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Introduction: Accurate identification of wheat leaf diseases is crucial for food
security, but existing prototype-based computer vision models struggle with the
scattered nature of lesions in field conditions and lack interpretability.
Methods: To address this, we propose the Contrastive Deformable Prototypical
part Network (CDPNet). The idea of CDPNet is to identify key image regions that
influence model decisions by computing similarity measures between
convolutional feature maps and latent prototype feature representations.
Moreover, to effectively separate the disease target area from its complex
background noise and enhance the discriminability of disease features,
CDPNet introduces the Cross Attention (CA) Mechanism. Additionally, to
address the scarcity of wheat leaf disease image data, we employ the Barlow
Twins self-supervised contrastive learning method to capture feature differences
across samples. This approach enhances the model's sensitivity to inter-class
distinctions and intra-class consistency, thereby improving its ability to
differentiate between various diseases.

Results: Experimental results demonstrate that the proposed CDPNet achieves
an average recognition accuracy of 95.83% on the wheat leaf disease dataset,
exceeding the baseline model by 2.35%.

Discussion: Compared to other models, this approach delivers superior
performance and provides clinically interpretable decision support for the
identification of real-world wheat diseases in field settings.

KEYWORDS

identification of wheat leaf diseases, interpretability, CDPNet, Cross Attention,
Barlow Twins

1 Introduction

Wheat is one of the three major global food crops, ranking among the highest in both
production volume and cultivated area. Its widespread cultivation and stable yields serve as
a critical safeguard for global food security. However, disease infestation throughout its
growth stages remains the primary challenge limiting stable and high yields (Bao et al,
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2021a). Statistics show that leaf diseases, such as leaf blight, mildew,
and rust, can lead to annual global wheat yield losses ranging from
10% to 30%. These diseases not only lead to direct yield reductions
but also trigger secondary hazards, such as grain quality
deterioration and mycotoxin contamination, causing substantial
losses in agricultural production (Simon et al, 2021). Therefore,
accurate identification of wheat diseases, particularly leaf diseases, is
critical for implementing effective control measures and ensuring
healthy growth to enhance yields (Nigam et al., 2023).

With advancements in modern technology, machine learning
and deep learning techniques are increasingly being applied to crop
pest and disease detection. These techniques have shown highly
promising results in achieving precise identification of crop pests
and diseases using computer vision technology (Deng et al., 2025).
Traditional machine learning techniques, such as Support Vector
Machines (SVM) (Rezvani and Wu, 2023), Random Forests (Gao
et al,, 2022), and Decision Trees (Alaniz et al.,, 2021), have been
widely employed in wheat disease detection. These techniques
employ various algorithms to extract different features from
images, including color, texture, and shape (Syazwani et al,
2022). The extracted features are subsequently used to train an
image classifier capable of accurately distinguishing between
healthy and diseased wheat. (KKhan et al., 2023a) developed an
automatic classification framework for wheat diseases based on
machine learning techniques, effectively identifying wheat brown
rust and yellow rust. (Bao et al., 2021b) presented an approach for
detecting leaf diseases and their severity based on E-MMC metric
learning, focusing on wheat mildew and stripe rust. However, in
machine learning-based algorithms for identifying crop leaf pests
and diseases, traditional image processing techniques or manually
designed feature-based classification and recognition algorithms are
commonly employed (Zhang et al., 2023). These algorithms are
typically limited to extracting low-level features and struggle to
capture deep and complex image information, failing to fully
capture the complexity of sample data, which affects the accuracy
of diagnosing localized regions of leaf diseases (Xu et al., 2024).

Recently, deep learning has made significant advancements in
the field of crop pest and disease identification, achieving
remarkable success in domains such as image processing (Chen
et al,, 2021b), natural language processing (Zeng and Xiong, 2022),
and speech recognition (Kim et al., 2024), owing to its powerful
representational capabilities (Zhang et al., 2024; Khan et al., 2023b).
Advanced deep learning techniques, such as convolutional neural
networks (CNNss) and attention mechanisms, have been applied to
crop pest and disease detection (Jia et al., 2023). These methods can
automatically, efficiently, and accurately extract target features from
large datasets of crop leaf pest and disease images, thereby replacing
traditional recognition approaches that rely on manual feature
extraction. To facilitate rapid and accurate identification of wheat
leaf diseases and reduce agricultural losses, (Jiang et al, 2021)
introduced an enhanced VGG16 model integrated with a multi-
task transfer learning strategy for detecting wheat leaf diseases.
They modified the VGG16 model and employed a pre-trained
model on the ImageNET platform for transfer learning and
interactive learning. Experimental results demonstrated that this
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method outperformed single-task models, the ResNet50 model, and
the DenseNet121 model. (Dong et al., 2024) presented the SC-
ConvNeXt model for wheat disease identification. This network
model utilizes ConvNeXt-T for feature extraction and incorporates
an enhanced CBAM mechanism to mitigate the effects of
interference from complex environmental factors. To improve the
accuracy of a single category of wheat disease identification, (Nigam
et al,, 2023) focused solely on wheat rust and fine-tuned the
EfficientNet B4 model for wheat disease recognition. (Chang et
al., 2024) proposed the Imp-DenseNet model for identifying the
three types of wheat rust, aiming to facilitate wheat rust
identification in field environments. (Hassan et al., 2024)
advanced the UNET detection model for yellow rust disease
detection in wheat, achieving high classification accuracy for
wheat diseases.

Deep learning constructs multi-layer neural network models
that enable advanced data representation and understanding
through hierarchical feature extraction and abstraction. However,
as these multi-layer networks become deeper, each layer introduces
numerous parameters and nonlinear activation functions (Chang,
2025). Although such architectures excel in handling complex data
and tasks, their high complexity and nonlinearity lead to low
transparency and poor interpretability (Goethals et al., 2022).
Users often struggle to intuitively understand the logical basis
behind model decisions, casting doubt on their credibility and
perceiving deep models as data-driven “black box” systems
(Marcus and Teuwen, 2024). The decision-making process in
such models inherently involves high-dimensional nonlinear
mappings, with internal reasoning mechanisms that lack explicit
interpretability. This fundamentally complicates result attribution
and causal inference. In agricultural applications, such as leaf
disease identification, researchers have proposed various
interpretability methods. These techniques such as feature
visualization, attention mechanism analysis, and decision rule
extraction (Hernandez et al,, 2024) aim to unveil the internal
reasoning pathways of deep models during disease diagnosis,
thereby enhancing model transparency and credibility.

However, most existing intrinsically interpretable models rely
on spatially rigid prototypes, which are unable to explicitly explain
the geometric changes in disease patterns and complex background
feature information. This limitation restricts the provision of
detailed explanations and improved recognition accuracy (Ma
et al., 2024). Therefore, in this work, we propose an interpretable
wheat leaf disease identification model (CDPNet) based on a
deformable prototypical part network and contrastive learning. In
CDPNet, each prototype comprises multiple prototypical parts that
adaptively adjust their spatial positions relative to one another
depending on the input image. This allows each prototype to
detect object features with greater tolerance of spatial
transformations, since the parts within a prototype can move. To
identify wheat leaf disease types and uncover the infected regions
influencing model decisions, we first employ Deformable
ProtoPNet (Donnelly et al, 2022) to calculate the similarity
values relating to the convolutional feature maps of the image
and the latent prototype features. Generally, a higher similarity
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score indicates a greater influence of that region on the model’s
decision. Secondly, to effectively distinguish the target regions of
wheat leaf diseases from complex backgrounds and enhance the
model’s feature extraction capabilities, we introduce the CA
Mechanism (Lin et al., 2022; Chen et al., 2021a). This mechanism
guides the model to focus on spatial contextual features. By
amplifying differences between disease areas and surrounding
backgrounds, it significantly enhances the discriminative power of
disease features, thereby improving recognition performance in
complex scenarios. Finally, in practical applications, some wheat
leaf diseases exhibit low incidence rates and high image acquisition
costs, leading to limited training data. To address this challenge, we
introduce the self-supervised contrastive learning strategy Barlow
Twins (Zbontar et al., 2021). This approach maximizes similarity
between different transformed versions of the same image while
minimizing similarity between distinct images, thereby enabling
deep exploration of discriminative features across wheat leaf disease
instances. In summary, the main contributions of this work are
summarized as follows:

* The deformable prototype network in CDPNet is designed
to adaptively adjust relative spatial positions through
flexible and dynamic prototype learning, thereby
providing clinical interpretability for the identification of
wheat leaf diseases.

*  We propose a novel interpretable model for wheat leaf
disease identification—the Contrastive Deformable
Prototypical part Network (CDPNet). This model is
capable of discovering key regions in wheat leaf disease
images that influence the model’s decisions. Additionally, it
effectively distinguishes between disease target regions and
complex backgrounds, and deeply mines latent feature
information among samples, offering a more
comprehensive and in-depth analytical perspective for
disease identification.

*  We have created a real-world wheat leaf disease dataset to
facilitate further research on disease identification in
practical field environments.

* Through extensive experimentation using the wheat leaf
disease dataset, as well as other public crop disease datasets,
the results demonstrate that CDPNet achieves superior
identification performance, outperforming classical
models, and validating its generalization ability
and interpretability.

2 Related work

2.1 Leaf disease identification based on
machine learning

The recognition of crop leaf diseases has long been a central

research focus within the field of agricultural engineering
(Thakur et al,, 2022). The application of modern information
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technologies for diagnosing and identifying crop leaf diseases
provides an advanced, systematic, and effective approach
(Balakrishna and Rao, 2019). Research on leaf disease identification
methods can be broadly categorized into two primary approaches:
traditional machine learning techniques and contemporary deep
learning approaches.

Machine learning is utilized to automatically analyze large-scale
datasets, uncover latent patterns, and apply these insights to
subsequent analysis and prediction tasks. With the advancement
of image processing technologies, machine learning has been
extensively applied to leaf disease identification (Thakur et al,
2022). Researchers employ feature extraction and segmentation
techniques to capture key disease characteristics, which are
subsequently classified using machine learning algorithms. Under
conditions of limited computational resources, machine learning
initially emerged as the primary research tool, producing notable
results. (Balakrishna and Rao (2019) conducted experiments on
tomato leaf diseases, initially categorizing tomato leaves into
healthy and diseased classes using the K-Nearest Neighbors
(KNN) method, followed by effective sub-classification of diseased
leaves using a combination of Probabilistic Neural Networks (PNN)
and KNN. (Pattnaik and Parvathi, 2021) utilized the Histogram of
Oriented Gradients (HOG) to characterize features extracted from
segmented images, which were then input into a Support Vector
Machine (SVM) for classification. Due to the relatively low
classification difficulty, their test accuracy reached 97%. (Javidan
et al, 2023) utilized K-means clustering technology to locate
infected regions in images and subsequently accomplished grape
leaf disease classification through SVM. However, machine
learning-based approaches to leaf disease recognition, while
capable of distinguishing certain disease features and generating
classification results, continue to exhibit several limitations (Wani
et al.,, 2022): (1) Feature selection limitations: Traditional machine
learning approaches require the manual selection of features to
describe pest or disease images. However, such features often
capture only partial image information. Moreover, the variability
of pests and diseases across growing environments renders selected
features insufficient to comprehensively represent all relevant
characteristics. (2) Feature extraction challenges: Machine
learning cannot automatically extract features, necessitating
manual extraction, which is also highly sensitive to image noise.
(3) Limited generalizability and recognition scope: Trained models
can typically recognize only the specific crop pests and diseases on
which they were trained, making it difficult to extend recognition
capabilities to other disease types. (4) Narrow application scope:
Constrained by disease-specific characteristics, these methods are
generally limited to learning and classifying features of particular
crops in specific regions, which restricts their applicability across a
broader range of species.

Compared with traditional machine learning methods, deep
learning addresses inefficiencies and low accuracy arising from
manually designed features in complex environments. In recent
years, alongside the ascent of deep learning advancements, CNNs
and Transformers have undergone rapid development (KKhan et al.,
2023a). The convolutional layers of CNNs utilize a local receptive
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field design, in which each neuron is connected only to a restricted
region of the input image (Quan et al., 2022). This design is well-
suited to image data, since local information (e.g., edges, textures)
plays a critical role in object recognition (Xu et al., 2024). (Bao et al.,
2022) presented an enhanced recognition network called AX-
RetinaNet. This model employs an X-module enhanced multi-
scale feature integration and channel attention for feature
extraction, thereby enabling effective detection and classification
of tea diseases, with an identification accuracy reaching 96.75%. To
address the issue of abnormal recognition caused by various image
distortions in the healthy and diseased parts of coffee plant leaves,
(Nawaz et al., 2024) suggested a CoffeeNet model. The model under
consideration makes use of a ResNet-50 framework and an
attention mechanism for the purpose of extracting features of
diverse coffee leaf diseases. To increase the accuracy of classifying
plant leaf diseases while keeping the model lightweight, (Zhao et al.,
2024) developed a neural architecture termed CAST-Net. This
lightweight network model is based on a combination of
convolution and self-attention. It further employs a self-
distillation method to enhance the precision of leaf disease
classification while reducing model parameters and failure cases.
The findings indicate that, in comparison with existing models,
CAST-Net attains enhanced precision, reduced parameter
complexity, decreased training time, and lower computational
complexity. The Transformer architecture captures global
dependencies among elements of input sequences (Khan et al,
2022b). In image classification, the self-attention mechanism allows
the model to incorporate information from all pixels or features
when processing each individual one (Xu et al., 2021). This enables
Transformers to more effectively capture the overall structure and
contextual information of images, providing advantages for
classification tasks that rely on global information. (Borhani et al.,
2022) proposed a lightweight model based on Vision Transformer
for plant disease classification. To better 174 leverage the strengths
of both CNNs and Transformers, (Alshammari et al., 2022) utilized
a deep ensemble learning strategy to combine a CNN with a vision
transformer model for the purpose of classifying Olive Diseases.
(Thakur et al., 2023) also proposed a composite model that
integrates the advantages of ViT with the innate feature
extraction capabilities of CNNS for plant leaf disease recognition.

2.2 Interpretable leaf disease classification
using deep neural networks

Image classification, a fundamental task in computer vision,
focuses on achieving accurate multi-class categorization based on
image content while minimizing error. Machine learning initially
demonstrated significant potential in image classification, and
within this domain, deep learning gradually emerged as the more
suitable approach. CNNs, characterized by local connectivity and
translation invariance, align well with the inherent properties of
image data. Despite continual improvements in classification
accuracy, researchers have identified persistent challenges in deep
learning for image tasks, including adversarial robustness,
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generalization, and fairness. Interpretability research provides a
critical pathway to address the “black box” nature of deep
learning (Zhang et al., 2025). Its objective is to elucidate model
decision-making mechanisms through human-understandable
methods, thereby enhancing credibility and robustness. From a
modeling perspective, Interpretability research can be broadly
categorized into two types: post-hoc interpretation methods and
intrinsically interpretable models.

1. Post-hoc interpretation methods. These primarily target
black-box models, analyzing them through various
algorithms such as visualization analysis, importance
analysis, etc., to infer the model’s decision-making
procedure. Examples include Feature Attribution,
Permutation Importance, and Class Activation Mapping
(CAM). For instance, (Mishra et al., 2024) proposed an
image-based interpretable leaf disease detection framework
(I-LDD) that utilizes Local Interpretable Model-agnostic
Explanations (LIME) to obtain explanations for model
classifications. Similarly, (Raval and Chaki, 2024)
employed LIME technology, taking leaf diseases as an
example, and (Chakrabarty et al,, 2024) used interpretable
artificial intelligence to visualize the decision-making
processes of their model, focusing on rice leaf diseases.
To offer a more thorough understanding of the model’s
interpretability, (Hernandez et al., 2024) adopted the Grad-
CAM method to visualize the infected regions of grape
leaves, explaining the neural network’s attribution to leaf
disease detection. (Wei et al., 2022) presented the ResNet-
CBAM model for interpretable leaf disease classification
and compared three visualization methods: SmoothGrad,
LIME, and GradCAM, to conduct post-hoc interpretability
of the model. Meanwhile, (Dai et al., 2024) employed t-SNE
and SHAP visualization methods to explain whether the
model focuses on plant pest and disease characteristics.

2. Intrinsically interpretable models. Intrinsically
interpretable models require us to select human-
understandable features and adopt models with good
interpretability during the problem-solving process (Jiang
et al., 2025). This objective is realized through the
construction of models that are self-explanatory and
which incorporate interpretability directly into their
structures. Such models include decision trees, rule-based
models, linear models, and attention models. Our model
belongs to the category of intrinsically interpretable
models, which integrate interpretability into the specific
model structure, enabling the model itself to possess
interpretability. The model outputs not only the results
but also the reasons behind those results, thereby ensuring
the reliability and safety of the interpretations. CDPNet
discovers key regions influencing model decisions and
predicts pest and disease categories by computing
similarity of the convolutional feature maps of images to
the latent prototype features, thus explaining the model’s
decision-making process and attribution. Through flexible
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and dynamic prototype learning, it achieves accurate
identification of wheat leaf diseases in natural field
environments along with rich interpretability.

3 Materials and methods

3.1 Dataset acquisition and image
preprocessing

This study utilized a hybrid data source to construct a wheat leaf
disease dataset. The self-constructed dataset was compiled by the
research team under expert guidance through field photography
conducted in Fengyang County, Chuzhou City, Anhui Province,
from April 15 to May 15, 2024. Fieldwork was conducted daily
between 8:00 AM and 6:00 PM. Images were captured using a Vivo
Y70s smartphone, covering six common wheat leaf diseases: Brown
Rust, Healthy, Leaf Blight, Mildew, Septoria, and Yellow Rust. A
total of 1,340 valid images were obtained. Figure 1 illustrates images
of wheat leaf diseases from various categories.

To enhance the dataset, this study also incorporated wheat leaf
disease images from the Wheat Plant Diseases dataset on Kaggle.
This dataset is designed to enable researchers and developers to
build robust machine learning models for classifying various wheat

(d)

FIGURE 1

10.3389/fpls.2025.1676798

plant diseases. It provides a collection of high resolution images
depicting real-world wheat diseases without relying on artificial
augmentation techniques. Data filtering was performed on this
dataset to remove duplicate and misclassified images from the
original public dataset. This process resulted in the creation of a
wheat leaf disease dataset (WL-Disease) comprising six categories
and a total of 6,513 images. The specific categories and their
corresponding image counts are detailed in Table 1.

In the WL-Disease dataset, all training images are labeled
without annotations on specific image regions. The dataset was
randomly divided into training and testing sets at an 80:20 ratio to
ensure the validity and fairness of model training and validation.

To facilitate model training, all disease images were uniformly
resized to 500 x 500 pixels and converted to JPG format. Data
augmentation techniques enhance the effectiveness of neural
networks by increasing both the heterogeneity and volume of
training data, thereby improving generalization capabilities.
Throughout the experiment, due to the limited number of samples
per class in the dataset, we applied 10-fold offline data augmentation
to mitigate overfitting to specific subsets and improve the model’s
stability and accuracy in practical applications. This process included
random rotation, 45-degree skew, 10-degree shear operations, 5-
strength distortion processing, 50% probability of left-right flip, and
color enhancement to expand the training set. Figure 2 shows the

comparison before and after image augmentation.

Samples of wheat leaf disease. (a) Brown Rust, (b) Healthy, (c) Leaf Blight, (d) Mildew, (e) Septoria, (f) Yellow Rust.
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TABLE 1 Detailed descriptions of the various types of samples within the
WL-disease dataset.

Category Number Train set Test set
Brown Rust 1054 843 211
Healthy 812 645 167
Leaf Blight 1008 806 202
Mildew 1328 1062 266
Septoria 916 732 184
Yellow Rust 1395 1116 279
Total number 6513 5204 1309

3.2 Problem formulation

Currently, the task of wheat leaf disease identification aims to
assign the correct label from a predefined set of categories to an
image, achieving precise classification and recognition. A common
research approach involves utilizing deep learning algorithms to
extract features of wheat leaf diseases and perform recognition. In
contrast, this study adopts a methodology that incorporates a
deformable prototypical part network with contrastive learning,
aiming to achieve interpretable and accurate recognition of wheat
leaf diseases. Given a leaf disease image x, its corresponding
category label is y € {0,...,¢,...,C}. The model learns a mapping
function F:F(x) — y capable of predicting the category to which
the given image x belongs, where y is the probability that the wheat
leaf disease image x belongs to its corresponding category. The
objective of this research is to optimize the mapping function F to
maximize the predicted probability. Meanwhile, the method

10.3389/fpls.2025.1676798

automatically identifies the affected regions of wheat leaf diseases,
providing interpretable evidence for the final classification results.

3.3 CDPNet network architecture

In this section, we provide a detailed description of the
architecture of the proposed interpretable wheat leaf disease
recognition model based on a deformable prototypical part
network and contrastive learning, which is visualized in Figure 3.
CDPNet primarily consists of convolutional layers f, a deformable
prototype layer G, and a fully connected last layer /. Given an input
image x € X, the convolutional layers f first extract a meaningful
image representation Z = f(x) € RIT*W*C (with height H, width
W, and number of channels C). Second, for each prototype, the
deformable prototype layer G computes a similarity matrix My, €
R™*W between the convolutional feature maps Z and a learnable
latent prototype feature representation P & RV1*C (the t-th
prototype of class ¢). The similarity maps contain positive scores
indicating where and to what extent prototypes are present in an
image. CDPNet uses the highest value of the similarity map as the

final similarity score between P(“*)

and x, indicating how strong the
prototype P! is present in x. Finally, the similarity scores from the
deformable prototype layer G are aggregated in the fully connected
layer h to generate the final classification logits. These logits are
normalized using the softmax function to obtain the predicted
probability distribution of disease categories. In addition, to
facilitate the visualization of prototypes as specific prototypical
parts of a sample, the learned prototypes are substituted with the

closest feature representation from authentic training images,

thereby ensuring interpretability.

FIGURE 2

Samples of image augmentation of WL-Disease dataset. (a) Original image, (b) Left-right flip, (c) Distortion, (d) Color enhancement.

Frontiers in Plant Science

06

frontiersin.org


https://doi.org/10.3389/fpls.2025.1676798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zeng et al.

10.3389/fpls.2025.1676798

Normalize ~
z Z

Convolutional Layers f

l K !
| P — 7
: : : . yers i
. ! P! Layers 6 |
Leaf Blight <~+—| DR B — I
! I /Al I
: N [ l(l/l/ !
| | |
! P! |
° | I °
. ! Similarity | | ! . Oaf(f;s)ts |
o | scores : | L4 :
! P! I
: I I
| o I | :
| I
Mildew < <—i—:— )7 R i
: I Lyr : { |: .6(.6’ ] :
| — :
: I I
I |l |
Class Labels ! Fully Connectted Layer 4 I :_ |
FIGURE 3

Visualization of the architecture of the proposed CDPNet.

3.3.1 Convolutional layer

The role of the convolutional layers extract information from
the input image, which is referred to as image features. These
features are manifested through combinations or individual
contributions of each pixel within the image, such as texture and
color characteristics. Through the convolutional layers, local
regional feature extraction of wheat leaf disease images can be
achieved, generating the original feature representation of the
image. Specifically, the convolutional layers f borrow the
convolutional layers from classical models (such as VGG19,
ResNet152, DenseNetl61, etc.), and then two additional 1 x 1
convolutional layers intended to modify the number of channels
present in the top-level feature maps. Meanwhile, we use ReLU as
the activation function for all convolutional layers, except for the
last layer, which employs the sigmoid activation function. Equation
1 converts the input image x into a feature vector.

[Z1s...sZiy ...» 2] = Conv2D(x) € RY*H*C (1)

To effectively distinguish the target regions of wheat leaf
diseases from complex backgrounds, our core method is to
employ a CA mechanism, as shown in Figure 4. CA mechanism
enables the model to dynamically construct cross-modal feature
correlation matrices, allowing it to adaptively focus on key
discriminative features such as lesion textures and color
distortions. It also facilitates a more comprehensive integration of
contextual information from multiple sources, consequently
boosting both the precision and the generalization performance of
the recognition task. Firstly, the correlation scores indicating the
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similarity between the query and keys are determined by calculating
the dot product of the query Q and keys K. Secondly, these
similarities are transformed into a probability distribution using
the softmax function, representing the attention weights of the
query with respect to each key. These attention weights are then
applied to the values V, ultimately resulting in the output vector.
Mathematically, the formula for cross-attention is presented in
Equation 2:

Nz

where, QK" represents the dot product of the query and the

: QK’
CrossAttention(Q, K, V) = softmax (2)

key, indicating the similarity between the two sequences at different
positions; dy is the dimension of the key, which serves as a scaling
factor to prevent excessively large numerical values.

3.3.2 Deformable prototype layer

The fundamental idea behind the deformable prototype layer G
is to find highly interpretable (i.e., representative) deformable
prototypes by calculating the similarity scores s between the
convolutional feature maps Z of a test image x and the prototypes
P. Each part of these prototypes corresponds to key regions that
influence the model’s decision-making processes, and these regions
could be visualized. For a CDPNet, the L*length of all prototype
parts P! of all deformable prototypes P! is the same.
Furthermore, at the spatial location (a,b) of each image feature
tensor Z, the corresponding vectors also possess are of equal L*-
length, as shown in Equations 3 and 4.
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Schematic representation of cross attention mechanism.
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Then, the formula for calculating the similarity of deformable
prototypes P and the image feature tensor Z defined as shown in
Equation 5.

@) = SZP - Barmbin (5)
mon

In order to facilitate the deformation of a deformable prototype
P©! it has been proposed that offsets & (2D vector) be introduced,
thereby enabling each constituent part P, of the prototype to
migrate in relation to the spatial location (a, b) with respect to the
image feature tensor Z when the prototype is applied.
Mathematically, the formula for calculating the similarity of the

prototype is defined as shown in Equation 6.
G)y) = TSP  Basmen,bonea, ©
m n

The maximum similarity with respect to an arbitrary set of
positions is given by the following definition.

G(2) = maxG(2),y) )

Figure 5 shows the operational process of the deformable
prototypes. The input Z undergoes processing by the offset
prediction function 6, resulting in (b) a grid of offset values.
Subsequently, these offsets are utilized to (c) modify the spatial
positions of each prototypical part. After this adjustment, the
updated prototypical parts are (d) aligned with the input to (e)
compute the prototype similarity in accordance with Equation 6.
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3.3.3 Fully connected layer

The fully connected layer integrates and abstracts the features
learned from the preceding layers to facilitate the execution of
classification or regression tasks. It performs a linear transformation
on the input data using a weight matrix and a bias vector. In the
CDPNet model, the fully connected layer multiplies the similarity
scores generated by the deformable prototype layer by the weight
matrix W in the fully connected layer. The result is then feeds the
result into the Softmax layer for normalization. Finally, it generates
a prediction result for the given leaf disease and pest image. The
prediction of the leaf disease image at this point is calculated as
shown in Equation 8.

y = Softmax(R Wy, +b) (8)

where, W), € R¥¢ is the parameter matrix, represents the
image features, b is the bias term, and ¥ = [J¢,....V e --»V ) Ve
denotes the predicted probability that the input image belongs to
the c-th class. Therefore, given an image x, a novel form of cross-
entropy is employed: the margin-subtracted cross-entropy. The
formula is shown in Equation 9.

C, (0 — T
L o (S
Cee(0) = 3~ log (@) o 7y (@)
=1 Seexp (X, W, G 3)

where, 0 represents the parameters that need to be learned, and

W;(C’t)’cl) denotes the connections between the deformable
prototypes P and the last layer responsible for computing
similarity with the ¢’ classes.

3.3.4 Model learning
As deep learning progresses, approaches for identifying wheat
leaf diseases harness deep networks to automatically learn features;
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CPNet is applied to the latent representation of the Leaf Blight. (a) Put the input features into the offset prediction function to generate (b) an offset

field. Then, (c) adjust the spatial position of each prototypical part using these offsets, (d) compare the adjusted parts with the input, and (e) calculate
the prototype similarity.

however, these methods heavily depend on the availability of a
substantial volume of training data. To address the limited
availability of wheat image data, we have introduced a self-

supervised contrastive learning approach to tackle the challenge

of recognition with limited samples. Specifically, Figure 6 shows
that we used the Barlow Twins in contrastive learning to conduct
feature learning between samples. Barlow Twins represents a self-

supervised learning approach for representation learning, stemming
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FIGURE 6
Schematic representation of Barlow Twins.
Frontiers in Plant Science 09

frontiersin.org


https://doi.org/10.3389/fpls.2025.1676798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zeng et al.

from the groundbreaking ideas of the JPT team. Its core lies in
minimizing the covariance distance between twin networks,
enabling their learned features to be as independent as possible
while maintaining similarity. This approach not only enhances the
efficiency of the model but also achieves favorable pre-training
results even with scarce data.

Barlow Twins is a self-supervised learning method rooted in
information theory, with the objective of reducing redundancy
among neurons. This approach mandates that neurons remain
invariant to data augmentations while being independent of one
another. During actual training, the parameters of the neural
network are adjusted through backpropagation to maximize the
diagonal elements of the cross-correlation matrix and minimize the
off-diagonal elements — approaching an identity matrix — thereby
achieving the aforementioned goal. It is calculated as shown in
Equation 10.

(10)

EBT - 2(1 Cu)2 + )"EE

i j%l

where A is a positive constant trading off the importance of the
first and second terms of the loss, >';(1
(diagonal or identity term) designed to direct neurons to produce

- C;;)* is an invariance term

the same output under different augmentations, >, LChis a
redundancy reduction term (off-diagonal term) intended to make
each neuron produce a different output.

20202

N sz 2, \/Eh( L)

where, b denotes the index of the batch, while i and j represent

(11)

the feature dimensions of the network’s output (i.e., they
correspond to the values in the i-th and j-th dimensions of two
vectors within the current batch). Cj; is the element value at the i-th
row and j-th column of matrix C. It is equal to the sum of the
products of the i-th dimension of the augmented feature vector Z*
and the j-th dimension of the augmented feature vector Z® for
different pairs within the batch. The summation is primarily carried
out over the current batch size. Matrix C is a square matrix, and its
dimensions correspond to the output dimension of the network
(assuming each embedding dimension output by the network is D,
then the dimensions of square matrix C are D x D). The values of
matrix C range between -1 (indicating perfect negative correlation)
and 1 (indicating perfect positive correlation).

In order to discover a meaningful feature space in which the
image features belonging to class ¢ are found to cluster around the
prototypes of the same class while being segregated from features of
other classes within a hypersphere, CDPNet employs Stochastic
Gradient Descent (SGD) to perform optimization on the features of
the convolutional layer f and the deformable prototype layer G. In
this process, SGD incorporates both cluster and separation losses
and adjusts the angular space. These two losses are defined as shown
in Equations 11 and 12.
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Caw = - max g(z")" (12)
clst ng(”) p y(’)
(c t)
1
Ssep = Ep(cl;)llci},(x) (13)

where, N represents the total number of inputs, Z @ denotes the
normalized and scaled image feature tensor of input i at each spatial
location, y(i) is the label corresponding to input x®, and all other
values are consistent with the definitions provided in the
preceding context.

Although the subtraction margin encourages separation among
categories, it does not promote diversity among intra-class prototypes
or within prototype parts within a prototype. Specifically,
deformations without further regularization often lead to
redundancy among prototype parts within a prototype. To mitigate
this issue, we prevent this behavior by introducing an orthogonality
loss among prototype parts. Its formula is shown in Equation 14.

Ourtho = EHP(c)P(c)T _ 2D szr (14)
c

where L is the number of deformable prototypes in class ¢, pL
represents the total number of prototype parts across all prototypes
in class ¢, I is the pL x pL identity matrix, and PO € RPLXd g 5
matrix where each prototype part of every prototype in class c is
arranged as a row.

Finally, the overall loss function during the CDPNet training
process is formulated as shown in Equation 15.

Lioar = Cce(e) + }*lcclxt + l’zssep + ASOortho + A4£BT (15)

4 Results and analysis
4.1 Experimental setup
In this study, the PyTorch framework was utilized. PyTorch is

an open-source library designed for deep learning tasks, offering a
concise, elegant, efficient, and rapid framework that serves as a deep

TABLE 2 Test system environment configuration.

System environment Configuration

Operating system Ubuntu 18.04

GPU V100-32GB(32GB)
CPU 10 vCPU Intel Xeon Processor (Skylake, IBRS)
Pytorch PyTorch 1.8.0
Python Python 3.8
Batch size 32
Epoch 50
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learning research platform providing maximum flexibility and
speed. The experimental environment and parameters used in
this study are detailed in Table 2.

4.2 Evaluation metrics

We validated the model’s effectiveness on the test set using
standard classification performance metrics. These metrics include
accuracy, precision, recall, F1-score, and AUC. Their mathematical
expressions are as shown in Equations 16-21. All samples were
categorized into four groups based on the differences between the
true and predicted classes: true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN).

TP + TN

A - 16
U = Ip TN + FP + EN (16)
Precision = Ll (17)
recision = TP + FP

TABLE 3 Comparison of experimental results of different models on
wheat leaf disease dataset.

[\[o} Data augmentation methods Accuracy (%)
1 Resize(224,224) 92.25
2 Resize(224,224)+skew 92.56
3 Resize(224,224)+skew+shear 93.36
4 Resize(224,224)+skew+shear+distortion 93.82

Resize(224,224)+skew+shear+distortion-+left-
5 94.76

right flipping

Resize(224,224)+skew+shear+distortion-+left-
6 . o 95.83
right flipping+color enhancement

10.3389/fpls.2025.1676798

TP
Recall = ——— 18
= TIp L EN (18)
Fl - Score = 2 Precision * Recall (19)
_ I Wilshtdadttitiiaatisd
Precision + Recall
TP
TPR= ——— 20
TP + FN (20)
rr=—_ " (1)
" FP+ 1N

In addition, we employed the confusion matrix and Receiver
Operating Characteristic (ROC) curve to evaluate the model’s
performance. The confusion matrix and ROC curve indicate the
model’s credibility. The higher the ROC curve is positioned in the
top-left corner, the better the model’s performance. Meanwhile, we
utilized CDPNet to visualize the prototype image classification
activation maps and similarities, aiming to uncover the critical
factors underlying the model’s classification decisions and
assist researchers in understanding the basis for the model’s
final classifications.

4.3 Experimental results and comparative
analysis

4.3.1 Performance evaluation of different data
augmentation methods

Table 3 shows the results of experiments conducted using the
CDPNet-DenseNet161 model with various data augmentation
methods. Six distinct data augmentation schemes were generated
by combining different techniques. Scheme 1 involved inputting the
original image into the model after normalization (resizing to

TABLE 4 Comparison of experimental results of different models on wheat leaf disease dataset.

Model Accuracy (%) Precision (%) Recall (%) F1 score (%) AUC (%)

VGG19 90.38 90.67 90.89 90.50 97.69
ResNet152 91.61 91.36 91.08 91.03 97.92
DenseNet161 92.18 91.86 91.63 91.76 98.16
ProtoPNet-VGG19 91.85 91.38 91.45 91.35 98.02
ProtoPNe-ResNet152 92.16 91.82 91.52 91.66 98.08
ProtoPNet-DenseNet161 92.81 92.45 92.63 92.53 98.33
Deformer ProtoPNet-VGG19 92.15 91.83 91.52 91.65 98.12
Deformer ProtoPNe-ResNet152 92.63 92.27 92.11 92.19 98.25
Deformer ProtoPNet-DenseNet161 93.48 93.13 92.89 92.99 98.52
CDPNet-VGG19 94.22¢ 93.72¢ 93.97° 93.77° 99.16°
CDPNet-ResNet152 94.89¢ 94.21° 94.47¢ 94.29¢ 99.38°
CDPNet-DenseNet161 95.83¢ 95.32¢ 95.07° 95.13¢ 99.45°

“Denotes the test of statistical significance p < 0.001.
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FIGURE 7

Comparison of the variation curves for loss values and accuracy across different models. (a) Accuracy curve, (b) Loss curve.

224x224x3), resulting in a classification accuracy of 92.25%.
Subsequently, the introduction of various data augmentation
methods, including skew, shear, distortion, left-right flipping, and
color enhancement, to Scheme 1 led to an improvement in model
accuracy. Among the augmentation techniques tested, color
enhancement produced the most favorable results. The results
indicate that Scheme 6 achieved the highest accuracy (95.83%),
establishing it as the optimal data augmentation scheme.

4.3.2 Model performance comparisons

To validate the classification performance of the proposed
CDPNet model for wheat leaf diseases, comparative experiments
were conducted under identical conditions using the WL-Disease
dataset, comparing CDPNet with VGG19, ResNetl52,
DenseNet161, ProtoPNet, and Deformer ProtoPNet models. The
comparative results for each model are shown in Table 4. Figure 7
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FIGURE 8

Impact of CDPNet-DenseNetl61 to the number of prototypes
selected on accuracy.
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shows the loss value and accuracy comparison curves during the
training phase for different model. Table 4 shows that CDPNet
outperforms 416 the other models on the WL-Disease dataset with
statistical significance. Compared to DenseNetl61, the baseline
model, CDPNet achieves an accuracy of 95.83%, representing
improvements of 2.35%, 3.02%, and 3.65% over Deformer
ProtoPNet, ProtoPNet, and DenseNetl61, respectively. Figure 7
shows that 419 throughout the entire training process, the CDPNet
model consistently outperforms the other four models in both
accuracy and loss values, further validating its faster convergence
speed. In Figure 8, we explore the effect of varying the prototype
count per class on classification performance. CDPNet achieves
optimal classification accuracy (95.88%) with 2x2 prototypes
configuration, outperforming models with other prototype
settings. Therefore, 2x2 prototypes was adopted for all
subsequent experiments. Figure 9 presents the sensitivity analysis

Accuracy
o
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©

=

e
1

©

=

o
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94. 2

—8— Accuracy

93.9 T T T T
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FIGURE 9
Sensitivity of the Barlow Twins component in CDPNet-DenseNet161
to hyperparameter A.
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of CDPNet, based on the DenseNet161 backbone, with respect to its
key components. Figure 9 demonstrates the sensitivity of the Barlow
Twins component to the hyperparameter A, which governs the
trade-off between invariance and information density in the
embedding space. The results indicate that the Barlow Twins are

relatively insensitive to this

hyperparameter.

Figure 10 shows a confusion matrix that intuitively represents
the relationship between predicted results and actual class labels.
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This illustrates the effectiveness of the model’s classification
capabilities. In Figure 10a, Leaf Blight exhibits the lowest
classification accuracy (76.4%), with 10.6% of test images being
misclassified as Septoria and 7.5% misclassified as Brown Rust. In
Figure 10d, Septoria has the lowest classification accuracy (85.5%),
where 10.5% of test images were incorrectly classified as Leaf Blight.
This phenomenon stems primarily from two factors: On one hand,

Leaf Blight exhibits a dispersed feature distribution within the
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Comparison of ROC across different models. (a) VGG19, (b) ResNet152, (c) DenseNet161, (d) ProtoPNet-DenseNet161, (e) Deformer ProtoPNet-
DenseNet161, (f) CDPNet-DenseNet161.

dataset, lacking distinct clustered patterns that complicate accurate
model recognition. On the other hand, Septoria shares highly
similar disease characteristics with Leaf Blight, with significant
overlaps in visual features such as morphology and coloration,
further exacerbating classification challenges. Compared to other
models, the deeper colors along the diagonal of CDPNet’s confusion
matrix indicate that the majority of classification outcomes are
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concentrated there. This suggests that the CDPNet model achieves
higher recognition accuracy for various diseases, particularly for
those with dispersed and easily confused disease regions, such as
Leaf Blight and Septoria.

The ROC curve in Figure 11 helps analyze classification
performance across different threshold settings. When comparing
the ROC curves of different models, those with a higher AUC
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FIGURE 12

The reasoning process of a CDPNet with 2x2 deformable prototypes.

indicate better performance. As shown in Figures 11a-e, the AUC
values for Leaf Blight and Septoria leaf diseases are comparatively
low. From a phytopathological perspective, Leaf Blight and Septoria
diseases are often misidentified in the field. This is primarily due to
their highly similar visual symptoms, including leaf necrosis and the
yellow halo resulting from chlorophyll degradation, which makes
reliable visual differentiation difficult. In contrast, Figure 11f shows
that CDPNet demonstrated the highest AUC, achieving superior
identification accuracy for these commonly confused diseases.
Experimental results indicate that the introduction of the CA
mechanism and Barlow twin contrastive learning enabled
CDPNet to achieve deeper feature learning for wheat leaf
diseases. First, the CA mechanism allows adaptive learning of
feature weights across channels, effectively amplifying responses
to key disease-related features (e.g., lesion texture, color changes)
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while suppressing background noise. Second, contrastive learning
maximizes similarity between different transformations of the same
image while minimizing similarity between different images,
thereby optimizing feature relationships across samples and
enhancing feature discriminability. As a result, CDPNet improves
recognition accuracy for the commonly confused Leaf Blight and
Septoria diseases. Moreover, CDPNet’s interpretable outputs
(Figures 12, 13) help agronomists distinguish these diseases by
highlighting specific visual patterns used by the model (e.g., lesion
shape, distribution), potentially revealing features that are
challenging for the human eye to discern.

4.3.3 K-fold cross-validation

To further validate the model’s performance stability on the
WL-Disease dataset, we employed k-fold cross-validation,

frontiersin.org
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FIGURE 13

The reasoning process of CDPNet in deciding the species of the wheat leaf blight.

processing the dataset sequentially and randomly dividing it into
four parts. In each partition, 20% of the data was used as the test set,
while the remaining 80% was combined with the other three parts
to create a new training set. This approach ensured that each part
served as the test set for one partition. We selected DenseNet161 as
the baseline model, trained the CDPNet on the training set,
validated it on the test set, and recorded the results. Table 5
displays the results of the 5-fold cross-validation. The WL-

TABLE 5 CDPNet+DenseNet161 test results based on k-fold cross-
validation.

No of fold Accuracy (%)

1-flod 95.22
2-flod 95.56
3-flod 96.13
4-fold 95.89
5-fold 96.36
Average 95.83(+ 0.61)

Frontiers in Plant Science

Disease dataset achieved an average accuracy of 95.83%, with
accuracy fluctuations not exceeding 2% across the cross-
validation. The results indicate that CDPNet demonstrates stable
performance across different subsets, showcasing strong robustness
and excellent generalization ability. The model is not prone to
significant performance fluctuations due to changes in data
partitioning. This suggests that the model does not overfit to
specific subsets but learns general features from the data,
exhibiting outstanding generalization performance.

4.3.4 Ablation experiments

To further evaluate the effectiveness of the optimization strategies
proposed in this study, ablation experiments were performed. The
corresponding results are presented in Table 6, which highlights the
contribution of each optimization strategy to model performance.
Evaluation metrics included accuracy, precision, recall, F1-score on
the test set, as well as the number of model parameters. As shown in
Table 6, the incorporation of the CA mechanism and the contrastive
loss function improved the model’s recognition accuracy. Compared
with the original Deformer ProtoPNet and using DenseNet161 as the
baseline, the CDPNet model, integrating both the CA mechanism
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TABLE 6 CDPNet results of ablation experiment.

10.3389/fpls.2025.1676798

Cross Barlow twin loss Accuracy Precision Recall F1 AUC (%)

Attention (VA) (VA (V] score (%)
Deformer ProtoPNet+VGG19 92.15 91.83 91.52 91.65 98.12
Deformer 92.63 92.27 92.11 92.19 98.25
ProtoPNe+ResNet152
Deformer 93.48 93.13 92.89 92.99 98.52
ProtoPNet+DenseNet161
Deformer ProtoPNet+VGG19 3 92.85 92.35 92.58 92.45 98.31
Deformer 3 93.38 92.72 92.97 90.80 98.46
ProtoPNe+ResNet152
Deformer ProtoPNet 3 94.13 93.55 93.96 93.62 98.85
+DenseNet161
Deformer ProtoPNet+VGG19 y 93.64 93.32 93.07 93.13 98.58
Deformer ProtoPNe+ResNet152 y 94.26 93.66 93.62 93.73 99.25
Deformer ProtoPNet+DenseNet161 Y 95.25 94.77 95.06 94.83 99.30
Deformer ProtoPNet+VGG19 3 R 94.22 93.72 93.97 93.77 99.16
Deformer ProtoPNe+ResNet152 V v 94.89 94.21 94.47 94.29 99.38
Deformer ProtoPNet+DenseNet161 N V 95.83 95.32 95.07 95.13 99.45

“V” indicates that this module has been added.

and the contrastive loss function, achieved an accuracy of 95.83%,
representing an improvement of 2.35%. Furthermore, the precision,
recall, F1-score, and AUC improved by 2.22%, 2.18%, 2.14%, and
0.93%, respectively. These findings confirm that the integration of the
CA mechanism and the contrastive loss function not only avoided
adverse effects but also substantially enhanced the recognition
performance of CDPNet.

4.3.5 Experimental comparison of public datasets

To validate the generalization ability of the improved CDPNet
model, a series of comparative experiments were performed on the
PlantVillage and LWDCD 2020 datasets, alongside our self-built
dataset. PlantVillage is an open-source plant disease dataset
constructed based on image collection of plant leaves. These
images were captured under controlled environmental conditions
and cover 14 different species of plant. The dataset comprises
approximately 54,305 images, categorized into 38 plant disease
classes and 1 background image category. For our model training,
we selected image data of three different diseases, such as Apple and
Corn diseases, from the PlantVillage dataset. The LWDCD 2020
dataset for wheat diseases consists of nearly 7,000 relatively distinct

TABLE 7 CDPNet performance on public datasets.

close-up images of wheat diseases, categorized into 12 classes of
common wheat diseases in China based on different disease types.
Given that our task is wheat leaf disease identification, we selected
five kinds of such diseases for model training. Using DenseNet161
as the baseline model, we trained the CDPNet on the training sets of
the three datasets and validated it on the corresponding test sets,
recording the validation results. Table 7 presents the experimental
results of the CDPNet model on the three datasets.

4.3.6 CDPNet interpretability analysis

As an interpretable model, CPDNet not only predicts leaf
disease categories but also identifies key affected regions that
influence model decisions, enabling explainable image
classification and recognition of wheat leaf diseases. Figure 12
illustrates how CPDNet identifies evidence of leaf blight in the
test image by comparing its latent features with each variable
prototype within the category (each prototypical part is displayed
in the “Prototypical parts” column). As shown in Figure 13, when
variable prototypes scan the input image, they adaptively adjust
their spatial positions. Then, the Prototype similarity scores are
computed for each center position using Equation 6. Subsequently,

Dataset Accuracy (%) Precision (%)
PlantVillage-3 92.55 92.69
LWDCD 2020-5 93.35 ‘ 92.89
‘WL-Disease 95.83 ‘ 95.32

Frontiers in Plant Science

Recall (%) F1 score (%) AUC (%)
92.95 ‘ 92.68 97.83
93.61 ‘ 92.78 98.15
95.07 ‘ 95.13 99.45

frontiersin.org


https://doi.org/10.3389/fpls.2025.1676798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zeng et al.

the maximum score across all spatial positions is selected using
Equation 7 to generate a single “similarity score” for the prototype.
This similarity score is multiplied by the class connection score
from the fully connected layer to yield the prototype’s contribution
to the classification result. Finally, the contribution scores of all
prototypes are summed to obtain the final classification score for
the category. Figures 12, 13 clearly demonstrate that CPDNet can
accurately identify regions most affected by Leaf Blight, facilitating
the classification and identification of wheat leaves. As a result,
CPDNet’s interpretable output mechanism offers agronomists an
intuitive visualization tool, enabling them to focus on specific visual
features (e.g., lesion morphology, spatial distribution) and uncover
potential diagnostic characteristics that are challenging to detect
through traditional visual inspection.

5 Conclusion

This work introduces a novel deep learning model with intrinsic
interpretability for the identification of wheat leaf diseases.
Specifically, we present the CDPNet approach, which identifies
key regions influencing model decisions by calculating similarity
values between convolutional feature maps and latent prototype
feature representations. CDPNet incorporates a CA mechanism to
effectively isolate target diseased regions from complex
backgrounds, thereby enhancing the model’s feature extraction
capabilities. To address the limited availability of wheat leaf
disease image data, we employ a self-supervised contrastive
learning approach to capture cross-sample features, thereby
improving model efficiency. To validate the model’s effectiveness,
systematic experiments were conducted using both our self-
constructed WL-Disease dataset and two public datasets. The
results demonstrate that the proposed CDPNet not only achieves
significantly higher accuracy than baseline methods but also
provides an interpretable decision-making bases, offering reliable
support for practical wheat disease diagnosis in field settings. In
summary, the proposed CDPNet model achieves an average
accuracy exceeding 92.55% across all three datasets, showcasing
its ability to effectively classify and identify diverse crop diseases in
real agricultural scenarios.

Future research will focus on developing pre-trained neural
network model weights for large-scale plant pest and disease
datasets in real-world agricultural settings. This will facilitate the
faster convergence of other models when replacing feature
extraction network backbones. This research can further alleviate
challenges in pest and disease identification within smart
agriculture, promoting the intelligent transformation of
agricultural practices.
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