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Visible-near infrared
hyperspectral imaging for non-
destructive estimation of leaf
nitrogen content under water-
saving irrigation in protected
tomato cultivation
Caixia Hu1, Tingting Zhao1, Yingying Duan2, Yungui Zhang2,
Xinxiu Wang2, Jie Li1* and Guilong Zhang1*

1Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China,
2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences,
Beijing, China
Accurate estimation of leaf nitrogen content (LNC) is critical for optimizing

fertilization strategies in greenhouse tomato production. This study developed

a robust hyperspectral-based framework for non-destructive LNC prediction by

combining advanced spectral preprocessing, feature selection, and machine

learning. Hyperspectral reflectance data were collected across five nitrogen

and irrigation treatments over key growth stages. Signal quality was enhanced

through Savitzky–Golay smoothing (SG) and Standard Normal Variate

normalization (SNV). Key nitrogen-sensitive wavelengths—centered around 725

nm and 730 - 780 nm—were identified using Competitive Adaptive Reweighted

Sampling (CARS) and Principal Component Analysis (PCA). Four predictive

models were compared, among which a hybrid Stacked Autoencoder–

Feedforward Neural Network (SAE-FNN) achieved the highest accuracy (test R²

= 0.77, RPD = 2.06), effectively capturing nonlinear spectral–nitrogen

interactions. In contrast, Support Vector Machine (SVM) exhibited overfitting

and Partial Least Squares Method (PLSR) underperformed due to its linear

constraints. These results underscore the potential of integrating hyperspectral

sensing with deep learning for intelligent nitrogen monitoring in controlled-

environment agriculture.
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1 Introduction

Tomato (Solanum lycopersicum L.) is a globally cultivated

vegetable crop, valued for its nutritional and economic

importance (FAO, 2023). Among the various agronomic inputs,

nitrogen plays an essential role in plant growth and development, as

it is a core component of amino acids, proteins, chlorophyll, and

nucleic acids (Leitner, 2011; Zhu and Chen, 2002). However, the

interaction between N availability and irrigation, particularly under

water-saving practices, complicates nutrient uptake dynamics.

Traditional N management strategies, which rely on field

experience and soil testing, often fall short in meeting real-time

nutrient demands (Cerasola et al., 2025; Xu et al., 2021; Zhai et al.,

2022). Therefore, developing non-destructive and phenology-aware

approaches to monitor LNC is essential for precise N management

in protected tomato production (Song et al., 2016; Zhou

et al., 2025).

To address these limitations, visible-near infrared (VIS-NIR,

400–1000 nm) hyperspectral imaging (HSI) has emerged as a

powerful tool for non-destructive, growth-stage-adaptive

monitoring of crop nutritional status. Compared to conventional

multispectral imaging or fluorescence-based techniques, HSI

captures both spectral and spatial information, enabling the

detection of nitrogen-induced physiological signals at fine scales,

such as 550 nm (chlorophyll-a), 680 nm (protein absorption), and

730 nm (red-edge shift) (Pandey et al., 2017; Thenkabail et al.,

2000). Prior studies have demonstrated the effectiveness of HSI-

based nitrogen monitoring in crops such as tomato, wheat, and rice

(Chen et al., 2025; Yu et al., 2020; Zhou et al., 2025).

However, a major limitation of current HSI-based nitrogen

estimation models is their reliance on static spectral features derived

from single time points or fixed growth stages. These models

frequently overlook the temporal dynamics of spectral-

physiological relationships that occur during plant development

(Liu et al., 2024). Key leaf traits such as chlorophyll content, leaf

structure, and water status change significantly throughout growth,

leading to stage-dependent shifts in nitrogen-sensitive spectral

regions, particularly in the 750–900 nm range (Elvanidi et al.,

2018). Additionally, nitrogen remobilization during fruit

development alters spectral signatures such as red-edge position.

Static models built on fixed spectral bands often exhibit poor

generalization across stages and treatments, limiting their

operational utility (Way et al., 2017). Moreover, greenhouse

environments introduce additional complexities such as

heterogeneous lighting, surface water films, and near-infrared

stray light, all of which challenge model stability (Katsoulas et al.,

2016). Addressing these challenges requires robust experimental

controls, in parallel with the development of phenology-aware

modeling frameworks that can dynamically adapt to growth

stage-dependent spectral variability.

Previous studies have explored various spectroscopic

approaches for estimating tomato LNC. Conventional linear

multivariate regression methods, such as PLSR and principal

component regression, have been widely applied due to their

interpretability and effectiveness with small datasets (Asefa et al.,
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2005; Osco et al., 2019; Song et al., 2011).These studies have

successfully identified key nitrogen-sensitive wavelengths,

typically found in the visible and red-edge regions. To capture

nonlinear relationships, machine learning techniques such as SVM

and Random Forest (RF) have been adopted, achieving improved

accuracy than linear models (e.g. Ihuoma andMadramootoo, 2020).

More recently, deep learning architectures such as convolutional

neural networks (CNNs) have demonstrated superior performance

in extracting complex features from hyperspectral data for nitrogen

assessment in crops like rice and maize (Qiu et al., 2021; Zhang

et al., 2023b). However, when applied specifically to tomatoes,

several critical gaps remain. Firstly, many models are calibrated at

a single or limited growth stage, overlooking the physiological and

spectral changes that occur throughout the tomato lifecycle (Liu

et al., 2024). Secondly, few models consider the combined effects of

water and nitrogen stress, which are common in water-saving

greenhouse cultivation (Rubo and Zinkernagel, 2022).

Consequently, a robust, stage-adaptive framework is needed to

capture spectral dynamics and disentangle water–nitrogen

interactions in tomato canopies.

This study integrates hyperspectral imaging with machine

learning to develop a phenology-aware framework for tomato

nitrogen monitoring. This study focuses on capturing dynamic

nitrogen-related spectral responses across growth stages, aiming

to provide real-time insights into nitrogen status that support more

informed and efficient fertilization strategies. We hypothesize that

dynamic selection of growth-stage-specific sensitive bands,

combined with advanced feature extraction techniques, can

enhance the robustness of growth status and nitrogen prediction

models across critical developmental phases. The objectives of this

study are: (1) to identify phenology-dependent spectral features

correlated with growth status and nitrogen dynamics in tomato

plants. (2) to optimize machine learning models (PLSR, SVM, etc.)

for improved accuracy and generalizability under greenhouse

vegetable conditions. (3) to validate the practical utility of

hyperspectral mapping for precision nitrogen management in

greenhouse cultivation. This research is expected to advance the

state of remote sensing-based crop nutrient monitoring by

providing a robust and phenology-aware modeling framework

that supports intelligent decision-making in sustainable

protected agriculture.
2 Materials and methods

2.1 Site description

The experiment was conducted in a solar greenhouse located in

Chaomicun Village, Daliang Town,Wuqing District, Tianjin, China

(117°2’46″E, 39°32’5″N). The region has a warm temperate

monsoon climate, with an average annual precipitation of 532

mm, a mean temperature of 13.5 °C, and an annual sunshine

duration of approximately 2,400 hours. The soil was classified as

loamy fluvo-aquic with good drainage and irrigation

conditions (Table 1).
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The tested tomato cultivar was “Provence” (large-fruited type).

Tomato seeds were sown in mid-September for seedling production

and subsequently transplanted to the greenhouse in early

November. The fruiting period was managed using a standard

single-stem pruning system, with the main stem trained to retain

seven fruit trusses (inflorescences). Harvesting of the first truss

commenced in late February, followed by sequential harvesting of

subsequent trusses. The second and third trusses were harvested

from mid-March to mid-April. The crop was terminated after

harvesting the seventh truss in mid-May.
2.2 Experimental design

The experimental design included three fertilization levels:

unfertilized control, optimized fertilization, and conventional

fertilization. Among them, the optimized fertilization applied 65%

of the nitrogen used in conventional fertilization, which was based

on the average nitrogen application rates typically used in local

facility vegetable fields (Table 2).

Three irrigation regimes were implemented: full irrigation

(100% of irrigation water demand, IWD), 25% water-saving

irrigation (75% IWD), and 50% water-saving irrigation (50%

IWD). Water-saving irrigation treatments were applied only in

combination with optimized fertilization (Table 3).
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The experimental treatments were as follows: T1: No

fertilization + 100% IWD; T2: Conventional fertilization + 100%

IWD; T3: Optimized fertilization + 100% IWD; T4: Optimized

fertilization + 75% IWD; T5: Optimized fertilization + 50% IWD.

The base fertilizer only used organic fertilizer (a mixture of

chicken manure and cow manure in a 1:2 ratio), with nitrogen and

phosphorus contents of 1.5% and 1.6%, respectively. Topdressing

was using a water-soluble fertilizer with a nitrogen, phosphorus,

and potassium (N-P2O5-K2O) ratio of 15-15-10. Topdressing was

applied every 5–7 days during the peak growth period of tomato.

The experiment was conducted in a randomized complete block

design with three replicates per treatment. Each plot measured 9 m

× 5 m (3 planting ditches, 6 crop rows), with 1 m spacing between

plots. The nitrogen levels and irrigation treatment were designed

based on local practices and previous studies, in order to investigate

the interactive effects of these factors on nitrogen uptake and

utilization efficiency in tomatoes (Gong et al., 2022).
2.3 Sample collection and laboratory
analysis

Tomato samples were collected five times during key growth

period, including seedling, flowering, fruit setting, swelling, and

maturity stage. For each treatment, three plants were randomly
TABLE 2 Nitrogen application rates for conventional and recommended fertilization practices.

Fertilizer Month Organic fertilizer N (kg ha-1) Chemical fertilizer N (kg ha-1) Total N input (kg ha-1)

Recommended
fertilization

November 450 0 450

December 0 0 0

January 0 32.59 32.59

February 0 97.78 97.78

March 0 97.78 97.78

April 0 43.46 43.46

Total 450 271.61 721.61

Conventional fertilization

November 787.50 0 787.50

December 0 0 0

January 0 55.56 55.56

February 0 166.67 166.67

March 0 166.67 166.67

April 0 74.07 74.07

Total 52.50 462.97 1250.47
TABLE 1 Basic physicochemical properties of the 0–20 cm plow layer soil.

pH
Electrical conductivity
(ds m-1)

Soil organic carbon
(g kg-1)

Total N
(g kg-1)

NH4
+-N

(mg kg-1)
NO3

–N
(mg kg-1)

8.1 0.2 9.6 1.1 29.0 150.4
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selected, and the entire plant was destructively sampled. Regions of

Interest (ROIs) for hyperspectral measurements were chosen from

functional leaves located in the upper–middle canopy, while

avoiding senescent or damaged leaves (Figure 1). At each

sampling event, 2–3 such leaves were used for spectral acquisition.

Hyperspectral reflectance (400–1000 nm) was measured using a

SHIS - N220 (Shenzhen Zhongdarui Technology Co., Ltd., China)

hyperspectral imaging system, and SPAD values (as a proxy for

chlorophyll content) were recorded using a SPAD - 502 (Konica

Minolta, Inc., Japan.) chlorophyll meter (Konica Minolta).

Following spectral measurements, leaf was oven-dried at 105 °C

for 30 minutes, then dried at 65 °C until constant weight was

achieved. The dried samples were subsequently analyzed for total

nitrogen content. A 0.2 g subsample was weighed and detected

using the H2SO4 - H2O2 method until the solution became clear.

The digest was diluted to 50 mL, and total nitrogen content (%) was

determined using a Kjeltec nitrogen analyzer (FOSS Analytical A/S,

Denmark.) (Pieters et al., 2020).
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2.4 Hyperspectral image acquisition and
processing

Hyperspectral data were acquired using a push-broom visible

near-infrared (VNIR) hyperspectral imager (Model: SHIS - N220

(Shenzhen Zhongdarui Technology Co., Ltd., China), spectral

range: 400–1000 nm, spectral resolution: 3 nm, 200 spectral

bands). The system was equipped with a full-spectrum halogen

lamp (effective wavelength range: 400–1000 nm), optically filtered

to match the instrument’s operational band (400–1000 nm),

and housed within a dark enclosure to minimize ambient

light interference.

Calibration Protocol: 1) Dark Current Calibration: A black

reference image (0% reflectance) was acquired to correct for

sensor noise and dark current. 2) White Reference Calibration: A

high-reflectivity whiteboard (Spectralon®, >99% reflectance) was

imaged to standardize reflectance values across the spectral range.

3) Reflectance Calculation: Raw hyperspectral data were normalized

using the following equation (Equation 1):

I(i,  j) =
Rraw(i,  j) − Rblack(i,  j)
Rwhite(i,  j) − Rblack(i,  j)

(1)

Rraw, Rblack, Rwhite are the original image, blackboard, and

whiteboard reflection values, respectively.

During each sampling event, ROIs were manually delineated on

the functional leaves to extract average spectral reflectance values.

ROIs corresponding to the leaf area were extracted using

adaptive threshold segmentation. The average spectrum of the

leaf region was subsequently computed. To reduce spectral noise

and improve signal quality, the Savitzky-Golay smoothing filter

(SG), first-order derivative, and Standard Normal Variate (SNV)

transformation were applied as preprocessing steps (Raj

et al., 2021).
FIGURE 1

Schematic illustration of Regions of Interest (ROIs) selected on functional leaves of tomato plants at different growth stages. The circled areas
indicate the leaf positions used for hyperspectral data acquisition to represent nitrogen status.
TABLE 3 Monthly irrigation requirements for tomato growth under
different irrigation depths (100%, 75%, and 50% of IWD).

Month
100% IWD
(m3 ha-1)

75% IWD
(m3 ha-1)

50% IWD
(m3 ha-1)

November 0 0 0

December 270 202.5 135

January 180 135 90

February 540 405 270

March 450 337.5 225

April 180 135 90

Total 1620 1215 810
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2.5 Feature selection and dimensionality
reduction

To address spectral redundancy and enhance model robustness,

two complementary methods, PCA, and CARS—were applied for

feature extraction and dimensionality reduction. PCA transformed

the high-dimensional spectral data into a set of orthogonal principal

components (PCs), emphasizing wavelengths contributing most to

overall variance. CARS iteratively selected wavelengths by

weighting PLS regression coefficients and applying Monte Carlo

sampling to adaptively optimize band selection (Li et al., 2009).
2.6 Machine learning modeling

Four machine learning models were implemented and

compared to predict leaf nitrogen content based on

hyperspectral data.

2.6.1 Partial least squares method
PLSR effectively handled multicollinearity among spectral

variables by identifying latent components that maximized the

covariance between the spectral data (X) and the nitrogen

concentration (Y) (Song et al., 2011). This enabled the model to

establish a robust linear relationship for predicting plant

nitrogen status.

2.6.2 Support vector machine
SVM was used to model non-linear relationships by

constructing an optimal hyperplane in a high-dimensional feature

space (Asefa et al., 2005). By using suitable kernel functions and

optimizing the hyperparameters, it achieves excellent regression

performance when predicting nitrogen content based on

spectral inputs.

2.6.3 Feedforward neural network
The FNN captured complex nonlinear patterns in hyperspectral

data via multiple layers of nonlinear transformation. With

structures optimized via experimental or algorithmic tuning and

regularized training techniques such as dropout and L2
regularization, it maintains a high level of generalization when

modelling spectral-biochemical relationships (Wang et al., 2024).

2.6.4 Stacked autoencoder-based feedforward
neural network

SAE-FNN utilized unsupervised pre-training to learn

informative, low-dimensional representations of spectral data,

which improved model initialization and feature extraction (Tao

et al., 2015). By emphasizing salient spectral regions (e.g. the red-

edge and NIR plateau) and suppressing noise through layered

dimensionality reduction and explicit regularization, it enhanced

the model’s ability to discriminate between nitrogen levels (Yu

et al., 2018).
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2.7 Model evaluation

The performance of the predictive models was evaluated using

commonly adopted metrics in spectral modeling and machine

learning, including the coefficient of determination (R²), root

mean square error (RMSE), relative percent deviation (RPD), and

signal-to-noise ratio (SNR) (Pandey et al., 2017; Raj et al., 2021;

Walpole, 1993).
3 Results

3.1 Analysis of LNC in tomatoes

Nitrogen concentration varied significantly among treatments

at different growth stages (p < 0.05), with values expressed as mean

± standard error (Figure 2). At the seedling stage (Figure 2A), T2

showed the highest nitrogen concentration, which was significantly

greater than that of T1 (p = 0.001) and T5 (p = 0.036), with T5

demonstrating the lowest value. At full bloom (Figure 2C), T3

presented the highest nitrogen concentration, significantly

exceeding T1 (p = 0.020) and T2 (p = 0.009), whereas T4 and T5

did not differ significantly (p > 0.05).

During fruit-setting stage, although T1 had the highest nitrogen

concentration (Figure 2D), the differences among treatments were

not statistically significant (p > 0.05). In the fruit development stage,

T2 again showed the highest nitrogen concentration (Figure 2E),

significantly greater than that of T1 (p = 0.009) and T5 (p = 0.029),

while T5 consistently exhibited the lowest nitrogen levels. These

results indicate that plant nitrogen accumulation was not only

treatment-dependent but also strongly stage-specific. The

temporal shifts in peak nitrogen concentrations across treatments

suggest that different management strategies may influence

nitrogen uptake efficiency at distinct phenological stages.

SPAD values, which serve as a proxy for relative chlorophyll

content, closely mirrored the variations in LNC observed at

different stages of treatment and growth (Supplementary Figure

S1). T2 exhibited the highest SPAD values throughout all

developmental stages. Conversely, T1 exhibited the lowest

readings. A progressive decline in SPAD values was evident from

the seeding stage to the development stage across most treatments.

Maximum values generally occurred during the flowering stage,

followed by a gradual reduction as the plants progressed through

the flowering, full bloom and fruit-setting stages.

The tomato leaf samples were sorted in ascending order based

on nitrogen content and then partitioned into training and testing

sets at an 80:20 ratio, resulting in 60 training samples and 15 testing

samples. Descriptive statistics for the dataset are presented in

Table 4. The nitrogen content across all 75 tomato leaf samples

ranged from 30.79 to 49.49 g kg-1, with an average of 38.74 g kg-1

and a standard deviation of 4.96 g kg-1, indicating moderate

variability. The nitrogen concentration range in the training set

was 39.21 to 49.49 g kg-1, while that in the testing set was 30.14 -

46.95 g kg-1. The dataset exhibited a reasonable distribution and
frontiersin.o
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TABLE 4 Descriptive statistics of tomatoes LNC (g kg-1).

Statistic Count Mean Std Min Q1 Median Q3 Max

Total sample 75 38.74 4.96 30.09 35.35 37.76 41.47 49.49

Train set 60 39.21 4.94 30.09 35.55 38.83 41.81 49.49

Test set 15 36.85 4.70 30.14 33.86 36.37 37.80 46.95
F
rontiers in Plant S
cience
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Std: Standard deviation; Min: Minimum; Q1: 25th percentile; Q3: 75th percentile; Max: Maximum.
FIGURE 2

LNC of tomatoes plants under different treatments across developmental stages. Asterisks indicate significant differences between treatments:
*p < 0.05, **p < 0.01. The p-values are displayed above the bars to indicate the significance level for each pairwise comparison.
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moderate variability, meeting the requirements for model

development. Therefore, the spectral characteristics of tomato

leaves under different treatments and growth stages were further

analyzed to explore their relationships with nitrogen content.
3.2 Analysis of hyperspectral reflectance
data

Figure 3 illustrated the hyperspectral reflectance spectra of

tomato plants at various growth stages under five treatments (T1-

T5), with reflectance plotted as a function of wavelength (nm). Each

line represents the spectral response of plants under a

specific treatment.
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The reflectance spectra revealed both stage-dependent and

treatment-specific variations that closely linked to physiological

dynamics throughout tomato plant development. At the seedling

stage, spectral patterns were largely similar across treatments, with a

prominent reflectance peak near 700 nm, where T2 exhibited

marginally higher reflectance (Figure 3A).

During the flowering stage (Figure 3B), reflectance increased

across all treatments, with T3 displaying the highest reflectance

across most wavelengths, while T4 and T5 exhibited an obvious

decline in reflectance above 700 nm. By full bloom, spectral

divergence among treatments became more pronounced

(Figure 3C). T3 displayed maximal reflectance in the 600–700

nm, corresponding to the chlorophyll absorption band, indicating

a higher pigment content or delayed senescence. contrasting
FIGURE 3

Spectral response of the leaf with different treatment at different periods.
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However, T5 showed minimal reflectance and T1 and T2 had the

intermediate values.

In the fruit setting stage (Figure 3D), overall reflectance

declined, but T1 displayed the highest spectral values. This trend

shifted again during fruit development (Figure 3E), with T2

emerging as the dominant treatment, while T4 and T5

consistently exhibited the lowest reflectance across both stages.

These dynamic spectral variations underscore the impact of

treatment on plant physiological status across growth phases. The

sensitivity of hyperspectral reflectance, particularly in the red-edge

and chlorophyll absorption regions, suggesting its value as a non-

destructive tool for real-time monitoring of crop status under

varying management regimes.

The hyperspectral reflectance data of tomato leaves were

processed using multiple preprocessing techniques to enhance

spectral quality and prepare the data for robust modeling

(Figure 4). The raw reflectance curves (Figure 4A) exhibited

inherent variability and minor outliers, which could compromise

signal integrity and model performance. Therefore, preprocessing

was necessary to suppress noise and standardize the data. SG

effectively reduced high-frequency noise, resulting in smoother

spectral curves while retaining key spectral features (Figure 4B).

Subsequently, the first-derivative transformation (Figure 4C)

was applied to accentuate wavelength-dependent slope variations,

revealing subtle variations in spectral shape that were not apparent
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in raw data. To further correct for baseline offsets and scale

differences, SNV normalization (Figure 4D) was employed to

center the reflectance values around zero and mitigated

baseline shifts, thereby improving sensitivity to nitrogen-related

spectral responses.

In addition to the qualitative interpretation, quantitative

comparisons confirmed that SG smoothing achieved the highest

noise suppression (SNR = 18.824) and the optimal modeling

accuracy (RMSE = 0.007) (Figures 5A, B). Overall, the application

of SG smoothing provided an optimal balance for noise reduction

with feature retention, providing robust and consistent spectral

inputs for subsequent modeling.
3.3 Feature extraction analysis

To improve model efficiency and reduce spectral redundancy,

two feature extraction methods—PCA and CARS—were applied to

identify the most informative wavelengths associated with LNC. To

ensure a single, growth-robust nitrogen-prediction model, spectral

preprocessing (SG, FD, SNV) and feature selection (PCA, CARS)

were performed once on the full multi-stage dataset.

As shown in Figure 6A, the PCA loading plot illustrated the

contribution weights of spectral wavelengths to the principal

components (PCs). The first principal component (PC1),
FIGURE 4

Comparison of pretreatment methods: (A) Raw; (B) Savitzky-Golay smoothing filter (SG_Smooth); (C) First-Derivative (FD); (D) Standard Normal
Variate (SNV).
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accounting for 72.3% of the total spectral variance, exhibited

prominent loading values at 690 nm, 740 nm, 745 nm, 750 nm,

and 765 nm (Figure 6A). These wavelengths are strongly associated

with nitrogen-sensitive spectral regions, particularly in the red-edge

and near-infrared domains, indicating their relevance in capturing

LNC variability. The subsequent principal components (PC2–PC5)

contributed 22.1%, 3.2%, 1.5%, and 0.9%, respectively,

demonstrating diminishing explanatory power with increasing

component order.

In contrast, the competitive adaptive reweighted sampling

(CARS) method was employed to identify predictive spectral

variables for LNC (Figure 6B). The variable importance plot

revealed a distinct peak near 730 nm, corresponding to a region

closely aligned with chlorophyll absorption and nitrogen-associated

biochemical features. Additional key wavelengths were identified

between 730 nm and 780 nm, overlapping with the red-edge

spectral region. The shaded background in Figure 4B represents

mean reflectance spectrum across samples, while red markers

indicate wavelengths with the highest variable importance scores

(VIS > 0.85), emphasizing localized spectral importance rather than

broad variance.

The comparative performance of the two feature extraction

methods for LNC prediction revealed significant disparities in

model performance (Table 5). CARS outperformed PCA,

achieving the highest validation accuracy (RV
2 = 0.79, RMSEV =

2.26, RPDV = 2.20), indicating more stable and effective

wavelength selection.

In contrast, PCA got the intermediate results (RV
2 = 0.37,

RMSEV = 3.93), likely due to its limited capacity to capture

nonlinear or biochemically localized variations in spectral data.

These findings suggested CARS maintained model parsimony with

only 8 selected predictors (Np = 8), striking a balance between

dimensionality reduction and predictive accuracy.
FIGURE 6

Illustration of results of PCA and CARS: (A) Loading weights of
wavelengths using the PCA method. Sensitive wavelengths of LNC
(B) extracted by using the CARS method.
FIGURE 5

Quantitative comparison of spectral preprocessing methods: (A) Signal-to-Noise Ratio (SNR); (B) Root Mean Square Error (RMSE).
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3.4 Performance analysis of models

To evaluate the predictive capacity of different algorithms for

estimating tomato LNC, four models—SAE-FNN, SVM, PLSR, and

FNN—were compared in terms of accuracy, generalization ability,

and robustness using both training and testing datasets (Figure 7).

All models were implemented with their hyperparameters

rigorously optimized to ensure a fair comparison (Supplementary

Table S2).

Among the tested models, the SAE-FNN hybrid demonstrated

superior performance, achieving the highest test accuracy (R2 =
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0.77, RMSE = 0.11, RPD = 2.06) with the minimal divergence

between training and testing results (DR2 = 0.12), indicating good

generalization capability (Figure 7D). The superior performance of

SAE-FNN is attributed to its ability to capture nonlinear and

hierarchical spectral patterns via deep stacked autoencoder layers,

enabling more effective abstraction of nitrogen-sensitive features

from high-dimensional hyperspectral data.

In contrast, the SVM model exhibited significant overfitting,

with a sharp decline in test performance (R2 = 0.69, RPD = 1.80)

compared to near-perfect training results (R2 = 0.93, RPD = 3.89),

likely due to excessive reliance on kernel-driven nonlinear mapping
FIGURE 7

The predictive performance of the four machine learning models (PLSR, SVM, FNN and SAE-FNN) were based on the optimal CARS feature
extraction method.
TABLE 5 Performance comparison of feature extraction methods (PCA and CARS) evaluated.

Pigment Method Np RC
2 RV

2 RMSEC RMSEV RPDC RPDV

LNC PCA 4 0.36 0.37 3.90 3.93 1.25 1.26

CARS 8 0.72 0.79 2.60 2.26 1.87 2.20
Np represents the number of principals, i.e., features, used in prediction and the RC
2, RV

2, RMSEC, RMSEV, RPDC, and RPDV denotes the values of R2, RMSE, and RPD on train set and test set,
respectively.
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(Figure 7B). This may be due to the model’s reliance on complex

kernel functions that overfit the training data but fail to generalize

to unseen spectra with subtle physiological variations.

The PLSR model showed moderate test robustness (R2 = 0.75,

RPD = 1.99) (Figure 7A). However, its linear assumptions

constrained its ability to fully capture the complex and nonlinear

relationships between spectral features and LNC, especially in the

red-edge and near-infrared regions. Notably, the FNN model

displayed inverted generalization trends, suggesting suboptimal

parameterization of its fuzzy inference system for LNC

dynamics (Figure 7C).

Overall, the results indicate that SAE-FNN provided the most

consistent and accurate predictions of LNC among the evaluated

models, while SVM, PLSR, and FNN exhibited varying limitations

in modeling high-dimensional spectral data. Similar results were

also shown in the five cross validations (Supplementary Table S3). It

is worth noting that when using PCA for feature extraction instead

of CARS, all models showed a significant decrease in predictive

performance (Supplementary Figure S2), further underscoring the

critical importance of effective wavelength selection and the

superiority of the CARS method in this framework.
4 Discussion

4.1 Treatment-specific dynamics of LNC
and spectral characteristics

The LNC of tomato plants exhibited pronounced treatment-

dependent variations across growth stages, reflecting the critical

influence of nitrogen and water management on physiological

dynamics. During the seedling stage, T2 achieved the highest

LNC, which may result from asynchronous nitrogen release and

plant uptake under conventional fertilization and full irrigation, as

similarly observed in potato systems (Yan et al., 2012; Yang et al.,

2020). In contrast, T5 showed the lowest LNC, consistent with

nitrogen limitation under reduced fertilization and water stress

(Figure 2A). Compared to full irrigation (T3), deficit irrigation (T5)

reduced LNC by 6.14%. These results suggest that water availability

not only affects nutrient mass flow to roots but also regulates root

metabolic activity and nitrogen transporter expression, influencing

nitrogen uptake efficiency in early vegetative stages.

During the flowering stage, T3 achieved the highest LNC

(Figure 2B), which can be attributed to the synergistic effects of

optimized nitrogen management and adequate water supply,

enhancing nitrogen availability, assimilation, and allocation to

photosynthetic tissues (Abdelghany et al., 2023). By the fruit

development stage, T2 regained dominance, reflecting the shift in

nitrogen remobilization priorities toward fruit development

(Figure 2E). This aligns with previous studies showing that during

rapid fruit growth (35–50 days post-anthesis), tomato plants

prioritize 60–70% of nitrogen uptake to fruits, resulting in intense

intra-plant competition (Wang et al., 2019). The higher nitrogen

supply under full fertilization (CF) supports prolonged xylem-based

transport, favoring nitrogen accumulation in the fruits, while
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optimized fertilization (OF) relies more on phloem-based

redistribution (Abdelghany et al., 2023). This period coincides

with peak vegetative demand for nitrogen to support leaf

expansion and chlorophyll synthesis, and sufficient water ensures

hydraulic conductance and nitrogen transport via xylem. As a

result, nitrogen uptake and assimilation are maximized, enabling

better canopy development and photosynthetic efficiency (Raj et al.,

2021). Thus, it is emphasizing the physiological trade-off between

vegetative maintenance and reproductive allocation under

constrained nitrogen or water conditions.

The temporal dynamics of chlorophyll content, as measured by

SPAD values, corroborated the LNC and spectral findings

(Supplementary Figure S1). The SPAD data revealed a clear,

treatment-dependent hierarchy throughout the growth cycle. T2

consistently maintained the highest chlorophyll content, followed

by T3, with the water-saving treatments (T4 and T5) showing

intermediate values and T1 exhibiting the lowest SPAD readings.

This hierarchy aligns perfectly with the gradient of nitrogen

availability across the treatments, highlighting the intrinsic link

between nitrogen nutrition and chlorophyll synthesis.

Spectral reflectance patterns revealed clear nitrogen- and stage-

specific variations (Figure 3). At the seedling stage, minimal spectral

divergence were observed across treatments, except for T2, which

exhibited elevated reflectance at 700 nm. During the flowering stage,

T3 exhibited maximal reflectance within the 600–700 nm

chlorophyll absorption region, corresponding with its peak LNC

(Figure 3B). In contrast, T4 and T5 demonstrated reduced

reflectance above 690 nm, likely due to lower chlorophyll and

water content under nitrogen stress. During the fruit setting stage,

attenuated reflectance across all treatments mirrored nitrogen

remobilization for fruits development, consistent with observed in

oilseed rape (Yu et al., 2018). These spectral shifts align with known

nitrogen–chlorophyll–water interactions, where nitrogen deficiency

disrupts pigment synthesis and hydration, altering light absorption

in visible and near-infrared regions.

Through a comprehensive analysis of the dynamics of leaf

nitrogen content in tomato plants, it is evident that the timing

and dosage of nitrogen management, along with water supply, play

a crucial role in modulating nitrogen content. These changes are

significantly reflected in spectral reflectance patterns, providing a

valuable tool for monitoring plant nitrogen status in real-time. The

observed spectral shifts, particularly in the chlorophyll absorption

region, demonstrate the complex interplay between nitrogen

availability, leaf pigment synthesis, and water status (Huang et al.,

2024; Rubo and Zinkernagel, 2022).
4.2 Spectral preprocessing effect and
feature band screening

4.2.1 Spectral preprocessing and its effects
To reduce noise and improve spectral fidelity, SG smoothing

and SNV normalization were applied (Figure 4). SG smoothing

effectively suppressed high-frequency noise while preserving critical

nitrogen-related spectral features, particularly around 700 nm
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(Figure 4B). SNV normalization minimized baseline shifts caused

by surface heterogeneity, centering reflectance values around zero

and enhancing sensitivity in the red-edge region (730–780 nm),

which is closely associated with chlorophyll content and nitrogen

status (Figure 4D). These preprocessing steps significantly

improved the SNR (Figure 5A), thereby clarifying the nonlinear

relationships between spectral features and LNC (Liu et al., 2019).

4.2.2 Mechanism and comparison of feature band
selection

CARS significantly outperformed PCA (Table 4). Unlike the

unsupervised variance maximization of PCA (Elhaik, 2022), CARS

incorporates the response variable into its iterative Monte Carlo

sampling and exponential decay mechanisms. This enables the

selection of key wavelengths with high information content and

low redundancy (Zhang et al., 2020). The built-in competitive

screening mechanism further regularizes high-dimensional, small-

sample datasets, reducing overfitting risk. Therefore, CARS

achieved outstanding predictive performance using only eight

feature wavelengths (e.g. 725 nm and 760–765 nm; see

Figure 5B). which are physiologically linked to chlorophyll

synthesis and mesophyll structural variation (Ihuoma and

Madramootoo, 2020; Zhu et al., 2020).

The selected bands are supported by biophysical and chemical

principles. Around 725 nm, absorption arises from C–H harmonic

vibrations and N–H bond combinations, reflecting amino group

density in proteins and chlorophyll, as well as nitrogen assimilation-

related carbon skeleton synthesis (Wang et al., 2021; Rasooli

Sharabiani et al., 2023). Furthermore, the red edge region at 730–

780 nm is directly influenced by the electronic transitions (Qy

band) of chlorophyll molecules and affected by internal scattering

effects within the mesophyll. Under nitrogen-sufficient conditions,

increased chlorophyll synthesis enhances absorption at 680 nm, and

shift the red edge to longer wavelengths (Padilla et al., 2015; Tian

et al., 2011). Consequently, these mechanisms explain why the red-

edge region serves as a reliable proxy for nitrogen status.

4.2.3 The physiological significance and
universality of spectral characteristics

This study identified the characteristic wavelength band (690–

750 nm), which maps three levels of physiological response

mechanisms: (1) chlorophyll-protein coupling (Qy transition of

Chl a) at 690 nm, directly regulated by nitrogen-dependent

apolipoprotein synthesis (Wang et al., 2017). (2) The red-edge

displacement beyond 730 nm, driven by nitrogen induced

changes in mesophyll thickness and cellular architecture (Padilla

et al., 2015). And (3) a reactivation signal near 765 nm, reflecting

the shift in pigment absorption from chlorophyll to carotenoids and

proteins during senescence (Kobayashi et al., 1996).

Notably, these spectral-anatomical correlations are species-

specific. For example, in maize with Kranz anatomy, the red edge

position is shifted 15–20 nm higher than in C3 crops such as

tomatoes (Shu et al., 2023), correlating more strongly with

mesophyll tissue thickening (Raj et al., 2021), whereas in sugar

beet, shifts are related to palisade cell elongation and chloroplast
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accumulation (He et al., 2020). These inter-species differences

suggest that while red-edge features serve as universal proxies for

nitrogen status, crop-specific calibration is essential for accurate

diagnostics. Even within the C3 crop genus Brassica, the VIP

method identified 445 nm (the Chlb Soret band) as a key

wavelength reflecting differences in pigment allocation strategies

among genotypes (Li et al., 2018). Therefore, while the

red-edge region (680–780 nm) serves as a universal indicator of

nitrogen status, accurate diagnostics require crop-specific

calibration (Zhu et al., 2014). Integrating spectral responses with

underlying biochemical and anatomical mechanisms will

enhance the ecological validity and universality of hyperspectral

monitoring tools.
4.3 Spectral-based inversion model for
nitrogen content in tomato leaves

Among the evaluated models, the SAE-FNN model

demonstrated superior performance in predicting tomato leaf

nitrogen content. This improvement is attributed to its dual

capacity to hierarchically extract deep spectral features and model

nonlinear nitrogen-reflectance relationships. The SAE isolates key

nitrogen-sensitive spectral signatures (700–780 nm) by suppressing

confounding noise through unsupervised pre-training (Liang et al.,

2018). Subsequently, the FNN fine-tunes these features via

backpropagation, explicitly capturing nonlinear interactions

between nitrogen content and red-edge displacement dynamics

(>730 nm), which are known to reflect chlorophyll and nitrogen

variations. This hybrid model achieved the highest validation

performance (R2 = 0.74, RPD = 1.96), outperforming a

standalone FNN (R2 = 0.67) (Figure 7), and confirming that

deeper network architectures are essential for disentangling

complex biochemical- spectral associations (Yu et al., 2018). The

SAE-FNN’s success thus stems from its theoretical foundation in

deep representation learning, effectively tackling the high

dimensionality and inherent nonlinearities of the problem.

The superiority of SAE-FNN is consistent with findings in other

crops. In maize, Goel et al. (2003) reported that deep learning

models, artificial neural networks (ANNs) outperformed decision

tree in predicting canopy nitrogen content using hyperspectral

imagery. Similarly, Zhang et al. (2023a) demonstrated enhanced

prediction accuracy for chlorophyll content in Chinese cabbage

vegetables using deep learning architectures self-adjusted One-

Dimensional Convolutional Neural Network (SA-1DCNN), and

Yi et al. (2007) reported robust nitrogen estimation in rice using

artificial neural networks (ANN). These cross-crop results reinforce

the general advantage of deep learning models in handling high-

dimensional, nonlinear hyperspectral data for nitrogen monitoring.

Furthermore, the SVM exhibited significant overfitting in this

study, likely due to the sensitivity to kernel-induced complexity in

high-dimensional spaces (Figure 7B). SVM operates by

constructing a maximum-margin hyperplane in a transformed

feature space via a kernel function. However, in hyperspectral

data with extreme dimensionality, such transformations can
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inadvertently amplify noise and lead to overfitting (Asefa et al.,

2005). Previous studies have recommended stronger regularization

(e.g., C ≥ 104) to mitigate this risk in similar applications (Li et al.,

2016; Yang et al., 2018). Although SVMs are theoretically well-

suited for moderate-dimensional regression tasks, they may lack

scalability and robustness for nitrogen estimation tasks in

greenhouse environments where multiple spectral, environmental,

and developmental variables interact. Without extensive and

computationally intensive parameter tuning, SVMs may therefore

be less appropriate for modeling complex hyperspectral

relationships (Cawley and Talbot, 2010).

While SAE-FNN showed clear advantages in accuracy and

generalization, its computational demands and reliance on large

training datasets pose challenges for real-time field deployment

(Figure 7D). This constrains its immediate deployment of SAE-

FNN models in resource-limited settings or for real-time decision-

making. To address this, future research should explore lightweight

variants (e.g., pruning-based FNNs or knowledge distillation), or

apply transfer learning with pre-trained spectral encoders to reduce

training time while preserving accuracy. Yu et al. (2018) have

demonstrated the potential of such approaches in improving model

transferability across crop types and environmental conditions.

Overall, the integration of CARS-based feature selection with

the SAE-FNN model provides a biologically interpretable and

technically robust framework for non-destructive nitrogen

diagnosis in tomato. CARS provides a biologically grounded

starting point by focusing on wavelengths known for nitrogen

sensitivity, enhancing interpretability (Li et al., 2009). By targeting

red-edge wavelengths closely associated with nitrogen-induced

physiological changes, this approach ensures high prediction

accuracy while maintaining model generalizability across growth

stages. Its practical value lies in enabling real-time monitoring of

plant nitrogen status, which is critical for precision nutrient

regulation in greenhouse environments. Similar strategies have

shown promise in maize and rice systems, where red-edge

features were successfully applied for canopy-level nitrogen

monitoring using deep models (Song et al., 2019; Yi et al., 2007).

In practical applications, this hyperspectral-deep learning

framework could be embedded into fertigation decision-support

systems or multispectral imaging devices for automated nitrogen

scheduling, improving nitrogen use efficiency and crop quality in

facility agriculture. The selected key bands (e.g., 725 and 765 nm) can

be translated into low-cost sensors integrated on trolleys, UAVs, or

fixed greenhouse infrastructure. To further enhance field

applicability, future efforts should focus on model lightweighting

and transfer learning, enabling broader deployment across cultivars

and environments. This research thus lays the foundation for

intelligent crop management systems that combine physiological

insight with spectral automation.

While this study demonstrates a promising framework, several

aspects warrant further development. The generalizability of

the models requires validation across diverse cultivars and
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environments beyond the controlled greenhouse conditions. The

sample size, though sufficient for current analysis, could be

expanded into larger, multi-season datasets to strengthen

robustness. Furthermore, translating leaf-level spectroscopy into

practical field applications requires future research into canopy-

level remote sensing via UAVs. Finally, developing more

interpretable and computationally efficient models will be essential

for real-world deployment. Future efforts should integrate real-time

sensing into automated management systems to achieve sustainable

precision agriculture.
5 Conclusions

This study demonstrated the feasibility and robustness of using

hyperspectral imaging (HSI) combined with advanced machine

learning models for dynamic, non-destructive monitoring of

nitrogen content in greenhouse-grown tomato plants under

varying water and nitrogen management regimes. LNC exhibited

pronounced stage- and treatment-specific dynamics, particularly in

the red-edge region (730–780 nm). The integration of CARS for

feature selection and a SAE-FNN for modeling significantly

improved prediction accuracy and model generalization,

outperforming conventional approaches such as PLSR and SVM.

The findings clarify the potential of hyperspectral-based monitoring

frameworks to support precision nitrogen management in protected

vegetable production systems. Future efforts should focus on

developing lightweight network architectures and transfer

learning strategies to facilitate real-time deployment at scale.

Integrating such systems into greenhouse fertigation control

platforms may enable intelligent, responsive nutrient regulation,

advancing the dig i ta l t ransformat ion of susta inable

vegetable production.
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