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Introduction: Accurate monitoring of pigmentation changes during the

browning stage of shiitake cultivation sticks is essential for assessing substrate

maturity, forecasting mushroom emergence, and improving cultivation quality.

However, current commercial detection methods lack objective, real-time, and

quantifiable evaluation indicators for assessing the browning degree.

Methods: This study proposes a two-stage image segmentation approach to

address this issue. First, a novel VG-Stick-YOLOv11 model, built upon YOLOv11n-

seg with VanillaNetBlock and GhostConv, was developed for real-time contour

extraction and browning stage classification of shiitake sticks. Based on the

extracted features, machine learning techniques facilitated rapid, semi-

automatic annotation of browning regions, thereby constructing a

segmentation dataset. Finally, the ResNet-Stick-UNet (RS-UNet) model was

designed for precise browning region segmentation and area ratio calculation.

The encoder utilizes ResNet50 with multi-branch inputs and stacked small

kernels to enhance feature extraction, while the decoder incorporates a hybrid

structure of grouped and depthwise separable convolutions for efficient channel

fusion and detail preservation. A spatial attention mechanism was embedded in

skip connections to emphasize large-scale browning regions.

Results: The proposed VG-Stick-YOLOv11 achieved the best mIoU of 95.80% for

stick contour extraction while markedly reducing parameters and computation.

For browning region segmentation, RS-UNet achieved a high segmentation

accuracy of 94.35% and an IoU of 88.56%, outperforming comparison models

such as Deeplabv3+ and Swin-UNet. Furthermore, RS-UNet reduced the number

of parameters by 36.31% compared to the ResNet50-U-Net baseline.

Conclusion: The collaborative two-stage model provides an effective and

quantitative solution for maturity detection of shiitake cultivation sticks during

the browning stage. This work promotes the intelligent and standardized

development of shiitake substrate cultivation.
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1 Introduction

In recent years, the “domestic stick production and overseas

fruiting” model has gradually matured, while the scale of China’s

shiitake mushroom industry has also continued to grow (Cao,

2017). According to statistics, in 2022, China exported 1.376×105

tons of shiitake cultivation sticks, and the total annual production of

shiitake mushrooms reached 1.296×107 tons, accounting for more

than 90% of the global output (Cao et al., 2024). Currently, the

domestic shiitake mushroom substitute cultivation has formed the

industrial path of industrialized cultivation stick production and

ecological fruiting”. By building a standardized service system for

strains, formulations, and cultivation materials, enterprises have

significantly improved production efficiency and stick quality and

lowered the technical barrier for mushroom cultivation compared

to the traditional workshop model (Cao et al., 2024). Although the

adoption rate of this model in the industry is about 10% as of 2019,

it has shown a broad promotion prospect due to its advantages in

standardization and scalability (Cao et al., 2024).

With the advancement of shiitake mushroom smart

factory construction, related research has mostly focused on

environmental control and intelligent harvesting (Wang et al.,

2024). However, despite these advances, dynamic monitoring of

the cultivation process remains limited. Physiological maturity, a

key growth indicator of shiitake cultivation sticks, involves the

transformation of mycelium from vegetative to reproductive

growth. This process mainly includes three phases: mycelial

growth, browning and primordium differentiation (Royse et al.,

2017). Among these, mycelial browning is not only an important

physiological prerequisite for the formation of the fruiting body

but also closely related to yield and quality (Pang et al., 2016).

However, currently, the degree of browning mostly relies on

manual subjective visual inspection, lacking objective, real-time,

and quantitative assessment methods, which makes it difficult to

meet the standardized requirements of large-scale factory and

commercial production.

To address this, this study proposes a hybrid detection model

based on deep learning, aiming to improve the segmentation

accuracy and detection efficiency of the browning region on

shiitake cultivation sticks. The main research objectives include:
Fron
1. To develop a lightweight contour recognition algorithm to

extract the contour of shiitake cultivation sticks and

effectively eliminate background interference.

2. As the browning region on shiitake cultivation sticks is

more difficult to label manually with Labelme, to establish a

method based on traditional machine learning to label the

browning region of the fungus stick quickly and efficiently

by using the ImageJ plug-in module.

3. To establish an algorithm based on the improved U-Net

framework to segment the browning region and calculate

the percentage of browning to quantitatively assess the

degree of browning.
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2 Related work

In the process of agricultural intelligence, machine vision

technologies (Kamilaris and Prenafeta-Boldú, 2018) are

increasingly being applied to tasks such as crop maturity and

disease detection, gradually reducing the reliance on traditional

manual assessment methods. These methods are divided into two

main categories: traditional image algorithms and image algorithms

based on deep learning.

In the early stages, researchers mostly relied on traditional

image algorithms to achieve object detection and classification.

Tillett and Batchelor (1991) proposed a method based on height

threshold center estimation, low-threshold contour tracking, and

region growing for detecting mushroom fruiting bodies. Vizhányó

and Felföldi (2000) proposed a method to identify abnormal

mushrooms based on color features. Additionally, Yu et al. (2005)

proposed a target contour tracking method based on Fourier

descriptors of object boundaries. However, these methods are

primarily designed for fruiting bodies and are not suitable for

accurately quantifying the continuous and gradual browning

process of shiitake cultivation sticks. Moreover, they exhibit

limited generalizability because they are sensitive to variations in

lighting and background, and rely heavily on handcrafted feature

extraction (Xiao et al., 2023; Kamilaris and Prenafeta-Boldú, 2018).

In recent years, deep learning technology has gradually emerged

in the field of agriculture, in which YOLO series algorithms cover

object detection and segmentation tasks, which show great

advantages in plant phenotyping, especially in the adaptive

detection maturity detection in agricultural products. Chen et al.

(2025) extracted the average diameter and length features of

asparagus images after ROI segmentation using YOLO-V9.

Mandava et al. (2024) constructed a coconut maturity recognition

dataset and used YOLO-V5s with YOLO-V4Tiny to achieve

classification detection. These models rely on manually labeled

closed contour regions and perform well in the segmentation of

mushroom stick contour instances.

However, the browning region on the surface of mushroom

sticks usually has the problems of fuzzy edges, irregular

morphology, and subjective labeling. Inspired by fuzzy boundary

model in camouflage target detection (Liu et al., 2023; Lyu et al.,

2024), this study adopts the U-Net framework to construct the

segmentation model for browning region.

The U-Net architecture proposed by Ronneberger et al. (2015)

and others provides an effective solution for medical image

segmentation. It is especially advantageous in skin lesion image

segmentation. Zafar et al. (2020) used ResNet as a U-Net encoder

and proposed an automated method for segmenting lesion

boundaries in dermoscopy images. Feature extraction is enhanced

by deep learning and residual links of ResNet improving the

segmentation accuracy of complex lesions. Cao et al. (2021)

proposed a Transformer-based encoder and decoder architecture,

Swin-UNet, which incorporates multi-layer spatial contextual

semantics into the U-Net framework and is mainly applied in
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multi-organ segmentation. Zafar et al. (2024) proposed a hybrid

architecture combining YOLOv8s and U-Net for fast tumor region

identification and fine segmentation of tumor regions. The method

achieves initial localization by YOLO and then fine segmentation by

U-Net, with a detection accuracy of more than 95%. In addition,

Yılmaz et al. (2025) evaluated the robustness of multiple deep

learning models under corrosive perturbation conditions and

found that the ResNet50-UNet model achieves high Mean

Intersection over Union (mIoU) ratios, which can be more than

90%, in several image processing tasks. Zhu et al. (2022) proposed a

pixel-level segmentation method using the semantic segmentation

network DeepLabv3+, which showed high accuracy under different

backbone networks, in which DeepLabv3+ based on RestNe-50

achieved 96.32% segmentation accuracy, realizing stable and

effective fabric defect detection. Based on the good performance

of the above methods in medical and industrial image processing,

shiitake mushroom stick images are difficult to directly migrate to

the existing model due to the characteristics of fuzzy browning

boundaries, variable morphology, and uneven browning, as well as

the lack of objective standards for annotation and the existence of

artificial subjectivity. Coupled with the high real-time and deploy

ability requirements of factory cultivation, targeted improvement

strategies are urgently needed.
3 Materials and methods

3.1 Data

3.1.1 Data collection
The browning image data of shiitake cultivation sticks were

collected from March 5 to June 16, 2025, within the edible

mushroom experimental station (39.94°N latitude, 116.28°E

longitude) of the Beijing Academy of Agriculture and Forestry

Sciences (BAAFS). The Jingke No. 1 shiitake mushroom stick

variety was selected as the research subject, and the data were

acquired with an independently constructed image acquisition

device. The device, shown in Figure 1, consists of a camera box
Frontiers in Plant Science 03
equipped with a double-LED light board (60cm×60cm×60cm), a

MindVision MV-SUA2000C high-definition industrial camera (with

an MV-LD-8-25M-A fixed-focus lens featuring low-light sensitivity

and a large aperture), and a Lenovo Xiaoxin Air14 laptop. The

camera is mounted on a fixed bracket with a constant distance of

43.2cm between the lens and base, connected via USB. During the

experiment, based on the approximate tetrahedral structure of the

mushroom stick, we divided it into four imaging regions by marking

the bottom diagonal and captured images every 90° of rotation

(Figure 2). The images were stored in.JPEG format with a

resolution of 4864 × 2088 pixels. To thoroughly record the

browning process, we divided it into three stages: pre-browning,

mid-browning, and post-browning (Figure 3). By fixing light

intensity, setting red and green backgrounds, and adjusting camera

exposure parameters (brightness target values of 75 lx·s, 95 lx·s, and

120 lx·s), we created a comprehensive dataset. A total of 1,254 valid

images were obtained throughout the longitudinal recording of the

browning process. The number of images corresponding to the pre-

browning, mid-browning, and post-browning stages is 251, 690, and

313, respectively. This stage-specific distribution accurately reflects

the biological progression of browning, thereby ensuring both the

diversity and representativeness of the dataset.

3.1.2 Data preprocessing
The 1254 original mushroom stick images were labeled with stick

contour categories using Labelme v4.5.13. To improve the robustness

and generalization ability of the network model, the labeled shiitake

stick images were augmented (Javanmardi andMiraei Ashtiani, 2025)

by rotating them in multiple angles (± 15°, ± 10°), adjusting

brightness contrast (± 3%, ± 5%, ± 7%), adding noise (1%),

flipping them horizontally, and adjusting exposure (± 8%) and

saturation (± 3%), through random combinations (Figure 4).The

1254 images were expanded to 2508 augmented samples, totaling

3762 images. All data were derived from longitudinal monitoring of

the entire browning process across 36 independent biological

replicates. The samples were randomly divided into training (2910),

validation (376), and test (376) sets in an 8:1:1 ratio for model

training and validation.
FIGURE 1

Sketch and physical drawing of the mushroom stick imaging device. (A) Device structure diagram: 1.LED light source 2. Rectangular camera box
3.USB hub 4. Camera 5. Lens 6. Fixed bracket 7. Laptop 8. Mushroom Sticks. (B) Physical image of the device.
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3.1.3 Experimental environment
This experiment uses Windows system, configured with 12th

generation Intel Corei9-12900K processor, 64GB RAM, 1TBN VMe

SSD, equipped with Nvidia GeForce RTX 3090 graphics card (24GB

video memory), and the experimental software environment is set

up with Python3.8.16, PyTorch1.13. 1 with CUDA11.7.
3.2 Methods

This study aims to precisely assess the browning maturity of

shiitake cultivation sticks in complex surface environments to
Frontiers in Plant Science 04
promote its application in precision cultivation and factory

management. As shown in Figure 5, the overall experimental

process includes three major modules: data collection, feature

extraction, and model evaluation. First, RGB images of

mushroom sticks during browning stages were collected by a

high-resolution camera and data diversity was enhanced by

applying data augmentation strategies such as rotation, flipping,

and color perturbation. A two-stage deep learning algorithm is used

for feature extraction. In the first stage, the VG-Stick-YOLOv11

model is used for detecting the contours of the mushroom stick and

generate masks to obtain the regions of interest (ROI). Machine

learning algorithms are combined to generate high-quality training
FIGURE 3

Data acquisition diagram of shiitake cultivation sticks.
FIGURE 2

Schematic diagram of the bottom marking of the sticks (divided into four parts). (A) Diagram of labeling on the bottom of the stick. (B) Example
diagram of the sticks after labeling.
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labels and complete the dataset of the browning regions. In the

second stage, the improved RS-UNet model is trained based on the

browning region dataset to perform fine segmentation and extract

color and texture features, thereby quantifying the proportion of the

browning on the mushroom sticks. Finally, the model performance

is comprehensively evaluated using evaluation metrics such as IoU,

accuracy, and inference efficiency, along with qualitative

visualization analysis. The following sections describe the details

of the algorithm and the specific methods used in the above

two stages.

3.2.1 VG-stick-YOLOv11
To achieve model lightweight and real-time detection accuracy,

this paper adopts the YOLOv11n-seg framework to construct the

VG-Stick-YOLOv11 model (Figure 6), which is used for the

segmentation of the mushroom stick’s contour and the extraction

of the ROI.YOLOv11 belongs to a single-stage object detection

framework. Its segmentation extension network typically includes
Frontiers in Plant Science 05
three parts: the backbone network for feature extraction, the feature

fusion layer (Neck) for multi-scale information fusion, and the

detection layer (Head)responsible for object classification,

localization and segmentation. Among them, the C3K module

integrates depthwise separable convolution (DSC) (Howard et al.,

2017) and self-attention mechanism (Cheng et al., 2021). Compared

with the C2f module in YOLOv8, it introduces cross-stage

connection and lightweight attention design, thus improving the

feature extraction effect and reducing the number of model

parameters. The head adopts a decoupled design to separate

classification and regression tasks, removes the traditional object

branch, utilizes the fully convolutional structure to achieve anchor-

free target localization and dynamic label assignment. At the same

time, an instance segmentation module is integrated to directly

predict pixel-level masks based on multi-scale features. Considering

that mushroom stick browning detection requires both real-time

performance in practical production environments and accurate

instance segmentation of stick contours, YOLOv11n-seg provides a
FIGURE 4

Illustration of data augmentation.
FIGURE 5

Flowchart of maturity detection experiment for shiitake sticks during browning period.
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suitable balance between accuracy and efficiency, making it an

appropriate baseline for constructing the improved VG-Stick-

YOLOv11 model.

Based on the lightweight improvement requirements, VG-Stick-

YOLOv11 introduces GhostNet convolution (GhostConv) to

replace the standard convolution (Han et al., 2020) in the

segmentation head of YOLOv11 framework. Compared with

Depthwise Separable Convolution (DSC), GhostConv generates

richer feature maps to improve segmentation accuracy. By

combining standard convolution with linear operation, it

improves the feature expression ability while maintaining

parameter efficiency, achieving a good balance between

lightweight and performance.

The VanillaNetBlock module from VanillaNet (Chen et al.,

2023) is integrated into the YULOv11 backbone network, replacing

the residual connection, attention mechanism and feature pyramid

structure in YOLO, realizing lightweight design while maintaining

accuracy. In this regard, the dynamic ReLU activation function

enables the model to realize structure-aware optimization under
Frontiers in Plant Science 06
hardware-friendly conditions, improving model deployment

efficiency. For the SPPF module used for multi-scale semantic

fusion and receptive field expansion in YOLO structure, there is a

problem of high computational complexity. VanillaNetBlock

decouples multi-branch features via grouped convolution and

enhances semantic representation with dynamic activation,

compensating for the loss of information fusion after removing

SPPF. To address the high computational complexity of the SPPF

module for multi-scale semantic fusion and receptive field

expansion in YOLO structure (Figure 7).

3.2.2 ROI-guided semi-automatic annotation of
browning regions

To construct high-quality pixel-level annotated labels, this

study proposes a semi-automatic annotation method based on the

ROI of the stick contours, combining manual interaction with

machine learning classification. Browning and non-browning

regions are manually selected as training samples to build a

binary classification task. Multi-scale texture, edge, and color
FIGURE 6

VG-stick-YOLOv11 model structure.
FIGURE 7

VanillaNetBlock structure.
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features are extracted for each pixel, and these features are used to

train a pixel-level classification model for accurate segmentation of

browning regions.

Specifically, color features are derived from multi-channel

information such as RGB and HSV, while texture and edge

features are enhanced using a variety of image processing

operators. The difference of Gaussian (DoG) is used to enhance

edge responses, and is calculated as shown in Equation 1 (Lowe,

2004):

DoG(x,  y) = G(s1)(x, y) − G(s2)(x, y) (1)

where G _ (s ) (x,  y) denotes the 2D Gaussian blurring result

with a standard deviation of s, which is used to enhance the

contrast of the browning boundary. Membrane Projections

simulate the longitudinal texture pattern of the surface tissue,

aiding in the identification of striped browning regions on the

surface of the sticks.

In addition, the image Entropy measures the local complexity of

an image and is defined as shown in Equation 2 (Ronneberger et al.,

2015):

H(x, y) = −o
N

i=1
pi log2 pi   (2)

where pi denotes the ith class gray values probability in the

pixel’s neighborhood. High-entropy regions tend to correspond to

browning regions with drastic color variations. Neighborhood

analysis further captures the structural continuity near the

browning edges and improves the model’s ability to identify the

boundary regions.

In terms of the classification model, this method uses Random

Forest as the pixel-level discriminative model, which inputs the

feature vector xi = ½f 1,  f 2,…, fn� for each pixel and outputs its
Frontiers in Plant Science 07
corresponding category label yi ∈ 0, 1f g, representing the

browning and non-browning regions, respectively. The integrated

structure of Random Forest enhances the model’s robustness and

generalization ability. This semi-automatic labeling method for

browning regions balances efficiency and accuracy, retaining the

discriminative ability of manual supervision, while makes full use of

the automatic identification advantage of machine learning models.
3.2.3 RS-Unet
Based on the U-Net (Cui et al., 2024) framework, this study

constructs a segmentation model for the browning region of

shiitake mushroom stick. ResNet50 is used as the encoder,

integrating deep residual learning with a U-shaped symmetrical

architecture, to effectively improve the feature extraction ability and

network expression depth. To address the multi-scale features of

mycelial color gradients and texture diffusion in the browning

region, a feature enhancement strategy is incorporated into the

encoder to improve the network’s perception of browning-related

patterns. In the decoder, a hybrid convolution structure—

combining grouped convolution and depthwise separable

convolution—is designed to achieve efficient channel fusion via

pointwise convolution, thereby reducing computational complexity

while enhancing feature representation. Moreover, the Spatial

Attention (SA) module is introduced at the skip connections to

dynamically focus on the mycelial pigment deposition areas, thus

enhancing the sensitivity to boundaries and segmentation accuracy.

The improved model is named ResNet-Stick-UNet (RS-UNet), and

its network structure is shown in Figure 8.

Based on the U-Net framework, this study constructs a

segmentation model for the browning region of shiitake

mushroom stick. ResNet50 is used as the encoder, integrating

deep residual learning with a U-shaped symmetrical architecture,
FIGURE 8

RS-UNet model structure.
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to effectively improve the feature extraction ability and network

expression depth. To address the multi-scale features of mycelial

color gradients and texture diffusion in the browning region, a

feature enhancement strategy is incorporated into the encoder to

improve the network’s perception of browning-related patterns. In

the decoder, a hybrid convolution structure—combining grouped

convolution and depthwise separable convolution—is designed to

achieve efficient channel fusion via pointwise convolution, thereby

reducing computational complexity while enhancing feature

representation. Moreover, the Spatial Attention (SA) module is

introduced at the skip connections to dynamically focus on the

mycelial pigment deposition areas, thus enhancing the sensitivity to

boundaries and segmentation accuracy. The improved model is

named ResNet-Stick-UNet (RS-UNet), and its network structure is

shown in Figure 9.

3.2.3.1 Encoder optimization

Considering the insufficient sensitivity of the traditional

ResNet encoder to fine-grained texture changes and edge details

in the browning region of mushroom sticks, this paper optimizes

the initial module of the encoder. Specifically, the original 7×7

convolutional kernel in ResNet50 is replaced with a triple-layer 3×3

convolutional module to enhance the nonlinear representational

capacity and expand the effective receptive field, thereby improving

the extraction of complex color changes and texture features in the

browning region. In addition, a Input Adapter module is introduced

to the input of the network to perform edge-and texture-based

preprocessing on the original RGB images. This guides the model to

focus on key surface regions of the shiitake cultivation sticks, while

suppressing background interference (e.g., plastic bags, labels),

thereby improving the subsequent segmentation accuracy. As

illustrated in Figure 9, this module adopts a dual-branch parallel

structure. The lower branch directly processes the original input

using 3×3 convolution to preserve color information, and its

computational process is as follows (Equation 3):

Frgb = ReLU (Wrgb*X + brgb) (3)

Specifically, Wrgb ∈ R16�3�3�3 denotes the convolution kernel

weights, and the output feature map is Frgb ∈ R16�H�W . The edge

detection branch enhances texture features by calculating the

difference between the original image and its 3 × 3 average

pooling result. The convolutional kernel weights in this branch

are denoting as Wedge ∈ R16�3�3�3, and the output is a texture-
Frontiers in Plant Science 08
enhanced feature map. After concatenating the outputs of the two

branches in the channel dimension, the 3×3 fusion convolution is

used for feature integration (Equation 4):

Ffuse =  ReLU(Wfuse · ½Frgb,   Fedge� +   bfuse) (4)

The fusion convolution kernel is denoted as Wfuse ∈
R64�32�3�3, and the output enhanced feature map is Ffuse ∈
R64�H�W . All convolutional layers are followed by ReLU

activation function to introduce nonlinearity. This structural

design enables the network to decouple color and texture

information at the initial stage, providing more discriminative

feature representation for the segmentation of the browning region.

3.2.3.2 Decoder enhancement

After replacing the encoder with ResNet50, a hybrid

convolutional structure is further introduced in the decoder to

enhance the representational capacity of low-level semantic features

in skip connections and to mitigate potential semantic compression

during dimensionality reduction. In the fourth layer of the

upsampling module, grouping convolution (Group=2) is applied

to the concatenated feature maps with 2048 and 1024channels,

enabling separate modeling of color and texture channel groups to

improve the recognition of gradient features from light brown to

reddish brown.

Specifically, as shown in Figure 10A, grouped convolution

efficiently extracts distinct features and enhances the model’s

sensitivity to subtle browning process. In the middle and low-

level feature reconstruction stage, the DSC structure (Figure 10B) is

introduced. In this structure, depthwise convolution captures

the spatial distribution pattern of mycelial pigment secretion,

while 1×1 pointwise convolution enables efficient channel-wise

reorganization. This design significantly reduces the number of

while maintaining robustness to the complex surface texture of

shiitake sticks, such as cultivation substrate and plastic bag wrinkles

(Xu et al., 2024). Compared with the direct channel compression

following skip connections, the hybrid convolutional structure

further enhances the model’s discriminative ability and detail

retention without compromising computational efficiency.

Furthermore, to enhance model robustness and prevent

overfitting, this study introduces a spatial adaptive regularization

strategy before the output of the decoder’s final two feature map

layers. A 30% spatial Dropout is applied to randomly mask local

feature, suppress redundant response, and encourage the network
FIGURE 9

Input adapter structure.
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to focus on informative areas. Combined with hybrid convolution,

this design proves especially suitable for the mushroom stick

dataset, enhancing the model’s segmentation performance while

preventing overfitting.

3.2.3.3 Add attention mechanism spatial attention

To improve the decoder’s responsiveness to key regions, this

study incorporates a SA mechanism into the skip connections

during the decoding stage (Fu et al., 2019). As shown in

Figure 11, the SA module extracts muti-scale spatial information

from the browning regions by combining max polling and average

pooling, enabling it to captures salient features from different

perspectives. Then, the attention weight map is generated to

reweight the input features, allowing the model to focus on the

browning regions while suppressing background noise (e.g., surface

textures of the cultivation sticks). This design enhances the model’s

ability to accurately localize and segment the browning region.

This process can be described by the following equation (Woo

et al., 2018): Given the input feature map F ∈ RC�H�W , max

pooling and average pooling are first performed along the

channel dimension to generate two spatial attention maps, as

defined in Equations 5, 6, respectively:

Favg = AvgPool(F) ∈ R1�H�W (5)

Fmax = MaxPool(F) ∈ R1�H�W (6)
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Next, the two spatial attention maps are concatenated in the

channel dimension to obtain the fused features, which is formulated

in Equation 7:

Fcat = Concat½Favg , Fmax� ∈ R2�H�W (7)

Then, spatial attention features are extracted through a 7×7

convolutional layer, as shown in Equations 8, 9:

Mspatial = s f 7�7(Fcat)
� �

∈ R1�H�W (8)

F0 = F⊗Mspatial (9)

where [;]denotes channel-wise concatenation, f 7�7 represents a

7×7 convolutional operation, s is the Sigmoid activation function,

and ⊗ denotes element-wise multiplication. The output is the

feature map after fusing spatial attention.

In the task of browning region segmentation, such regions usually

exhibit local aggregation (e.g., brown pigment deposition) and distinct

color gradient variation. The spatial attention mechanism effectively

assists themodel in recovering boundary details and regional shapes (Li

et al., 2024). It adaptively enhances salient regions such as browning

edges while suppressing background noise, thereby improving

segmentation accuracy and boundary clarity.
3.3 Evaluation metrics

To comprehensively evaluate the performance of the model,

this study adopts a range of evaluation metrics covering both model
FIGURE 10

(A) Depthwise separable convolution structure. (B) Group convolution structure (groups=2).
FIGURE 11

Spatial Attention Structure.
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efficiency and prediction accuracy (Everingham et al., 2015).

Specifically, the evaluation includes a series of indicators

as following.

(1) In the detection task, Box Precision (BP) is defined as

follows (Equation 10):

Box Precision =
TP

TP + FP
, (10)

where true positives (TP) refer to the number of predicted boxes

correctly matched with ground truth boxes when the Intersection

over Union (IoU) is ≥ 0.5. False positives (FP) represent the number

of incorrectly predicted boxes with IoU < 0.5, and false negatives

(FN) indicates the number of ground truth boxes that were not

correctly predicted.

(2) In the segmentation task, mask precision (MP) and recall are

calculated based on pixel level as follows (Equations 11, 12):

Mask Precision =
P ∩ Gj j
Pj j , (11)

Mask Recall =
P ∩ Gj j
Gj j , (12)

Where P is the set of pixels predicted by the model as positive

class, Gis the set of ground truth pixels labeled as positive class, and

P ∩ G denotes the intersection of the predicted and the real.

(3) The IoU is a generalized spatial overlap metric for detection

and segmentation tasks and is calculated according to Equation 13:

IoU =
P ∩ Gj j
P ∪ Gj j , (13)

For multi-class segmentation tasks, the mean intersection over

Union (mIoU) is the arithmetic average IoU of each class, as defined

by Equation 14 (Long et al., 2015):

mIoU =
1
Co

C

i=1
IoUi, (14)

Where C denotes the total number of categories, and ” IoU ”i is

theIntersection over Union of the i-th category.

(4) Model efficiency is measured by the following four metrics:

the number of parameters (total trainable parameters, Params),

computation cost (floating-point operations per forward pass,

expressed in GFLOPs with an input resolution of 640×640),

model size (disk space used to store files, in MB) and inference

speed (frames per second, FPS, measured on an NVIDIA GeForce

RTX 3090).
4 Results

4.1 Experimental hyperparameter settings

For a clear comparison of model performance on shiitake stick

contour and browning region segmenting tasks, identical

hyperparameters were set. The details are presented in Table 1.
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4.2 YOLO results for mushroom stick
contour

4.2.1 Comparative experiment
To comprehensively evaluate the segmentation performance of

the lightweight improved VG-Stick-YOLOv11 model in shiitake

sticks contour extraction, as a test set comprising 376 images was

constructed. Two representative models with similar underlying

architectures—YOLOv11 and YOLOv8—were selected to

comparison. And two backbone lightweight architectures,

GhostNet and VanillaNet, were selected to reconstruct the YOLO

framework. In addition, through the vanillanet backbone

architecture, the performance difference between c3k and c2f was

compared in the data. The experimental results are shown

in Table 2.

As shown in Table 2, YOLOv11n-seg achieves a 1.4 percentage

point improvement in mask precision, reaching 98.3%, compared to

YOLOv8n-seg. Meanwhile, it reduces Params by 12.5% and

computational cost by 15%. This demonstrates superior detection

and segmentation performance on mushroom sticks while

maintaining a more compact model size, thereby verifying the

architectural advantages of YOLOv11.

In terms of lightweight backbone structure, VanillaNetBlock

outperforms GhostNet under both the YOLOv8 and YOLOv11

frameworks. Taking the YOLOv8 structure as an example,

VanillaNetBlock improves box precision by 15.5 percentage

points while reducing Params by 38.7% and computational cost

by 23.3%. These results indicate that VanillaNetBlock achieves a

better balance between model compression and performance.

Among the two improved models constructed based on

VanillaNetBlock-v11, VG-Stick-YOLOv11achieves a better trade-

off between lightweight and accuracy. Compared with VDs-

YOLOv11, it improves the box precision by 8.6% and increases

inference speed by 18.4%. Although its accuracy is slightly lower

than VanillaNetBlock-v11 (−1.6%), it achieves reductions of 11.8%

in Params, 9.0% in GFLOPs, and a 23.4% gain in speed. Moreover,

VG-Stick-YOLOv11 achieves the highest mIoU of 95.80% among

all models, indicating that its architectural optimizations are more

effective in preserving segmentation details of stick contours,

making it particularly suitable for real-time deployment within

shiitake stick production facilities.
TABLE 1 Hyperparameter settings.

Hyperparameters
Stick contour
segment-value

Browning region
segment-value

Learning Rate 0.001 0.0001

Image Size 640x640 1024×448

Dropout 0.2 –

Optimizer AdamW AdamW

Batch Size 16 4

Epoch 100 100

Weight Decay 0.0005 –
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4.2.2 Model visualization
To better visualize the segmentation performance of different

models under varying exposure settings, background colors, and

browning maturity stages, six representative sample images were

selected (three with red backgrounds and three with green

backgrounds). Object detection and instance segmentation were

performed through eight models: YOLOv8n-seg, YOLOv11n-seg,

GhostNet-v8, GhostNet-v11, VanillaNetBlock-v8, VanillaNetBlock-11,

VDs-YOLOv11, and VG-Stick-YOLOv11. The segmentation results are

shown in Figure 12.
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According to the visual analysis model segment under different

background (as shown in Figure 13), false segment was observed

more frequently under the red background in both low-exposure

(75 lx·s) and overexposure (120 lx·s) condition. Compared to the

green background, the red background is more lead to

overexposure, which mislead to the recognition of samples in low

degree browning. Additionally, the reddish-brown appearance of

matured samples closely resembles the red background, making

accurate segmentation more difficult for most models. However, the

VG-Stick-YOLOv11 model can accurately identify in the displayed
TABLE 2 Comparative evaluation of lightweighting improvements.

Model Params (M) GFLOPs Model size (MB) BP (%) FPS MP (%) MIoU (%)

YOLOv8n-seg 3.2 12.0 6.6 96.9 96.82 96.9 96.11

YOLOv11n-seg 2.8 10.2 5.8 98.3 77.85 98.3 95.56

GhostNet-v8 3.1 11.6 6.4 82.8 97.32 82.8 95.52

GhostNet-v11 2.4 8.9 5.0 96.1 83.43 96.1 95.34

VanillaNetBlock-v8 1.9 8.9 4.1 98.3 100.62 98.3 95.29

VanillaNetBlock-v11 1.7 7.8 3.7 97.6 86.60 97.6 95.78

VDs-YOLOv11 1.4 6.2 2.9 88.4 72.37 88.4 95.28

VG-Stick-YOLOv11 1.5 7.1 3.5 96.0 85.64 96.0 95.80
f
rontiersin
FIGURE 12

Segmentation results of shiitake stick contours using different model. 0. Pre-browning 1. Mid-browning 2. Post-browning.
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pictures with a confidence of 0.91. Moreover, under the green

background, the segmentation confidence of VG-Stick-YOLOv11

under both low-exposure and normal-exposure (95 lx·s) conditions

was significantly higher than under over-exposure. Specifically, for

low-exposure samples, VG-Stick-YOLOv11 achieved the highest

confidence score of 0.97. Under normal exposure, YOLOv11n-seg

produced the highest confidence (0.98), followed closely by VG-

Stick-YOLOv11 with a score of 0.96.
4.3 Annotation results of shiitake stick
browning areas

To verify the effectiveness of semi-automatic labeling based on

machine learning, visualization results are shown in Figure 13, with

four randomly selected. After the introduction of image processing

and machine learning algorithms such as DoG, Membrane Projection

Transform, and Image Entropy, the generated labeling browning
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areas results are smoother, with more continuous boundary contours

and significantly fewer background mislabels and noise interference

compared to those before algorithm adjustment.
4.4 Browning area segmentation model for
shiitake cultivation sticks

To verify the effectiveness of the improved method, Swin-UNet

(Cao et al., 2022), Deeplabv3+, SelfReg-Unet (Zhu et al., 2024) and

U-Net are selected as comparison models in this study. Based on

this, five sets of ablation experiments were designed around the

three improvement points, and all experiments were conducted

under the same configuration and training parameters.

4.4.1 Ablation experiment
As shown in Table 3, the ablation experimental system evaluates

the effect of Encoder Optimization, Decoder Enhancement with SA
FIGURE 13

Segmentation comparison of browning areas before and after algorithm tuning.
TABLE 3 Ablation experiment comparison results.

Experimental
group

Encoder
optimization

Decoder
enhancement

SA Precision/(%) Recall/(%) F1 score/(%) IoU/(%) Params

ResNet50-Unet 85.78 88.36 87.0 81.91 61.115329×106

ResNet50-Unet 2 ✓ 87.51 91.24 89.56 80.73 61.153953×106

ResNet50-Unet 3 ✓ 93.07 91.03 92.05 86.10 38.831393×106

ResNet50-Unet 4 ✓ ✓ 92.33 93.41 92.86 86.12 38.885349×106

RS-UNet ✓ ✓ ✓ 94.35 92.48 93.37 88.56 38.923973×106
Bold values indicate the best results across all models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1676977
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1676977
mechanism on the performance of ResNet50_UNet. In the

ResNet50_UNet, the F1 score reaches 87.00%, IoU is 81.91%, and

Params is 61.12 M. After the introduction of Encoder Optimization

(ResNet50_UNet2), the Precision, Recall, and F1 scores are

improved, but the IoU slightly decreases to 80.73%.

Based on ResNet50_UNet, decoder enhancement (e.g., hybrid

convolution, regularization) significantly improves the model

performance and reduces the number of parameters by 36.3%,

which achieves a good balance between browning feature

expression and computational efficiency. The ResNet50_UNet 4

model, after fusing decoder enhancement with SA module, under

original encoder improves Recall, F1 score and IoU compared with

ResNet50_UNet3. This suggests that the SA mechanism enhances

the ability to capture boundary features by weighting different

regions in the feature map, particularly improving the recognition

of fuzzy or unevenly browning stick boundaries.

Finally, experimental group RS-UNet combines encoder

optimization, decoder enhancement and SA module to further

improve the precision, F1 score and IoU. The introduction of SA

mechanism effectively compensates for the loss of spatial information

caused by the change of feature map size, thereby optimizing the

segmentation effect. Compared with the ResNet50_UNet model, the

precision, recall, F1 score and IoU of experimental group 5 are

improved by 10.0%, 4.66%, 7.32% and 8.12%, respectively, while the

parameter volume is reduced by 36.3% to 38.92M.

Overall, the three improvement strategies achieve good

synergistic effect in the RS-UNet model, alleviate the conflict

between feature extraction, boundary identification and

computational cost. This result validates the efficiency and

practicality of the improved model under fuzzy boundary conditions.

4.4.2 Quantitative performance comparison of
segmentation models

Table 4 presents the performance comparison between the

proposed RS-UNet and several mainstream segmentation models

in the task of segmenting the browning region of shiitake cultivation

sticks. Based on U-Net achieves, RS-UNet achieves a better balance

between accuracy and model complexity, with the F1 score of

93.37% and the an IoU of 88.56%, both of which surpass the

other models’ performance. Moreover, RS-UNet maintains a

lightweight structure with only 38.92M parameters, presenting a

significant advantage over Swin-UNet and DeepLabv3+.

For comparison, Table 4 also includes the results of several

widely semantic segmentation models. Although Swin-UNet
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achieves a relatively high precision (88.23%), its recall is relatively

low (78.73%), indicating that it has leakage and fails to

comprehensively cover the browning region; DeepLabv3+ has

overall weaker performance, with an IoU of only 70.45%.U-Net,

as the baseline model, performs robust performance in the single-

class, pixel-level segmentation task, achieving an IoU of 80.89% and

Params of 24.76M, thereby achieves a certain balance between

accuracy and model size. In addition, SelfReg-Unet achieved F1

score and IoU of 90.79% and 84.52%, respectively, showing strong

performance, but its overall performance is still inferior to that of

RS-UNet.

Based on this, RS-UNet significantly improves the

performance of browning region segmentation while maintaining

a reasonable model size, confirming the efficacy of the proposed

enhancement strategies.

4.4.3 Visual analysis of boundary segmentation
for browning regions

To verify the effectiveness of the improved RS-UNet network in

extracting the boundary of browning regions in mushroom stick

images, a comparative analysis was conducted with other

segmentation models. As illustrated in Figure 14, most models

have the problem of incomplete identification of browning regions,

and some even incorrectly segment the surface regions of sticks.

Meanwhile, this results also validate the effectiveness of pre-

segmented stick contours in suppressing background interference.

By comparing the segmentation effect under red and green

backgrounds (as shown in Figure 12), the green background was

finally selected for the browning region segmentation. Further

analysis of the green background images under varying exposure

levels, revealed that under low exposure conditions (Figures 15A1,

15B1), all models generally achieved better recognition of the

browning regions.

Under overexposure conditions (Figures 15A1, 15B2), the color

features of the sticks post-browning period and the mid-browning

period tended to be similar, resulting in generally incomplete

segmentation by the models. Notably, Swin-UNet and Deeplabv3+

performed poor segmentation completeness, althoughDeeplabv3+

showed relatively higher accuracy in identifying hollow areas in the

browning region. In comparison, SelfReg-UNet achieved overall good

segmentation performance; however, it exhibited partial omission

errors under low-exposure conditions.

In contrast, under low-exposure conditions, the proportion of

browning regions segmented by each model increased significantly,
TABLE 4 Comparison of model performances.

Model Precision/(%) Recall/(%) F1 score/(%) IoU/(%) Params

Deeplabv3+ 75.60 76.57 76.0 70.45 58.234012×106

U-Net 82.57 83.76 83.16 80.89 24.763905×106

Swin-UNet 88.23 78.73 82.89 71.78 86.855739×106

SelfReg-Unet 91,50 90.11 90.79 84.52 31.04150×106

RS-UNet 94.35 92.48 93.37 88.56 38.923973×106
Bold values indicate the best results across all models.
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which was more closely with the labeled images. The RS-UNet

model, in particular, exhibited more accurate and well-defined edge

segmentation. In addition, compared with overexposure conditions,

low-exposure effectively enhances the recognition of the light-

colored regions during the mid-browning stage, thereby reducing

missed segmentation caused by the weakening of color features

under overexposure.
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4.5 Analysis of browning using hybrid
detection

Figure 15 illustrates the detection results of browning region

proportions on shiitake cultivation sticks. The selected images

continuous growing process captured from a fixed angle of the

same stick, based on RS-UNet visualization results, to display the
FIGURE 15

Browning region ratio and pigmentation intensity heat-maps of shiitake cultivation sticks. (A1, A2, B1, B2) represent the browning ratio maps. (a1, a2,
b1, b2) represent the corresponding pigmentation intensity heat-maps
FIGURE 14

Segmentation effects of browning regions in mushroom sticks under different models.
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dynamic transition from the mid-browning stage to the post-

browning stage, along with distribution of pigment depth. The

results showed that the browning region accounted for 46.29% in

the mid-browning sample A1, which increased to 80.76% in the

post-browning stage after 14 days of cultivation. Meanwhile, under

the overexposure conditions, the proportion of browning

(Figures 15A2, B2) was significantly lower than that under low-

exposure conditions. Furthermore, a comparison of the heatmap a1

(corresponding to A1) and b1 (corresponding to B1) presents a

marked expansion of red and yellow regions (representing darker

pigmentation), accompanied by a reduction in green regions

(lighter pigmentation). This pattern suggests an overall increase

in surface pigment deposition and a continuous progression of

browning maturity. However, under overexposure (a2, b2), the

pigment intensity appeared noticeably lighter.
5 Discussion

5.1 Experimental evaluation of the two-
stage segmentation framework

In response to the questions of detecting the browning ratio in

mushroom sticks during factory-scale shiitake mushroom

cultivation, this study proposes a two-stage deep learning

framework. Through analysis the image characteristics during

cultivation of mushroom stick, we find several factors that affect

segmentation accuracy. These include the complex visual

background—comprising mycelium, culture substrate, and the

“yellow water” phenomenon—as well as interference caused by

surface bags, particularly in areas with knotting and accumulated

folds. Based on these findings, we establish a systematic data

processing pipeline and technical optimization scheme, to

improve model robustness and segmentation performance.

During the data acquisition phase, we controlled exposure level,

background color, and the timing of the browning stage.

Experimental results showed that using a green background

under low-exposure conditions effectively improved segmentation

robustness. In contrast, the red background led to a notable increase

in false detection rates, likely due to the high similarity in feature

space with the later reddish-brown surface mycelium, this finding

consistent with the results reported by Kamilaris and Prenafeta-

Boldú (2018) and provides important data collection specifications

for subsequent research.

Contour segmentation of mushroom sticks serves a dual

purpose in this study. First, by accurately extracting the main

region of the stick, it provides data basis for calculating the

proportion of the browning region. Second, it effectively

eliminates background interference. This step is particularly

critical, as stacked plastic bags often visual similarity to the light

browning region. Then the plastic film covering the surface, directly

labeling the original images can easily result in mislabeling the

browning region. Meanwhile, aiming to the demand for lightweight

deployment in practical factory environments (Yang et al., 2020),

the contour segmentation model was specifically optimized to
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improve performance maintaining accuracy. Experimental results

show that VG-Sticks-YOLOv11 improves 9.9% in FPS over the

YOLOv11n-seg baseline, along with a 0.25% percentage point

increase in mIoU.

For browning region segmentation, an improved RS-UNet

framework was designed by integrating three improvement

modules. The hybrid convolution Params is 38.92M, while

improving all performance metrics, show its dual advantages in

lightweight and feature detection (Xu et al., 2024). Notably, the

introduction of regularization strategies could avoid potential over-

fitting issues commonly associated with lightweight design (Yang

et al., 2020). Compared with U-Net’s symmetric structure, RS-UNet

enriches representation; unlike SwinUNet, it avoids the high cost of

Transformer modeling while capturing local texture variations; and

relative to DeepLabv3+, its spatial attention provides finer

localization of pigment spread. This balance between efficiency

and accuracy highlights the superiority of the proposed model.
5.2 Future work

It should be noted that the data collection in this study has certain

limitations. The current dataset includes only single-surface images of

mushroom sticks, while in actual production, the stick has three-

dimensional structure and the browning process may occur unevenly

distribution on all surfaces. So, this single-view acquisition method

may limit the comprehensive assessment of the overall browning

status, and potentially miss key features present on other surfaces. In

addition, additional optimization of the multi-angle imaging system

will be required when applied to actual production environment.

Future research will focus on improving data acquisitionmethods

in several aspects. These include the development of a multi-view

simultaneous imaging system to capture complete 360° surface

information of shiitake cultivation sticks, and the development of a

3D reconstruction algorithm (Wu et al., 2025) to enable more

comprehensive assessment of browning status. In addition, imaging

setup in the cultivation environment will be further optimized to

ensure the reliability of the inspection system in industrial settings.

These improvements will help to enhance the system’s accuracy and

practicality, thereby better meeting the demands of industrial-scale

shiitake mushroom cultivation.
6 Conclusion

Under the industrial-scale stick-making mode, the cultivation

process of shiitake cultivation sticks is suitable for automated

detection based on deep learning, especially in the monitoring of

maturity changes during browning phase. Although this research

direction holds high application value, relevant research remains

scarce. The complex surface structure of mushroom sticks poses

greater challenges for segmentation tasks, while lightweight

deployment for practical applications is also required. Thus, this

study proposes a two-stage collaborative framework that integrates

the lightweight VG-Stick-YOLOv11 for contour extraction and the
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improved RS-UNet for browning region segmentation, we achieve

both high efficiency and accuracy. The framework not only improves

segmentation robustness under complex visual backgrounds but also

provides reliable quantitative indicators of browning ratios, which are

essential for maturity assessment and production management.

Furthermore, the adoption of a machine-learning-assisted

annotation strategy accelerates dataset construction and enhances

the precision of ground-truth labeling, thereby supporting future

research in this field. While current work is limited to single-view

imaging, the findings demonstrate strong potential for real-world

deployment in automated monitoring systems for shiitake

cultivation. Future extensions toward multi-view imaging and 3D

reconstruction will further enhance comprehensiveness and

robustness. This study provides a feasible pathway for the

intelligent and standardized detection of browning stages in

shiitake cultivation sticks. Since the commercial value of the

sticks largely depends on their degree of browning, the proposed

method holds promise for offering valuable technical support in

quality evaluation and yield improvement under industrial

cultivation environments according to Equation 13.
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