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Understanding the transcriptome diversity is essential for deciphering the
transcriptional level regulation. High-throughput sequencing technologies have
facilitated the detection of fusion transcripts (FTs), which are chimeric mRNA
molecules derived from gene fusions due to chromosomal rearrangements or via
the splicing machinery at the RNA level. In this study, we investigated the
transcriptome complexity in Cicer arietinum resulting from fusion events using
high-throughput RNA-Seq datasets from five tissues, i.e., stem, leaves, buds,
flowers, and pods, and two abiotic stress conditions, i.e., drought and salinity. Of
the 328 unique FTs identified, 69% exhibited the presence of canonical splice sites
at their junction, indicating their generation via trans-splicing. Functional annotation
and enrichment analyses of fusion partners suggested that these transcripts may
expand functional diversity. A total of 10 FTs were validated via RT-PCR followed by
Sanger sequencing, which are the first FTs described in the important legume
chickpea. Expression analysis of fusion transcripts across various tissues and under
abiotic stress conditions revealed evidence of context-dependent regulation.
Furthermore, 120 fusion gene pairs were found to be conserved across 17
chickpea genotypes, highlighting their potential biological significance and
stability within the species. Overall, these findings suggest that fusion transcripts
may contribute to regulatory mechanisms underlying abiotic stress responses
in chickpea.

abiotic stress, Cicer arietinum, fusion transcripts, trans-splicing, transcriptome
complexity
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1 Introduction

Mature mRNA molecules are conventionally formed through
transcription and post-transcriptional modifications, where introns
are excised and stability is enhanced. Traditionally, mRNA was
thought to originate solely from the alternative splicing of a single
gene. However, advancements in sequencing technologies have
uncovered the existence of novel transcripts, such as fusion
transcripts (FTs), which arise by the joining of mRNA molecules
derived from different genes (Gingeras, 2009; Gupta et al., 2018).
FTs can be generated at the DNA level through genomic
rearrangements such as translocation, deletion, duplication, or
inversion and give rise to a fused gene (Li et al.,, 2009a; Annala
etal, 2013); or at the RNA level through trans-splicing (Sutton and
Boothroyd, 1986) or read-through transcription (Varley et al,
2014), resulting in an increase in transcriptome complexity
without a corresponding increase in the gene number. While
fusion transcripts are found in both unicellular and multicellular
organisms, they were previously considered rare in nature and
occasionally dismissed as transcriptional artifacts. Up to now,
extensive research has characterized the cellular functions of these
transcripts in cancer (Latysheva and Babu, 2016; Dupain et al,
2019). Recent studies indicate that in addition to their role in
oncogenesis, FTs have also been reported under normal
physiological conditions (Babiceanu et al., 2016; Chwalenia et al,
2017), and may act as potential regulators of their parental mRNA
(Mukherjee et al., 2021). However, their presence and functional
significance in plants remain largely unexplored.

In past decades, efficient big data analysis has facilitated the
discovery of fusion transcripts in many plants, such as Trifolium
pratense (Chao et al., 2018), Camellia sinensis (Qiao et al., 2019),
Oryza sativa (Zhang et al., 2010), Arabidopsis thaliana (Singh et al.,
2019), Brassica rapa (Tan et al., 2019), and Zea mays (Zhou et al.,
2022). These plant-specific fusion transcripts add transcriptome
complexity and introduce novel functions, which may be related to
stress responses (Zhou et al.,, 2022), metabolic pathways (Hagel and
Facchini, 2017), or phenotypic traits (Chen et al, 2017). For
instance, maize exhibits various fusion events in response to viral
infection, involving proteins like nodulin, flavone synthase, and
cation-transporting ATPase (Zhou et al,, 2022). In tomatoes, the
fusion transcript PFP-LeT6 is involved in leaf patterning (Kim et al.,
2001), while in rice, the GN2 chimeric gene controls plant height,
heading date, and grain number (Chen et al., 2017). In Arabidopsis
thaliana, a protein derived from the fusion of glutamine synthase
and nodulin domains regulates root morphogenesis and flagellin-
triggered signaling (Doskocilova et al., 2011). Studies across species
also suggest that fusion events like domain shuffling and DNA
fusion enhance the catalytic efficiency of an enzyme (Farrow et al.,
2015; Li et al, 2016; Hagel and Facchini, 2017). These reports
suggest that fusion events result in novel sequences with novel
functions either as non-coding RNA or fusion proteins (Winzer
et al., 2015; Qin et al., 2017).

Chickpea (Cicer arietinum L.) ranks as the third most cultivated
legume crop globally, following common bean and pea (Nathawat
et al., 2024). Cultivated in over 50 countries, the Indian
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subcontinent leads in production, contributing approximately
70% of the global output (Koul et al., 2022). In addition to its
economic significance, chickpeas are highly esteemed for their
exceptional nutritional content, particularly their rich protein and
carbohydrate content. Currently, chickpeas are grown on 15 million
hectares worldwide, producing 15.9 million tons (FAO, 2023).
However, this yield remains significantly below the crop’s
potential under optimal conditions. This gap is largely attributed
to various biotic and abiotic stresses that hinder productivity.
Abiotic stresses, such as salinity and drought, are key factors
contributing to yield losses. Research has shown that chickpeas
are particularly sensitive to salinity compared to other crops,
making it a critical factor limiting yields (Flowers et al, 2010;
Turner et al., 2013). The growing availability of high-throughput
transcriptomic data offers valuable insights for tackling these stress-
related challenges.

Despite advancements in sequencing technologies, the
exploration of transcriptome diversity in chickpea, particularly
due to fusion events, remains limited. A meta-analysis in
Arabidopsis thaliana, Cicer arietinum, and Oryza sativa showed
that the majority of fusion transcripts (~74%) were uniquely
detected in only one transcriptomic sample (Chitkara et al,
2024). This lack of recurrence raises concerns about the biological
reliability and reproducibility of these events. One possible
explanation could be the inherent variability introduced by such a
large and heterogeneous dataset. Alternatively, many of these
uniquely detected fusion transcripts might represent random
artifacts rather than true biological events. Moreover, the
validation rate was reported to be generally low in Arabidopsis
thaliana and Oryza sativa, which could be attributed to high false-
positive prediction rates or the inherently low expression level of
fusion transcripts. Notably, no experimental validation was
performed for the fusion transcripts identified in Cicer arietinum.

Therefore, there is a compelling need for more targeted
investigations under well-defined experimental conditions that
allow biological replication. In the current study, we identified,
annotated, and experimentally validated the fusion transcripts by
utilizing in-house generated RNA-Seq datasets derived from
specific abiotic stress conditions and tissue types, enabling the
identification of high-confidence fusion transcripts by applying
stringent filtering criteria. This enhances the reproducibility,
which in turn strengthens the confidence in these fusion events as
biologically relevant and potentially regulatory molecules, rather
than technical noise. Further, stress-responsive and conserved
fusion transcripts of chickpea were confirmed using a
combination of second- and third-generation RNA-Seq datasets,
along with experimental validation. To explore the features of fusion
transcripts, we investigated their coding potential and the potential
mechanism of formation. We predicted that 58% of fusion
transcripts are non-coding in nature and 69% might arise via
trans-splicing. While these findings suggest that non-coding
fusion transcripts could play regulatory roles, their functional
implications remain speculative and require further experimental
validation. Additionally, a benchmarking analysis was performed to
evaluate the performance of different fusion detection tools,
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enabling the identification of the most effective methods for
accurate fusion detection in Chickpea. This work provides deeper
biological interpretation and functional insights into fusion
transcript dynamics in Chickpea.

2 Materials and methods

2.1 Plant material, growth conditions, and
stress treatment

Chickpea (Genotype ICC4958) seeds were cultivated by using
the established protocol (Garg et al., 2010). Seedlings were grown in
plastic pots filled with a sterilized mix of agro-peat and vermiculite
in a 1:1 ratio, maintained at 22 °C with a 14-hour light cycle in a
controlled growth chamber. Samples were collected at various
developmental stages, including stems and leaves from the
seedling stage and buds, flowers, and pods during the flowering
stage. To induce drought stress, 21-day-old seedlings were removed
from the pots and placed on tissue paper for five hours. For salinity
stress, seedlings were immersed in a beaker filled with a 150 mM
NaCl solution at 22 °C. Whole seedlings were collected after 5 hours
of treatment and from three independent biological replicates.
These samples were immediately flash-frozen in liquid nitrogen
and stored at -80 °C until further analysis.

2.2 Total RNA isolation, cDNA library
preparation, and sequencing

Total RNA was extracted from 100 mg of tissue using the
RNeasy Plant Mini Kit (Qiagen). The quantity and quality of
RNA were assessed using a NanoDrop Spectrophotometer
(NanoDrop Technologies) and an Agilent Bioanalyzer. Only
samples with a 260/280 ratio between 1.9 and 2.1, a 260/230
ratio between 2.0 and 2.4, and RNA Integrity Number (RIN)
values greater than 7 were selected for Illumina sequencing. A
total of 26 paired-end RNA-Seq libraries were prepared and
sequenced. The quality of the reads was assessed with FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
and adapter trimming and filtering of low-quality reads were
performed using fastp (Chen et al., 2018). High-quality reads
were then aligned to the reference genome (ASM33114v1) using
HISAT2-2.2.1 (Kim et al., 2019).

2.3 Computational prediction of fusion
transcripts and their coding potential

Fusion transcripts were predicted using three different fusion
detection tools, viz., FusionMap (Ge et al, 2011), STAR-Fusion
(Haas et al,, 2019), and MapSplice (Wang et al., 2010). These tools
have different fusion detection strategies and filtering criteria, which
help in identifying a broad range of fusion events. These tools were
selected on the basis of available benchmarking publications, where
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STAR-Fusion was ranked as the best tool in terms of its high
sensitivity, accuracy, and execution time (Haas et al, 2019); and
MapSplice and FusionMap show good sensitivity for fusion
detection (Kumar et al., 2016). To assess the coding potential of
fusion transcripts, we used CNIT (Guo et al., 2019), CPAT (Wang
etal., 2013), and PIncPRO (Singh et al., 2017). CNIT uses a support
vector machine (SVM) model to predict coding potential based on
intrinsic sequence properties. CPAT uses a linear regression model
to distinguish between coding and non-coding transcripts.
PIncPRO employs a random forest classifier that integrates
protein homology, sequence-based features, and 3-mer frequency
patterns to differentiate coding transcripts from long non-coding
RNAs (IncRNAs). Fusion transcripts were predicted as protein-
coding or IncRNA depending on the consensus prediction of at least
two of the three tools.

2.4 Gene ontology and KEGG pathway
analysis

For all identified fusion transcripts, gene ontology (GO) and
KEGG pathway analyses were performed using the DAVID web
server (Sherman et al,, 2022) with the DAVID knowledgebase
v2024q2 (released on July 5, 2024), applying a significance cutoff
of p < 0.05. These analyses help to identify biological processes,
cellular components, and pathways potentially impacted by fusion
events, shedding light on their functional relevance.

2.5 Expression analysis of fusion transcripts

The expression level of genes involved in fusion formation was
analyzed based on Transcripts Per Million (TPM) using StringTie
(Pertea et al, 2016) with the default parameters. To study the
impact of fusion formation on the expression of their parental
genes, we categorized the samples into two groups for each fusion
transcript: (i) fusion-present (F/P) samples in which the
corresponding fusion transcript was detected, and (ii) fusion-
absent (F/A) samples lacking the respective fusion. The
expression levels of each parental gene were compared between
each sample of the two groups. Genes exhibiting >2-fold change in
expression in F/P samples compared to F/A samples were
considered upregulated or downregulated.

2.6 Validation using long-read RNA-Seq
data

For further validation of fusion transcripts, PacBio long-read
RNA-Seq data (PRINA613159, Jain et al., 2022) for Cicer arietinum
(ICC4958) were downloaded from the NCBI Sequence Read
Archive (SRA). The 200 bp junction sequences of the identified
fusion transcripts, comprising 100 bp upstream of the 5" parental
gene breakpoint and 100 bp downstream of the 3’ parental gene
breakpoint, were searched against the long-read RNA-Seq data
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using BLASTn. Hits with greater than 80% sequence identity and
alignment length exceeding 150 bp were considered significant.
This approach confirmed the presence of predicted fusion
transcripts within the long-read data, enhancing confidence in the
identified fusion events. Additionally, it offered insights into the
putative length of the fusion transcripts.

2.7 ldentification of conserved fusion
events

To identify intra-specific conserved fusions, 103 raw
transcriptome data files from 17 Cicer arietinum genotypes were
downloaded from the NCBI-SRA (https://www.ncbi.nlm.nih.gov/
sra). A list of RNA-Seq samples from different genotypes used in
this study is listed in Supplementary Table S8. Fusion events were
then identified across all genotypes using three fusion detection
tools. A binary analysis was conducted to determine the presence or
absence of each fusion gene pair in the respective genotypes. For
inter-specific conserved fusion detection, fusion genes previously
reported in Arabidopsis thaliana (via AtFusionDB: http://
www.nipgr.ac.in/AtFusionDB) were utilized to identify their
homologous fusion gene pairs in Cicer arietinum using the
OrthoFinder tool.

2.8 Experimental validation of fusion
transcripts

To validate fusion transcripts, primers were designed for the
fusion transcript sequences taken from the genome, 200 bp upstream
and 200 bp downstream of the breakpoint, using the OligoCalc
(Kibbe, 2007) and primer BLAST. All primers used for validation are
listed in Supplementary Table S9. The cDNA synthesis was carried
out with 2ug of RNA using the Verso cDNA synthesis kit
(ThermoScientific' ). Following RT-PCR and gel electrophoresis,
DNA bands were extracted and purified using the GenElute'" Gel
Extraction kit (Sigma-Aldrich) and sent for Sanger sequencing at the
NIPGR DNA sequencing facility. To quantify the expression of fusion
transcripts under drought and salt stress, and across different tissues,
quantitative Real-Time PCR was performed. EF1-o. was used as an
endogenous control gene in this experiment. The real-time PCR
reaction mix (10 pl) consisted of 5 pl of 2X SYBR Green Master Mix
(Applied BiosystemsTM), 10 uM of each primer, and 100 ng of cDNA
template. PCR amplification was performed using an Applied
BiosystemsTM qPCR system with thermal cycling conditions of
initial denaturation at 95 °C for 2 minutes, followed by 40 cycles of
95 °C for 15 seconds and 60 °C for 1 minute. Each PCR reaction
included three biological replicates and three technical replicates. To
ensure primer specificity, primer amplification efficiency and melt-
curve analyses were performed (Supplementary Figure S6). The
relative expression levels of fusion transcripts were calculated by
using the 2A-AACt method (Livak and Schmittgen, 2001). The
experimental data were presented as the mean with standard
deviation (mean + SD) derived from three independent biological
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replicates and three technical replicates. Statistical analysis was
conducted by comparing the means of control and stressed plants
using one-way analysis of variance (ANOVA) followed by Student’s
t-test, with a significance level set at P < 0.05. P-values less than 0.05
were considered statistically significant.

2.9 Benchmark analysis of fusion detection
tools

To benchmark the performance of various fusion detection
tools for Cicer, we evaluated STAR-Fusion (Haas et al., 2019),
SQUID (Ma et al,, 2018), MapSplice (Wang et al., 2010), Tophat-
Fusion (Kim and Salzberg, 2011), and FusionMap (Ge et al., 2011).
The performance of each tool was assessed using both a public
dataset (PRINA288321, Garg et al., 2016) and our in-house dataset.
For both datasets, we then searched the validated fusion transcripts
(true fusions) in the results generated by each tool. The accuracy of
fusion prediction was calculated following the method described by
Kumar et al. (2016) (Kumar et al., 2016), as given below.

TP
Sensitivity (%) = (ﬁ) *#100

Precision (%) = 100

TP .
" TP+ FP
F measure = 2% (S P)/(S/P)

S: Sensitivity, P: Precision, TP: True positive, TF: Total fusions,
FP: False positive

3 Results

3.1 Identification of fusion transcripts in
Cicer arietinum

To comprehensively investigate fusion events within the
chickpea transcriptome, high-throughput paired-end RNA-Seq
data of 150 base pairs (bp) read length were generated using the
MMumina sequencing platform. The samples were sequenced from
poly(A)-enriched RNAs extracted from five distinct organs, viz.,
buds, leaves, pods, flowers, and stem (Figure 1A), along with two
abiotic stress conditions (i.e., drought and salinity). After adapter
trimming and quality-check, high-quality reads were mapped onto
the CDC Frontier Genome (ASM33114v1) (Varshney et al., 2013)
using HISAT2 (v2.2.1) (Kim et al,, 2019), and it was found that
>95% of the reads mapped onto the genome from each paired-end
RNA-Seq sample (Supplementary Table S1). In total, 122.47 GB of
data was obtained from all samples, representing about 230-fold of
the chickpea genome size, and around 852.8 million high-quality
reads were generated.

FusionMap (Ge et al., 2011), STAR-Fusion (Haas et al., 2019),
and MapSplice (Wang et al, 2010) tools were employed for
genome-wide identification of fusion transcripts in 26 RNA-Seq

frontiersin.org


https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://www.nipgr.ac.in/AtFusionDB
http://www.nipgr.ac.in/AtFusionDB
https://doi.org/10.3389/fpls.2025.1677098
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hamid et al.

10.3389/fpls.2025.1677098

Flower (86)<-
Bud (96) <------ ’

Pod (131) <-

Control Drought

Leaf (88) <--------

Salt

/[

B NSt
S .’A. M %‘QA";&
S /r'iré? el —

NZ A
S S

A

/
A
>

i
74 “

FIGURE 1

Distribution of fusion transcripts in Cicer arietinum, (A) The tissues included in this study and the number of fusions detected are indicated within
parentheses following the tissue name. Venn diagram showing the overlap in fusion transcripts across different tissues and stress conditions, (B) Circos
plot depicting the chromosomal distribution of parental genes involved in fusion events, with each connecting link representing a fusion event, (C)
Correlation between the total number of genes per chromosome and the number of genes involved in fusion formation on that chromosome.

100
80| .
60

40+

20+

Genes involved in fusion

T T T T
1000 2000 3000 4000 5000
Number of genes on chromosome

0

datasets of different tissues, and two abiotic stress conditions
(Supplementary Table S1). The number of overlapping fusion
transcripts detected between different tissues and stress samples is
shown in Figure 1A. A total of 496, 721, and 533 fusion transcripts
were identified by FusionMap (Ge et al., 2011), STAR-Fusion (Haas
et al, 2019), and MapSplice (Wang et al, 2010), respectively
(Supplementary Table S2). However, the number of unique fusion
transcripts identified is 95, 109, and 140, respectively, resulting in
328 unique fusions (Supplementary Table S3) derived from 269
unique parental gene pairs. In total, 423 genes were involved in
fusion formation, accounting for 1.4% (423/30,344) of the total
annotated genes in Cicer arietinum. This proportion is similar to the
percentage of genes involved in fusion events in other plant species,
such as Arabidopsis (1%), soybean (1.7%), and rice (2.7%) (Cong
et al, 2024). To verify the reliability of the predicted fusion
transcripts, we randomly selected and validated 10 fusion
transcripts in multiple biological replicates by PCR and Sanger
sequencing (Supplementary Figure S1). The experimentally

Frontiers in Plant Science

05

validated junction sequences precisely matched the in-silico
predicted breakpoint sites, confirming the accuracy of the fusion
detection approach.

3.2 Features of fusion transcripts in Cicer
arietinum

The prevalence of interchromosomal fusions (76%) as
compared to intrachromosomal fusions (24%) in Cicer arietinum
(Figure 1B) indicates that the formation of fusion transcripts is not
strictly governed by the linear proximity of parental genes. It
suggests that, beyond the linear arrangement of genes, spatial
organization may play a role in facilitating fusion events in
chickpea and thus underscores the value of further investigation
into the spatial organization of the genome. A positive correlation
between the number of genes participating in fusion events located
at a particular chromosome and the total number of genes on that
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chromosome suggests the lack of chromosome-level preference in
fusion formation (Figure 1C). Out of the 423 genes involved in
fusion formation, 306 participate in only one unique fusion event,
while 70 genes form fusions with two different partner genes. This
indicates that fusion events are highly specific, with individual genes
preferentially associating with particular partners rather than
engaging in multiple fusion events. However, the mechanisms
behind partner selection in fusion events remain unknown.

Among all the validated fusion gene partners, each gene was
found to fuse with only one partner, except for LOC101495229,
which formed fusions with both LOC101508351 and
LOC101506473 (Figure 2A). The number of fusion isoforms
generated by a fusion gene pair was inversely related to the
number of such gene pairs detected, highlighting the specificity of
junction sites within fusion genes. Among the validated fusions, all
gene pairs had a single junction site, except the
LOC101509445_LOC101509981 fusion, which exhibited two
isoforms. In both isoforms, the breakpoint in the LOC101509445
gene was identical, whereas LOC101509981 contributed two
distinct breakpoints, each located at the exon boundaries of two
different alternatively spliced transcripts of the LOC101509981
gene. It’s a read-through fusion derived from two adjacent genes,
where LOC101509445 is present on the reverse strand and
LOC101509981 is present on the forward strand of chromosome
7. Here, the 5’ gene belongs to ABC transporter I family member 1,
and the 3’ gene encodes for tRNA pseudouridine synthase. The two
fusion events occur at the existing exon boundaries, hence
producing in-frame fusions (Figure 2B).

400
-

LOC101506473

10.3389/fpls.2025.1677098

To determine the fusion site within the parental genes, we
analyzed the location of the breakpoint, whether it exists on the
exon boundaries of both parental genes or one or none. It was
observed that fusion transcripts where the breakpoint lies within the
exon or in the UTR region were most abundant (57%), whereas
fusion transcripts having a breakpoint at the exon border of either
one or both parental genes were 25.3% and 17.6% respectively
(Supplementary Table S3).

Trans-splicing is a known mechanism for fusion transcript
formation (Li et al., 2009a). Junction pattern analysis showed that a
significant portion of FTs exhibited canonical splice patterns GT-AG
(69%); however, non-canonical splicing patterns were also found,
such as GT-AT (4%), AT-AC (3%), CT-GC (3%), etc., implying apart
from splicing, other unknown mechanisms may also contribute to
fusion formation (Figure 3A). Another reported mechanism of fusion
formation is transcriptional slippage mediated by the presence of
short homologous sequences (SHSs) (Li et al., 2009b) at the junction,
but less than 5% of total fusions exhibit SHSs at the breakpoints in
Arabidopsis, soybean, rice, and maize (Cong et al., 2024). Similar
results were observed in chickpea; 4% of total fusions showed SHSs at
the junction, and 5.7% had both canonical splice sites and SHSs at
their junction (Supplementary Table S4). All the experimentally
validated fusions exhibited canonical splice sites at their junctions
(e.g., LOC101515613_LOC113787786; Figure 3A), except for
LOC101494819_LOC101493433, which showed a non-canonical
GA-AG splice site. Additionally, three of the fusions also displayed
short homologous sequences (SHSs) at the junctions, e.g.,
LOC101500131_LOC101505021 (Figure 3B).
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Specificity of fusion events, (A) Bar plot showing the frequency of involvement of a gene in multiple fusion events. An example of a gene involved in
multiple fusion events is highlighted, (B) Bar plot showing the number of isoforms generated from a fusion gene pair. An example of a fusion gene

pair producing two isoforms is presented.
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FIGURE 3
Junction site sequence analysis of fusion transcript, (A) The proportion of splice site patterns observed at fusion breakpoints is displayed, with an
example fusion transcript demonstrating the canonical splice pattern (GT-AG) at the junction, (B) The contribution of different mechanisms to fusion
generation is depicted, including trans-splicing and short homologous sequence (SHS) mediated fusion formation. An example fusion transcript
displaying both canonical splice sites and SHS at the fusion junction is highlighted in yellow.

Predicting the coding potential of transcripts is essential for
understanding their functional roles. Fusion transcripts were thus
classified as protein-coding or IncRNA based on the computational
predictions. In our analysis, only 12.5% of the fusion transcripts
were predicted to possess protein-coding ability, while the
remaining 87.5% of the transcripts lacked coding potential and
are unlikely to be translated into proteins (Supplementary Table
S5). However, it is important to note that computational prediction
of non-coding potential does not necessarily imply a lack of
function. Recent studies have shown that some transcripts
annotated as IncRNAs can be translated into biologically active
micro-peptides (Ruiz-Orera and Alba, 2019; Choi et al., 2019; Li
et al., 2022; Pan et al., 2022; Patraquim et al., 2022). These findings
underscore that while the majority of fusion transcripts may not
encode proteins, they could still play important regulatory or
functional roles as IncRNAs.

3.3 Properties of genes involved in fusion
formation

Analysis of the transcriptome data showed a significant positive
correlation (R = 0.53) between the expression of gene pairs involved
in fusion formation, suggesting that these genes are linked in terms
of expression (Figure 4A). Further to evaluate the impact of fusion
formation on their parental genes, the expression levels of parental
genes were compared between samples in which a particular fusion
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was present and those in which it was absent. In most samples, no
significant change in the expression of fusion parental genes (~75%)
was observed, suggesting that fusion formation may be
independently regulated (Figure 4B). However, a subset of
parental genes displayed differential expression in fusion-present
samples, with 24 genes exhibiting >2-fold upregulation and only 3
showing >2-fold downregulation (Supplementary Table S6).

Fusion transcripts may retain or be associated with the
biological functions of their parental genes. To gain insights into
the potential functions of the fusion transcripts, we employed gene
ontology (GO) and KEGG pathway analyses of parental genes
involved in fusion formation. The most enriched biological GO
terms were translation, photosynthesis, response to light stimulus,
and rRNA processing (Figure 4C). The most enriched terms in the
molecular process analysis showed that fusion parental genes are
involved in the structural constituent of the ribosome and in
binding, such as RNA binding and chlorophyll-binding, and in
enzymatic activities such as ATP hydrolysis, carboxylase, and
dehydrogenase. The most enriched cellular component GO terms
were cytosol, ribosome, and chloroplast. Pathway enrichment
analysis showed that these genes are related to the Ribosome,
carbon metabolism, and photosynthesis. Conclusively, fusion
transcripts originate from genes with diverse functions that are
distributed across various cellular compartments, and also show
important enzymatic and binding activities. Notably,
photosynthesis and ribosome-associated genes are majorly
enriched among fusion precursor genes (Figure 4C).
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3.4 Validation of fusion transcripts from
long-read RNA-Seq data

Transcript assembly of Illumina short reads to reconstruct full-
length transcripts may introduce errors, particularly in regions with
complex splicing patterns or novel splice sites. To overcome these
challenges, long-read RNA sequencing technologies, such as
PacBio, offer a significant advantage by capturing full-length
transcripts in a single read, eliminating the need for assembly. For
the identification of full-length fusion transcripts, publicly available
long-read transcriptome sequencing datasets of Cicer arietinum
were utilized. A BLASTn search of 200 bp fusion junction
sequences, extracted from the results of fusion detection tools on
Mlumina datasets, against the PacBio long-read data identified a
total of 95 fusion transcripts in the PacBio dataset, and their full
length was predicted (Supplementary Table S7). The mean length of
identified fusions was around 0.8 kb, and 70% of them had a length
less than the mean length. We further compared the length of fusion
transcripts and their parental genes and observed that the mean
length of fusion transcripts was shorter than that of their parental
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genes (Supplementary Figure 52). This indicates that only specific
portions of the parental genes are involved in fusion formation.

3.5 Intra- and interspecific conserved
fusion events

To explore intra-specific conserved fusion events, RNA-Seq
data of 17 different chickpea genotypes were analyzed. The
number of fusion transcripts identified across different genotypes
varies significantly, ranging from 41 to 1031 (Figure 5A). This
variation is likely attributed to differences in the number of samples
analyzed for each genotype and the sequencing depth of the data. A
fusion event was considered in a particular genotype if it was
detected even in a single sample. After removing redundancy,
interchromosomal fusion transcripts were found to be more
prevalent than intrachromosomal fusion transcripts. Fusion genes
identified in the ICC4958 genotype (269 fusion gene pairs) were
searched across different genotypes (Figure 5B). Among these, 120
fusion gene pairs were conserved across multiple genotypes, while
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Fusion event profiles across different chickpea genotypes, (A) The number of fusion events identified in various chickpea genotypes, (B) Hierarchical
clustering of 17 chickpea genotypes based on the presence or absence of fusion events identified in the ICC4958 genotype, with presence marked

in blue and absence in yellow

the rest were genotype-specific. Notably, 53 fusion gene pairs were
detected in 10 or more genotypes, suggesting their potential
biological significance and stability within the chickpea population.

To identify conserved FTs between Chickpea and Arabidopsis,
FTs reported in AtFusionDB (Singh et al., 2019) were used. Among
the 269 fusion genes identified in chickpea, 19 showed homology
with 58 fusion events reported in Arabidopsis within AtFusionDB
(Supplementary Figure S3A). Gene ontology analysis of these
homologous genes revealed their involvement in essential
biological processes, including metabolism and environmental
responses (Supplementary Figures S3B-D). The presence of these
fusion transcripts may play a critical role in enhancing biological
functions linked to these processes.
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3.6 Validation of fusion transcripts by qRT-
PCR and Sanger sequencing

Expression of validated fusion transcripts under different
abiotic stress and tissues by quantitative real-time PCR reveals
that fusion transcripts are expressed at a very low level. Under
different abiotic stress, three of the validated fusions
(LOC101506206_L0OC101493600, LOC101500131
_LOC101505021, and LOC101495229_LOC101508351) showed
differential expression, which implies that these fusions might
play a crucial role during stress response (Figure 6). It was also
observed that the relative fold change in expression of fusion
transcripts was higher than that of their parental genes under
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Relative expression of validated fusion transcripts and their precursors in Cicer arietinum under drought and salt stress conditions.

stress conditions, suggesting that fusion transcript formation is not
solely governed by the expression of precursor genes but may
involve additional regulatory mechanisms (Figure 6). Fusion
transcripts can originate from parental genes that exhibit diverse
responses to stress, including downregulation, upregulation, or no
significant change in expression. Expression analysis of fusion
transcripts across different tissues revealed their tissue-specific
nature. For example, the LOC101500131_LOC101505021 fusion
transcript exhibited upregulation in bud and downregulation in
stem and flower, relative to its expression in leaves (Supplementary
Figure S4). The LOC101506206_LOC101493600 is an
interchromosomal fusion derived from a gene encoding a
folylpolyglutamate synthase-like enzyme located on chromosome
5 and an uncharacterized gene from chromosome 8. This fusion
produces an in-frame transcript that arises from an existing splice
site of the 5" gene and a new splice site from the 3’ gene. Since
folylpolyglutamate synthase is a single-subunit enzyme, this fusion
might add new domains, which may enhance its enzymatic activity
(Muralla et al., 2008; Li et al., 2016). Interestingly, under stress
conditions, the fusion transcript exhibited a higher relative fold
change in expression compared to either of its precursor genes:
LOC101506206, which was upregulated, and LOC101493600,
which was downregulated, compared to control conditions.

The LOC101500131_LOC101505021 fusion was identified
across all RNA-Seq samples with varying levels of expression.
This fusion is formed by the joining of exon 10 of the
LOC101500131 gene to exon 1 of the LOC101505021 gene, both
genes are present on the forward strand of DNA and are involved in
similar functions that are anaphase-promoting complex. This
fusion uses a canonical splice site, however, not at the existing
exon boundaries of the parental genes, and generates a frameshift
fusion. Interestingly, this fusion showed significant upregulation in
both drought and salt stresses as compared to the control condition.
In contrast, the expression of the fusion precursor genes remains
relatively unchanged in response to stress. Therefore, the regulation
of the LOC101500131_LOC101505021 fusion appears to be
independent of its parental genes.

The LOC101495229_LOC101508351 fusion is formed by
joining exon 2 from LOC101495229 and exon 1 from
LOC101508351. One of the parental genes acts as a ubiquitin
ligase, while the other remains uncharacterized. This fusion
occurs at the exon boundary of the LOC101508351 gene and uses
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a new canonical splice site from the LOC101495229 gene. Both
fusion transcript and its parental genes are stress-responsive;
however, the relative change in fusion transcript expression under
stress conditions is higher compared to parental genes.

3.7 Comprehensive assessment of fusion
detection tools for Cicer arietinum

While many tools are available for fusion detection in humans,
none of them is exclusively designed for plants, except EricScript-Plants
(Benelli et al., 2012), which is limited to plant genomes available at
Ensembl, and hence cannot be used for chickpea. In this study, we
initially employed FusionMap, STAR-Fusion, and MapSplice for the
comprehensive detection of fusion transcripts in chickpea. Further, a
comparative analysis of five fusion detection algorithms was conducted
to identify the best-performing tool for fusion detection for this plant
species. This revealed the following order of tools based on sensitivity
and F-measure: FusionMap > STAR-Fusion > MapSplice > SQUID >
Tophat-Fusion. A similar ranking was observed with public data, except
that STAR-Fusion performed better than FusionMap with public data
(Supplementary Figures S5A, B). Of note, there is a small overlap in the
fusions detected by these tools in both our dataset and public data
(Supplementary Figure S5C, D). This could be due to false discoveries
associated with individual software packages, or the fact that none of the
tools is inclusive. Fusion gene pairs LOC101506206_LOC101493600
and LOC101503481_LOC101494793 were commonly detected by 3 out
of the 5 fusion detection tools.

This analysis suggests that FusionMap detected the maximum
number of true fusions, but it also identified a large number of false
fusions, whereas STAR-Fusion identified fewer false fusions
compared to FusionMap. Hence, FusionMap is the best
performer in terms of sensitivity, whereas STAR-Fusion is the
best performer in terms of precision. Hence, a combination of
STAR-Fusion and FusionMap is a better choice for fusion transcript
detection from RNA-Seq data for Cicer until more efficient tools
become available.

Another factor that affects the detection of FT's from RNA-Seq
data is the sequencing depth. It was observed that samples with
higher sequencing depth showed a larger number of fusions than
those with lower sequencing depth. For instance, in the P3 sample,
the number of FTs detected is more than that in CS2 because the
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sequencing depth of P3 is higher than CS2 (Supplementary
Table S2).

4 Discussion

In recent years, it’s already established that the fusion
transcripts are not exclusive to tumors but also occur in normal
human tissues and a wide variety of species (Babiceanu et al., 2016;
Cong et al,, 2024). Although significant progress has been made in
mammalian fusion transcript research, studies on fusion transcripts
in plants remain limited. While some studies have been conducted
on model species such as Arabidopsis and rice, a comprehensive
investigation of plant fusion transcripts is still lacking. A few plant-
specific fusion transcripts databases are also available (Singh et al.,
2019; Arya et al., 2024). Recently, a comprehensive profiling of
fusion transcripts was conducted using public RNA-Seq datasets of
Arabidopsis, Rice, and Chickpea (Chitkara et al., 2024). Most fusion
transcripts were detected in only a single sample, raising concerns
about their biological reproducibility and potential as artifacts. The
current study addresses this gap through the use of in-house
generated RNA-Seq datasets under defined abiotic stress
conditions and across tissue types.

Here, we present the genome-wide identification of fusion
transcripts in Cicer arietinum and explore their potential
functional roles. Our study enhances the current understanding
of fusion transcripts in legume plants. Notably, we found that
interchromosomal fusion transcripts are more prevalent than
those of intrachromosomal fusions in Chickpea, a pattern
consistent with maize and soybean. In contrast, rice and
Arabidopsis exhibit a higher frequency of intrachromosomal
fusions (Cong et al., 2024). This indicates that the proportion of
interchromosomal and intrachromosomal fusion transcripts is
variable among different plants and may be influenced by several
factors, including the gene density and compactness of the genome.
The majority of gene pairs involved in fusion formation have no
other partner genes, with only a few showing fusion isoforms,
highlighting the specificity of these events. Additionally, we
identified fusion transcripts that are tissue-specific or induced
under specific stress conditions. Expression correlation analysis of
genes involved in fusions revealed a correlation coefficient (r) of 0.5,
aligning with the recent report that suggests genes with similar
transcriptional activity are more likely to participate in conserved
fusion events (Cong et al., 2024). Most parental genes involved in
these fusions are multi-exonic and protein-coding, but only 12.5%
of fusion transcripts showed protein-coding ability, while 87.5%
were non-coding. Despite lacking coding capacity, these may still
have regulatory or functional roles as IncRNAs.

Fusion transcript identification in different genotypes of
chickpea revealed that some fusions are conserved across all
genotypes, while others are specific to individual genotypes,
indicating a link between genomic variation and fusion transcript
occurrence. Homologous fusion events between Cicer arietinum
and Arabidopsis suggest that the parental genes involved play key
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roles in essential biological processes, underscoring the
conservation of fusion events across different plant species.

Most fusion breakpoints exhibited canonical splice sites at the
fusion junctions, implying their generation via the splicing
mechanism. However, a few fusions showed overlapping
sequences at the breakpoints, suggesting that SHSs also contribute
to the formation of these fusions in Cicer arietinum. Further
investigation revealed that SHSs differ among fusion transcripts
and are mostly<10 bp in length. Due to the short reads generated by
Mumina sequencing, full-length fusion transcripts could not be
reliably detected. To address this limitation, we employed long-read
RNA sequencing to identify the full-length structure of fusion
transcripts. Of the 328 fusion events initially identified, 95 were
confirmed in the long-read RNA-Seq data, likely due to the lower
sequencing depth of this dataset.

Out of the predicted fusion transcripts, we confirmed the
existence of 10 FTs, marking the first experimental validation of
fusion transcripts in Cicer arietinum. Notably, three of these fusions
were stress-responsive and exhibited upregulation in drought and
salt stress, suggesting a potential function in the plant’s stress
response mechanisms. However, despite thorough validation
efforts, we were unable to identify any fusion transcripts that were
exclusively expressed under a specific stress and absent in the
control condition. This indicates that while fusion transcripts
might be involved in the stress response, their expression may not
be strictly limited to stress conditions. These fusions may represent
a broader regulatory mechanism that operates under both normal
and stress conditions but becomes more pronounced in response to
stress. The confirmation of stress-responsive fusion transcripts
paves the way for exploring the functional implications of these
fusions in stress adaptation and resilience. Future research could
focus on dissecting the biological roles of these fusions, including
their impact on gene expression and protein function under stress
conditions. Additionally, investigating the potential regulatory
networks and pathways associated with these fusions could
provide a profound understanding of how Cicer arietinum adapts
to environmental challenges.

5 Conclusion

This study systematically reveals the transcriptomic complexity
arising due to fusion events in chickpea by combining
transcriptomic datasets and experimental validation across diverse
tissues (leaf, stem, bud, flower, and pod) and conditions (drought
and salinity). Transcriptome analysis revealed the involvement of
both coding and non-coding genes in the fusion events located
either in close proximity or distant from each other. The parental
genes involved in these fusions are associated with diverse biological
pathways, suggesting the potential diverse roles of the fusion events
that need to be further experimentally evaluated. Comparative
analysis revealed both inter- and intraspecific conservation of
fusion events, while also uncovering intra-species diversity,
thereby underscoring their evolutionary significance. Expression
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analysis revealed stress-responsive fusion transcripts, indicating
their potential regulatory roles under abiotic stress. Overall, this
work provides a comprehensive report of fusion transcript diversity
in chickpea and offers a valuable foundation for future functional
studies aimed at elucidating their biological and adaptive relevance.
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SUPPLEMENTARY FIGURE 1
Chromatogram of 10 validated fusion transcripts from chickpea (A-J), where
black line marks the junction site between the two fusion genes.

SUPPLEMENTARY FIGURE 2
Box plot depicting the relation between the predicted length of fusion
transcripts and their parental genes.

SUPPLEMENTARY FIGURE 3

Inter-specific conserved fusion events, (A) Venn diagram showing
orthologous fusion events shared between Cicer arietinum and Arabidopsis
thaliana. (B—D) Gene Ontology (GO) enrichment analysis of orthologous
fusion gene pairs, highlighting enriched categories in, (B) Molecular Function,
(C) Biological Process, and (D) Cellular Component.

SUPPLEMENTARY FIGURE 4
Relative expression of three validated fusion transcripts (A—C) in Cicer
arietinum across different tissues.

SUPPLEMENTARY FIGURE 5

Benchmark analysis of fusion detection tools using in-house generated RNA-
seq data and publicly available RNA-seq data from chickpea, (A) Sensitivity of
fusion detection tools evaluated for both datasets, calculated as Sensitivity (%)
= (TP/TF) * 100, where TP represents true positives and TF is the total number
of fusions, (B) F-measure for each tool, calculated as F-measure = 2 *
(Sensitivity * Precision)/(Sensitivity/Precision), where Precision (%) = TP/(TP
+ FP) * 100. (C, D) Venn diagrams showing the overlapping fusion transcripts
identified by different fusion detection tools in the in-house generated RNA-
seq data (C) and the publicly available RNA-seq data, (D), highlighting
common fusions across the tools. The performance metrics (sensitivity,
specificity, and F-measure) were calculated based on the identification of
validated fusion transcripts (true fusions) across all tools.

SUPPLEMENTARY FIGURE 6
Melt curve plot for the endogenous control gene and stress-responsive
fusion transcripts, along with the primer amplification efficiency (%).

SUPPLEMENTARY TABLE 1
Summary of RNA-Seq reads and mapping statistics.

SUPPLEMENTARY TABLE 2
Summary of the number of fusion transcripts detected in each sample by

three fusion detection methods and the sequencing depth of each sample.

SUPPLEMENTARY TABLE 3
List of fusion transcripts detected in RNA-Seq samples.
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SUPPLEMENTARY TABLE 4
Information regarding Short homologous sequences (SHSs) detected at the
junction of the fusion transcript.

SUPPLEMENTARY TABLE 5
Predicted coding potential of fusion transcripts.

SUPPLEMENTARY TABLE 6
List of differentially expressed genes in samples with and without
fusion transcripts
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