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Introduction: Accurate identification of wheat leaf diseases is crucial for food

security, but existing prototype-based computer vision models struggle with the

scattered nature of lesions in field conditions and lack interpretability.

Methods: To address this, we propose the Contrastive Deformable Prototypical

part Network (CDPNet). The idea of CDPNet is to identify key image regions that

influence model decisions by computing similarity measures between

convolutional feature maps and latent prototype feature representations.

Moreover, to effectively separate the disease target area from its complex

background noise and enhance the discriminability of disease features,

CDPNet introduces the Cross Attention (CA) Mechanism. Additionally, to

address the scarcity of wheat leaf disease image data, we employ the Barlow

Twins self-supervised contrastive learning method to capture feature differences

across samples. This approach enhances the model's sensitivity to inter-class

distinctions and intra-class consistency, thereby improving its ability to

differentiate between various diseases.

Results: Experimental results demonstrate that the proposed CDPNet achieves

an average recognition accuracy of 95.83% on the wheat leaf disease dataset,

exceeding the baseline model by 2.35%.

Discussion: Compared to other models, this approach delivers superior

performance and provides clinically interpretable decision support for the

identification of real-world wheat diseases in field settings.
KEYWORDS

identification of wheat leaf diseases, interpretability, CDPNet, Cross Attention,
Barlow Twins
1 Introduction

Wheat is one of the three major global food crops, ranking among the highest in both

production volume and cultivated area. Its widespread cultivation and stable yields serve as

a critical safeguard for global food security. However, disease infestation throughout its

growth stages remains the primary challenge limiting stable and high yields (Bao et al.,
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2021a). Statistics show that leaf diseases, such as leaf blight, mildew,

and rust, can lead to annual global wheat yield losses ranging from

10% to 30%. These diseases not only lead to direct yield reductions

but also trigger secondary hazards, such as grain quality

deterioration and mycotoxin contamination, causing substantial

losses in agricultural production (Simón et al., 2021). Therefore,

accurate identification of wheat diseases, particularly leaf diseases, is

critical for implementing effective control measures and ensuring

healthy growth to enhance yields (Nigam et al., 2023).

With advancements in modern technology, machine learning

and deep learning techniques are increasingly being applied to crop

pest and disease detection. These techniques have shown highly

promising results in achieving precise identification of crop pests

and diseases using computer vision technology (Deng et al., 2025).

Traditional machine learning techniques, such as Support Vector

Machines (SVM) (Rezvani and Wu, 2023), Random Forests (Gao

et al., 2022), and Decision Trees (Alaniz et al., 2021), have been

widely employed in wheat disease detection. These techniques

employ various algorithms to extract different features from

images, including color, texture, and shape (Syazwani et al.,

2022). The extracted features are subsequently used to train an

image classifier capable of accurately distinguishing between

healthy and diseased wheat. (Khan et al., 2023a) developed an

automatic classification framework for wheat diseases based on

machine learning techniques, effectively identifying wheat brown

rust and yellow rust. (Bao et al., 2021b) presented an approach for

detecting leaf diseases and their severity based on E-MMC metric

learning, focusing on wheat mildew and stripe rust. However, in

machine learning-based algorithms for identifying crop leaf pests

and diseases, traditional image processing techniques or manually

designed feature-based classification and recognition algorithms are

commonly employed (Zhang et al., 2023). These algorithms are

typically limited to extracting low-level features and struggle to

capture deep and complex image information, failing to fully

capture the complexity of sample data, which affects the accuracy

of diagnosing localized regions of leaf diseases (Xu et al., 2024).

Recently, deep learning has made significant advancements in

the field of crop pest and disease identification, achieving

remarkable success in domains such as image processing (Chen

et al., 2021b), natural language processing (Zeng and Xiong, 2022),

and speech recognition (Kim et al., 2024), owing to its powerful

representational capabilities (Zhang et al., 2024; Khan et al., 2023b).

Advanced deep learning techniques, such as convolutional neural

networks (CNNs) and attention mechanisms, have been applied to

crop pest and disease detection (Jia et al., 2023). These methods can

automatically, efficiently, and accurately extract target features from

large datasets of crop leaf pest and disease images, thereby replacing

traditional recognition approaches that rely on manual feature

extraction. To facilitate rapid and accurate identification of wheat

leaf diseases and reduce agricultural losses, (Jiang et al., 2021)

introduced an enhanced VGG16 model integrated with a multi-

task transfer learning strategy for detecting wheat leaf diseases.

They modified the VGG16 model and employed a pre-trained

model on the ImageNET platform for transfer learning and

interactive learning. Experimental results demonstrated that this
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method outperformed single-task models, the ResNet50 model, and

the DenseNet121 model. (Dong et al., 2024) presented the SC-

ConvNeXt model for wheat disease identification. This network

model utilizes ConvNeXt-T for feature extraction and incorporates

an enhanced CBAM mechanism to mitigate the effects of

interference from complex environmental factors. To improve the

accuracy of a single category of wheat disease identification, (Nigam

et al., 2023) focused solely on wheat rust and fine-tuned the

EfficientNet B4 model for wheat disease recognition. (Chang et

al., 2024) proposed the Imp-DenseNet model for identifying the

three types of wheat rust, aiming to facilitate wheat rust

identification in field environments. (Hassan et al., 2024)

advanced the UNET detection model for yellow rust disease

detection in wheat, achieving high classification accuracy for

wheat diseases.

Deep learning constructs multi-layer neural network models

that enable advanced data representation and understanding

through hierarchical feature extraction and abstraction. However,

as these multi-layer networks become deeper, each layer introduces

numerous parameters and nonlinear activation functions (Chang,

2025). Although such architectures excel in handling complex data

and tasks, their high complexity and nonlinearity lead to low

transparency and poor interpretability (Goethals et al., 2022).

Users often struggle to intuitively understand the logical basis

behind model decisions, casting doubt on their credibility and

perceiving deep models as data-driven “black box” systems

(Marcus and Teuwen, 2024). The decision-making process in

such models inherently involves high-dimensional nonlinear

mappings, with internal reasoning mechanisms that lack explicit

interpretability. This fundamentally complicates result attribution

and causal inference. In agricultural applications, such as leaf

disease identification, researchers have proposed various

interpretability methods. These techniques such as feature

visualization, attention mechanism analysis, and decision rule

extraction (Hernández et al., 2024) aim to unveil the internal

reasoning pathways of deep models during disease diagnosis,

thereby enhancing model transparency and credibility.

However, most existing intrinsically interpretable models rely

on spatially rigid prototypes, which are unable to explicitly explain

the geometric changes in disease patterns and complex background

feature information. This limitation restricts the provision of

detailed explanations and improved recognition accuracy (Ma

et al., 2024). Therefore, in this work, we propose an interpretable

wheat leaf disease identification model (CDPNet) based on a

deformable prototypical part network and contrastive learning. In

CDPNet, each prototype comprises multiple prototypical parts that

adaptively adjust their spatial positions relative to one another

depending on the input image. This allows each prototype to

detect object features with greater tolerance of spatial

transformations, since the parts within a prototype can move. To

identify wheat leaf disease types and uncover the infected regions

influencing model decisions, we first employ Deformable

ProtoPNet (Donnelly et al., 2022) to calculate the similarity

values relating to the convolutional feature maps of the image

and the latent prototype features. Generally, a higher similarity
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score indicates a greater influence of that region on the model’s

decision. Secondly, to effectively distinguish the target regions of

wheat leaf diseases from complex backgrounds and enhance the

model’s feature extraction capabilities, we introduce the CA

Mechanism (Lin et al., 2022; Chen et al., 2021a). This mechanism

guides the model to focus on spatial contextual features. By

amplifying differences between disease areas and surrounding

backgrounds, it significantly enhances the discriminative power of

disease features, thereby improving recognition performance in

complex scenarios. Finally, in practical applications, some wheat

leaf diseases exhibit low incidence rates and high image acquisition

costs, leading to limited training data. To address this challenge, we

introduce the self-supervised contrastive learning strategy Barlow

Twins (Zbontar et al., 2021). This approach maximizes similarity

between different transformed versions of the same image while

minimizing similarity between distinct images, thereby enabling

deep exploration of discriminative features across wheat leaf disease

instances. In summary, the main contributions of this work are

summarized as follows:
Fron
• The deformable prototype network in CDPNet is designed

to adaptively adjust relative spatial positions through

flexible and dynamic prototype learning, thereby

providing clinical interpretability for the identification of

wheat leaf diseases.

• We propose a novel interpretable model for wheat leaf

disease identification—the Contrastive Deformable

Prototypical part Network (CDPNet). This model is

capable of discovering key regions in wheat leaf disease

images that influence the model’s decisions. Additionally, it

effectively distinguishes between disease target regions and

complex backgrounds, and deeply mines latent feature

in format ion among samples , o ff e r ing a more

comprehensive and in-depth analytical perspective for

disease identification.

• We have created a real-world wheat leaf disease dataset to

facilitate further research on disease identification in

practical field environments.

• Through extensive experimentation using the wheat leaf

disease dataset, as well as other public crop disease datasets,

the results demonstrate that CDPNet achieves superior

identification performance, outperforming classical

models, and validating its generalization ability

and interpretability.
2 Related work

2.1 Leaf disease identification based on
machine learning

The recognition of crop leaf diseases has long been a central

research focus within the field of agricultural engineering

(Thakur et al., 2022). The application of modern information
tiers in Plant Science 03
technologies for diagnosing and identifying crop leaf diseases

provides an advanced, systematic, and effective approach

(Balakrishna and Rao, 2019). Research on leaf disease identification

methods can be broadly categorized into two primary approaches:

traditional machine learning techniques and contemporary deep

learning approaches.

Machine learning is utilized to automatically analyze large-scale

datasets, uncover latent patterns, and apply these insights to

subsequent analysis and prediction tasks. With the advancement

of image processing technologies, machine learning has been

extensively applied to leaf disease identification (Thakur et al.,

2022). Researchers employ feature extraction and segmentation

techniques to capture key disease characteristics, which are

subsequently classified using machine learning algorithms. Under

conditions of limited computational resources, machine learning

initially emerged as the primary research tool, producing notable

results. (Balakrishna and Rao (2019) conducted experiments on

tomato leaf diseases, initially categorizing tomato leaves into

healthy and diseased classes using the K-Nearest Neighbors

(KNN) method, followed by effective sub-classification of diseased

leaves using a combination of Probabilistic Neural Networks (PNN)

and KNN. (Pattnaik and Parvathi, 2021) utilized the Histogram of

Oriented Gradients (HOG) to characterize features extracted from

segmented images, which were then input into a Support Vector

Machine (SVM) for classification. Due to the relatively low

classification difficulty, their test accuracy reached 97%. (Javidan

et al., 2023) utilized K-means clustering technology to locate

infected regions in images and subsequently accomplished grape

leaf disease classification through SVM. However, machine

learning-based approaches to leaf disease recognition, while

capable of distinguishing certain disease features and generating

classification results, continue to exhibit several limitations (Wani

et al., 2022): (1) Feature selection limitations: Traditional machine

learning approaches require the manual selection of features to

describe pest or disease images. However, such features often

capture only partial image information. Moreover, the variability

of pests and diseases across growing environments renders selected

features insufficient to comprehensively represent all relevant

characteristics. (2) Feature extraction challenges: Machine

learning cannot automatically extract features, necessitating

manual extraction, which is also highly sensitive to image noise.

(3) Limited generalizability and recognition scope: Trained models

can typically recognize only the specific crop pests and diseases on

which they were trained, making it difficult to extend recognition

capabilities to other disease types. (4) Narrow application scope:

Constrained by disease-specific characteristics, these methods are

generally limited to learning and classifying features of particular

crops in specific regions, which restricts their applicability across a

broader range of species.

Compared with traditional machine learning methods, deep

learning addresses inefficiencies and low accuracy arising from

manually designed features in complex environments. In recent

years, alongside the ascent of deep learning advancements, CNNs

and Transformers have undergone rapid development (Khan et al.,

2023a). The convolutional layers of CNNs utilize a local receptive
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field design, in which each neuron is connected only to a restricted

region of the input image (Quan et al., 2022). This design is well-

suited to image data, since local information (e.g., edges, textures)

plays a critical role in object recognition (Xu et al., 2024). (Bao et al.,

2022) presented an enhanced recognition network called AX-

RetinaNet. This model employs an X-module enhanced multi-

scale feature integration and channel attention for feature

extraction, thereby enabling effective detection and classification

of tea diseases, with an identification accuracy reaching 96.75%. To

address the issue of abnormal recognition caused by various image

distortions in the healthy and diseased parts of coffee plant leaves,

(Nawaz et al., 2024) suggested a CoffeeNet model. The model under

consideration makes use of a ResNet-50 framework and an

attention mechanism for the purpose of extracting features of

diverse coffee leaf diseases. To increase the accuracy of classifying

plant leaf diseases while keeping the model lightweight, (Zhao et al.,

2024) developed a neural architecture termed CAST-Net. This

lightweight network model is based on a combination of

convolution and self-attention. It further employs a self-

distillation method to enhance the precision of leaf disease

classification while reducing model parameters and failure cases.

The findings indicate that, in comparison with existing models,

CAST-Net attains enhanced precision, reduced parameter

complexity, decreased training time, and lower computational

complexity. The Transformer architecture captures global

dependencies among elements of input sequences (Khan et al.,

2022b). In image classification, the self-attention mechanism allows

the model to incorporate information from all pixels or features

when processing each individual one (Xu et al., 2021). This enables

Transformers to more effectively capture the overall structure and

contextual information of images, providing advantages for

classification tasks that rely on global information. (Borhani et al.,

2022) proposed a lightweight model based on Vision Transformer

for plant disease classification. To better 174 leverage the strengths

of both CNNs and Transformers, (Alshammari et al., 2022) utilized

a deep ensemble learning strategy to combine a CNN with a vision

transformer model for the purpose of classifying Olive Diseases.

(Thakur et al., 2023) also proposed a composite model that

integrates the advantages of ViT with the innate feature

extraction capabilities of CNNS for plant leaf disease recognition.
2.2 Interpretable leaf disease classification
using deep neural networks

Image classification, a fundamental task in computer vision,

focuses on achieving accurate multi-class categorization based on

image content while minimizing error. Machine learning initially

demonstrated significant potential in image classification, and

within this domain, deep learning gradually emerged as the more

suitable approach. CNNs, characterized by local connectivity and

translation invariance, align well with the inherent properties of

image data. Despite continual improvements in classification

accuracy, researchers have identified persistent challenges in deep

learning for image tasks, including adversarial robustness,
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generalization, and fairness. Interpretability research provides a

critical pathway to address the “black box” nature of deep

learning (Zhang et al., 2025). Its objective is to elucidate model

decision-making mechanisms through human-understandable

methods, thereby enhancing credibility and robustness. From a

modeling perspective, Interpretability research can be broadly

categorized into two types: post-hoc interpretation methods and

intrinsically interpretable models.
1. Post-hoc interpretation methods. These primarily target

black-box models, analyzing them through various

algorithms such as visualization analysis, importance

analysis, etc., to infer the model’s decision-making

procedure. Examples include Feature Attribution,

Permutation Importance, and Class Activation Mapping

(CAM). For instance, (Mishra et al., 2024) proposed an

image-based interpretable leaf disease detection framework

(I-LDD) that utilizes Local Interpretable Model-agnostic

Explanations (LIME) to obtain explanations for model

classifications. Similarly, (Raval and Chaki, 2024)

employed LIME technology, taking leaf diseases as an

example, and (Chakrabarty et al., 2024) used interpretable

artificial intelligence to visualize the decision-making

processes of their model, focusing on rice leaf diseases.

To offer a more thorough understanding of the model’s

interpretability, (Hernández et al., 2024) adopted the Grad-

CAM method to visualize the infected regions of grape

leaves, explaining the neural network’s attribution to leaf

disease detection. (Wei et al., 2022) presented the ResNet-

CBAM model for interpretable leaf disease classification

and compared three visualization methods: SmoothGrad,

LIME, and GradCAM, to conduct post-hoc interpretability

of the model. Meanwhile, (Dai et al., 2024) employed t-SNE

and SHAP visualization methods to explain whether the

model focuses on plant pest and disease characteristics.

2. Intrinsical ly interpretable models . Intrinsical ly

interpretable models require us to select human-

understandable features and adopt models with good

interpretability during the problem-solving process (Jiang

et al., 2025). This objective is realized through the

construction of models that are self-explanatory and

which incorporate interpretability directly into their

structures. Such models include decision trees, rule-based

models, linear models, and attention models. Our model

belongs to the category of intrinsically interpretable

models, which integrate interpretability into the specific

model structure, enabling the model itself to possess

interpretability. The model outputs not only the results

but also the reasons behind those results, thereby ensuring

the reliability and safety of the interpretations. CDPNet

discovers key regions influencing model decisions and

predicts pest and disease categories by computing

similarity of the convolutional feature maps of images to

the latent prototype features, thus explaining the model’s

decision-making process and attribution. Through flexible
frontiersin.org
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and dynamic prototype learning, it achieves accurate

identification of wheat leaf diseases in natural field

environments along with rich interpretability.
3 Materials and methods

3.1 Dataset acquisition and image
preprocessing

This study utilized a hybrid data source to construct a wheat leaf

disease dataset. The self-constructed dataset was compiled by the

research team under expert guidance through field photography

conducted in Fengyang County, Chuzhou City, Anhui Province,

from April 15 to May 15, 2024. Fieldwork was conducted daily

between 8:00 AM and 6:00 PM. Images were captured using a Vivo

Y70s smartphone, covering six common wheat leaf diseases: Brown

Rust, Healthy, Leaf Blight, Mildew, Septoria, and Yellow Rust. A

total of 1,340 valid images were obtained. Figure 1 illustrates images

of wheat leaf diseases from various categories.

To enhance the dataset, this study also incorporated wheat leaf

disease images from the Wheat Plant Diseases dataset on Kaggle.

This dataset is designed to enable researchers and developers to

build robust machine learning models for classifying various wheat
tiers in Plant Science 05
plant diseases. It provides a collection of high resolution images

depicting real-world wheat diseases without relying on artificial

augmentation techniques. Data filtering was performed on this

dataset to remove duplicate and misclassified images from the

original public dataset. This process resulted in the creation of a

wheat leaf disease dataset (WL-Disease) comprising six categories

and a total of 6,513 images. The specific categories and their

corresponding image counts are detailed in Table 1.

In the WL-Disease dataset, all training images are labeled

without annotations on specific image regions. The dataset was

randomly divided into training and testing sets at an 80:20 ratio to

ensure the validity and fairness of model training and validation.

To facilitate model training, all disease images were uniformly

resized to 500 × 500 pixels and converted to JPG format. Data

augmentation techniques enhance the effectiveness of neural

networks by increasing both the heterogeneity and volume of

training data, thereby improving generalization capabilities.

Throughout the experiment, due to the limited number of samples

per class in the dataset, we applied 10-fold offline data augmentation

to mitigate overfitting to specific subsets and improve the model’s

stability and accuracy in practical applications. This process included

random rotation, 45-degree skew, 10-degree shear operations, 5-

strength distortion processing, 50% probability of left-right flip, and

color enhancement to expand the training set. Figure 2 shows the

comparison before and after image augmentation.
FIGURE 1

Samples of wheat leaf disease. (a) Brown Rust, (b) Healthy, (c) Leaf Blight, (d) Mildew, (e) Septoria, (f) Yellow Rust.
frontiersin.org
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3.2 Problem formulation

Currently, the task of wheat leaf disease identification aims to

assign the correct label from a predefined set of categories to an

image, achieving precise classification and recognition. A common

research approach involves utilizing deep learning algorithms to

extract features of wheat leaf diseases and perform recognition. In

contrast, this study adopts a methodology that incorporates a

deformable prototypical part network with contrastive learning,

aiming to achieve interpretable and accurate recognition of wheat

leaf diseases. Given a leaf disease image x, its corresponding

category label is y ∈ {0,…,c,…,C}. The model learns a mapping

function F:F(x) → ŷ capable of predicting the category to which

the given image x belongs, where ŷ is the probability that the wheat

leaf disease image x belongs to its corresponding category. The

objective of this research is to optimize the mapping function F to

maximize the predicted probability. Meanwhile, the method
Frontiers in Plant Science 06
automatically identifies the affected regions of wheat leaf diseases,

providing interpretable evidence for the final classification results.
3.3 CDPNet network architecture

In this section, we provide a detailed description of the

architecture of the proposed interpretable wheat leaf disease

recognition model based on a deformable prototypical part

network and contrastive learning, which is visualized in Figure 3.

CDPNet primarily consists of convolutional layers f , a deformable

prototype layer G, and a fully connected last layer h. Given an input

image x ∈ X, the convolutional layers f first extract a meaningful

image representation Z = f (x) ∈ RH�W�C (with height H, width

W, and number of channels C). Second, for each prototype, the

deformable prototype layer G computes a similarity matrix Mx
pi ∈

RH�W between the convolutional feature maps Z and a learnable

latent prototype feature representation P(c,t) ∈ R1�1�C (the t-th

prototype of class c). The similarity maps contain positive scores

indicating where and to what extent prototypes are present in an

image. CDPNet uses the highest value of the similarity map as the

final similarity score between P(c,t) and x, indicating how strong the

prototype P(c,t) is present in x. Finally, the similarity scores from the

deformable prototype layer G are aggregated in the fully connected

layer h to generate the final classification logits. These logits are

normalized using the softmax function to obtain the predicted

probability distribution of disease categories. In addition, to

facilitate the visualization of prototypes as specific prototypical

parts of a sample, the learned prototypes are substituted with the

closest feature representation from authentic training images,

thereby ensuring interpretability.
FIGURE 2

Samples of image augmentation of WL-Disease dataset. (a) Original image, (b) Left-right flip, (c) Distortion, (d) Color enhancement.
TABLE 1 Detailed descriptions of the various types of samples within the
WL-disease dataset.

Category Number Train set Test set

Brown Rust 1054 843 211

Healthy 812 645 167

Leaf Blight 1008 806 202

Mildew 1328 1062 266

Septoria 916 732 184

Yellow Rust 1395 1116 279

Total number 6513 5204 1309
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3.3.1 Convolutional layer
The role of the convolutional layers extract information from

the input image, which is referred to as image features. These

features are manifested through combinations or individual

contributions of each pixel within the image, such as texture and

color characteristics. Through the convolutional layers, local

regional feature extraction of wheat leaf disease images can be

achieved, generating the original feature representation of the

image. Specifically, the convolutional layers f borrow the

convolutional layers from classical models (such as VGG19,

ResNet152, DenseNet161, etc.), and then two additional 1 × 1

convolutional layers intended to modify the number of channels

present in the top-level feature maps. Meanwhile, we use ReLU as

the activation function for all convolutional layers, except for the

last layer, which employs the sigmoid activation function. Equation

1 converts the input image x into a feature vector.

½z1,…, zi,…, zm� = Conv2D(x) ∈ RW�H�C (1)

To effectively distinguish the target regions of wheat leaf

diseases from complex backgrounds, our core method is to

employ a CA mechanism, as shown in Figure 4. CA mechanism

enables the model to dynamically construct cross-modal feature

correlation matrices, allowing it to adaptively focus on key

discriminative features such as lesion textures and color

distortions. It also facilitates a more comprehensive integration of

contextual information from multiple sources, consequently

boosting both the precision and the generalization performance of

the recognition task. Firstly, the correlation scores indicating the
Frontiers in Plant Science 07
similarity between the query and keys are determined by calculating

the dot product of the query Q and keys K. Secondly, these

similarities are transformed into a probability distribution using

the softmax function, representing the attention weights of the

query with respect to each key. These attention weights are then

applied to the values V, ultimately resulting in the output vector.

Mathematically, the formula for cross-attention is presented in

Equation 2:

CrossAttention(Q,K,V) = softmax 
QKTffiffiffiffiffi

dk
p

 !
(2)

where, QKT represents the dot product of the query and the

key, indicating the similarity between the two sequences at different

positions; dk is the dimension of the key, which serves as a scaling

factor to prevent excessively large numerical values.

3.3.2 Deformable prototype layer
The fundamental idea behind the deformable prototype layer G

is to find highly interpretable (i.e., representative) deformable

prototypes by calculating the similarity scores s between the

convolutional feature maps Z of a test image x and the prototypes

P. Each part of these prototypes corresponds to key regions that

influence the model’s decision-making processes, and these regions

could be visualized. For a CDPNet, the L2-length of all prototype

parts P(c,t)
m,n of all deformable prototypes P(c,t) is the same.

Furthermore, at the spatial location (a,b) of each image feature

tensor ẑ , the corresponding vectors also possess are of equal L2-

length, as shown in Equations 3 and 4.
FIGURE 3

Visualization of the architecture of the proposed CDPNet.
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∥P(c,t)
m,n ∥2 = r =

1ffiffiffirp , (3)

∥ ẑ a,b ∥2 = r =
1ffiffiffirp (4)

Then, the formula for calculating the similarity of deformable

prototypes P(c,t) and the image feature tensor ẑ defined as shown in

Equation 5.

G(ẑ )(c,t)a,b =o
m
o
n
P(c,t)
m,n · ẑ a+m,b+n (5)

In order to facilitate the deformation of a deformable prototype

P(c,t), it has been proposed that offsets d (2D vector) be introduced,

thereby enabling each constituent part P(c,t)
m : n of the prototype to

migrate in relation to the spatial location (a, b) with respect to the

image feature tensor ẑ when the prototype is applied.

Mathematically, the formula for calculating the similarity of the

prototype is defined as shown in Equation 6.

G(ẑ )(c,t)a,b =o
m
o
n
P(c,t)
m,n · ẑ a+m+D1,b+n+D2

(6)

The maximum similarity with respect to an arbitrary set of

positions is given by the following definition.

G(ẑ )(c,t) = max
a,b

G(ẑ )(c,t)a,b (7)

Figure 5 shows the operational process of the deformable

prototypes. The input ẑ undergoes processing by the offset

prediction function d , resulting in (b) a grid of offset values.

Subsequently, these offsets are utilized to (c) modify the spatial

positions of each prototypical part. After this adjustment, the

updated prototypical parts are (d) aligned with the input to (e)

compute the prototype similarity in accordance with Equation 6.
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3.3.3 Fully connected layer
The fully connected layer integrates and abstracts the features

learned from the preceding layers to facilitate the execution of

classification or regression tasks. It performs a linear transformation

on the input data using a weight matrix and a bias vector. In the

CDPNet model, the fully connected layer multiplies the similarity

scores generated by the deformable prototype layer by the weight

matrix W in the fully connected layer. The result is then feeds the

result into the Softmax layer for normalization. Finally, it generates

a prediction result for the given leaf disease and pest image. The

prediction of the leaf disease image at this point is calculated as

shown in Equation 8.

ŷ = Softmax(RzgWh + b) (8)

where, Wh ∈ Rd�c is the parameter matrix, represents the

image features, b is the bias term, and ŷ = ½ŷ 0,…, ŷ c,…, ŷ C�, ŷ c

denotes the predicted probability that the input image belongs to

the c-th class. Therefore, given an image x, a novel form of cross-

entropy is employed: the margin-subtracted cross-entropy. The

formula is shown in Equation 9.

Cce(q) =o
N

i=1
− log 

exp   oc,tW
((c,t),y(i))
h G(−)(i)(c,t)

� �
oc0 exp   oc,tW

((c,t),c0)
h G(−)(i)(c,t)

� � (9)

where, q   represents the parameters that need to be learned, and

W((c,t),c0)
h denotes the connections between the deformable

prototypes P(c,t) and the last layer responsible for computing

similarity with the c 0 classes.
3.3.4 Model learning
As deep learning progresses, approaches for identifying wheat

leaf diseases harness deep networks to automatically learn features;
FIGURE 4

Schematic representation of cross attention mechanism.
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however, these methods heavily depend on the availability of a

substantial volume of training data. To address the limited

availability of wheat image data, we have introduced a self-

supervised contrastive learning approach to tackle the challenge
Frontiers in Plant Science 09
of recognition with limited samples. Specifically, Figure 6 shows

that we used the Barlow Twins in contrastive learning to conduct

feature learning between samples. Barlow Twins represents a self-

supervised learning approach for representation learning, stemming
FIGURE 5

CPNet is applied to the latent representation of the Leaf Blight. (a) Put the input features into the offset prediction function to generate (b) an offset
field. Then, (c) adjust the spatial position of each prototypical part using these offsets, (d) compare the adjusted parts with the input, and (e) calculate
the prototype similarity.
FIGURE 6

Schematic representation of Barlow Twins.
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from the groundbreaking ideas of the JPT team. Its core lies in

minimizing the covariance distance between twin networks,

enabling their learned features to be as independent as possible

while maintaining similarity. This approach not only enhances the

efficiency of the model but also achieves favorable pre-training

results even with scarce data.

Barlow Twins is a self-supervised learning method rooted in

information theory, with the objective of reducing redundancy

among neurons. This approach mandates that neurons remain

invariant to data augmentations while being independent of one

another. During actual training, the parameters of the neural

network are adjusted through backpropagation to maximize the

diagonal elements of the cross-correlation matrix and minimize the

off-diagonal elements — approaching an identity matrix— thereby

achieving the aforementioned goal. It is calculated as shown in

Equation 10.

LBT =o
i
(1 − Cii)

2 + lo
i
o
j≠i
C2
ij (10)

where l is a positive constant trading off the importance of the

first and second terms of the loss,  oi(1 − Cii)
2 is an invariance term

(diagonal or identity term) designed to direct neurons to produce

the same output under different augmentations, oioj≠iC
2
ij is a

redundancy reduction term (off-diagonal term) intended to make

each neuron produce a different output.

Cij =
obZA

b,iZB
b,jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ob ZA
b,i

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ob ZB

b,j

� �2rs (11)

where, b denotes the index of the batch, while i and j represent

the feature dimensions of the network’s output (i.e., they

correspond to the values in the i-th and j-th dimensions of two

vectors within the current batch). Cij is the element value at the i-th

row and j-th column of matrix C. It is equal to the sum of the

products of the i-th dimension of the augmented feature vector ZA

and the j-th dimension of the augmented feature vector ZB for

different pairs within the batch. The summation is primarily carried

out over the current batch size. Matrix C is a square matrix, and its

dimensions correspond to the output dimension of the network

(assuming each embedding dimension output by the network is D,

then the dimensions of square matrix C are D� D). The values of

matrix C range between -1 (indicating perfect negative correlation)

and 1 (indicating perfect positive correlation).

In order to discover a meaningful feature space in which the

image features belonging to class c are found to cluster around the

prototypes of the same class while being segregated from features of

other classes within a hypersphere, CDPNet employs Stochastic

Gradient Descent (SGD) to perform optimization on the features of

the convolutional layer f and the deformable prototype layer G. In
this process, SGD incorporates both cluster and separation losses

and adjusts the angular space. These two losses are defined as shown

in Equations 11 and 12.
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Cclst = −
1
No

N

i=1
max

P(c,t) : c=y(i)
G(ẑ (i))(c,t) (12)

Ssep =
1
No

N

i=1
max
N

P(c,t) : c≠y(i)
G(ẑ i)(c,t) (13)

where, N represents the total number of inputs, ẑ (i) denotes the

normalized and scaled image feature tensor of input i at each spatial

location, y(i) is the label corresponding to input x(i), and all other

values are consistent with the definitions provided in the

preceding context.

Although the subtraction margin encourages separation among

categories, it does not promote diversity among intra-class prototypes

or within prototype parts within a prototype. Specifically,

deformations without further regularization often lead to

redundancy among prototype parts within a prototype. To mitigate

this issue, we prevent this behavior by introducing an orthogonality

loss among prototype parts. Its formula is shown in Equation 14.

Oortho =o
c

P(c)P(c)⊤ − r2I(rL)
�� ��2

F (14)

where L is the number of deformable prototypes in class c, rL  
represents the total number of prototype parts across all prototypes

in class c, I(rL) is the rL� rL identity matrix, and P(c) ∈ RrL�d is a

matrix where each prototype part of every prototype in class c is

arranged as a row.

Finally, the overall loss function during the CDPNet training

process is formulated as shown in Equation 15.

Ltotal = Cce(q) + l1Cclst + l2Ssep + l3Oortho + l4LBT (15)
4 Results and analysis

4.1 Experimental setup

In this study, the PyTorch framework was utilized. PyTorch is

an open-source library designed for deep learning tasks, offering a

concise, elegant, efficient, and rapid framework that serves as a deep
TABLE 2 Test system environment configuration.

System environment Configuration

Operating system Ubuntu 18.04

GPU V100-32GB(32GB)

CPU 10 vCPU Intel Xeon Processor (Skylake, IBRS)

Pytorch PyTorch 1.8.0

Python Python 3.8

Batch size 32

Epoch 50
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learning research platform providing maximum flexibility and

speed. The experimental environment and parameters used in

this study are detailed in Table 2.
4.2 Evaluation metrics

We validated the model’s effectiveness on the test set using

standard classification performance metrics. These metrics include

accuracy, precision, recall, F1-score, and AUC. Their mathematical

expressions are as shown in Equations 16–21. All samples were

categorized into four groups based on the differences between the

true and predicted classes: true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Precision =
TP

TP + FP
(17)
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Recall =
TP

TP + FN
(18)

F1 − Score = 2*
Precision * Recall
Precision + Recall

(19)

TPR =
TP

TP + FN
(20)

FPR =
FP

FP + TN
(21)

In addition, we employed the confusion matrix and Receiver

Operating Characteristic (ROC) curve to evaluate the model’s

performance. The confusion matrix and ROC curve indicate the

model’s credibility. The higher the ROC curve is positioned in the

top-left corner, the better the model’s performance. Meanwhile, we

utilized CDPNet to visualize the prototype image classification

activation maps and similarities, aiming to uncover the critical

factors underlying the model’s classification decisions and

assist researchers in understanding the basis for the model’s

final classifications.
4.3 Experimental results and comparative
analysis

4.3.1 Performance evaluation of different data
augmentation methods

Table 3 shows the results of experiments conducted using the

CDPNet-DenseNet161 model with various data augmentation

methods. Six distinct data augmentation schemes were generated

by combining different techniques. Scheme 1 involved inputting the

original image into the model after normalization (resizing to
TABLE 3 Comparison of experimental results of different models on
wheat leaf disease dataset.

No. Data augmentation methods Accuracy (%)

1 Resize(224,224) 92.25

2 Resize(224,224)+skew 92.56

3 Resize(224,224)+skew+shear 93.36

4 Resize(224,224)+skew+shear+distortion 93.82

5
Resize(224,224)+skew+shear+distortion+left-

right flipping
94.76

6
Resize(224,224)+skew+shear+distortion+left-

right flipping+color enhancement
95.83
TABLE 4 Comparison of experimental results of different models on wheat leaf disease dataset.

Model Accuracy (%) Precision (%) Recall (%) F1 score (%) AUC (%)

VGG19 90.38 90.67 90.89 90.50 97.69

ResNet152 91.61 91.36 91.08 91.03 97.92

DenseNet161 92.18 91.86 91.63 91.76 98.16

ProtoPNet-VGG19 91.85 91.38 91.45 91.35 98.02

ProtoPNe-ResNet152 92.16 91.82 91.52 91.66 98.08

ProtoPNet-DenseNet161 92.81 92.45 92.63 92.53 98.33

Deformer ProtoPNet-VGG19 92.15 91.83 91.52 91.65 98.12

Deformer ProtoPNe-ResNet152 92.63 92.27 92.11 92.19 98.25

Deformer ProtoPNet-DenseNet161 93.48 93.13 92.89 92.99 98.52

CDPNet-VGG19 94:22c 93:72c 93:97c 93:77c 99:16c

CDPNet-ResNet152 94:89c 94:21c 94:47c 94:29c 99:38c

CDPNet-DenseNet161 95:83c 95:32c 95:07c 95:13c 99:45c
cDenotes the test of statistical significance p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1676798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zeng et al. 10.3389/fpls.2025.1676798
224×224×3), resulting in a classification accuracy of 92.25%.

Subsequently, the introduction of various data augmentation

methods, including skew, shear, distortion, left-right flipping, and

color enhancement, to Scheme 1 led to an improvement in model

accuracy. Among the augmentation techniques tested, color

enhancement produced the most favorable results. The results

indicate that Scheme 6 achieved the highest accuracy (95.83%),

establishing it as the optimal data augmentation scheme.

4.3.2 Model performance comparisons
To validate the classification performance of the proposed

CDPNet model for wheat leaf diseases, comparative experiments

were conducted under identical conditions using the WL-Disease

dataset, comparing CDPNet with VGG19, ResNet152,

DenseNet161, ProtoPNet, and Deformer ProtoPNet models. The

comparative results for each model are shown in Table 4. Figure 7
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shows the loss value and accuracy comparison curves during the

training phase for different model. Table 4 shows that CDPNet

outperforms 416 the other models on the WL-Disease dataset with

statistical significance. Compared to DenseNet161, the baseline

model, CDPNet achieves an accuracy of 95.83%, representing

improvements of 2.35%, 3.02%, and 3.65% over Deformer

ProtoPNet, ProtoPNet, and DenseNet161, respectively. Figure 7

shows that 419 throughout the entire training process, the CDPNet

model consistently outperforms the other four models in both

accuracy and loss values, further validating its faster convergence

speed. In Figure 8, we explore the effect of varying the prototype

count per class on classification performance. CDPNet achieves

optimal classification accuracy (95.88%) with 2×2 prototypes

configuration, outperforming models with other prototype

settings. Therefore, 2×2 prototypes was adopted for all

subsequent experiments. Figure 9 presents the sensitivity analysis
FIGURE 7

Comparison of the variation curves for loss values and accuracy across different models. (a) Accuracy curve, (b) Loss curve.
FIGURE 8

Impact of CDPNet-DenseNet161 to the number of prototypes
selected on accuracy.
FIGURE 9

Sensitivity of the Barlow Twins component in CDPNet-DenseNet161
to hyperparameter l.
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of CDPNet, based on the DenseNet161 backbone, with respect to its

key components. Figure 9 demonstrates the sensitivity of the Barlow

Twins component to the hyperparameter l, which governs the

trade-off between invariance and information density in the

embedding space. The results indicate that the Barlow Twins are

relatively insensitive to this hyperparameter.

Figure 10 shows a confusion matrix that intuitively represents

the relationship between predicted results and actual class labels.
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This illustrates the effectiveness of the model’s classification

capabilities. In Figure 10a, Leaf Blight exhibits the lowest

classification accuracy (76.4%), with 10.6% of test images being

misclassified as Septoria and 7.5% misclassified as Brown Rust. In

Figure 10d, Septoria has the lowest classification accuracy (85.5%),

where 10.5% of test images were incorrectly classified as Leaf Blight.

This phenomenon stems primarily from two factors: On one hand,

Leaf Blight exhibits a dispersed feature distribution within the
FIGURE 10

Comparison of confusion matrices across different models. (a) VGG19, (b) ResNet152, (c) DenseNet161, (d) ProtoPNet-DenseNet161, (e) Deformer
ProtoPNet-DenseNet161, (f) CDPNetDenseNet161.
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dataset, lacking distinct clustered patterns that complicate accurate

model recognition. On the other hand, Septoria shares highly

similar disease characteristics with Leaf Blight, with significant

overlaps in visual features such as morphology and coloration,

further exacerbating classification challenges. Compared to other

models, the deeper colors along the diagonal of CDPNet’s confusion

matrix indicate that the majority of classification outcomes are
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concentrated there. This suggests that the CDPNet model achieves

higher recognition accuracy for various diseases, particularly for

those with dispersed and easily confused disease regions, such as

Leaf Blight and Septoria.

The ROC curve in Figure 11 helps analyze classification

performance across different threshold settings. When comparing

the ROC curves of different models, those with a higher AUC
FIGURE 11

Comparison of ROC across different models. (a) VGG19, (b) ResNet152, (c) DenseNet161, (d) ProtoPNet-DenseNet161, (e) Deformer ProtoPNet-
DenseNet161, (f) CDPNet-DenseNet161.
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indicate better performance. As shown in Figures 11a–e, the AUC

values for Leaf Blight and Septoria leaf diseases are comparatively

low. From a phytopathological perspective, Leaf Blight and Septoria

diseases are often misidentified in the field. This is primarily due to

their highly similar visual symptoms, including leaf necrosis and the

yellow halo resulting from chlorophyll degradation, which makes

reliable visual differentiation difficult. In contrast, Figure 11f shows

that CDPNet demonstrated the highest AUC, achieving superior

identification accuracy for these commonly confused diseases.

Experimental results indicate that the introduction of the CA

mechanism and Barlow twin contrastive learning enabled

CDPNet to achieve deeper feature learning for wheat leaf

diseases. First, the CA mechanism allows adaptive learning of

feature weights across channels, effectively amplifying responses

to key disease-related features (e.g., lesion texture, color changes)
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while suppressing background noise. Second, contrastive learning

maximizes similarity between different transformations of the same

image while minimizing similarity between different images,

thereby optimizing feature relationships across samples and

enhancing feature discriminability. As a result, CDPNet improves

recognition accuracy for the commonly confused Leaf Blight and

Septoria diseases. Moreover, CDPNet’s interpretable outputs

(Figures 12, 13) help agronomists distinguish these diseases by

highlighting specific visual patterns used by the model (e.g., lesion

shape, distribution), potentially revealing features that are

challenging for the human eye to discern.

4.3.3 K-fold cross-validation
To further validate the model’s performance stability on the

WL-Disease dataset, we employed k-fold cross-validation,
IGURE 12F

The reasoning process of a CDPNet with 2×2 deformable prototypes.
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processing the dataset sequentially and randomly dividing it into

four parts. In each partition, 20% of the data was used as the test set,

while the remaining 80% was combined with the other three parts

to create a new training set. This approach ensured that each part

served as the test set for one partition. We selected DenseNet161 as

the baseline model, trained the CDPNet on the training set,

validated it on the test set, and recorded the results. Table 5

displays the results of the 5-fold cross-validation. The WL-
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Disease dataset achieved an average accuracy of 95.83%, with

accuracy fluctuations not exceeding 2% across the cross-

validation. The results indicate that CDPNet demonstrates stable

performance across different subsets, showcasing strong robustness

and excellent generalization ability. The model is not prone to

significant performance fluctuations due to changes in data

partitioning. This suggests that the model does not overfit to

specific subsets but learns general features from the data,

exhibiting outstanding generalization performance.

4.3.4 Ablation experiments
To further evaluate the effectiveness of the optimization strategies

proposed in this study, ablation experiments were performed. The

corresponding results are presented in Table 6, which highlights the

contribution of each optimization strategy to model performance.

Evaluation metrics included accuracy, precision, recall, F1-score on

the test set, as well as the number of model parameters. As shown in

Table 6, the incorporation of the CA mechanism and the contrastive

loss function improved the model’s recognition accuracy. Compared

with the original Deformer ProtoPNet and using DenseNet161 as the

baseline, the CDPNet model, integrating both the CA mechanism
FIGURE 13

The reasoning process of CDPNet in deciding the species of the wheat leaf blight.
TABLE 5 CDPNet+DenseNet161 test results based on k-fold cross-
validation.

No of fold Accuracy (%)

1-flod 95.22

2-flod 95.56

3-flod 96.13

4-fold 95.89

5-fold 96.36

Average 95.83(± 0.61)
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and the contrastive loss function, achieved an accuracy of 95.83%,

representing an improvement of 2.35%. Furthermore, the precision,

recall, F1-score, and AUC improved by 2.22%, 2.18%, 2.14%, and

0.93%, respectively. These findings confirm that the integration of the

CA mechanism and the contrastive loss function not only avoided

adverse effects but also substantially enhanced the recognition

performance of CDPNet.

4.3.5 Experimental comparison of public datasets
To validate the generalization ability of the improved CDPNet

model, a series of comparative experiments were performed on the

PlantVillage and LWDCD 2020 datasets, alongside our self-built

dataset. PlantVillage is an open-source plant disease dataset

constructed based on image collection of plant leaves. These

images were captured under controlled environmental conditions

and cover 14 different species of plant. The dataset comprises

approximately 54,305 images, categorized into 38 plant disease

classes and 1 background image category. For our model training,

we selected image data of three different diseases, such as Apple and

Corn diseases, from the PlantVillage dataset. The LWDCD 2020

dataset for wheat diseases consists of nearly 7,000 relatively distinct
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close-up images of wheat diseases, categorized into 12 classes of

common wheat diseases in China based on different disease types.

Given that our task is wheat leaf disease identification, we selected

five kinds of such diseases for model training. Using DenseNet161

as the baseline model, we trained the CDPNet on the training sets of

the three datasets and validated it on the corresponding test sets,

recording the validation results. Table 7 presents the experimental

results of the CDPNet model on the three datasets.

4.3.6 CDPNet interpretability analysis
As an interpretable model, CPDNet not only predicts leaf

disease categories but also identifies key affected regions that

influence model decisions, enabling explainable image

classification and recognition of wheat leaf diseases. Figure 12

illustrates how CPDNet identifies evidence of leaf blight in the

test image by comparing its latent features with each variable

prototype within the category (each prototypical part is displayed

in the “Prototypical parts” column). As shown in Figure 13, when

variable prototypes scan the input image, they adaptively adjust

their spatial positions. Then, the Prototype similarity scores are

computed for each center position using Equation 6. Subsequently,
TABLE 6 CDPNet results of ablation experiment.

Model Cross
Attention

Barlow twin loss Accuracy
(%)

Precision
(%)

Recall
(%)

F1
score (%)

AUC (%)

Deformer ProtoPNet+VGG19 92.15 91.83 91.52 91.65 98.12

Deformer
ProtoPNe+ResNet152

92.63 92.27 92.11 92.19 98.25

Deformer
ProtoPNet+DenseNet161

93.48 93.13 92.89 92.99 98.52

Deformer ProtoPNet+VGG19 √ 92.85 92.35 92.58 92.45 98.31

Deformer
ProtoPNe+ResNet152

√ 93.38 92.72 92.97 90.80 98.46

Deformer ProtoPNet
+DenseNet161

√ 94.13 93.55 93.96 93.62 98.85

Deformer ProtoPNet+VGG19 √ 93.64 93.32 93.07 93.13 98.58

Deformer ProtoPNe+ResNet152 √ 94.26 93.66 93.62 93.73 99.25

Deformer ProtoPNet+DenseNet161 √ 95.25 94.77 95.06 94.83 99.30

Deformer ProtoPNet+VGG19 √ √ 94.22 93.72 93.97 93.77 99.16

Deformer ProtoPNe+ResNet152 √ √ 94.89 94.21 94.47 94.29 99.38

Deformer ProtoPNet+DenseNet161 √ √ 95.83 95.32 95.07 95.13 99.45
fr
“√” indicates that this module has been added.
TABLE 7 CDPNet performance on public datasets.

Dataset Accuracy (%) Precision (%) Recall (%) F1 score (%) AUC (%)

PlantVillage-3 92.55 92.69 92.95 92.68 97.83

LWDCD 2020-5 93.35 92.89 93.61 92.78 98.15

WL-Disease 95.83 95.32 95.07 95.13 99.45
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the maximum score across all spatial positions is selected using

Equation 7 to generate a single “similarity score” for the prototype.

This similarity score is multiplied by the class connection score

from the fully connected layer to yield the prototype’s contribution

to the classification result. Finally, the contribution scores of all

prototypes are summed to obtain the final classification score for

the category. Figures 12, 13 clearly demonstrate that CPDNet can

accurately identify regions most affected by Leaf Blight, facilitating

the classification and identification of wheat leaves. As a result,

CPDNet’s interpretable output mechanism offers agronomists an

intuitive visualization tool, enabling them to focus on specific visual

features (e.g., lesion morphology, spatial distribution) and uncover

potential diagnostic characteristics that are challenging to detect

through traditional visual inspection.
5 Conclusion

This work introduces a novel deep learning model with intrinsic

interpretability for the identification of wheat leaf diseases.

Specifically, we present the CDPNet approach, which identifies

key regions influencing model decisions by calculating similarity

values between convolutional feature maps and latent prototype

feature representations. CDPNet incorporates a CA mechanism to

effectively isolate target diseased regions from complex

backgrounds, thereby enhancing the model’s feature extraction

capabilities. To address the limited availability of wheat leaf

disease image data, we employ a self-supervised contrastive

learning approach to capture cross-sample features, thereby

improving model efficiency. To validate the model’s effectiveness,

systematic experiments were conducted using both our self-

constructed WL-Disease dataset and two public datasets. The

results demonstrate that the proposed CDPNet not only achieves

significantly higher accuracy than baseline methods but also

provides an interpretable decision-making bases, offering reliable

support for practical wheat disease diagnosis in field settings. In

summary, the proposed CDPNet model achieves an average

accuracy exceeding 92.55% across all three datasets, showcasing

its ability to effectively classify and identify diverse crop diseases in

real agricultural scenarios.

Future research will focus on developing pre-trained neural

network model weights for large-scale plant pest and disease

datasets in real-world agricultural settings. This will facilitate the

faster convergence of other models when replacing feature

extraction network backbones. This research can further alleviate

challenges in pest and disease identification within smart

agriculture, promoting the intelligent transformation of

agricultural practices.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 18
Author contributions

JZ: Conceptualization, Data curation, Methodology, Project

administration, Validation, Writing – original draft. BJ:

Conceptualization, Funding acquisition, Resources, Supervision,

Writing – review & editing. CS: Funding acquisition, Resources,

Supervision, Writing – review & editing. HG: Funding acquisition,

Resources, Writing – review & editing. LS: Funding acquisition,

Resources, Writing – review & editing. BK: Data curation,

Methodology, Validation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was funded

by the Anhui Science and Technology University Science

Foundation (Grant No. WDRC202103, XWYJ202301), the Key

Project of Natural Science Research of Universities in Anhui

(Grant No. 2022AH051642), the Research and Development

Fund Project of Anhui Science and Technology University (Grant

No. FZ230122), the key Discipline Construction Project of Anhui

Science and Technology University (Grant No. XK-XJGY002), the

Anhui Provincial Department of Education Natural Science Major

Project (Grant No. 2023AH040276). The authors gratefully

acknowledge the Anhui Science and Technology University

Science Foundation (Grant No. WDRC202103, XWYJ202301).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1676798
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zeng et al. 10.3389/fpls.2025.1676798
References
Alaniz, S., Marcos, D., Schiele, B., and Akata, Z. (2021). “Learning decision trees
recurrently through communication,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA. 13518–
13527.

Alshammari, H., Gasmi, K., Ben Ltaifa, I., Krichen, M., Ben Ammar, L., and
Mahmood, M. A. (2022). Olive disease classification based on vision transformer
and cnn models. Comput. Intell. Neurosci. 2022, 3998193. doi: 10.1155/2022/3998193

Balakrishna, K., and Rao, M. (2019). Tomato plant leaves disease classification using
knn and pnn. Int. J. Comput. Vision Image Process. (IJCVIP) 9, 51–63. doi: 10.4018/
IJCVIP.2019010104

Bao, W., Fan, T., Hu, G., Liang, D., and Li, H. (2022). Detection and identification of
tea leaf diseases based on ax-retinanet. Sci. Rep. 12, 2183. doi: 10.1038/s41598-022-
06181-z

Bao,W., Yang, X., Liang, D., Hu, G., and Yang, X. (2021a). Lightweight convolutional
neural network model for field wheat ear disease identification. Comput. Electron.
Agric. 189, 106367. doi: 10.1016/j.compag.2021.106367

Bao, W., Zhao, J., Hu, G., Zhang, D., Huang, L., and Liang, D. (2021b). Identification
of wheat leaf diseases and their severity based on elliptical-maximum margin criterion
metric learning. Sustain. Comput.: Inf. Syst. 30, 100526. doi: 10.1016/
j.suscom.2021.100526

Borhani, Y., Khoramdel, J., and Najafi, E. (2022). A deep learning based approach for
automated plant disease classification using vision transformer. Sci. Rep. 12, 11554.
doi: 10.1038/571s41598-022-15163-0

Chakrabarty, A., Ahmed, S. T., Islam, M. F. U., Aziz, S. M., and Maidin, S. S. (2024).
An interpretable fusion model integrating lightweight cnn and transformer
architectures for rice leaf disease identification. Ecol. Inf. 82, 102718. doi: 10.1016/
j.ecoinf.2024.102718

Chang, D. (2025). Vocal performance evaluation of the intelligent note recognition
method based on deep learning. Sci. Rep. 15, 13927. doi: 10.1038/s41598-025-99357-2

Chang, S., Yang, G., Cheng, J., Feng, Z., Fan, Z., Ma, X., et al. (2024). Recognition of
wheat rusts in a field environment based on improved densenet. Biosyst. Eng. 238, 10–
21. doi: 10.1016/j.biosystemseng.2023.12.016

Chen, C.-F. R., Fan, Q., and Panda, R. (2021a). “Crossvit: Cross-attention multi-scale
vision transformer for image classification,” in Proceedings of the IEEE/CVF
international conference on computer vision, Los Alamitos, CA, USA. 357–366.

Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., et al. (2021b). “Pre-trained
image processing transformer,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 12299–12310.

Dai, G., Tian, Z., Fan, J., Sunil, C., and Dewi, C. (2024). Dfn-psan: Multi-level deep
information feature fusion extraction network for interpretable plant disease
classification. Comput. Electron. Agric. 216, 108481. doi: 10.1016/j.compag.2023.108481

Deng, H., Chen, Y., and Xu, Y. (2025). Ald-yolo: A lightweight attention detection
model for apple leaf diseases. Front. Plant Sci. 16. doi: 10.3389/fpls.2025.1616224

Dong, T., Ma, X., Huang, B., Zhong, W., Han, Q., Wu, Q., et al. (2024). Wheat disease
recognition method based on the sc-convnext network model. Sci. Rep. 14, 32040.
doi: 10.1038/s41598-024-83636-5

Donnelly, J., Barnett, A. J., and Chen, C. (2022). “Deformable protopnet: An
interpretable image classifier using deformable prototypes,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10265–10275.

Gao, W., Xu, F., and Zhou, Z.-H. (2022). Towards convergence rate analysis of
random forests for classification. Artif. Intell. 313, 103788. doi: 10.1016/
j.artint.2022.103788

Goethals, S., Martens, D., and Evgeniou, T. (2022). The non-linear nature of the cost
of comprehensibility. J. Big Data 9, 30. doi: 10.1186/s40537-022-00579-2

Hassan, A., Mumtaz, R., Mahmood, Z., Fayyaz, M., and Naeem, M. K. (2024). Wheat
leaf localization and segmentation for yellow rust disease detection in complex natural
backgrounds. Alexandria Eng. J. 107, 786–798. doi: 10.1016/j.aej.2024.09.018
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