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Accurate estimation of leaf nitrogen content (LNC) is critical for optimizing
fertilization strategies in greenhouse tomato production. This study developed
a robust hyperspectral-based framework for non-destructive LNC prediction by
combining advanced spectral preprocessing, feature selection, and machine
learning. Hyperspectral reflectance data were collected across five nitrogen
and irrigation treatments over key growth stages. Signal quality was enhanced
through Savitzky—Golay smoothing (SG) and Standard Normal Variate
normalization (SNV). Key nitrogen-sensitive wavelengths—centered around 725
nm and 730 - 780 nm—were identified using Competitive Adaptive Reweighted
Sampling (CARS) and Principal Component Analysis (PCA). Four predictive
models were compared, among which a hybrid Stacked Autoencoder—
Feedforward Neural Network (SAE-FNN) achieved the highest accuracy (test R?
= 0.77, RPD = 2.06), effectively capturing nonlinear spectral-nitrogen
interactions. In contrast, Support Vector Machine (SVM) exhibited overfitting
and Partial Least Squares Method (PLSR) underperformed due to its linear
constraints. These results underscore the potential of integrating hyperspectral
sensing with deep learning for intelligent nitrogen monitoring in controlled-
environment agriculture.

tomato, leaf nitrogen content (LNC), hyperspectral imaging, water-saving irrigation,
machine learning
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1 Introduction

Tomato (Solanum lycopersicum L.) is a globally cultivated
vegetable crop, valued for its nutritional and economic
importance (FAO, 2023). Among the various agronomic inputs,
nitrogen plays an essential role in plant growth and development, as
it is a core component of amino acids, proteins, chlorophyll, and
nucleic acids (Leitner, 2011; Zhu and Chen, 2002). However, the
interaction between N availability and irrigation, particularly under
water-saving practices, complicates nutrient uptake dynamics.
Traditional N management strategies, which rely on field
experience and soil testing, often fall short in meeting real-time
nutrient demands (Cerasola et al., 2025; Xu et al., 2021; Zhai et al.,
2022). Therefore, developing non-destructive and phenology-aware
approaches to monitor LNC is essential for precise N management
in protected tomato production (Song et al., 2016; Zhou
et al., 2025).

To address these limitations, visible-near infrared (VIS-NIR,
400-1000 nm) hyperspectral imaging (HSI) has emerged as a
powerful tool for non-destructive, growth-stage-adaptive
monitoring of crop nutritional status. Compared to conventional
multispectral imaging or fluorescence-based techniques, HSI
captures both spectral and spatial information, enabling the
detection of nitrogen-induced physiological signals at fine scales,
such as 550 nm (chlorophyll-a), 680 nm (protein absorption), and
730 nm (red-edge shift) (Pandey et al, 2017; Thenkabail et al,
2000). Prior studies have demonstrated the effectiveness of HSI-
based nitrogen monitoring in crops such as tomato, wheat, and rice
(Chen et al.,, 2025; Yu et al., 2020; Zhou et al., 2025).

However, a major limitation of current HSI-based nitrogen
estimation models is their reliance on static spectral features derived
from single time points or fixed growth stages. These models
frequently overlook the temporal dynamics of spectral-
physiological relationships that occur during plant development
(Liu et al., 2024). Key leaf traits such as chlorophyll content, leaf
structure, and water status change significantly throughout growth,
leading to stage-dependent shifts in nitrogen-sensitive spectral
regions, particularly in the 750-900 nm range (Elvanidi et al,
2018). Additionally, nitrogen remobilization during fruit
development alters spectral signatures such as red-edge position.
Static models built on fixed spectral bands often exhibit poor
generalization across stages and treatments, limiting their
operational utility (Way et al, 2017). Moreover, greenhouse
environments introduce additional complexities such as
heterogeneous lighting, surface water films, and near-infrared
stray light, all of which challenge model stability (Katsoulas et al.,
2016). Addressing these challenges requires robust experimental
controls, in parallel with the development of phenology-aware
modeling frameworks that can dynamically adapt to growth
stage-dependent spectral variability.

Previous studies have explored various spectroscopic
approaches for estimating tomato LNC. Conventional linear
multivariate regression methods, such as PLSR and principal
component regression, have been widely applied due to their
interpretability and effectiveness with small datasets (Asefa et al,
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2005; Osco et al, 2019; Song et al., 2011).These studies have
successfully identified key nitrogen-sensitive wavelengths,
typically found in the visible and red-edge regions. To capture
nonlinear relationships, machine learning techniques such as SVM
and Random Forest (RF) have been adopted, achieving improved
accuracy than linear models (e.g. [huoma and Madramootoo, 2020).
More recently, deep learning architectures such as convolutional
neural networks (CNNs) have demonstrated superior performance
in extracting complex features from hyperspectral data for nitrogen
assessment in crops like rice and maize (Qiu et al,, 2021; Zhang
et al, 2023b). However, when applied specifically to tomatoes,
several critical gaps remain. Firstly, many models are calibrated at
a single or limited growth stage, overlooking the physiological and
spectral changes that occur throughout the tomato lifecycle (Liu
et al,, 2024). Secondly, few models consider the combined effects of
water and nitrogen stress, which are common in water-saving
greenhouse cultivation (Rubo and Zinkernagel, 2022).
Consequently, a robust, stage-adaptive framework is needed to
capture spectral dynamics and disentangle water—nitrogen
interactions in tomato canopies.

This study integrates hyperspectral imaging with machine
learning to develop a phenology-aware framework for tomato
nitrogen monitoring. This study focuses on capturing dynamic
nitrogen-related spectral responses across growth stages, aiming
to provide real-time insights into nitrogen status that support more
informed and efficient fertilization strategies. We hypothesize that
dynamic selection of growth-stage-specific sensitive bands,
combined with advanced feature extraction techniques, can
enhance the robustness of growth status and nitrogen prediction
models across critical developmental phases. The objectives of this
study are: (1) to identify phenology-dependent spectral features
correlated with growth status and nitrogen dynamics in tomato
plants. (2) to optimize machine learning models (PLSR, SVM, etc.)
for improved accuracy and generalizability under greenhouse
vegetable conditions. (3) to validate the practical utility of
hyperspectral mapping for precision nitrogen management in
greenhouse cultivation. This research is expected to advance the
state of remote sensing-based crop nutrient monitoring by
providing a robust and phenology-aware modeling framework
that supports intelligent decision-making in sustainable
protected agriculture.

2 Materials and methods
2.1 Site description

The experiment was conducted in a solar greenhouse located in
Chaomicun Village, Daliang Town, Wugqing District, Tianjin, China
(117°2’46"E, 39°32°5"N). The region has a warm temperate
monsoon climate, with an average annual precipitation of 532
mm, a mean temperature of 13.5 °C, and an annual sunshine
duration of approximately 2,400 hours. The soil was classified as
loamy fluvo-aquic with good drainage and irrigation
conditions (Table 1).
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TABLE 1 Basic physicochemical properties of the 0—20 cm plow layer soil.

Electrical conductivity

(ds m™)

(g kg™

Soil organic carbon

10.3389/fpls.2025.1676457

NH,*-N
(mg kg™

NOz™N
(mg kg™

8.1 0.2 9.6

The tested tomato cultivar was “Provence” (large-fruited type).
Tomato seeds were sown in mid-September for seedling production
and subsequently transplanted to the greenhouse in early
November. The fruiting period was managed using a standard
single-stem pruning system, with the main stem trained to retain
seven fruit trusses (inflorescences). Harvesting of the first truss
commenced in late February, followed by sequential harvesting of
subsequent trusses. The second and third trusses were harvested
from mid-March to mid-April. The crop was terminated after
harvesting the seventh truss in mid-May.

2.2 Experimental design

The experimental design included three fertilization levels:
unfertilized control, optimized fertilization, and conventional
fertilization. Among them, the optimized fertilization applied 65%
of the nitrogen used in conventional fertilization, which was based
on the average nitrogen application rates typically used in local
facility vegetable fields (Table 2).

Three irrigation regimes were implemented: full irrigation
(100% of irrigation water demand, IWD), 25% water-saving
irrigation (75% IWD), and 50% water-saving irrigation (50%
IWD). Water-saving irrigation treatments were applied only in
combination with optimized fertilization (Table 3).

1.1 29.0 150.4

The experimental treatments were as follows: T1: No
fertilization + 100% IWD; T2: Conventional fertilization + 100%
IWD; T3: Optimized fertilization + 100% IWD; T4: Optimized
fertilization + 75% IWD; T5: Optimized fertilization + 50% IWD.

The base fertilizer only used organic fertilizer (a mixture of
chicken manure and cow manure in a 1:2 ratio), with nitrogen and
phosphorus contents of 1.5% and 1.6%, respectively. Topdressing
was using a water-soluble fertilizer with a nitrogen, phosphorus,
and potassium (N-P,05-K,0) ratio of 15-15-10. Topdressing was
applied every 5-7 days during the peak growth period of tomato.
The experiment was conducted in a randomized complete block
design with three replicates per treatment. Each plot measured 9 m
x 5 m (3 planting ditches, 6 crop rows), with 1 m spacing between
plots. The nitrogen levels and irrigation treatment were designed
based on local practices and previous studies, in order to investigate
the interactive effects of these factors on nitrogen uptake and
utilization efficiency in tomatoes (Gong et al., 2022).

2.3 Sample collection and laboratory
analysis

Tomato samples were collected five times during key growth
period, including seedling, flowering, fruit setting, swelling, and
maturity stage. For each treatment, three plants were randomly

TABLE 2 Nitrogen application rates for conventional and recommended fertilization practices.

Fertilizer Organic fertilizer N (kg ha™) Chemical fertilizer N (kg ha™) = Total N input (kg ha™)
November 450 0 450
December 0 0 0
Recommended January 0 32.59 32.59
fertilization February 0 97.78 97.78
March 0 97.78 97.78
April 0 43.46 43.46
Total 450 271.61 721.61
November 787.50 0 787.50
December 0 0 0
January 0 55.56 55.56
Conventional fertilization
February 0 166.67 166.67
March 0 166.67 166.67
April 0 74.07 74.07
Total 52.50 462.97 1250.47
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TABLE 3 Monthly irrigation requirements for tomato growth under
different irrigation depths (100%, 75%, and 50% of IWD).

100% IWD 75% IWD 50% IWD

(m® ha™) (m*®ha™) (m?®ha™)
November 0 0 0
December 270 202.5 135
January 180 135 90
February 540 405 270
March 450 3375 225
April 180 135 90
Total 1620 1215 810

selected, and the entire plant was destructively sampled. Regions of
Interest (ROIs) for hyperspectral measurements were chosen from
functional leaves located in the upper-middle canopy, while
avoiding senescent or damaged leaves (Figure 1). At each
sampling event, 2-3 such leaves were used for spectral acquisition.

Hyperspectral reflectance (400-1000 nm) was measured using a
SHIS - N220 (Shenzhen Zhongdarui Technology Co., Ltd., China)
hyperspectral imaging system, and SPAD values (as a proxy for
chlorophyll content) were recorded using a SPAD - 502 (Konica
Minolta, Inc., Japan.) chlorophyll meter (Konica Minolta).
Following spectral measurements, leaf was oven-dried at 105 °C
for 30 minutes, then dried at 65 °C until constant weight was
achieved. The dried samples were subsequently analyzed for total
nitrogen content. A 0.2 g subsample was weighed and detected
using the H,SO, - H,O, method until the solution became clear.
The digest was diluted to 50 mL, and total nitrogen content (%) was
determined using a Kjeltec nitrogen analyzer (FOSS Analytical A/S,
Denmark.) (Pieters et al., 2020).

Leaf spectra

10.3389/fpls.2025.1676457

2.4 Hyperspectral image acquisition and
processing

Hyperspectral data were acquired using a push-broom visible
near-infrared (VNIR) hyperspectral imager (Model: SHIS - N220
(Shenzhen Zhongdarui Technology Co., Ltd., China), spectral
range: 400-1000 nm, spectral resolution: 3 nm, 200 spectral
bands). The system was equipped with a full-spectrum halogen
lamp (effective wavelength range: 400-1000 nm), optically filtered
to match the instrument’s operational band (400-1000 nm),
and housed within a dark enclosure to minimize ambient
light interference.

Calibration Protocol: 1) Dark Current Calibration: A black
reference image (0% reflectance) was acquired to correct for
sensor noise and dark current. 2) White Reference Calibration: A
high-reflectivity whiteboard (Spectralon®, >99% reflectance) was
imaged to standardize reflectance values across the spectral range.
3) Reflectance Calculation: Raw hyperspectral data were normalized
using the following equation (Equation 1):

P mei)'_Rac i j
16, j) = (i, 1) = Rypack (s )

= = = (1)
Rwhite(z) ]) - Rbluck(l) ])

Riaw> Rplacks Rynize are the original image, blackboard, and
whiteboard reflection values, respectively.

During each sampling event, ROIs were manually delineated on
the functional leaves to extract average spectral reflectance values.

ROIs corresponding to the leaf area were extracted using
adaptive threshold segmentation. The average spectrum of the
leaf region was subsequently computed. To reduce spectral noise

and improve signal quality, the Savitzky-Golay smoothing filter
(SG), first-order derivative, and Standard Normal Variate (SNV)
transformation were applied as preprocessing steps (Raj
et al., 2021).

FIGURE 1

Schematic illustration of Regions of Interest (ROIs) selected on functional leaves of tomato plants at different growth stages. The circled areas
indicate the leaf positions used for hyperspectral data acquisition to represent nitrogen status.
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2.5 Feature selection and dimensionality
reduction

To address spectral redundancy and enhance model robustness,
two complementary methods, PCA, and CARS—were applied for
feature extraction and dimensionality reduction. PCA transformed
the high-dimensional spectral data into a set of orthogonal principal
components (PCs), emphasizing wavelengths contributing most to
overall variance. CARS iteratively selected wavelengths by
weighting PLS regression coefficients and applying Monte Carlo
sampling to adaptively optimize band selection (Li et al., 2009).

2.6 Machine learning modeling

Four machine learning models were implemented and
compared to predict leaf nitrogen content based on
hyperspectral data.

2.6.1 Partial least squares method

PLSR effectively handled multicollinearity among spectral
variables by identifying latent components that maximized the
covariance between the spectral data (X) and the nitrogen
concentration (Y) (Song et al., 2011). This enabled the model to
establish a robust linear relationship for predicting plant
nitrogen status.

2.6.2 Support vector machine

SVM was used to model non-linear relationships by
constructing an optimal hyperplane in a high-dimensional feature
space (Asefa et al, 2005). By using suitable kernel functions and
optimizing the hyperparameters, it achieves excellent regression
performance when predicting nitrogen content based on
spectral inputs.

2.6.3 Feedforward neural network

The FNN captured complex nonlinear patterns in hyperspectral
data via multiple layers of nonlinear transformation. With
structures optimized via experimental or algorithmic tuning and
regularized training techniques such as dropout and L,
regularization, it maintains a high level of generalization when
modelling spectral-biochemical relationships (Wang et al., 2024).

2.6.4 Stacked autoencoder-based feedforward
neural network

SAE-FNN utilized unsupervised pre-training to learn
informative, low-dimensional representations of spectral data,
which improved model initialization and feature extraction (Tao
et al,, 2015). By emphasizing salient spectral regions (e.g. the red-
edge and NIR plateau) and suppressing noise through layered
dimensionality reduction and explicit regularization, it enhanced
the model’s ability to discriminate between nitrogen levels (Yu
et al., 2018).
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2.7 Model evaluation

The performance of the predictive models was evaluated using
commonly adopted metrics in spectral modeling and machine
learning, including the coefficient of determination (R?), root
mean square error (RMSE), relative percent deviation (RPD), and
signal-to-noise ratio (SNR) (Pandey et al., 2017; Raj et al., 2021;
Walpole, 1993).

3 Results
3.1 Analysis of LNC in tomatoes

Nitrogen concentration varied significantly among treatments
at different growth stages (p < 0.05), with values expressed as mean
+ standard error (Figure 2). At the seedling stage (Figure 2A), T2
showed the highest nitrogen concentration, which was significantly
greater than that of T1 (p = 0.001) and T5 (p = 0.036), with T5
demonstrating the lowest value. At full bloom (Figure 2C), T3
presented the highest nitrogen concentration, significantly
exceeding T1 (p = 0.020) and T2 (p = 0.009), whereas T4 and T5
did not differ significantly (p > 0.05).

During fruit-setting stage, although T1 had the highest nitrogen
concentration (Figure 2D), the differences among treatments were
not statistically significant (p > 0.05). In the fruit development stage,
T2 again showed the highest nitrogen concentration (Figure 2E),
significantly greater than that of T1 (p = 0.009) and T5 (p = 0.029),
while T5 consistently exhibited the lowest nitrogen levels. These
results indicate that plant nitrogen accumulation was not only
treatment-dependent but also strongly stage-specific. The
temporal shifts in peak nitrogen concentrations across treatments
suggest that different management strategies may influence
nitrogen uptake efficiency at distinct phenological stages.

SPAD values, which serve as a proxy for relative chlorophyll
content, closely mirrored the variations in LNC observed at
different stages of treatment and growth (Supplementary Figure
S1). T2 exhibited the highest SPAD values throughout all
developmental stages. Conversely, T1 exhibited the lowest
readings. A progressive decline in SPAD values was evident from
the seeding stage to the development stage across most treatments.
Maximum values generally occurred during the flowering stage,
followed by a gradual reduction as the plants progressed through
the flowering, full bloom and fruit-setting stages.

The tomato leaf samples were sorted in ascending order based
on nitrogen content and then partitioned into training and testing
sets at an 80:20 ratio, resulting in 60 training samples and 15 testing
samples. Descriptive statistics for the dataset are presented in
Table 4. The nitrogen content across all 75 tomato leaf samples
ranged from 30.79 to 49.49 g kg™, with an average of 38.74 g kg™
and a standard deviation of 4.96 g kg™, indicating moderate
variability. The nitrogen concentration range in the training set
was 39.21 to 49.49 g kg, while that in the testing set was 30.14 -
46.95 g kg™'. The dataset exhibited a reasonable distribution and
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FIGURE 2

T5

LNC of tomatoes plants under different treatments across developmental stages. Asterisks indicate significant differences between treatments:
*p < 0.05, **p < 0.01. The p-values are displayed above the bars to indicate the significance level for each pairwise comparison.

TABLE 4 Descriptive statistics of tomatoes LNC (g kg™).

Statistic Count Mean Std Min Q1 Median Q3 Max
Total sample 75 38.74 4.96 30.09 3535 37.76 41.47 49.49
Train set 60 39.21 4.94 30.09 35,55 38.83 41.81 49.49
Test set 15 36.85 470 30.14 33.86 3637 37.80 46.95

Std: Standard deviation; Min: Minimum; Q1I: 25th percentile; Q3: 75th percentile; Max: Maximum.
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moderate variability, meeting the requirements for model
development. Therefore, the spectral characteristics of tomato
leaves under different treatments and growth stages were further
analyzed to explore their relationships with nitrogen content.

3.2 Analysis of hyperspectral reflectance
data

Figure 3 illustrated the hyperspectral reflectance spectra of
tomato plants at various growth stages under five treatments (T1-
T5), with reflectance plotted as a function of wavelength (nm). Each
line represents the spectral response of plants under a
specific treatment.

Seedling Stage

400 500 600 700 800 900 1000
Wavelength (nm)

C
1.0
0.9
0.8

g

£0.7

£0.6
=0.5

(0]

*0.4
0.3
0.2

Full Bloom Stage

400 500 600 700 800 900 1000
Wavelength (nm)

E

10.3389/fpls.2025.1676457

The reflectance spectra revealed both stage-dependent and
treatment-specific variations that closely linked to physiological
dynamics throughout tomato plant development. At the seedling
stage, spectral patterns were largely similar across treatments, with a
prominent reflectance peak near 700 nm, where T2 exhibited
marginally higher reflectance (Figure 3A).

During the flowering stage (Figure 3B), reflectance increased
across all treatments, with T3 displaying the highest reflectance
across most wavelengths, while T4 and T5 exhibited an obvious
decline in reflectance above 700 nm. By full bloom, spectral
divergence among treatments became more pronounced
(Figure 3C). T3 displayed maximal reflectance in the 600-700
nm, corresponding to the chlorophyll absorption band, indicating
a higher pigment content or delayed senescence. contrasting
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FIGURE 3
Spectral response of the leaf with different treatment at different periods.
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However, T5 showed minimal reflectance and T1 and T2 had the
intermediate values.

In the fruit setting stage (Figure 3D), overall reflectance
declined, but T1 displayed the highest spectral values. This trend
shifted again during fruit development (Figure 3E), with T2
emerging as the dominant treatment, while T4 and T5
consistently exhibited the lowest reflectance across both stages.
These dynamic spectral variations underscore the impact of
treatment on plant physiological status across growth phases. The
sensitivity of hyperspectral reflectance, particularly in the red-edge
and chlorophyll absorption regions, suggesting its value as a non-
destructive tool for real-time monitoring of crop status under
varying management regimes.

The hyperspectral reflectance data of tomato leaves were
processed using multiple preprocessing techniques to enhance
spectral quality and prepare the data for robust modeling
(Figure 4). The raw reflectance curves (Figure 4A) exhibited
inherent variability and minor outliers, which could compromise
signal integrity and model performance. Therefore, preprocessing
was necessary to suppress noise and standardize the data. SG
effectively reduced high-frequency noise, resulting in smoother
spectral curves while retaining key spectral features (Figure 4B).

Subsequently, the first-derivative transformation (Figure 4C)
was applied to accentuate wavelength-dependent slope variations,
revealing subtle variations in spectral shape that were not apparent

A
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[}
S
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9
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FIGURE 4
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in raw data. To further correct for baseline offsets and scale
differences, SNV normalization (Figure 4D) was employed to
center the reflectance values around zero and mitigated
baseline shifts, thereby improving sensitivity to nitrogen-related
spectral responses.

In addition to the qualitative interpretation, quantitative
comparisons confirmed that SG smoothing achieved the highest
noise suppression (SNR = 18.824) and the optimal modeling
accuracy (RMSE = 0.007) (Figures 5A, B). Overall, the application
of SG smoothing provided an optimal balance for noise reduction
with feature retention, providing robust and consistent spectral
inputs for subsequent modeling.

3.3 Feature extraction analysis

To improve model efficiency and reduce spectral redundancy,
two feature extraction methods—PCA and CARS—were applied to
identify the most informative wavelengths associated with LNC. To
ensure a single, growth-robust nitrogen-prediction model, spectral
preprocessing (SG, FD, SNV) and feature selection (PCA, CARS)
were performed once on the full multi-stage dataset.

As shown in Figure 6A, the PCA loading plot illustrated the
contribution weights of spectral wavelengths to the principal
components (PCs). The first principal component (PCl1),
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accounting for 72.3% of the total spectral variance, exhibited
prominent loading values at 690 nm, 740 nm, 745 nm, 750 nm,
and 765 nm (Figure 6A). These wavelengths are strongly associated
with nitrogen-sensitive spectral regions, particularly in the red-edge
and near-infrared domains, indicating their relevance in capturing
LNC variability. The subsequent principal components (PC2-PC5)
contributed 22.1%, 3.2%, 1.5%, and 0.9%, respectively,
demonstrating diminishing explanatory power with increasing
component order.

In contrast, the competitive adaptive reweighted sampling
(CARS) method was employed to identify predictive spectral
variables for LNC (Figure 6B). The variable importance plot
revealed a distinct peak near 730 nm, corresponding to a region
closely aligned with chlorophyll absorption and nitrogen-associated
biochemical features. Additional key wavelengths were identified
between 730 nm and 780 nm, overlapping with the red-edge
spectral region. The shaded background in Figure 4B represents
mean reflectance spectrum across samples, while red markers
indicate wavelengths with the highest variable importance scores
(VIS > 0.85), emphasizing localized spectral importance rather than
broad variance.

The comparative performance of the two feature extraction
methods for LNC prediction revealed significant disparities in
model performance (Table 5). CARS outperformed PCA,
achieving the highest validation accuracy (Ry”> = 0.79, RMSEy =
2.26, RPDy = 2.20), indicating more stable and effective
wavelength selection.

In contrast, PCA got the intermediate results (Ry? = 0.37,
RMSEy = 3.93), likely due to its limited capacity to capture
nonlinear or biochemically localized variations in spectral data.
These findings suggested CARS maintained model parsimony with
only 8 selected predictors (Np = 8), striking a balance between
dimensionality reduction and predictive accuracy.
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TABLE 5 Performance comparison of feature extraction methods (PCA and CARS) evaluated.

Pigment Method Np R:? Ry? RMSEc RMSEy RPDc RPDy,
LNC ‘ PCA 4 0.36 0.37 3.90 3.93 ‘ 1.25 1.26
‘ CARS 8 0.72 0.79 2.60 2.26 1.87 2.20

Np represents the number of principals, i.e., features, used in prediction and the R Ry?, RMSE¢, RMSEy, RPDg, and RPDy denotes the values of R% RMSE, and RPD on train set and test set,
respectively.

0.77, RMSE = 0.11, RPD = 2.06) with the minimal divergence

3.4 Performance analysis of models
between training and testing results (AR* = 0.12), indicating good

To evaluate the predictive capacity of different algorithms for
estimating tomato LNC, four models—SAE-FNN, SVM, PLSR, and
FNN—were compared in terms of accuracy, generalization ability,

generalization capability (Figure 7D). The superior performance of
SAE-FNN is attributed to its ability to capture nonlinear and
hierarchical spectral patterns via deep stacked autoencoder layers,
and robustness using both training and testing datasets (Figure 7). enabling more effective abstraction of nitrogen-sensitive features
All models were implemented with their hyperparameters  from high-dimensional hyperspectral data.

In contrast, the SVM model exhibited significant overfitting,
with a sharp decline in test performance (R? = 0.69, RPD = 1.80)

compared to near-perfect training results (R* = 0.93, RPD = 3.89),

rigorously optimized to ensure a fair comparison (Supplementary
Table S2).
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likely due to excessive reliance on kernel-driven nonlinear mapping
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The predictive performance of the four machine learning models (PLSR, SVM, FNN and SAE-FNN) were based on the optimal CARS feature

extraction method.
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(Figure 7B). This may be due to the model’s reliance on complex
kernel functions that overfit the training data but fail to generalize
to unseen spectra with subtle physiological variations.

The PLSR model showed moderate test robustness (R2 =(0.75,
RPD
constrained its ability to fully capture the complex and nonlinear

= 1.99) (Figure 7A). However, its linear assumptions
relationships between spectral features and LNC, especially in the
red-edge and near-infrared regions. Notably, the FNN model
displayed inverted generalization trends, suggesting suboptimal
parameterization of its fuzzy inference system for LNC
dynamics (Figure 7C).

Overall, the results indicate that SAE-FNN provided the most
consistent and accurate predictions of LNC among the evaluated
models, while SVM, PLSR, and FNN exhibited varying limitations
in modeling high-dimensional spectral data. Similar results were
also shown in the five cross validations (Supplementary Table S3). It
is worth noting that when using PCA for feature extraction instead
of CARS, all models showed a significant decrease in predictive
performance (Supplementary Figure S2), further underscoring the
critical importance of effective wavelength selection and the
superiority of the CARS method in this framework.

4 Discussion

4.1 Treatment-specific dynamics of LNC
and spectral characteristics

The LNC of tomato plants exhibited pronounced treatment-
dependent variations across growth stages, reflecting the critical
influence of nitrogen and water management on physiological
dynamics. During the seedling stage, T2 achieved the highest
LNC, which may result from asynchronous nitrogen release and
plant uptake under conventional fertilization and full irrigation, as
similarly observed in potato systems (Yan et al., 2012; Yang et al,,
2020). In contrast, T5 showed the lowest LNC, consistent with
nitrogen limitation under reduced fertilization and water stress
(Figure 2A). Compared to full irrigation (T3), deficit irrigation (T5)
reduced LNC by 6.14%. These results suggest that water availability
not only affects nutrient mass flow to roots but also regulates root
metabolic activity and nitrogen transporter expression, influencing
nitrogen uptake efficiency in early vegetative stages.

During the flowering stage, T3 achieved the highest LNC
(Figure 2B), which can be attributed to the synergistic effects of
optimized nitrogen management and adequate water supply,
enhancing nitrogen availability, assimilation, and allocation to
photosynthetic tissues (Abdelghany et al., 2023). By the fruit
development stage, T2 regained dominance, reflecting the shift in
nitrogen remobilization priorities toward fruit development
(Figure 2E). This aligns with previous studies showing that during
rapid fruit growth (35-50 days post-anthesis), tomato plants
prioritize 60-70% of nitrogen uptake to fruits, resulting in intense
intra-plant competition (Wang et al., 2019). The higher nitrogen
supply under full fertilization (CF) supports prolonged xylem-based
transport, favoring nitrogen accumulation in the fruits, while
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optimized fertilization (OF) relies more on phloem-based
redistribution (Abdelghany et al., 2023). This period coincides
with peak vegetative demand for nitrogen to support leaf
expansion and chlorophyll synthesis, and sufficient water ensures
hydraulic conductance and nitrogen transport via xylem. As a
result, nitrogen uptake and assimilation are maximized, enabling
better canopy development and photosynthetic efficiency (Raj et al.,
2021). Thus, it is emphasizing the physiological trade-off between
vegetative maintenance and reproductive allocation under
constrained nitrogen or water conditions.

The temporal dynamics of chlorophyll content, as measured by
SPAD values, corroborated the LNC and spectral findings
(Supplementary Figure S1). The SPAD data revealed a clear,
treatment-dependent hierarchy throughout the growth cycle. T2
consistently maintained the highest chlorophyll content, followed
by T3, with the water-saving treatments (T4 and T5) showing
intermediate values and T1 exhibiting the lowest SPAD readings.
This hierarchy aligns perfectly with the gradient of nitrogen
availability across the treatments, highlighting the intrinsic link
between nitrogen nutrition and chlorophyll synthesis.

Spectral reflectance patterns revealed clear nitrogen- and stage-
specific variations (Figure 3). At the seedling stage, minimal spectral
divergence were observed across treatments, except for T2, which
exhibited elevated reflectance at 700 nm. During the flowering stage,
T3 exhibited maximal reflectance within the 600-700 nm
chlorophyll absorption region, corresponding with its peak LNC
(Figure 3B). In contrast, T4 and T5 demonstrated reduced
reflectance above 690 nm, likely due to lower chlorophyll and
water content under nitrogen stress. During the fruit setting stage,
attenuated reflectance across all treatments mirrored nitrogen
remobilization for fruits development, consistent with observed in
oilseed rape (Yu et al.,, 2018). These spectral shifts align with known
nitrogen-chlorophyll-water interactions, where nitrogen deficiency
disrupts pigment synthesis and hydration, altering light absorption
in visible and near-infrared regions.

Through a comprehensive analysis of the dynamics of leaf
nitrogen content in tomato plants, it is evident that the timing
and dosage of nitrogen management, along with water supply, play
a crucial role in modulating nitrogen content. These changes are
significantly reflected in spectral reflectance patterns, providing a
valuable tool for monitoring plant nitrogen status in real-time. The
observed spectral shifts, particularly in the chlorophyll absorption
region, demonstrate the complex interplay between nitrogen
availability, leaf pigment synthesis, and water status (Huang et al.,
2024; Rubo and Zinkernagel, 2022).

4.2 Spectral preprocessing effect and
feature band screening

4.2.1 Spectral preprocessing and its effects

To reduce noise and improve spectral fidelity, SG smoothing
and SNV normalization were applied (Figure 4). SG smoothing
effectively suppressed high-frequency noise while preserving critical
nitrogen-related spectral features, particularly around 700 nm
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(Figure 4B). SNV normalization minimized baseline shifts caused
by surface heterogeneity, centering reflectance values around zero
and enhancing sensitivity in the red-edge region (730-780 nm),
which is closely associated with chlorophyll content and nitrogen
status (Figure 4D). These preprocessing steps significantly
improved the SNR (Figure 5A), thereby clarifying the nonlinear
relationships between spectral features and LNC (Liu et al.,, 2019).

4.2.2 Mechanism and comparison of feature band
selection

CARS significantly outperformed PCA (Table 4). Unlike the
unsupervised variance maximization of PCA (Elhaik, 2022), CARS
incorporates the response variable into its iterative Monte Carlo
sampling and exponential decay mechanisms. This enables the
selection of key wavelengths with high information content and
low redundancy (Zhang et al., 2020). The built-in competitive
screening mechanism further regularizes high-dimensional, small-
sample datasets, reducing overfitting risk. Therefore, CARS
achieved outstanding predictive performance using only eight
feature wavelengths (e.g. 725 nm and 760-765 nm; see
Figure 5B). which are physiologically linked to chlorophyll
synthesis and mesophyll structural variation (Thuoma and
Madramootoo, 2020; Zhu et al., 2020).

The selected bands are supported by biophysical and chemical
principles. Around 725 nm, absorption arises from C-H harmonic
vibrations and N-H bond combinations, reflecting amino group
density in proteins and chlorophyll, as well as nitrogen assimilation-
related carbon skeleton synthesis (Wang et al., 2021; Rasooli
Sharabiani et al., 2023). Furthermore, the red edge region at 730-
780 nm is directly influenced by the electronic transitions (Qy
band) of chlorophyll molecules and affected by internal scattering
effects within the mesophyll. Under nitrogen-sufficient conditions,
increased chlorophyll synthesis enhances absorption at 680 nm, and
shift the red edge to longer wavelengths (Padilla et al., 2015; Tian
et al,, 2011). Consequently, these mechanisms explain why the red-
edge region serves as a reliable proxy for nitrogen status.

4.2.3 The physiological significance and
universality of spectral characteristics

This study identified the characteristic wavelength band (690-
750 nm), which maps three levels of physiological response
mechanisms: (1) chlorophyll-protein coupling (Qy transition of
Chl a) at 690 nm, directly regulated by nitrogen-dependent
apolipoprotein synthesis (Wang et al, 2017). (2) The red-edge
displacement beyond 730 nm, driven by nitrogen induced
changes in mesophyll thickness and cellular architecture (Padilla
et al, 2015). And (3) a reactivation signal near 765 nm, reflecting
the shift in pigment absorption from chlorophyll to carotenoids and
proteins during senescence (Kobayashi et al., 1996).

Notably, these spectral-anatomical correlations are species-
specific. For example, in maize with Kranz anatomy, the red edge
position is shifted 15-20 nm higher than in C3 crops such as
tomatoes (Shu et al, 2023), correlating more strongly with
mesophyll tissue thickening (Raj et al, 2021), whereas in sugar
beet, shifts are related to palisade cell elongation and chloroplast
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accumulation (He et al., 2020). These inter-species differences
suggest that while red-edge features serve as universal proxies for
nitrogen status, crop-specific calibration is essential for accurate
diagnostics. Even within the C3 crop genus Brassica, the VIP
method identified 445 nm (the Chlb Soret band) as a key
wavelength reflecting differences in pigment allocation strategies
among genotypes (Li et al., 2018). Therefore, while the
red-edge region (680-780 nm) serves as a universal indicator of
nitrogen status, accurate diagnostics require crop-specific
calibration (Zhu et al., 2014). Integrating spectral responses with
underlying biochemical and anatomical mechanisms will
enhance the ecological validity and universality of hyperspectral
monitoring tools.

4.3 Spectral-based inversion model for
nitrogen content in tomato leaves

Among the evaluated models, the SAE-FNN model
demonstrated superior performance in predicting tomato leaf
nitrogen content. This improvement is attributed to its dual
capacity to hierarchically extract deep spectral features and model
nonlinear nitrogen-reflectance relationships. The SAE isolates key
nitrogen-sensitive spectral signatures (700-780 nm) by suppressing
confounding noise through unsupervised pre-training (Liang et al.,
2018). Subsequently, the FNN fine-tunes these features via
backpropagation, explicitly capturing nonlinear interactions
between nitrogen content and red-edge displacement dynamics
(>730 nm), which are known to reflect chlorophyll and nitrogen
variations. This hybrid model achieved the highest validation
performance (R* = 0.74, RPD 1.96), outperforming a
standalone FNN (R* = 0.67) (Figure 7), and confirming that
deeper network architectures are essential for disentangling

complex biochemical- spectral associations (Yu et al., 2018). The
SAE-FNN’s success thus stems from its theoretical foundation in
deep representation learning, effectively tackling the high
dimensionality and inherent nonlinearities of the problem.

The superiority of SAE-FNN is consistent with findings in other
crops. In maize, Goel et al. (2003) reported that deep learning
models, artificial neural networks (ANNs) outperformed decision
tree in predicting canopy nitrogen content using hyperspectral
imagery. Similarly, Zhang et al. (2023a) demonstrated enhanced
prediction accuracy for chlorophyll content in Chinese cabbage
vegetables using deep learning architectures self-adjusted One-
Dimensional Convolutional Neural Network (SA-1DCNN), and
Yi et al. (2007) reported robust nitrogen estimation in rice using
artificial neural networks (ANN). These cross-crop results reinforce
the general advantage of deep learning models in handling high-
dimensional, nonlinear hyperspectral data for nitrogen monitoring.

Furthermore, the SVM exhibited significant overfitting in this
study, likely due to the sensitivity to kernel-induced complexity in
high-dimensional spaces (Figure 7B). SVM operates by
constructing a maximum-margin hyperplane in a transformed
feature space via a kernel function. However, in hyperspectral
data with extreme dimensionality, such transformations can
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inadvertently amplify noise and lead to overfitting (Asefa et al,
2005). Previous studies have recommended stronger regularization
(e.g., C = 10* to mitigate this risk in similar applications (Li et al.,
2016; Yang et al., 2018). Although SVMs are theoretically well-
suited for moderate-dimensional regression tasks, they may lack
scalability and robustness for nitrogen estimation tasks in
greenhouse environments where multiple spectral, environmental,
and developmental variables interact. Without extensive and
computationally intensive parameter tuning, SVMs may therefore
be less appropriate for modeling complex hyperspectral
relationships (Cawley and Talbot, 2010).

While SAE-FNN showed clear advantages in accuracy and
generalization, its computational demands and reliance on large
training datasets pose challenges for real-time field deployment
(Figure 7D). This constrains its immediate deployment of SAE-
FNN models in resource-limited settings or for real-time decision-
making. To address this, future research should explore lightweight
variants (e.g., pruning-based FNNs or knowledge distillation), or
apply transfer learning with pre-trained spectral encoders to reduce
training time while preserving accuracy. Yu et al. (2018) have
demonstrated the potential of such approaches in improving model
transferability across crop types and environmental conditions.

Overall, the integration of CARS-based feature selection with
the SAE-FNN model provides a biologically interpretable and
technically robust framework for non-destructive nitrogen
diagnosis in tomato. CARS provides a biologically grounded
starting point by focusing on wavelengths known for nitrogen
sensitivity, enhancing interpretability (Li et al., 2009). By targeting
red-edge wavelengths closely associated with nitrogen-induced
physiological changes, this approach ensures high prediction
accuracy while maintaining model generalizability across growth
stages. Its practical value lies in enabling real-time monitoring of
plant nitrogen status, which is critical for precision nutrient
regulation in greenhouse environments. Similar strategies have
shown promise in maize and rice systems, where red-edge
features were successfully applied for canopy-level nitrogen
monitoring using deep models (Song et al., 2019; Yi et al., 2007).

In practical applications, this hyperspectral-deep learning
framework could be embedded into fertigation decision-support
systems or multispectral imaging devices for automated nitrogen
scheduling, improving nitrogen use efficiency and crop quality in
facility agriculture. The selected key bands (e.g., 725 and 765 nm) can
be translated into low-cost sensors integrated on trolleys, UAVs, or
fixed greenhouse infrastructure. To further enhance field
applicability, future efforts should focus on model lightweighting
and transfer learning, enabling broader deployment across cultivars
and environments. This research thus lays the foundation for
intelligent crop management systems that combine physiological
insight with spectral automation.

While this study demonstrates a promising framework, several
aspects warrant further development. The generalizability of
the models requires validation across diverse cultivars and
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environments beyond the controlled greenhouse conditions. The
sample size, though sufficient for current analysis, could be
expanded into larger, multi-season datasets to strengthen
robustness. Furthermore, translating leaf-level spectroscopy into
practical field applications requires future research into canopy-
level remote sensing via UAVs. Finally, developing more
interpretable and computationally efficient models will be essential
for real-world deployment. Future efforts should integrate real-time
sensing into automated management systems to achieve sustainable
precision agriculture.

5 Conclusions

This study demonstrated the feasibility and robustness of using
hyperspectral imaging (HSI) combined with advanced machine
learning models for dynamic, non-destructive monitoring of
nitrogen content in greenhouse-grown tomato plants under
varying water and nitrogen management regimes. LNC exhibited
pronounced stage- and treatment-specific dynamics, particularly in
the red-edge region (730-780 nm). The integration of CARS for
feature selection and a SAE-FNN for modeling significantly
improved prediction accuracy and model generalization,
outperforming conventional approaches such as PLSR and SVM.
The findings clarify the potential of hyperspectral-based monitoring
frameworks to support precision nitrogen management in protected
vegetable production systems. Future efforts should focus on
developing lightweight network architectures and transfer
learning strategies to facilitate real-time deployment at scale.
Integrating such systems into greenhouse fertigation control
platforms may enable intelligent, responsive nutrient regulation,
advancing the digital transformation of sustainable
vegetable production.
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