental
design with Signal-to-Noise Ratio (S/N) evaluation and effectively
addresses the limitations of conventional orthogonal testing,
including the need for a large number of experimental runs and
the occurrence of redundant procedures (Islam and Pramanik, 2016).

The experimental factors and levels were determined based on
preliminary single-factor tests and analysis of variance (ANOVA),
ensuring that the selected parameter ranges adequately represented the
main factors influencing system performance. To assess the effects of
different parameter levels on seed distribution uniformity and
detection performance under high-throughput conditions, the
following factors were included: seed socket arrangement, seed
spreading roller speed, conveyor motor speed, seed box inclination,
seed drop chute inclination, and conveyor belt type. The levels were

defined as follows. The seed socket arrangement was classified as either
deflected or non-deflected. The spreading roller speed was set to 50,
150, and 250 steps per second, and the conveyor motor speed was also
set to 50, 150, and 250 steps per second. The seed box inclination
angles were 20°, 30°, and 40°, while the chute inclination angles were
60°, 70°, and 80°. Three conveyor belt types were tested: a smooth white
surface, a white diamond-patterned belt, and an enhanced diamond-
patterned belt with a deflector partition at the end of the chute.

The Taguchi design is shown in Table 1. Each experiment was
repeated three times across three groups: (1) imported soybeans
only, (2) soybeans mixed with 1% A. artemisiifolia seeds, and (3)
soybeans mixed with 1% A. trifida seeds. Each group produced a
minimum of 100 seed images for analysis.

Table 1 Taguchi experimental setup.

1. Curved guide plate, 2. Seed-feeding box, 3. Seed cleaning tip, 4. Seed spreading roller,
5. Seed protection groove, 6. Seed drop chute.

FIGURE 5
Schematic (A) and photograph (B) of the seed dispenser.
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Seed spreading roller

FIGURE 6
Seed spreading roller with parabolic seed socket.

2.4.2 Moran’s | coefficient

The intra-frame spatial uniformity was evaluated using Moran’s I
coefficient, which ranges from —1 to 1, with values closer to 0
indicating greater uniformity. With a fixed weight matrix, this
metric remains comparable across different resolutions and fields of
view (Wang et al,, 2023). Compared with the coefficient of variation,
entropy, or nearest-neighbor index, Moran’s I more accurately

Seed tray Parabolic seed socket

captures local clustering effects and thus provides a robust
quantitative assessment of seed distribution within the detection
area. A value near 1 indicates seed clustering, a value near -1
suggests dispersion, and a value around O represents a random
distribution, reflecting good uniformity. This metric effectively
evaluates both the performance and the spatial uniformity of seed
deployment by the detection device, thereby supporting subsequent
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TABLE 1 Taguchi experimental setup.

10.3389/fpls.2025.1677883

Serial Forms of seed socket Spreading Conveyor Seed box Seed drop chute = Conveyor
number arrangement roller speed motor speed inclination inclination type
1 deflection 50 50 20 60 1
2 deflection 50 150 30 70 2
3 deflection 50 250 40 80 3
4 deflection 150 50 20 70 2
5 deflection 150 150 30 80 3
6 deflection 150 250 40 60 1
7 deflection 250 50 30 60 3
8 deflection 250 150 40 70 1
9 deflection 250 250 20 80 2
10 non-deflection 50 50 40 80 2
11 non-deflection 50 150 20 60 3
12 non-deflection 50 250 30 70 1
13 non-deflection 150 50 30 80 1
14 non-deflection 150 150 40 60 2
15 non-deflection 150 250 20 70 3
16 non-deflection 250 50 40 70 3
17 non-deflection 250 150 20 80 1
18 non-deflection 250 250 30 60 2

optimization. Moran’s I was calculated using Equations 1 and
Equations 2 (Wang et al., 2023).

_ NEiijij(xi = X)(x - X)

53, — %) W

SO = E:E}WU (2)

where:
N——Total number of observations,
%, x;——Values of variables at positions i and j,
X——DMean value of x,
wi——Spatial weights between positions i and j,
So——>Sum of all spatial weights.
To compute Moran’s I coefficient for the original image, the
proportion of target pixels within each local region of the binary
map must first be obtained as baseline data. Accordingly, the

original image was preprocessed to enable this analysis.

2.4.3 Image processing for Moran'’s | coefficient
calculation

Image processing was performed using MATLAB. The HSV
color space was applied for seed segmentation. Initially, the original
RGB image was sharpened using an unsharp mask to suppress noise.
The denoised image was then converted into H, S, and V channels to
extract the seed color, resulting in a binary image. To evaluate seed
distribution, the binary image (3840 x 2160 pixels) was divided into

Frontiers in Plant Science

48 equally sized regions, each measuring 480 x 360 pixels. The
percentage of seed pixels in each region was calculated as baseline
data, which enabled the computation of Moran’s I coefficients for the
original image using Equations 1 and 2. A schematic diagram of the
image processing workflow is presented in Figure 8.

2.4.4 Analysis of variance

ANOVA (Analysis of Variance) was conducted for both the
mean and the signal-to-noise ratio (S/N). This statistical technique
is widely used to assess the significance of main factor effects,
allowing researchers to identify which variables should be retained
in the predictive model and which can be considered statistically
insignificant or attributed to random variation. The formula for
calculating the sum of squares is presented in Equation 3 (Jadhav
et al., 2024).

$S =7 S~ 5’ 3)

where n denotes the number of experimental repetitions; 1
represents the number of levels for the factor; y; is the mean
value of the characteristic at the i level; and Y is the overall mean
of the characteristic values.

The formula for calculating the degrees of freedom (DOF) is
provided in Equation 4 (Jadhav et al,, 2024).

DOF =1-1 (4)
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FIGURE 8
Image processing workflow.

The formula for calculating the mean square (MS) is provided

in Equation 5 (Jadhav et al., 2024).

SS

MS=—-"
5= Dor

©)

The F value is a statistical indicator used in ANOVA to evaluate
the significance of differences between groups. It is calculated as the
ratio of between-group variance to within-group variance (Thakuria
and Erkinbaev, 2024). A higher F value indicates that the variation
between groups is greater than the variation within groups.

The P value is used to determine the statistical significance of
the F value. A commonly accepted threshold is 0.05. If the P value
falls below this threshold, the null hypothesis is rejected, indicating
that the differences among group means are statistically significant.

2.5 Detection method for three types of
seed images

2.5.1 Image dataset construction

All image data were collected directly from the single-seed
uniform distribution and spreading device. No data augmentation
was applied, as the dataset already included variations in seed
density, overlap, and occlusion under stable illumination and
background conditions. To maintain the validity of the Moran’s
I-based uniformity evaluation, geometric and concatenation-type
augmentations were excluded. In total, 5,567 images (3840 x 2160
pixels) were acquired. From these, 1,142 images representing
different seed distribution patterns were manually annotated
using the X-AnyLabeling tool. A subset of 228 images with
varying densities was evenly allocated to the test set, and the
remaining 914 images were split into training and validation sets
at a 3:1 ratio.

2.5.2 Training environment and methods
Model training was conducted on a Windows 10 workstation
configured with 64 GB of RAM, an Intel Xeon Silver 4210 CPU, a
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Quadro RTX 4000 GPU, Python 3.9.18, CUDA 12.2, and PyTorch
1.10.1 with OpenCV 10.2 support. Stochastic Gradient Descent
(SGD) was used as the optimizer. The initial learning rate was set to
0.01, the weight decay was 0.0005, the batch size was 8, and the
training was conducted for 200 epochs.

2.5.3 Evaluation indicators

Model performance was evaluated using Precision (P), Recall
(R), and mean Average Precision (mAP). These metrics were
calculated using Equations 6, Equation 7, and Equation 8 (Zhao

et al., 2025).

Precision = TP ©)
recision = TP + FP
TP
Recall = m (7)
1
AP = / p(r)dr (8)
0

TP denotes true positives, FP denotes false positives, and FN
denotes false negatives. TP refers to the number of correctly identified
positive samples. FP represents the number of negative samples that
were incorrectly labeled as positive, and FN refers to the number of
positive samples that were incorrectly labeled as negative.

2.5.4 YOLO_P2 model

To enable real-time detection of quarantine weed seeds and
ensure compatibility with embedded deployment, several classic
lightweight models were evaluated, including YOLOv5s, YOLOv7-
tiny, and YOLOv8n. Among these models, YOLOv8n demonstrated
the best detection performance, achieving the highest mean Average
Precision (mAP), and was selected as the detection model for the
system. However, among the three seed types, A. artemisiifolia
exhibited the lowest detection accuracy. This is primarily due to its
significantly smaller size compared to imported soybean and A.
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trifida seeds, which results in large target scale differences and
reduced model performance.

To address this issue and improve detection accuracy for A.
artemisiifolia, targeted modifications were applied to the YOLOv8n
model. A P2 detection head was added to enhance the model’s
ability to detect small objects. Because the inclusion of the P2 head
increases model complexity, and all target objects in this application
are relatively small with no large-scale instances, the P5 detection
head was removed. The architecture of the improved YOLO_P2
model is illustrated in Figure 9.

2.6 Verification experiment

Based on the optimized parameter combination derived from
the Taguchi experiment, the single-seed uniform distribution and
spreading device was configured accordingly. After the successful
deployment of the detection model and control system, validation
experiments were conducted to evaluate the system’s performance.

The experiments simulated a customs quarantine scenario in
accordance with the national entry and exit inspection and
quarantine standard (SN/T 4979-2017). For each trial, 500 + 10 g
of imported soybean seeds were used. To replicate the natural
distribution of quarantine weed seeds in imported soybeans, A.
trifida and A. artemisiifolia seeds were introduced into the samples
at a mass ratio of 1 + 0.05% and a count ratio of 5 + 0.5%. Specifically,

10.3389/fpls.2025.1677883

5+ 1 gand 100 + 10 seeds of A. trifida, along with 5 + 1 g of A.
artemisiifolia, were added to each 500 + 10 g sample of soybeans
(approximately 2,000 + 40 seeds per sample).

This configuration ensured that the test conditions were both
controllable and repeatable. The validation procedure was
conducted across three independent groups to comprehensively
assess the system’s detection performance.

3 Results

3.1 Results of the Taguchi experiment

A total of 5,567 images were collected throughout the
experiment, with representative examples shown in Figure 10.
These images reveal distinct variations in seed spreading
performance across different experimental groups. Using images
of imported soybeans as a reference, the seed distribution patterns
ranged from sparse to dense and from disordered to well organized.
This suggests that the parameter combinations of the device
components had a significant influence on the uniformity and
effectiveness of seed distribution.

Among all experiments, Groups 5 and 15 demonstrated the
most effective seed spreading, with seeds uniformly distributed
across the detection area and minimal occurrences of seed
adhesion or occlusion. This determination was supported by
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FIGURE 10
Effect of different parameters on the seed distribution.
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quantitative results: the Moran’s I coefficients of Groups 5 and 15
were approximately 0.07 and 0.01, respectively, and both groups
exhibited the lowest occlusion rates. Together, these metrics
indicate superior spatial uniformity and visibility compared with
the other groups. In contrast, Groups 4, 7, 13, and 16 exhibited
notable seed clumping and shadowing, while Groups 2, 3, 6, 11, and
12 showed uneven or sparse seed distributions. To further evaluate
these results, the images obtained from the Taguchi experiments
were processed and analyzed using MATLAB to enable detailed
quantitative assessment.

Moran’s I coefficients for each image were calculated using
MATLAB, and the resulting box plots for each experimental group
are shown in Figure 11.

The mean Moran’s I coefficients across all groups were greater
than zero, indicating an overall tendency toward clustered seed

distribution. This result was consistent with the experimental
design objective, which aimed to reduce seed adhesion and
occlusion while maintaining a dense seed arrangement.

In most experimental groups, intragroup variation in Moran’s I
values remained within 0.05. However, a noticeable difference of 0.1
was observed between Experiment 4 and Experiment 10. As shown
in Table 1, both experiments used the same settings for conveyor
motor speed (50 steps per second) and conveyor belt type (Type 3).
This suggests that under these conditions, noise factors had a
substantial impact on seed spreading performance, leading to
inconsistent results.

Among all trials, Experiments 14 and 15 produced the most
satisfactory outcomes, with mean Moran’s I values approaching
zero, indicating highly uniform seed distribution. In contrast,
Experiments 4, 7, 13, and 16 exhibited severe seed adhesion and
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Box plots of Moran’s | coefficients for each experimental group.
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occlusion, with significantly higher mean Moran’s I values.
Experiments 1, 8, 9, 10, and 18 showed scattered or sparse seed
distributions, with average Moran’s I values mostly exceeding 0.2.

3.2 Analysis of Taguchi experimental
results

3.2.1 Mean and S/N analysis

In the Taguchi method, quality characteristics are classified into
two main categories: metrological characteristics and counting
characteristics. Metrological characteristics are further divided
into three types. These include those where a larger value is
preferred, those where a smaller value is preferred, and those
where the value should be as close as possible to a specific target.
The signal-to-noise ratio (S/N) is used as a statistical indicator to
evaluate the stability of these quality characteristics. For
characteristics in which smaller values are preferred, the S/N ratio
is calculated using Equation 9 (Islam and Pramanik, 2016).

S 1,
ﬁ =-10 log;Ei:l le (9)

where m is the number of observations and where Y; represents
the observed values.

Section 3.1 presents the results of Moran’s I coefficient, where the
average values obtained from the experiments were all greater than
zero. The goal of this study is to achieve stable and uniform seed
distribution by identifying the optimal combination of factor levels for
the detection device, with a target Moran’s I coefficient close to zero.
Accordingly, the signal-to-noise (S/N) ratio formula for the smaller-
the-better characteristic was applied to analyze the experimental data.
To evaluate the effects and significance of various factor levels on the
performance of the single-seed uniform distribution and spreading
device, both mean and S/N analyses were performed using Minitab.

Table 2 presents the S/N ratios, mean values, and corresponding
rankings of Moran’s I coefficients. A higher S/N ratio indicates more
stable experimental outcomes. Regarding S/N ranking, the seed
spreading roller speed had the greatest influence on performance,
followed by the conveyor motor speed, conveyor type, seed box
inclination, seed drop chute inclination, and the arrangement of
seed sockets. In terms of mean value ranking, conveyor motor speed
had the most substantial effect, followed by the seed spreading roller
speed, seed drop chute inclination, conveyor type, seed box
inclination, and socket arrangement.

By comparing the rankings of the S/N ratios and the mean
values, it is evident that seed spreading roller speed and conveyor
motor speed are the most influential factors, as they consistently
occupy the top two positions in both analyses. Therefore, when
selecting the optimal levels for these two factors, it is important to
consider both mean performance and stability, as reflected by the S/
N ratio. The arrangement of seed sockets had the least impact,
ranking sixth in both evaluations.

Table 2 S/N and the mean of Moran’s I coefficient.

Figure 12 presents the mean and signal-to-noise (S/N) plots of
Moran’s I coefficient. According to the mean plot shown in
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TABLE 2 S/N and the mean of Moran's | coefficient.
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Figure 12a, the optimal seed distribution, represented by the
Moran’s I coefficient value closest to zero, was achieved under the
following parameter settings: a seed socket arrangement without
deflection, a seed spreading roller speed of 50 steps per second, a
conveyor motor speed of 250 steps per second, a seed box
inclination angle of 40° a seed drop chute inclination angle of
60°, and conveyor belt type 3.

In comparison, the S/N plot shown in Figure 12b indicates that the
most stable seed spreading results across repeated experiments were
obtained with a configuration consisting of a seed socket arrangement
without deflection, a roller speed of 150 steps per second, a conveyor
motor speed of 150 steps per second, a seed box inclination of 40°, a
drop chute inclination of 60° and conveyor belt type 3. This
configuration produced the highest signal-to-noise ratios.

3.2.2 Analysis of variance

P values were derived from the degrees of freedom and the
corresponding F values, as shown in Table 3. The analysis of the
signal-to-noise (S/N) ratio revealed that both the seed spreading
roller speed and the conveyor motor speed produced relatively high
F values, although the difference between them was small. Since all
P values exceeded the threshold of 0.05, none of the factors
exhibited statistical significance in the S/N analysis. Therefore, the
optimal combination of factor levels could not be determined based
on the S/N results alone.

In contrast, the ANOVA of the mean values indicated
significant effects for conveyor motor speed (P = 0.004) and seed
spreading roller speed (P = 0.011), as their P values were below 0.05.
When the results of both the mean and S/N analyses are considered
together, seed spreading roller speed and conveyor motor speed are
identified as the most influential factors affecting the uniformity of
seed distribution. This finding is consistent with the rankings
shown in Table 2. The conveyor belt type also showed a
considerable effect, while the other factors had limited influence.

Table 3 ANOVA of the mean and S/N.

In conclusion, the seed spreading roller speed and the conveyor
motor speed are the principal factors influencing the performance
of the single-seed uniform distribution and spreading system. The

10.3389/fpls.2025.1677883

mean plot (Figure 12a) indicates that the Moran’s I coefficient is
closest to zero when the roller speed is set to 50 steps per second and
the conveyor motor speed is set to 250 steps per second. However,
the S/N plot (Figure 12b) and the ANOVA results show that more
stable outcomes are achieved when both speeds are set to 150 steps
per second.

Considering the device’s dual requirements for precision and
operational consistency, along with the minor differences observed
in the mean plot and the improved detection performance shown in
Figure 9, a speed of 150 steps per second was adopted as the optimal
value for both the roller and the conveyor motor. Among the three
conveyor belt types tested, type 3 yielded the most favorable results
and was therefore selected. The remaining factors were found to
have limited influence. As a result, the profiling holes were arranged
in a deflected pattern, the seed box inclination was set to 40°, and
the seed drop chute inclination was set to 60°. The complete
optimized parameter configuration is summarized in Table 4.

Table 4 Optimal levels of detection device.

Following the optimization and physical assembly of the single-
seed uniform distribution and spreading device, the next phase of
the work focused on improving the deep learning model to address
the relatively low detection accuracy associated with small targets,
particularly A. artemisiifolia seeds.

3.3 Detection model and deployment

3.3.1 Detection model

The training outcomes are summarized in Table 5, and the
trends in mAP and Recall for each model are illustrated in
Figure 13. As shown in Figure 13, the mAP, Precision, Recall, and
corresponding curves for the YOLOv5s and YOLOv7-tiny models
exhibit substantial fluctuations, indicating unstable detection
performance. In contrast, the modified YOLO_P2 model
demonstrates reduced fluctuations and improved stability.

The average mAP across all three models was approximately
95%. The YOLOvV5s model achieved the highest detection accuracy
for A. artemisiifolia seeds at 90.4%, which was 2.4 percentage points
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TABLE 3 ANOVA of the mean and S/N.

10.3389/fpls.2025.1677883

DOF Seq SS
Source of variance
S/n Mean S/n  Mean

Forms of seed socket arrangement 1 1 78.32 0.002069 78.32 0.002069 78.32 0.002069 0.860 0.190 0.189 0.067
Seed spreading roller speed 2 2 641.74 0.227733 641.74 0.227733 320.87 0.113867 3.53 10.670 0.097 0.011
Conveyor motor speed 2 2 696.55 0.330180 696.55 0.330180 348.27 0.165090 3.83 15.470 0.085 0.004
Seed box inclination 2 2 76.49 0.001787 76.49 0.001787 38.25 0.000894 0.42 0.080 0.375 0.092
Seed drop chute inclination 2 2 58.93 0.015588 58.93 0.015588 29.46 0.007794 0.32 0.730 0.435 0.051
Conveyor belt type 2 2 160.96 0.006939 160.96 0.006939 80.48 0.003470 0.880 0.320 0.260 0.073

higher than those achieved by the other two models. For imported
soybeans, YOLOv8n attained the best detection accuracy at 96.6%,
outperforming YOLOv5s and YOLOv7-tiny by 1.3 and 1.2
percentage points, respectively. Notably, YOLO_P2, built upon
YOLOV8n, significantly enhanced the detection of small targets
(such as A. artemisiifolia seeds) without increasing model
parameters or model size, thereby achieving superior performance
while maintaining efficiency.

3.3.2 Model deployment

As illustrated in Figure 14, both the original model (YOLOv8n)
and the modified YOLO_P2 model were deployed on an embedded
platform for testing and comparison. The platform used was the
NVIDIA Jetson Orin NX 16 GB, configured with Jetpack 5.1,
CUDA version 11.4.315, cuDNN version 8.6.0.166, Torch version
2.0.0+nv23.5, and Torchvision version 0.15.1.

The original model processed a single image in 57.8
milliseconds, consisting of 7.5 milliseconds for preprocessing, 31.1
milliseconds for inference, and 19.2 milliseconds for postprocessing.
In comparison, the YOLO_P2 model required 64.2 milliseconds to
process a single image, including 7.6 milliseconds for preprocessing,
38.0 milliseconds for inference, and 18.6 milliseconds for
postprocessing. The improved model resulted in an increase in
total processing time of only 6.4 milliseconds.

Figure 14 presents a comparison between the original model
and the YOLO_P2 model in detecting A. artemisiifolia seeds. The
original model exhibited recognition errors and missed detections,
particularly for the smaller-sized A. artemisiifolia seeds. Its
performance was notably poor when these seeds were partially
obscured by soybean seeds. In contrast, the YOLO_P2 model

TABLE 4 Optimal levels of detection device.

Forms of seed socket
arrangement

Evaluation Spreading

roller speed

indicators

Conveyor
motor speed

effectively addressed these issues and demonstrated significantly
improved performance, especially in detecting A. artemisiifolia
seeds under occlusion.

Figure 15 presents a comparison between the original model
and the YOLO_P2 model in detecting mixed samples containing
imported soybeans, A. trifida, and A. artemisiifolia. seeds. The
original model exhibited both false detections and missed
detections during the recognition process, particularly showing
poor performance when the A. artemisiifolia seeds were partially
occluded. In contrast, the YOLO_P2 model demonstrated superior
performance in handling occlusion and accurately identifying A.
artemisiifolia seeds, resulting in a notable improvement in overall
detection accuracy.

3.4 Verification experiment

The experimental outcomes for A. trifida and A. artemisiifolia.
seeds are presented in Tables 6 and 7, respectively. Following this,
the three types of seeds were mixed, and a series of validation
experiments was conducted. The results obtained from these
mixed-seed trials are summarized in Table 8.

Regarding the detection of A. trifida seeds, the accuracy rates
were recorded as 96.39%, 96.47%, and 96.24%, with an average of
96.37%. The corresponding miss rates were 3.61%, 3.53%, and
3.76%, resulting in an average of 3.63%. These results indicate
that although A. trifida seeds represent a relatively small proportion
of the sample, the system is capable of reliably identifying and
accurately detecting the majority of these seeds. The observed miss
rates remained within an acceptable range.
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TABLE 5 Comparative results of different models.

10.3389/fpls.2025.1677883

Model Class Precision Recall mAP Params/m Model size/MB Epoch

all 0.982 0.932 0.951
soybean 0.988 0.943 0.953

YOLOV5s 7.2 14
A. trifida seeds 0.986 0.992 0.996
A. artemisiifolia seeds 0.972 0.861 0.904
all 0.977 0.936 0.946
soybean 0.982 0.945 0.954

YOLOV7-tiny 6.2 12
A. trifida seeds 0.986 0.993 0.997
A. artemisiifolia seeds 0.964 0.87 0.88

200

all 0.96 0.914 0.947
soybean 0.98 0.944 0.966

YOLOv8n 3.2 6.2
A. trifida seeds 0.98 0.996 0.995
A. artemisiifolia seeds 0.919 0.802 0.88
all 0.983 0.945 0.961
soybean 0.987 0.939 0.963

YOLO_P2 33 6.3
A. trifida seeds 0.99 0.994 0.995
A. artemisiifolia seeds 0.972 0.901 0.926

For A. artemisiifolia. seeds, the detection accuracy was slightly
lower, with values of 95.34%, 95.86%, and 95.07%, yielding an
average of 95.42%. The corresponding miss rates were 4.66%,
4.14%, and 4.93%, with an average of 4.58%. Although the
accuracy was marginally lower than that for A. trifida, the system
still exhibited relatively strong recognition capability. The slightly
elevated miss rate may be attributed to factors such as the visual
characteristics of A. artemisiifolia. seeds, their morphological
similarity to soybeans, and the image quality captured by the
camera. These findings suggest that future improvements in the
detection of A. artemisiifolia seeds could be achieved by enhancing

the algorithm or optimizing camera parameters to improve
recognition precision.

In terms of detection time, each group of tests was completed
within 6.8 to 7.9 minutes, all of which were shorter than the time
required for manual inspection. This demonstrates the system’s
ability to maintain stable operational efficiency under varying
experimental conditions. Although minor differences in detection
time were observed across different groups, the overall processing
times remained consistent and met the experimental requirements.

During the detection of the three types of seeds, a slight decrease
in accuracy and a slight increase in detection time were observed.
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FIGURE 13
Plots of P, R and mAP variations for different models.
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Legend: |:| Soybean|:| A. artemisiifolia seeds |:| False detection Missing
Original YOLO P2
FIGURE 14
Detection performance for A. artemisiifolia seeds using the original model and the YOLO_P2 model.

However, both remained within the acceptable range defined by the
system’s performance standards.

4 Discussion

This study introduces a reliable detection device for the
quarantine inspection of imported soybeans at customs,
specifically designed to identify two types of quarantine weed
seeds, A. trifida and A. artemisiifolia. Although the focus is
limited to these two species, they are among the most frequently

Frontiers in Plant Science

intercepted in imported soybean shipments. The proposed
detection system addresses a critical gap in the current
development of quarantine detection equipment and provides
both a novel approach and a valuable technical reference. The
single-seed uniform distribution and spreading device, which
incorporates parabolic seed sockets, offers notable advantages
compared to conventional detection systems. It is capable of
evenly and neatly distributing multiple seed types with distinct
size differences and supports high-throughput image dataset
acquisition. When integrated with the real-time detection system,
it demonstrates high accuracy and satisfactory computational
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FIGURE 15

Detection performance for mixed samples containing imported soybeans, A. trifida L., and A. artemisiifolia L. seeds.

efficiency, thereby fulfilling the operational requirements of
customs quarantine inspections.

In comparison with related approaches (Zhao et al, 2021; Wang
et al,, 2023), the proposed system demonstrates advantages in four key
aspects: cost-effectiveness (hardware cost approximately ¥1500-2000
with a power consumption of ~15 W), processing speed (20-30 seeds
per second), cross-seed adaptability (extension to similar small-seed
species achievable through replacement of the seed dispenser and limited
retraining), and optimization for customs applications (including batch
traceability, automatic reinspection of anomalies, and self-recovery from
clogging events). These features highlight the practical relevance of the
system in real-world quarantine inspection scenarios. From an
engineering perspective, challenges remain in ensuring robustness
across varieties, maintaining long-term stability, facilitating convenient
maintenance, and integrating seamlessly into inspection workflows.

Nonetheless, some limitations persist. The use of parabolic seed
sockets has been associated with occasional seed jamming, which may
hinder overall seeding efficiency. Future studies should aim to optimize
the design of the profiling holes and improve the seed-clearing
mechanism in order to minimize jamming and enhance throughput.
While such modifications may increase structural complexity and affect
the stability of the device, they remain a practical and worthwhile
direction for further development. In addition, while the system shows
detection potential for small-sized weed seeds within samples
exhibiting substantial particle-size differences, its applicability to
specific species or extreme morphological cases still requires
validation through expanded data collection and model retraining.
This adjustment provides a more accurate reflection of the system’s
practical boundary conditions and avoids overgeneralisation of its
applicability. Effectively addressing these challenges is expected to
enhance the generalisability and practical applicability of equipment
for quarantine weed seed detection.
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5 Conclusion

In this study, a real-time, high-throughput, and cost-effective
detection system for identifying quarantine weed seeds in imported
soybeans was successfully developed and validated. To address the
challenges of seed occlusion and uneven distribution in complex
sample environments, a seed dispenser incorporating parabolic seed
sockets was designed. This configuration enabled the uniform and
orderly distribution of multiple seed types within a single image,
maximizing the number of seeds per frame while effectively
preventing mutual occlusion.

Furthermore, to improve distribution uniformity, the key
structural parameters of the detection device were systematically
optimized using the Taguchi experimental design method. This
process led to the identification of an optimal parameter
configuration. In addition, to satisfy the requirements for real-
time detection and to enhance the recognition of small targets such
as A. artemisiifolia seeds, the YOLO_P2 model was specifically
modified. These targeted improvements significantly enhanced the
detection performance of the model.

Verification experiments confirmed that the average detection
accuracy reached 95.77%, with an average detection time of 7.6
minutes. The proposed detection system is suitable not only for the
quarantine inspection of imported soybeans, but also for the
identification of other seed types. Beyond its demonstrated
performance on A. artemisiifolia and A. trifida seeds, the
proposed model also exhibits strong transferability. With minimal
additional data annotation and model fine-tuning, it can be
extended to other small-sized seeds with similar particle size or
morphology while maintaining the same hardware platform. This
highlights the system’s reusability and scalability, and suggests
promising potential for broader applications in quarantine
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TABLE 6 Verification experiment results for A. trifida seeds.

. No. of No. of imported . . ¥z Percentage of Detecting the .
Serial n P Detecting accuracy of No. of A. trifida centag gthe Leakage Detection
imported soybeans " 5 A. trifida seeds/ accuracy of A. trifida 5 . :
number imported soybeans/% seeds detected o ° rate/% time/min
soybeans detected % seeds/%
1 1937 1898 98.17 97 93 4.89 96.39 3.61 7.2
2 2016 1976 98.11 103 98 4.96 96.47 3.53 6.8
3 1984 1944 98.04 99 95 4.89 96.24 3.76 7.1
Mean 1979 1939 98.11 99 95 491 96.37 3.63 7.0

TABLE 7 Verification experiment results for A. artemisiifolia seeds.

Detecting the

. No. of No. of imported Detecting accuracy No. of A. No. of A. Percentage of A. .
Serial . . o o T accuracy of A. Leakage Detection
imported soybeans of imported artemisiifolia artemisiifolia artemisiifolia S £ ! .
number A o artemisiifolia rate/% time/min
soybeans detected soybeans/% seeds seeds detected seeds/% 5
seeds/%
1 1976 1936 98.34 105 99 5.11 95.34 4.66 7.1
2 2009 1968 98.95 107 101 513 95.86 4.14 6.9
3 1994 1954 98.27 94 89 455 95.07 4.93 6.8
Mean 1993 1953 98.52 102 96 4.93 95.42 4.58 6.9
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TABLE 8 Verification experiment results for three types of seeds.
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inspection scenarios. This work offers an effective method for the
rapid acquisition of high-quality, high-throughput seed images and
may serve as a valuable tool for laboratory research and other
applications requiring efficient generation of annotated datasets.
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