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Introduction: Accurate monitoring of pigmentation changes during the
browning stage of shiitake cultivation sticks is essential for assessing substrate
maturity, forecasting mushroom emergence, and improving cultivation quality.
However, current commercial detection methods lack objective, real-time, and
quantifiable evaluation indicators for assessing the browning degree.

Methods: This study proposes a two-stage image segmentation approach to
address this issue. First, a novel VG-Stick-YOLOv11 model, built upon YOLOv11n-
seg with VanillaNetBlock and GhostConv, was developed for real-time contour
extraction and browning stage classification of shiitake sticks. Based on the
extracted features, machine learning techniques facilitated rapid, semi-
automatic annotation of browning regions, thereby constructing a
segmentation dataset. Finally, the ResNet-Stick-UNet (RS-UNet) model was
designed for precise browning region segmentation and area ratio calculation.
The encoder utilizes ResNet50 with multi-branch inputs and stacked small
kernels to enhance feature extraction, while the decoder incorporates a hybrid
structure of grouped and depthwise separable convolutions for efficient channel
fusion and detail preservation. A spatial attention mechanism was embedded in
skip connections to emphasize large-scale browning regions.

Results: The proposed VG-Stick-YOLOvV11 achieved the best mloU of 95.80% for
stick contour extraction while markedly reducing parameters and computation.
For browning region segmentation, RS-UNet achieved a high segmentation
accuracy of 94.35% and an loU of 88.56%, outperforming comparison models
such as Deeplabv3+ and Swin-UNet. Furthermore, RS-UNet reduced the number
of parameters by 36.31% compared to the ResNet50-U-Net baseline.
Conclusion: The collaborative two-stage model provides an effective and
quantitative solution for maturity detection of shiitake cultivation sticks during
the browning stage. This work promotes the intelligent and standardized
development of shiitake substrate cultivation.
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1 Introduction

In recent years, the “domestic stick production and overseas
fruiting” model has gradually matured, while the scale of China’s
shiitake mushroom industry has also continued to grow (Cao,
2017). According to statistics, in 2022, China exported 1.376x10°
tons of shiitake cultivation sticks, and the total annual production of
shiitake mushrooms reached 1.296x10” tons, accounting for more
than 90% of the global output (Cao et al., 2024). Currently, the
domestic shiitake mushroom substitute cultivation has formed the
industrial path of industrialized cultivation stick production and
ecological fruiting”. By building a standardized service system for
strains, formulations, and cultivation materials, enterprises have
significantly improved production efficiency and stick quality and
lowered the technical barrier for mushroom cultivation compared
to the traditional workshop model (Cao et al., 2024). Although the
adoption rate of this model in the industry is about 10% as of 2019,
it has shown a broad promotion prospect due to its advantages in
standardization and scalability (Cao et al., 2024).

With the advancement of shiitake mushroom smart
factory construction, related research has mostly focused on
environmental control and intelligent harvesting (Wang et al,
2024). However, despite these advances, dynamic monitoring of
the cultivation process remains limited. Physiological maturity, a
key growth indicator of shiitake cultivation sticks, involves the
transformation of mycelium from vegetative to reproductive
growth. This process mainly includes three phases: mycelial
growth, browning and primordium differentiation (Royse et al.,
2017). Among these, mycelial browning is not only an important
physiological prerequisite for the formation of the fruiting body
but also closely related to yield and quality (Pang et al., 2016).
However, currently, the degree of browning mostly relies on
manual subjective visual inspection, lacking objective, real-time,
and quantitative assessment methods, which makes it difficult to
meet the standardized requirements of large-scale factory and
commercial production.

To address this, this study proposes a hybrid detection model
based on deep learning, aiming to improve the segmentation
accuracy and detection efficiency of the browning region on
shiitake cultivation sticks. The main research objectives include:

1. To develop a lightweight contour recognition algorithm to
extract the contour of shiitake cultivation sticks and
effectively eliminate background interference.

2. As the browning region on shiitake cultivation sticks is
more difficult to label manually with Labelme, to establish a
method based on traditional machine learning to label the
browning region of the fungus stick quickly and efficiently
by using the Image] plug-in module.

3. To establish an algorithm based on the improved U-Net
framework to segment the browning region and calculate
the percentage of browning to quantitatively assess the
degree of browning.
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2 Related work

In the process of agricultural intelligence, machine vision
technologies (Kamilaris and Prenafeta-Bolda, 2018) are
increasingly being applied to tasks such as crop maturity and
disease detection, gradually reducing the reliance on traditional
manual assessment methods. These methods are divided into two
main categories: traditional image algorithms and image algorithms
based on deep learning.

In the early stages, researchers mostly relied on traditional
image algorithms to achieve object detection and classification.
Tillett and Batchelor (1991) proposed a method based on height
threshold center estimation, low-threshold contour tracking, and
region growing for detecting mushroom fruiting bodies. Vizhanyo
and Felfoldi (2000) proposed a method to identify abnormal
mushrooms based on color features. Additionally, Yu et al. (2005)
proposed a target contour tracking method based on Fourier
descriptors of object boundaries. However, these methods are
primarily designed for fruiting bodies and are not suitable for
accurately quantifying the continuous and gradual browning
process of shiitake cultivation sticks. Moreover, they exhibit
limited generalizability because they are sensitive to variations in
lighting and background, and rely heavily on handcrafted feature
extraction (Xiao et al., 2023; Kamilaris and Prenafeta-Bolda, 2018).

In recent years, deep learning technology has gradually emerged
in the field of agriculture, in which YOLO series algorithms cover
object detection and segmentation tasks, which show great
advantages in plant phenotyping, especially in the adaptive
detection maturity detection in agricultural products. Chen et al.
(2025) extracted the average diameter and length features of
asparagus images after ROI segmentation using YOLO-V9.
Mandava et al. (2024) constructed a coconut maturity recognition
dataset and used YOLO-V5s with YOLO-V4Tiny to achieve
classification detection. These models rely on manually labeled
closed contour regions and perform well in the segmentation of
mushroom stick contour instances.

However, the browning region on the surface of mushroom
sticks usually has the problems of fuzzy edges, irregular
morphology, and subjective labeling. Inspired by fuzzy boundary
model in camouflage target detection (Liu et al., 2023; Lyu et al,
2024), this study adopts the U-Net framework to construct the
segmentation model for browning region.

The U-Net architecture proposed by Ronneberger et al. (2015)
and others provides an effective solution for medical image
segmentation. It is especially advantageous in skin lesion image
segmentation. Zafar et al. (2020) used ResNet as a U-Net encoder
and proposed an automated method for segmenting lesion
boundaries in dermoscopy images. Feature extraction is enhanced
by deep learning and residual links of ResNet improving the
segmentation accuracy of complex lesions. Cao et al. (2021)
proposed a Transformer-based encoder and decoder architecture,
Swin-UNet, which incorporates multi-layer spatial contextual
semantics into the U-Net framework and is mainly applied in
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multi-organ segmentation. Zafar et al. (2024) proposed a hybrid
architecture combining YOLOvV8s and U-Net for fast tumor region
identification and fine segmentation of tumor regions. The method
achieves initial localization by YOLO and then fine segmentation by
U-Net, with a detection accuracy of more than 95%. In addition,
Yilmaz et al. (2025) evaluated the robustness of multiple deep
learning models under corrosive perturbation conditions and
found that the ResNet50-UNet model achieves high Mean
Intersection over Union (mlIoU) ratios, which can be more than
90%, in several image processing tasks. Zhu et al. (2022) proposed a
pixel-level segmentation method using the semantic segmentation
network DeepLabv3+, which showed high accuracy under different
backbone networks, in which DeepLabv3+ based on RestNe-50
achieved 96.32% segmentation accuracy, realizing stable and
effective fabric defect detection. Based on the good performance
of the above methods in medical and industrial image processing,
shiitake mushroom stick images are difficult to directly migrate to
the existing model due to the characteristics of fuzzy browning
boundaries, variable morphology, and uneven browning, as well as
the lack of objective standards for annotation and the existence of
artificial subjectivity. Coupled with the high real-time and deploy
ability requirements of factory cultivation, targeted improvement
strategies are urgently needed.

3 Materials and methods
3.1 Data

3.1.1 Data collection

The browning image data of shiitake cultivation sticks were
collected from March 5 to June 16, 2025, within the edible
mushroom experimental station (39.94°N latitude, 116.28°E
longitude) of the Beijing Academy of Agriculture and Forestry
Sciences (BAAFS). The Jingke No. 1 shiitake mushroom stick
variety was selected as the research subject, and the data were
acquired with an independently constructed image acquisition
device. The device, shown in Figure 1, consists of a camera box

N

PR

FIGURE 1
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equipped with a double-LED light board (60cmx60cmx60cm), a
MindVision MV-SUA2000C high-definition industrial camera (with
an MV-LD-8-25M-A fixed-focus lens featuring low-light sensitivity
and a large aperture), and a Lenovo Xiaoxin Airl4 laptop. The
camera is mounted on a fixed bracket with a constant distance of
43.2cm between the lens and base, connected via USB. During the
experiment, based on the approximate tetrahedral structure of the
mushroom stick, we divided it into four imaging regions by marking
the bottom diagonal and captured images every 90° of rotation
(Figure 2). The images were stored in.JPEG format with a
resolution of 4864 x 2088 pixels. To thoroughly record the
browning process, we divided it into three stages: pre-browning,
mid-browning, and post-browning (Figure 3). By fixing light
intensity, setting red and green backgrounds, and adjusting camera
exposure parameters (brightness target values of 75 Ix-s, 95 Ix-s, and
120 Ix-s), we created a comprehensive dataset. A total of 1,254 valid
images were obtained throughout the longitudinal recording of the
browning process. The number of images corresponding to the pre-
browning, mid-browning, and post-browning stages is 251, 690, and
313, respectively. This stage-specific distribution accurately reflects
the biological progression of browning, thereby ensuring both the
diversity and representativeness of the dataset.

3.1.2 Data preprocessing

The 1254 original mushroom stick images were labeled with stick
contour categories using Labelme v4.5.13. To improve the robustness
and generalization ability of the network model, the labeled shiitake
stick images were augmented (Javanmardi and Miraei Ashtiani, 2025)
+

by rotating them in multiple angles (+ 15°, * 10°), adjusting
brightness contrast (£ 3%, + 5%, + 7%), adding noise (1%),
flipping them horizontally, and adjusting exposure (+ 8%) and
saturation (+ 3%), through random combinations (Figure 4).The
1254 images were expanded to 2508 augmented samples, totaling
3762 images. All data were derived from longitudinal monitoring of
the entire browning process across 36 independent biological
replicates. The samples were randomly divided into training (2910),
validation (376), and test (376) sets in an 8:1:1 ratio for model
training and validation.

Sketch and physical drawing of the mushroom stick imaging device. (A) Device structure diagram: 1.LED light source 2. Rectangular camera box
3.USB hub 4. Camera 5. Lens 6. Fixed bracket 7. Laptop 8. Mushroom Sticks. (B) Physical image of the device.
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Schematic diagram of the bottom marking of the sticks (divided into four parts). (A) Diagram of labeling on the bottom of the stick. (B) Example

diagram of the sticks after labeling.

3.1.3 Experimental environment

This experiment uses Windows system, configured with 12th
generation Intel Corei9-12900K processor, 64GB RAM, 1'TBN VMe
SSD, equipped with Nvidia GeForce RTX 3090 graphics card (24GB
video memory), and the experimental software environment is set
up with Python3.8.16, PyTorch1.13. 1 with CUDAIL.7.

3.2 Methods

This study aims to precisely assess the browning maturity of
shiitake cultivation sticks in complex surface environments to

Browning stages Pre-browning

75 Ix-s (low-

exposure)

95 Ix-s (normal-

exposure)

120 Ix-s (over-

exposure)

FIGURE 3
Data acquisition diagram of shiitake cultivation sticks.
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promote its application in precision cultivation and factory
management. As shown in Figure 5, the overall experimental
process includes three major modules: data collection, feature
extraction, and model evaluation. First, RGB images of
mushroom sticks during browning stages were collected by a
high-resolution camera and data diversity was enhanced by
applying data augmentation strategies such as rotation, flipping,
and color perturbation. A two-stage deep learning algorithm is used
for feature extraction. In the first stage, the VG-Stick-YOLOvI11
model is used for detecting the contours of the mushroom stick and
generate masks to obtain the regions of interest (ROI). Machine
learning algorithms are combined to generate high-quality training

Mid-browning Post-browning
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Rotate + Flip +  Saturation +
Noise Noise
Original Rotate + Flip + Noise + Rotate Exposure
Saturate + Saturate

[llustration of data augmentation.

labels and complete the dataset of the browning regions. In the
second stage, the improved RS-UNet model is trained based on the
browning region dataset to perform fine segmentation and extract
color and texture features, thereby quantifying the proportion of the
browning on the mushroom sticks. Finally, the model performance
is comprehensively evaluated using evaluation metrics such as IoU,
accuracy, and inference efficiency, along with qualitative
visualization analysis. The following sections describe the details
of the algorithm and the specific methods used in the above
two stages.

3.2.1 VG-stick-YOLOv11

To achieve model lightweight and real-time detection accuracy,
this paper adopts the YOLOv11n-seg framework to construct the
VG-Stick-YOLOv11 model (Figure 6), which is used for the
segmentation of the mushroom stick’s contour and the extraction
of the ROLYOLOvV11 belongs to a single-stage object detection
framework. Its segmentation extension network typically includes

three parts: the backbone network for feature extraction, the feature
fusion layer (Neck) for multi-scale information fusion, and the
detection layer (Head)responsible for object classification,
localization and segmentation. Among them, the C3K module
integrates depthwise separable convolution (DSC) (Howard et al.,
2017) and self-attention mechanism (Cheng et al., 2021). Compared
with the C2f module in YOLOVS, it introduces cross-stage
connection and lightweight attention design, thus improving the
feature extraction effect and reducing the number of model
parameters. The head adopts a decoupled design to separate
classification and regression tasks, removes the traditional object
branch, utilizes the fully convolutional structure to achieve anchor-
free target localization and dynamic label assignment. At the same
time, an instance segmentation module is integrated to directly
predict pixel-level masks based on multi-scale features. Considering
that mushroom stick browning detection requires both real-time
performance in practical production environments and accurate

instance segmentation of stick contours, YOLOv11n-seg provides a

[ Feature Segmentation ]
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FIGURE 5

Flowchart of maturity detection experiment for shiitake sticks during browning period.
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FIGURE 6
VG-stick-YOLOv11 model structure.

suitable balance between accuracy and efficiency, making it an
appropriate baseline for constructing the improved VG-Stick-
YOLOv11 model.

Based on the lightweight improvement requirements, VG-Stick-
YOLOv11 introduces GhostNet convolution (GhostConv) to
replace the standard convolution (Han et al., 2020) in the
segmentation head of YOLOv11 framework. Compared with
Depthwise Separable Convolution (DSC), GhostConv generates
richer feature maps to improve segmentation accuracy. By
combining standard convolution with linear operation, it
improves the feature expression ability while maintaining
parameter efficiency, achieving a good balance between
lightweight and performance.

The VanillaNetBlock module from VanillaNet (Chen et al.,
2023) is integrated into the YULOvI11 backbone network, replacing
the residual connection, attention mechanism and feature pyramid
structure in YOLO, realizing lightweight design while maintaining
accuracy. In this regard, the dynamic ReLU activation function
enables the model to realize structure-aware optimization under

hardware-friendly conditions, improving model deployment
efficiency. For the SPPF module used for multi-scale semantic
fusion and receptive field expansion in YOLO structure, there is a
problem of high computational complexity. VanillaNetBlock
decouples multi-branch features via grouped convolution and
enhances semantic representation with dynamic activation,
compensating for the loss of information fusion after removing
SPPF. To address the high computational complexity of the SPPF
module for multi-scale semantic fusion and receptive field
expansion in YOLO structure (Figure 7).

3.2.2 ROI-guided semi-automatic annotation of
browning regions

To construct high-quality pixel-level annotated labels, this
study proposes a semi-automatic annotation method based on the
ROI of the stick contours, combining manual interaction with
machine learning classification. Browning and non-browning
regions are manually selected as training samples to build a
binary classification task. Multi-scale texture, edge, and color

stride=1

CBS

Input
——{cBs P LeakyReLU

stride=2

7x7GroupConv  [oumut
BN

MaxPool2d

FIGURE 7
VanillaNetBlock structure.
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features are extracted for each pixel, and these features are used to
train a pixel-level classification model for accurate segmentation of
browning regions.

Specifically, color features are derived from multi-channel
information such as RGB and HSV, while texture and edge
features are enhanced using a variety of image processing
operators. The difference of Gaussian (DoG) is used to enhance
edge responses, and is calculated as shown in Equation 1 (Lowe,
2004):

DoG(x, ¥) = G(o1)x, y) ~ Gloa)(x ») (1)

where G_(0) (x, y) denotes the 2D Gaussian blurring result
with a standard deviation of o, which is used to enhance the
contrast of the browning boundary. Membrane Projections
simulate the longitudinal texture pattern of the surface tissue,
aiding in the identification of striped browning regions on the
surface of the sticks.

In addition, the image Entropy measures the local complexity of
an image and is defined as shown in Equation 2 (Ronneberger et al.,
2015):

N
H(x,y) = =>p;log, p; (2)
part

where p; denotes the ith class gray values probability in the
pixel’s neighborhood. High-entropy regions tend to correspond to
browning regions with drastic color variations. Neighborhood
analysis further captures the structural continuity near the
browning edges and improves the model’s ability to identify the
boundary regions.

In terms of the classification model, this method uses Random
Forest as the pixel-level discriminative model, which inputs the
feature vector x; = [f1, f2,...,fn] for each pixel and outputs its

10.3389/fpls.2025.1676977

corresponding category label y; € {0,1}, representing the
browning and non-browning regions, respectively. The integrated
structure of Random Forest enhances the model’s robustness and
generalization ability. This semi-automatic labeling method for
browning regions balances efficiency and accuracy, retaining the
discriminative ability of manual supervision, while makes full use of
the automatic identification advantage of machine learning models.

3.2.3 RS-Unet

Based on the U-Net (Cui et al., 2024) framework, this study
constructs a segmentation model for the browning region of
shiitake mushroom stick. ResNet50 is used as the encoder,
integrating deep residual learning with a U-shaped symmetrical
architecture, to effectively improve the feature extraction ability and
network expression depth. To address the multi-scale features of
mycelial color gradients and texture diffusion in the browning
region, a feature enhancement strategy is incorporated into the
encoder to improve the network’s perception of browning-related
patterns. In the decoder, a hybrid convolution structure—
combining grouped convolution and depthwise separable
convolution—is designed to achieve efficient channel fusion via
pointwise convolution, thereby reducing computational complexity
while enhancing feature representation. Moreover, the Spatial
Attention (SA) module is introduced at the skip connections to
dynamically focus on the mycelial pigment deposition areas, thus
enhancing the sensitivity to boundaries and segmentation accuracy.
The improved model is named ResNet-Stick-UNet (RS-UNet), and
its network structure is shown in Figure 8.

Based on the U-Net framework, this study constructs a
segmentation model for the browning region of shiitake
mushroom stick. ResNet50 is used as the encoder, integrating
deep residual learning with a U-shaped symmetrical architecture,
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to effectively improve the feature extraction ability and network
expression depth. To address the multi-scale features of mycelial
color gradients and texture diffusion in the browning region, a
feature enhancement strategy is incorporated into the encoder to
improve the network’s perception of browning-related patterns. In
the decoder, a hybrid convolution structure—combining grouped
convolution and depthwise separable convolution—is designed to
achieve efficient channel fusion via pointwise convolution, thereby
reducing computational complexity while enhancing feature
representation. Moreover, the Spatial Attention (SA) module is
introduced at the skip connections to dynamically focus on the
mycelial pigment deposition areas, thus enhancing the sensitivity to
boundaries and segmentation accuracy. The improved model is
named ResNet-Stick-UNet (RS-UNet), and its network structure is
shown in Figure 9.

3.2.3.1 Encoder optimization

Considering the insufficient sensitivity of the traditional
ResNet encoder to fine-grained texture changes and edge details
in the browning region of mushroom sticks, this paper optimizes
the initial module of the encoder. Specifically, the original 7x7
convolutional kernel in ResNet50 is replaced with a triple-layer 3x3
convolutional module to enhance the nonlinear representational
capacity and expand the effective receptive field, thereby improving
the extraction of complex color changes and texture features in the
browning region. In addition, a Input Adapter module is introduced
to the input of the network to perform edge-and texture-based
preprocessing on the original RGB images. This guides the model to
focus on key surface regions of the shiitake cultivation sticks, while
suppressing background interference (e.g., plastic bags, labels),
thereby improving the subsequent segmentation accuracy. As
illustrated in Figure 9, this module adopts a dual-branch parallel
structure. The lower branch directly processes the original input
using 3x3 convolution to preserve color information, and its
computational process is as follows (Equation 3):

( Wrg

Frgp = ReLU p*X + brgp) (3)

Specifically, W,,,, € R'®****? denotes the convolution kernel
weights, and the output feature map is Fyy, € R'*H*W The edge
detection branch enhances texture features by calculating the
difference between the original image and its 3 x 3 average
pooling result. The convolutional kernel weights in this branch

= R16><3x3><3

are denoting as Weq,. , and the output is a texture-

Avgpool

Input

X blur

10.3389/fpls.2025.1676977

enhanced feature map. After concatenating the outputs of the two
branches in the channel dimension, the 3x3 fusion convolution is
used for feature integration (Equation 4):

Ffuse = ReLU( quse ! [Frgb’ FedgE] + bfuse) (4)

The fusion convolution kernel is denoted as Wg, €
RO#32x333 " and the output enhanced feature map is Fg €
RO*H*W " All convolutional layers are followed by ReLU
activation function to introduce nonlinearity. This structural
design enables the network to decouple color and texture
information at the initial stage, providing more discriminative

feature representation for the segmentation of the browning region.

3.2.3.2 Decoder enhancement

After replacing the encoder with ResNet50, a hybrid
convolutional structure is further introduced in the decoder to
enhance the representational capacity of low-level semantic features
in skip connections and to mitigate potential semantic compression
during dimensionality reduction. In the fourth layer of the
upsampling module, grouping convolution (Group=2) is applied
to the concatenated feature maps with 2048 and 1024channels,
enabling separate modeling of color and texture channel groups to
improve the recognition of gradient features from light brown to
reddish brown.

Specifically, as shown in Figure 10A, grouped convolution
efficiently extracts distinct features and enhances the model’s
sensitivity to subtle browning process. In the middle and low-
level feature reconstruction stage, the DSC structure (Figure 10B) is
introduced. In this structure, depthwise convolution captures
the spatial distribution pattern of mycelial pigment secretion,
while 1x1 pointwise convolution enables efficient channel-wise
reorganization. This design significantly reduces the number of
while maintaining robustness to the complex surface texture of
shiitake sticks, such as cultivation substrate and plastic bag wrinkles
(Xu et al.,, 2024). Compared with the direct channel compression
following skip connections, the hybrid convolutional structure
further enhances the model’s discriminative ability and detail
retention without compromising computational efficiency.

Furthermore, to enhance model robustness and prevent
overfitting, this study introduces a spatial adaptive regularization
strategy before the output of the decoder’s final two feature map
layers. A 30% spatial Dropout is applied to randomly mask local
feature, suppress redundant response, and encourage the network

X edge

Output

Concat ReLU

X rgb

ReLU

FIGURE 9
Input adapter structure.
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FIGURE 10

(A) Depthwise separable convolution structure. (B) Group convolution structure (groups=2).

to focus on informative areas. Combined with hybrid convolution,
this design proves especially suitable for the mushroom stick
dataset, enhancing the model’s segmentation performance while
preventing overfitting.

3.2.3.3 Add attention mechanism spatial attention

To improve the decoder’s responsiveness to key regions, this
study incorporates a SA mechanism into the skip connections
during the decoding stage (Fu et al, 2019). As shown in
Figure 11, the SA module extracts muti-scale spatial information
from the browning regions by combining max polling and average
pooling, enabling it to captures salient features from different
perspectives. Then, the attention weight map is generated to
reweight the input features, allowing the model to focus on the
browning regions while suppressing background noise (e.g., surface
textures of the cultivation sticks). This design enhances the model’s
ability to accurately localize and segment the browning region.

This process can be described by the following equation (Woo

et al., 2018): Given the input feature map F € ROHXW,

max
pooling and average pooling are first performed along the
channel dimension to generate two spatial attention maps, as

defined in Equations 5, 6, respectively:

F,yg = AvgPool(F) € RV (5)

Fpar = MaxPool(F) € RPHW (6)

Next, the two spatial attention maps are concatenated in the
channel dimension to obtain the fused features, which is formulated

in Equation 7:
Fopr = Concat[Favngmax} € R W (7)
Then, spatial attention features are extracted through a 7x7
convolutional layer, as shown in Equations 8, 9:

M

spatial = G(f7><7(Fcut)) € RV (8)

F, = F®M:patial (9)

where [;]denotes channel-wise concatenation, f7X7 represents a
7x7 convolutional operation, o is the Sigmoid activation function,
and ® denotes element-wise multiplication. The output is the
feature map after fusing spatial attention.

In the task of browning region segmentation, such regions usually
exhibit local aggregation (e.g., brown pigment deposition) and distinct
color gradient variation. The spatial attention mechanism effectively
assists the model in recovering boundary details and regional shapes (Li
et al,, 2024). It adaptively enhances salient regions such as browning
edges while suppressing background noise, thereby improving
segmentation accuracy and boundary clarity.

3.3 Evaluation metrics

To comprehensively evaluate the performance of the model,
this study adopts a range of evaluation metrics covering both model
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FIGURE 11

Spatial Attention Structure.
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efficiency and prediction accuracy (Everingham et al., 2015).
Specifically, the evaluation includes a series of indicators
as following.

(1) In the detection task, Box Precision (BP) is defined as
follows (Equation 10):

TP

> 10
TP + FP (10)

Box Precision =

where true positives (TP) refer to the number of predicted boxes
correctly matched with ground truth boxes when the Intersection
over Union (IoU) is > 0.5. False positives (FP) represent the number
of incorrectly predicted boxes with IoU < 0.5, and false negatives
(FN) indicates the number of ground truth boxes that were not
correctly predicted.

(2) In the segmentation task, mask precision (MP) and recall are
calculated based on pixel level as follows (Equations 11, 12):

PNG
Mask Precision = | P | , (11)
PNG
Mask Recall = | G | , (12)

Where P is the set of pixels predicted by the model as positive
class, Gis the set of ground truth pixels labeled as positive class, and
P N G denotes the intersection of the predicted and the real.

(3) The IoU is a generalized spatial overlap metric for detection
and segmentation tasks and is calculated according to Equation 13:

PN G
|PUG|’

ToU = (13)

For multi-class segmentation tasks, the mean intersection over
Union (mIoU) is the arithmetic average IoU of each class, as defined
by Equation 14 (Long et al., 2015):

1 ¢
mloU = — YIoU,, (14)
c3

Where C denotes the total number of categories, and ”IoU ”; is
thelntersection over Union of the i-th category.

(4) Model efficiency is measured by the following four metrics:
the number of parameters (total trainable parameters, Params),
computation cost (floating-point operations per forward pass,
expressed in GFLOPs with an input resolution of 640x640),
model size (disk space used to store files, in MB) and inference
speed (frames per second, FPS, measured on an NVIDIA GeForce
RTX 3090).

4 Results
4.1 Experimental hyperparameter settings
For a clear comparison of model performance on shiitake stick

contour and browning region segmenting tasks, identical
hyperparameters were set. The details are presented in Table 1.
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TABLE 1 Hyperparameter settings.

Stick contour Browning region

QUEEIESIEEEE segment-value segment-value
Learning Rate 0.001 0.0001

Image Size 640x640 1024x448

Dropout 0.2 -

Optimizer AdamW AdamW

Batch Size 16 4

Epoch 100 100

Weight Decay 0.0005 -

4.2 YOLO results for mushroom stick
contour

4.2.1 Comparative experiment

To comprehensively evaluate the segmentation performance of
the lightweight improved VG-Stick-YOLOv11 model in shiitake
sticks contour extraction, as a test set comprising 376 images was
constructed. Two representative models with similar underlying
architectures—YOLOv11l and YOLOv8—were selected to
comparison. And two backbone lightweight architectures,
GhostNet and VanillaNet, were selected to reconstruct the YOLO
framework. In addition, through the vanillanet backbone
architecture, the performance difference between c3k and c2f was
compared in the data. The experimental results are shown
in Table 2.

As shown in Table 2, YOLOv11n-seg achieves a 1.4 percentage
point improvement in mask precision, reaching 98.3%, compared to
YOLOv8n-seg. Meanwhile, it reduces Params by 12.5% and
computational cost by 15%. This demonstrates superior detection
and segmentation performance on mushroom sticks while
maintaining a more compact model size, thereby verifying the
architectural advantages of YOLOv11.

In terms of lightweight backbone structure, VanillaNetBlock
outperforms GhostNet under both the YOLOv8 and YOLOvI1
frameworks. Taking the YOLOv8 structure as an example,
VanillaNetBlock improves box precision by 15.5 percentage
points while reducing Params by 38.7% and computational cost
by 23.3%. These results indicate that VanillaNetBlock achieves a
better balance between model compression and performance.

Among the two improved models constructed based on
VanillaNetBlock-v11, VG-Stick-YOLOv11lachieves a better trade-
off between lightweight and accuracy. Compared with VDs-
YOLOV11, it improves the box precision by 8.6% and increases
inference speed by 18.4%. Although its accuracy is slightly lower
than VanillaNetBlock-v11 (-1.6%), it achieves reductions of 11.8%
in Params, 9.0% in GFLOPs, and a 23.4% gain in speed. Moreover,
VG-Stick-YOLOV11 achieves the highest mIoU of 95.80% among
all models, indicating that its architectural optimizations are more
effective in preserving segmentation details of stick contours,
making it particularly suitable for real-time deployment within
shiitake stick production facilities.
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TABLE 2 Comparative evaluation of lightweighting improvements.

Model Params (M) = GFLOPs Model size (MB)  BP (%) FPS MP (%) MloU (%)
YOLOv8n-seg 3.2 120 6.6 96.9 96.82 96.9 96.11
YOLOVI In-seg 28 10.2 58 983 77.85 983 95.56
GhostNet-v8 31 116 6.4 82.8 97.32 82.8 95.52
GhostNet-v11 24 8.9 5.0 96.1 83.43 96.1 95.34
VanillaNetBlock-v8 1.9 8.9 41 983 100.62 983 95.29
VanillaNetBlock-vll | 1.7 7.8 3.7 97.6 86.60 97.6 95.78
VDs-YOLOV11 14 6.2 29 88.4 7237 88.4 95.28
VG-Stick-YOLOV11 15 7.1 35 96.0 85.64 96.0 95.80
4.2.2 Model visualization According to the visual analysis model segment under different

To better visualize the segmentation performance of different  background (as shown in Figure 13), false segment was observed
models under varying exposure settings, background colors, and  more frequently under the red background in both low-exposure
browning maturity stages, six representative sample images were (75 Ix-s) and overexposure (120 Ix-s) condition. Compared to the
selected (three with red backgrounds and three with green  green background, the red background is more lead to
backgrounds). Object detection and instance segmentation were  overexposure, which mislead to the recognition of samples in low
performed through eight models: YOLOv8n-seg, YOLOvlln-seg,  degree browning. Additionally, the reddish-brown appearance of
GhostNet-v8, GhostNet-v11, VanillaNetBlock-v8, VanillaNetBlock-11, ~ matured samples closely resembles the red background, making
VDs-YOLOV11, and VG-Stick-YOLOv11. The segmentation results are ~ accurate segmentation more difficult for most models. However, the
shown in Figure 12. VG-Stick-YOLOv11 model can accurately identify in the displayed

Model\Exposure 75Ix's (low-exposure) 95Ix's (normal-exposure) 120Ix's (over-exposure)
Mid-browning Mid-browning

Period Post-brownin, Post-browning Post-browning

Pre-browning

Original image

YOLOv8n-seg

YOLOv11n-seg

Ghostnet-v8

Ghostnet-v11

VanillaNetBlock-
vll

VDs-YOLOv11

VG-Stick-YOLOv11

FIGURE 12
Segmentation results of shiitake stick contours using different model. 0. Pre-browning 1. Mid-browning 2. Post-browning.
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map
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>
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FIGURE 13
Segmentation comparison of browning areas before and after algorithm tuning.

pictures with a confidence of 0.91. Moreover, under the green
background, the segmentation confidence of VG-Stick-YOLOv11
under both low-exposure and normal-exposure (95 Ix-s) conditions
was significantly higher than under over-exposure. Specifically, for
low-exposure samples, VG-Stick-YOLOv11 achieved the highest
confidence score of 0.97. Under normal exposure, YOLOv11n-seg
produced the highest confidence (0.98), followed closely by VG-
Stick-YOLOv11 with a score of 0.96.

4.3 Annotation results of shiitake stick
browning areas

To verify the effectiveness of semi-automatic labeling based on
machine learning, visualization results are shown in Figure 13, with
four randomly selected. After the introduction of image processing
and machine learning algorithms such as DoG, Membrane Projection
Transform, and Image Entropy, the generated labeling browning

TABLE 3 Ablation experiment comparison results.

Decoder
enhancement

Encoder
optimization

Experimental SA  Prec

group

areas results are smoother, with more continuous boundary contours
and significantly fewer background mislabels and noise interference
compared to those before algorithm adjustment.

4.4 Browning area segmentation model for
shiitake cultivation sticks

To verify the effectiveness of the improved method, Swin-UNet
(Cao et al,, 2022), Deeplabv3+, SelfReg-Unet (Zhu et al., 2024) and
U-Net are selected as comparison models in this study. Based on
this, five sets of ablation experiments were designed around the
three improvement points, and all experiments were conducted
under the same configuration and training parameters.

4.4.1 Ablation experiment
As shown in Table 3, the ablation experimental system evaluates
the effect of Encoder Optimization, Decoder Enhancement with SA

ision/(%) Recall/(%) F1score/(%) loU/(%) Params

ResNet50-Unet 85.78 88.36 87.0 8191 61.115329x10°
ResNet50-Unet 2 v 87.51 91.24 89.56 80.73 61.153953x10°
ResNet50-Unet 3 v 93.07 91.03 92.05 86.10 38.831393x10°
ResNet50-Unet 4 v v 92.33 93.41 92.86 86.12 38.885349x10°

RS-UNet v v v 94.35 92.48 93.37 88.56 38.923973x10°
Bold values indicate the best results across all models.
Frontiers in Plant Science 12 frontiersin.org
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mechanism on the performance of ResNet50_UNet. In the
ResNet50_UNet, the F1 score reaches 87.00%, IoU is 81.91%, and
Params is 61.12 M. After the introduction of Encoder Optimization
(ResNet50_UNet2), the Precision, Recall, and F1 scores are
improved, but the IoU slightly decreases to 80.73%.

Based on ResNet50_UNet, decoder enhancement (e.g., hybrid
convolution, regularization) significantly improves the model
performance and reduces the number of parameters by 36.3%,
which achieves a good balance between browning feature
expression and computational efficiency. The ResNet50_UNet 4
model, after fusing decoder enhancement with SA module, under
original encoder improves Recall, F1 score and IoU compared with
ResNet50_UNet3. This suggests that the SA mechanism enhances
the ability to capture boundary features by weighting different
regions in the feature map, particularly improving the recognition
of fuzzy or unevenly browning stick boundaries.

Finally, experimental group RS-UNet combines encoder
optimization, decoder enhancement and SA module to further
improve the precision, F1 score and IoU. The introduction of SA
mechanism effectively compensates for the loss of spatial information
caused by the change of feature map size, thereby optimizing the
segmentation effect. Compared with the ResNet50_UNet model, the
precision, recall, F1 score and IoU of experimental group 5 are
improved by 10.0%, 4.66%, 7.32% and 8.12%, respectively, while the
parameter volume is reduced by 36.3% to 38.92M.

Overall, the three improvement strategies achieve good
synergistic effect in the RS-UNet model, alleviate the conflict
between feature extraction, boundary identification and
computational cost. This result validates the efficiency and
practicality of the improved model under fuzzy boundary conditions.

4.4.2 Quantitative performance comparison of
segmentation models

Table 4 presents the performance comparison between the
proposed RS-UNet and several mainstream segmentation models
in the task of segmenting the browning region of shiitake cultivation
sticks. Based on U-Net achieves, RS-UNet achieves a better balance
between accuracy and model complexity, with the F1 score of
93.37% and the an IoU of 88.56%, both of which surpass the
other models’ performance. Moreover, RS-UNet maintains a
lightweight structure with only 38.92M parameters, presenting a
significant advantage over Swin-UNet and DeepLabv3+.

For comparison, Table 4 also includes the results of several
widely semantic segmentation models. Although Swin-UNet

TABLE 4 Comparison of model performances.

10.3389/fpls.2025.1676977

achieves a relatively high precision (88.23%), its recall is relatively
low (78.73%), indicating that it has leakage and fails to
comprehensively cover the browning region; DeepLabv3+ has
overall weaker performance, with an IoU of only 70.45%.U-Net,
as the baseline model, performs robust performance in the single-
class, pixel-level segmentation task, achieving an IoU of 80.89% and
Params of 24.76M, thereby achieves a certain balance between
accuracy and model size. In addition, SelfReg-Unet achieved F1
score and IoU of 90.79% and 84.52%, respectively, showing strong
performance, but its overall performance is still inferior to that of
RS-UNet.

Based on this, RS-UNet significantly improves the
performance of browning region segmentation while maintaining
a reasonable model size, confirming the efficacy of the proposed
enhancement strategies.

4.4.3 Visual analysis of boundary segmentation
for browning regions

To verify the effectiveness of the improved RS-UNet network in
extracting the boundary of browning regions in mushroom stick
images, a comparative analysis was conducted with other
segmentation models. As illustrated in Figure 14, most models
have the problem of incomplete identification of browning regions,
and some even incorrectly segment the surface regions of sticks.

Meanwhile, this results also validate the effectiveness of pre-
segmented stick contours in suppressing background interference.
By comparing the segmentation effect under red and green
backgrounds (as shown in Figure 12), the green background was
finally selected for the browning region segmentation. Further
analysis of the green background images under varying exposure
levels, revealed that under low exposure conditions (Figures 15A1,
15B1), all models generally achieved better recognition of the
browning regions.

Under overexposure conditions (Figures 15A1, 15B2), the color
features of the sticks post-browning period and the mid-browning
period tended to be similar, resulting in generally incomplete
segmentation by the models. Notably, Swin-UNet and Deeplabv3+
performed poor segmentation completeness, althoughDeeplabv3+
showed relatively higher accuracy in identifying hollow areas in the
browning region. In comparison, SelfReg-UNet achieved overall good
segmentation performance; however, it exhibited partial omission
errors under low-exposure conditions.

In contrast, under low-exposure conditions, the proportion of
browning regions segmented by each model increased significantly,

Model Precision/(%) Recall/(%) F1 score/(%) loU/(%) Params
Deeplabv3+ 75.60 76.57 76.0 70.45 58.234012x10°
U-Net 82.57 83.76 83.16 80.89 24.763905%10°
Swin-UNet 88.23 78.73 82.89 71.78 86.855739x10°
SelfReg-Unet 91,50 90.11 90.79 84.52 31.04150x10°
RS-UNet 94.35 92.48 93.37 88.56 38.923973x10°

Bold values indicate the best results across all models.
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FIGURE 14
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Pre-browning

75Ix-s (Low-exposure)

Segmentation effects of browning regions in mushroom sticks under different models

which was more closely with the labeled images. The RS-UNet
model, in particular, exhibited more accurate and well-defined edge
segmentation. In addition, compared with overexposure conditions,
low-exposure effectively enhances the recognition of the light-
colored regions during the mid-browning stage, thereby reducing
missed segmentation caused by the weakening of color features

under overexposure.

751x-s (Low-exposure) 120Ix-s (Over-exposure)

Mid-browning

Al

m sz 3 My ] -
“nda Ay '.\‘_mfﬁy '“"'\ -g
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FIGURE 15

4.5 Analysis of browning using hybrid
detection

illustrates the detection results of browning region
proportions on shiitake cultivation sticks. The selected images
continuous growing process captured from a fixed angle of the
same stick, based on RS-UNet visualization results, to display the

1201x-s (Over-exposure)

751x-s (Low-exposure)

Pre-browning

Browning region ratio and pigmentation intensity heat-maps of shiitake cultivation sticks. (A1, A2, B1, B2) represent the browning ratio maps. (al, a2,

bl, b2) represent the corresponding pigmentation intensity heat-maps
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dynamic transition from the mid-browning stage to the post-
browning stage, along with distribution of pigment depth. The
results showed that the browning region accounted for 46.29% in
the mid-browning sample Al, which increased to 80.76% in the
post-browning stage after 14 days of cultivation. Meanwhile, under
the overexposure conditions, the proportion of browning
(Figures 15A2, B2) was significantly lower than that under low-
exposure conditions. Furthermore, a comparison of the heatmap al
(corresponding to Al) and bl (corresponding to Bl) presents a
marked expansion of red and yellow regions (representing darker
pigmentation), accompanied by a reduction in green regions
(lighter pigmentation). This pattern suggests an overall increase
in surface pigment deposition and a continuous progression of
browning maturity. However, under overexposure (a2, b2), the
pigment intensity appeared noticeably lighter.

5 Discussion

5.1 Experimental evaluation of the two-
stage segmentation framework

In response to the questions of detecting the browning ratio in
mushroom sticks during factory-scale shiitake mushroom
cultivation, this study proposes a two-stage deep learning
framework. Through analysis the image characteristics during
cultivation of mushroom stick, we find several factors that affect
segmentation accuracy. These include the complex visual
background—comprising mycelium, culture substrate, and the
“yellow water” phenomenon—as well as interference caused by
surface bags, particularly in areas with knotting and accumulated
folds. Based on these findings, we establish a systematic data
processing pipeline and technical optimization scheme, to
improve model robustness and segmentation performance.

During the data acquisition phase, we controlled exposure level,
background color, and the timing of the browning stage.
Experimental results showed that using a green background
under low-exposure conditions effectively improved segmentation
robustness. In contrast, the red background led to a notable increase
in false detection rates, likely due to the high similarity in feature
space with the later reddish-brown surface mycelium, this finding
consistent with the results reported by Kamilaris and Prenafeta-
Boldu (2018) and provides important data collection specifications
for subsequent research.

Contour segmentation of mushroom sticks serves a dual
purpose in this study. First, by accurately extracting the main
region of the stick, it provides data basis for calculating the
proportion of the browning region. Second, it effectively
eliminates background interference. This step is particularly
critical, as stacked plastic bags often visual similarity to the light
browning region. Then the plastic film covering the surface, directly
labeling the original images can easily result in mislabeling the
browning region. Meanwhile, aiming to the demand for lightweight
deployment in practical factory environments (Yang et al., 2020),
the contour segmentation model was specifically optimized to
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improve performance maintaining accuracy. Experimental results
show that VG-Sticks-YOLOv11 improves 9.9% in FPS over the
YOLOvl1n-seg baseline, along with a 0.25% percentage point
increase in mIoU.

For browning region segmentation, an improved RS-UNet
framework was designed by integrating three improvement
modules. The hybrid convolution Params is 38.92M, while
improving all performance metrics, show its dual advantages in
lightweight and feature detection (Xu et al, 2024). Notably, the
introduction of regularization strategies could avoid potential over-
fitting issues commonly associated with lightweight design (Yang
etal,, 2020). Compared with U-Net’s symmetric structure, RS-UNet
enriches representation; unlike SwinUNet, it avoids the high cost of
Transformer modeling while capturing local texture variations; and
relative to DeepLabv3+, its spatial attention provides finer
localization of pigment spread. This balance between efficiency
and accuracy highlights the superiority of the proposed model.

5.2 Future work

It should be noted that the data collection in this study has certain
limitations. The current dataset includes only single-surface images of
mushroom sticks, while in actual production, the stick has three-
dimensional structure and the browning process may occur unevenly
distribution on all surfaces. So, this single-view acquisition method
may limit the comprehensive assessment of the overall browning
status, and potentially miss key features present on other surfaces. In
addition, additional optimization of the multi-angle imaging system
will be required when applied to actual production environment.

Future research will focus on improving data acquisition methods
in several aspects. These include the development of a multi-view
simultaneous imaging system to capture complete 360° surface
information of shiitake cultivation sticks, and the development of a
3D reconstruction algorithm (Wu et al., 2025) to enable more
comprehensive assessment of browning status. In addition, imaging
setup in the cultivation environment will be further optimized to
ensure the reliability of the inspection system in industrial settings.
These improvements will help to enhance the system’s accuracy and
practicality, thereby better meeting the demands of industrial-scale
shiitake mushroom cultivation.

6 Conclusion

Under the industrial-scale stick-making mode, the cultivation
process of shiitake cultivation sticks is suitable for automated
detection based on deep learning, especially in the monitoring of
maturity changes during browning phase. Although this research
direction holds high application value, relevant research remains
scarce. The complex surface structure of mushroom sticks poses
greater challenges for segmentation tasks, while lightweight
deployment for practical applications is also required. Thus, this
study proposes a two-stage collaborative framework that integrates
the lightweight VG-Stick-YOLOv11 for contour extraction and the
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improved RS-UNet for browning region segmentation, we achieve
both high efficiency and accuracy. The framework not only improves
segmentation robustness under complex visual backgrounds but also
provides reliable quantitative indicators of browning ratios, which are
essential for maturity assessment and production management.

Furthermore, the adoption of a machine-learning-assisted
annotation strategy accelerates dataset construction and enhances
the precision of ground-truth labeling, thereby supporting future
research in this field. While current work is limited to single-view
imaging, the findings demonstrate strong potential for real-world
deployment in automated monitoring systems for shiitake
cultivation. Future extensions toward multi-view imaging and 3D
reconstruction will further enhance comprehensiveness and
robustness. This study provides a feasible pathway for the
intelligent and standardized detection of browning stages in
shiitake cultivation sticks. Since the commercial value of the
sticks largely depends on their degree of browning, the proposed
method holds promise for offering valuable technical support in
quality evaluation and yield improvement under industrial
cultivation environments according to Equation 13.
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