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Ao Zhang and Wei Liu*

School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China

Plant diseases pose a severe threat to global agricultural production, significantly
challenging crop yield, quality, and food security. Therefore, accurate and efficient
disease detection is crucial. Current detection methods have clear limitations:
CNN-based methods struggle to model long-range dependencies effectively and
have weak generalization abilities. Transformer-based methods, while adept at
long-range feature modeling, face issues with large parameter sizes and inefficient
calculations due to the quadratic complexity of the self-attention mechanism in
relation to image size. To address these challenges, this paper proposes the
MamSwinNet model. Its core innovation lies in: using the Efficient Token
Refinement module with an overlapping space reduction method, relying on
depthwise separable convolutions designed with “stride + 3" convolution kernels
to expand the image block overlap area and fully preserve boundary spatial
structure. This generates high-quality tokens and converts them into a fixed
number of latent tokens, reducing computational complexity while maximizing
the retention of key features. It integrates the Spatial Global Selective Perception
(SGSP) module and the Channel Coordinate Global Optimal Scanning (CCGOS)
module. The SGSP module uses a dual-branch structure (the spatial modeling
branch introduces 2D-SSM to scan four directions for capturing long-range
dependencies, and the residual compensation branch supplements features to
prevent loss; the two branches are combined using Hadamard product to enhance
spatial detail modeling). The CCGOS module combines channel and spatial
attention by embedding positional information through global average pooling
in the height and width dimensions, using the Mamba block for channel-selective
scanning and generating an attention map, enabling precise association of key
channel features like color with spatial distribution. Experimental results show that
the model achieves F1 scores of 79.47%, 99.52%, and 99.38% on the PlantDoc,
PlantVillage, and Cotton datasets, respectively. The model has only 12.97M
parameters (52.9% less than the Swin-T model) and a computational cost as low
as 2.71GMac, significantly improving computational efficiency. This study provides
an efficient and reliable intelligent solution for large-scale crop disease detection.

plant disease detection, deep learning, multi-scale feature extraction, image processing,
lightweight mode
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1 Introduction

Plant diseases represent a major challenge to modern
agriculture, posing severe threats to global food production and
security. With the continuous development of agricultural
technologies, traditional manual detection methods, characterized
by strong subjectivity and high labor costs, have proven insufficient
for the needs of large-scale production. Consequently, crop disease
detection is rapidly shifting toward automation and intelligence,
driven in particular by breakthroughs in image processing and
machine learning.

In early studies, Panchal et al. (2019) proposed a machine-
learning-based approach for plant disease detection. Their method
employed K-means clustering for image segmentation, gray-level
co-occurrence matrices (GLCM) for feature extraction, and
classification through HSV classifiers and random forests. The
results achieved an accuracy of 98%, demonstrating the potential
of machine learning to enhance classification precision. Similarly,
Phadikar (2012) focused on morphological features of leaves,
analyzing the tonal distribution of diseased foliage and using
Bayesian classifiers and SVMs to identify brown spot and rice
blast with accuracies of 79.5% and 68.1%, respectively, thereby
validating the effectiveness of morphology-based analysis. Duhan
and colleagues, (2024) introduced an integrated recognition strategy
combining multiple machine learning techniques, including
preprocessing, segmentation, and feature extraction. Their work
showed that enhancing dataset diversity and image quality
significantly improves detection accuracy. Kusumo et al. (2018)
applied SVM and K-nearest neighbor (KNN) with image
segmentation and GLCM-based features to classify maize
diseases, achieving an accuracy of 92.7%, further underscoring the
importance of visual features in detection.

As technology advanced, research gradually shifted toward
more sophisticated deep learning models. Ashurov et al. (2025)
incorporated squeeze-and-excitation (SE) modules and optimized
residual connections into CNNS, raising accuracy to 98% with an
F1-score of 98.2%, effectively balancing performance and efficiency.
Ouamane et al. (2024) employed tensor subspace learning with
HOSVD-MDA to design CNNs for tomato disease detection,
achieving an accuracy of 92.6% and illustrating the benefit of
dimensionality reduction in handling complex image classification
tasks. Rakib et al. (2024) proposed a lightweight Q-CNN model
tailored for IoT devices, enabling the recognition of nine diseases at
98% accuracy even in resource-constrained environments, thus
providing a practical solution for intelligent agricultural devices.
Bhargava et al. (2024) developed a CNN-based system with data
augmentation that performed robustly across multiple plant species
and disease types.

In recent years, the success of Transformer architectures has
inspired new directions for plant disease detection. Visual
Transformer (ViT) models have proven effective in image
classification tasks, opening new opportunities for this domain.
Zhang et al. (2021) introduced a Swin-Transformer-based model
for rice disease recognition, leveraging shifted windows and
hierarchical design to achieve 93.4% accuracy, which represented
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a 4.1% improvement over traditional models. Ali et al. (2025)
utilized ViT’s self-attention to capture subtle lesion features,
significantly improving recognition accuracy. Baek (2025)
proposed the Multi-ViT model, integrating multiple ViTs to
enhance classification on apple, grape, and tomato datasets,
achieving F1-scores exceeding 90%.

Overall, existing methods for plant disease detection fall into
three main categories, each with unique strengths but also evident
limitations. Traditional machine learning approaches are
computationally efficient and interpretable but heavily rely on
handcrafted features, limiting generalization to diverse disease
patterns and large-scale applications. CNNs can automatically
extract features and support lightweight deployment, yet their
limited receptive field constrains their ability to capture long-
range dependencies, reducing robustness in complex backgrounds
while balancing accuracy and efficiency remains difficult. ViTs, with
their self-attention mechanism, excel in long-range modeling and
are particularly sensitive to subtle lesions; however, their quadratic
computational complexity with respect to image size imposes
excessive overhead, restricting deployment on resource-limited
platforms such as agricultural IoT devices. Thus, four major gaps
remain: (1) traditional machine learning lacks adaptive
generalization for complex lesion patterns; (2) CNNs struggle
between local feature extraction and long-range dependency
modeling; (3) Transformers face trade-offs between global
modeling power, efficiency, and boundary preservation; (4)
current methods are often limited to single-dimensional features,
failing to achieve channel-spatial-cross-dimensional synergy.

To address these challenges, this study proposes MamSwinNet,
a novel model built upon three innovative modules. (1) The
Efficient Token Refinement module employs stride+3 depthwise
separable convolutions to enlarge patch overlap, preserving lesion
boundary information while refining token selection to reduce
redundancy. This lowers parameter count to 12.97M (a 52.9%
reduction compared with Swin-T) and computational cost to 2.71
GMac. (2) The SGSP module integrates four-directional 2D-SSM
scanning with residual branches to strengthen spatial dependency
modeling and enhance complex lesion recognition. (3) The CCGOS
module fuses channel-spatial attention using global average pooling
and Mamba blocks, thereby improving robustness. Experimental
results demonstrate that MamSwinNet achieves Fl-scores of
79.47%, 99.52%, and 99.38% on the PlantDoc, PlantVillage, and
Cotton datasets, respectively, effectively overcoming the limitations
of existing methods and achieving a balance between detection
accuracy, computational efficiency, and adaptability to

complex scenarios.

2 MamSwinNet model

The Swin Transformer is a hierarchical vision Transformer
architecture whose central innovations are window-based self-
attention (W-MSA) and the shifted window scheme (SW-MSA). In
W-MSA, the input image is evenly partitioned into non-overlapping
local windows, and self-attention is computed within each window
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rather than globally across the entire image. This design reduces the
quadratic complexity of traditional ViT's to a linear relationship with
the number of windows, eliminating redundant computations while
accurately capturing fine-grained local details. The SW-MSA
mechanism addresses the “information isolation” caused by fixed
local windows. By shifting the window partition in successive
Transformer layers (e.g., half-window displacement), features
originally separated into different windows are merged into the
same window, enabling cross-window information flow and feature
interaction. The combination of W-MSA and SW-MSA ensures that
Swin Transformer achieves an effective balance between
computational efficiency and global modeling capability. Moreover,
with its hierarchical representation and Patch Merging, Swin
progressively constructs multi-scale feature pyramids well-suited to
dense prediction tasks.

However, in the specific context of plant disease detection, Swin
Transformer still faces three major limitations. First, its fixed, non-
overlapping patch partitioning may fragment lesion boundary
structures, while redundant background tokens make it difficult to
jointly optimize computational efficiency and lesion feature
precision. Second, the locality of window-based attention restricts
its ability to model long-range spatial dependencies, such as the
spread of lesions across regions. Third, it lacks mechanisms to
jointly correlate color features of lesions with their spatial positional
attributes, reducing robustness under complex field conditions.

To overcome these challenges, this study introduces
MamSwinNet (Figure 1), a model built upon the principle of
“hierarchical feature construction with efficient enhancement.”
MamSwinNet retains the layered Swin backbone while
incorporating three novel modules within a four-stage framework.
The first three stages perform patch partitioning, linear embedding,
multiple Swin Transformer blocks, and Patch Merging to gradually
extract multi-scale hierarchical features, progressing from local
textures to global structural representations: Stage 1 applies two
blocks to the initial tokens, Stage 2 downsamples and processes with
four blocks, and Stage 3 stacks six blocks while increasing
dimensionality, yielding a feature pyramid that encodes both scale
diversity and hierarchical depth. The fourth stage integrates three
key modules: Efficient Token Refinement for reducing redundancy
while preserving lesion boundaries and balancing accuracy with
efficiency; SGSP for capturing long-range spatial dependencies,
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FIGURE 1

The four-stage feature extraction framework of the Swin-Mamba model.
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such as cross-region lesion spread, through directional scanning
with residual fusion; and CCGOS for channel-spatial coordination
by integrating lesion color cues with positional information.
Together, these modules enable precise extraction and efficient
fusion of disease-related features, enhancing robustness and
adaptability for complex plant disease detection scenarios.

2.1 Efficient token refinement module

In the field of plant disease detection, accurately identifying
disease features is crucial for ensuring agricultural production
safety. However, the complexity and diversity of disease features
(such as irregular shapes of lesions and subtle differences in color)
pose a significant challenge for feature extraction. The current
mainstream Transformer models adopt a fixed-size image
partitioning strategy, which, although capable of capturing global
features, fails to retain key boundary information of the image when
processing high-resolution disease images. This results in inefficient
extraction of high-quality tokens and leads to a large amount of
redundant computation. Not only does this increase computational
complexity and memory consumption, but it also makes real-time
detection more difficult.

To address this issue, this paper proposes an innovative Efficient
Token Refinement module (as shown in Figure 2). First, an
overlapping spatial reduction method is introduced, relying on
deep separable convolutions. The convolution kernel size is
designed as “stride + 3”, and by expanding the overlapping region
of image blocks, this method effectively represents the boundary
spatial structure. This design allows for more complete retention of
boundary information during spatial reduction, thereby improving
the quality of token features and the integrity of their spatial
structure. Secondly, high-quality tokens are converted into a fixed
number of latent tokens. This process reduces computational
complexity while maximizing the retention of key features,
providing strong support for the efficient processing of
subsequent modules.

First, the Efficient Token Refinement module performs
preliminary processing on input features through a 3x3
convolution, aiming to extract the feature map Fy,; with basic
spatial information and adjust the number of channels to match the

—XZXZC ﬁxzx B s
8 16 16 Stag4 32732
- T T T T T T T hT T T T T T T T T I
| Stage3 : |
| on | ‘
l g‘) | [72) |
| > ay o I 0
é’ Transformer : § — g — 8 L. 8
3 Block | &2 o ! ©
= I
Y | |
' \
' \

03

frontiersin.org


https://doi.org/10.3389/fpls.2025.1676148
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang and Liu

3x3 DWConv

= | ) ()
—

A

Linear

FIGURE 2
Efficient token refinement module structure.

subsequent embedding dimension. The initial convolution
operation is expressed by the following formula:

= RBXCXHXW

F = Conv3 x3 (X), Finu

init

Among them, B, C, H, and W represent the batch size,
number of channels, height, and width, respectively.

On this basis, F;,;; first adopts a depthwise convolution with a
kernel size of “stride + 3” to carry out spatial dimension reduction
on the feature map, obtaining the feature representation Y &
REXCH>XW afier spatial reduction.

Subsequently, the local refinement module constructed by 3x3
depthwise convolution is utilized to process Y Through linear
transformation and splitting operations, Y is divided into K &
REXCHAXW and v & REXCHXW \which is formulated as:

K,V = Split(Linear(Y + LR(Y)))

For the query vector Q € RE*CxIxW

, it is generated by

performing a linear transformation on the original input feature
x, and its mathematical expression is:
T = Linear(x)

Based on (Q,K,V), the softmax attention is calculated. The

RCXHXW

output of the attention mechanism Z & is realized

through the following formula:

Z = Softmax (Q—KT + B) \%
Vd
Among them, B is the relative position bias, which is used to
encode the spatial correlation of the spatial attention map.
Finally, the module maps the enhanced features into a fixed
number of latent tokens through a linear transformation layer. The
specific process is as follows:
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T = Linear(F,,), T € R®*T*E

Among them, T is the number of tokens, and E is the
embedding dimension of each token. Through this process, the
module significantly reduces computational complexity, while
retaining key multi-scale and global features, providing a more
efficient input representation for subsequent modules.

2.2 SGSP Module

At the pixel - spatial dimension, to balance computational
efficiency, Transformer - based plant disease and pest detection
methods often adopt the shifted window attention mechanism.
However, this mechanism has limited capability in modeling the
global horizontal dimension of images, and plant disease and pest
images generally suffer from the problem of easily lost global
information. Inspired by the successful experience of Swin
Transformer in achieving long - range modeling with linear
complexity, we introduce the 2D Selective Spatial Scanning
Module (2D - SSM) into the plant disease and pest detection task.
As shown in Figure 3, the input feature X € RS is processed
through two parallel branches:

Branch 1 (Spatial Modeling Branch): First, channels are
expanded via a linear layer, followed by depthwise convolution
(DWConv), SiLU activation, and finally connected to the 2D - SSM

layer with Layer Normalization (LN). The formula is:

X, = LN(2D — SSM(SiLU(DW Conv(Linear(X))))

Among them, the 2D - SSM module first performs
omnidirectional scanning on 2D image features along four
directions: top - left to bottom - right, bottom - right to top - left,
top - right to bottom - left, and bottom - left to top - right. After
integrating the feature information captured by multi - direction
scanning, it flattens the information into a one - dimensional
sequence. Subsequently, it models and captures the long - range
feature dependencies in the one - dimensional sequence using
discrete state - space equations, and strengthens the transmission
and association of key features through dynamic weight allocation.
Finally, through feature summation, merging, and dimension
reshaping operations, the processed features are restored to a 2D
structure. This mechanism can adaptively focus on and capture key
pixel information in images, effectively enhancing the network’s
ability to model subtle spatial features in plant disease and pest
images, and providing richer spatial detail support for the accurate
identification of subsequent disease features.

Branch 2 (Residual Compensation Branch): It only expands
channels via a linear layer and then applies SiLU activation. The
formula is:

X, = SiLU(Linear(X)),

The features of the two branches are aggregated via the
Hadamard product (0). Finally, they are projected back to the
input dimension and undergo residual fusion. The formula is:
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FIGURE 3
Schematic diagram of the SGSP module.

Xout = Linear(X; O X,) + X

2.3 CCGOS Module

When computing channel attention in image classification tasks
based on Mamba, conventional methods often rely on global max
pooling or average pooling operations. However, such approaches
tend to lose spatial location information associated with the target

region. To address this issue, we extend Mamba by introducing a
channel attention modeling mechanism, further enhancing the
spatial attention mechanism into a channel-spatial attention
module. By embedding precise spatial location information, the
network can more effectively focus on the most task-relevant
channel features, thereby improving its perceptual capability.

RCXHXW

As illustrated in Figure 4, given an input X & , average

pooling is first applied along the height and width dimensions:

Xy, € REPW = AvgPool,, (X)

———  Dwconv ——  Softmax
z 2 Z
3% g & =
HE R +—- £ :
-] % - Gllyg 1 2 g
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FIGURE 4

CCGOS Module Structure and Submodules (CFSSM/CBSSM) Working Principle Diagram.
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X, € R“H* = AvgPool,, (X)

The results are then concatenated and processed sequentially
through a Conv-BN-ReLU operation, after which the feature map is
split back into two components:

Xpy € REPHEW) _ ReLU(BN(Conv(Concat(Xy, X))

Xh = RCXIXW,XW = RCXHXI _ Spht(th)

Next, Wy, and W, are fed into the channel-selective scanning
module, which consists of two parts: the Channel Forward Selective
Scanning Module (CFSSM) and the Channel Backward Selective
Scanning Module (CBSSM). After passing through the Sigmoid
activation, the height and width attention weights Wy, and W, are
obtained:

W, = Sigmoid(CFSSM(X,,) O (Xp,) + CBSSM(X;,) O (X))

W,, = Sigmoid(CFSSM(X,,) ® (X,) + CBSSM(X,,) ( (X,,))

Finally, the adjusted channel features with W}, and W, are
combined through a 1x1 convolution and a Softmax activation
function to produce the output of the CCGOS module:

Y € ROV _w O Wy, @ Softmax(Conv(X)) + X

Through this design, the CCGOS module not only preserves
global contextual information but also embeds spatial coordinate
information during the modeling process, thereby addressing the
limitations of traditional pooling-based attention mechanisms in
representing spatial distributions. While maintaining
computational efficiency, the module significantly enhances the
model’s ability to perceive and classify complex disease features.

3 Experiments
3.1 Experimental datasets

This study selected three representative datasets—PlantDoc,
PlantVillage, and Cotton Disease—to systematically validate the
effectiveness and robustness of the proposed model. All datasets
followed a uniform partitioning strategy, randomly divided into
training, validation, and test sets in an 8:1:1 ratio. To mitigate the
influence of randomness on the experimental outcomes, each
experiment was independently repeated five times, and the
median performance across repetitions was adopted as the final
evaluation metric, thereby ensuring the stability and scientific rigor
of the results.

1. PlantDoc Dataset

The PlantDoc dataset is a high-quality open-source resource
specifically developed for plant disease detection tasks, providing
real-world samples collected under natural field conditions. It
encompasses 13 major crops (such as maize, tomato, and wheat)
and 27 representative plant diseases (including rust, powdery
mildew, and leaf spot), all of which are precisely annotated by
experts. Compared with laboratory-collected data, PlantDoc images
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more faithfully capture the complexity and diversity of plant disease
manifestations in natural environments, including variations in
lighting, background interference, and lesion morphology. This
realism considerably increases the difficulty of the recognition
task while enhancing its practical relevance. Owing to these
characteristics, PlantDoc has become a key benchmark dataset for
evaluating the robustness and applicability of plant disease
detection models. Figure 5 illustrates several representative
samples from the dataset. The dataset is publicly accessible via the
following link: https://github.com/pratikkayal/PlantDoc-Dataset

2. PlantVillage Dataset

The PlantVillage dataset is one of the most widely used open-
source datasets for leaf disease recognition, designed and released
by the Spandan Mohanty team. It includes 14 major crops (such as
tomato, apple, and maize) and 38 disease categories. All samples
were collected under controlled laboratory conditions,
characterized by clean backgrounds, uniform illumination, and
clearly visible lesions. This standardized acquisition method
ensures high data quality, facilitating the training and validation
of deep learning models. Thanks to its advantages of environmental
controllability and distinct disease features, PlantVillage is
frequently employed for model pre-training and performance
benchmarking, and has become an important reference dataset in
plant disease detection research. Figure 6 presents several
representative samples from this dataset. PlantVillage can be
accessed via the following link: https://www.kaggle.com/datasets/
abdallahalidev/plantvillage-dataset

3. Cotton Disease Dataset

The Cotton Disease dataset is dedicated to research on cotton
plant diseases, with a particular focus on the automatic recognition
of cotton leaf diseases. It includes five representative disease
categories—aphid infestation, bollworm damage, bacterial blight,
powdery mildew, and target spot—while also incorporating healthy
leaf images as control samples. The dataset’s class design not only
covers the major and prevalent diseases in cotton production but
also provides a reliable benchmark for evaluating models in multi-
class disease classification tasks. Figure 7 presents several
representative image samples from this dataset. The dataset is
publicly available at the following link: https://www.kaggle.com/
datasets/dhamur/cotton-plant-disease.

3.2 Experimental environment and
evaluation metrics

The experiments in this study were conducted under the
following hardware and software settings to ensure efficient
training and inference of the deep learning models. The hardware
platform comprised an NVIDIA RTX 2080Ti GPU with 12 GB of
memory and an Intel Xeon Platinum 8336C CPU. The software
environment was configured with Python 3.8 and PyTorch 1.11.0,
with model training implemented on CUDA 11.3.All experiments
were standardized with an input image size of 224 x 224, a batch size
of 50, and an initial learning rate of 5e-5. The AdamW optimizer was
adopted for training. To comprehensively evaluate the performance

frontiersin.org
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Potato Leaf early blight

FIGURE 5
Sample images from the PlantDoc dataset.

of the proposed MamSwinNet model in plant disease recognition,
several evaluation metrics were employed. These include Precision,
Recall, and F1-Score to assess classification performance, as well as
model complexity indicators—number of parameters and GMACs
(Giga Multiply-Accumulate operations)—to measure computational
efficiency. The definitions of these metrics are as follows:

1. Precision

Precision measures the proportion of samples predicted as
diseased that are actually diseased. It is defined as:

TP

Precision = ———
TP + FP

Frontiers in Plant Science
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where TP (True Positive) represents the number of samples
correctly predicted as diseased, and FP (False Positive) denotes the
number of healthy samples incorrectly predicted as diseased. A
higher precision indicates that the model makes fewer errors when
classifying healthy samples as diseased, thereby reducing
unnecessary pesticide application and resource waste.

2. Recall

Recall measures the proportion of truly diseased samples that
are correctly identified by the model. It is defined as:

TP

Recall = —
TPy EN
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Apple Black rot

Tomato Early blight

FIGURE 6
Sample images from the PlantVillage dataset.

where FN (False Negative) refers to the number of diseased samples
incorrectly predicted as healthy. A higher recall reflects the model’s
ability to capture more diseased samples, thereby reducing the risk of
missed detections. This is especially important in detecting severe plant
diseases, where higher recall helps in timely warning and prevention.

3. F1-Score

The F1-score integrates both Precision and Recall, balancing the
trade-off between the two, and serves as a comprehensive indicator
of model performance. It is defined as:

Precision x Recall
Fl-Score=2X —————
Precision + Recall

The F1-score ranges from 0 to 1, with higher values indicating
better overall classification performance, especially in minimizing
the trade-off between false alarms and missed detections. In this

Frontiers in Plant Science
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study, the Fl-score is used as the key metric for evaluating the
overall classification accuracy of plant disease detection.

4. Number of Parameters

This metric reflects the scale of trainable parameters within the
model, measured in millions (M). A smaller parameter size
indicates a lighter-weight model, which requires less storage and
computational cost, making it more practical for deployment in
resource-constrained agricultural scenarios.

5. GMACs

GMAGCs (Giga Multiply-Accumulate Operations) measure the
computational complexity of the model during inference, with units
representing billions of multiply-accumulate operations. A lower
GMAC value implies faster inference speed and higher
computational efficiency, which is essential for real-time plant
disease detection and large-scale agricultural applications.
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Powdery mildew

FIGURE 7
Sample images from the cotton disease dataset.

3.2.1 Experimental results

In the validation experiments on the PlantDoc dataset, the
MamSwinNet model demonstrated strong capability in classifying
plant diseases under complex natural conditions, while also
revealing certain limitations. As shown by the classification
metrics (Table 1), the model performs well across most
categories. Specifically, categories 15, 16, and 25 achieved
Precision, Recall, and F1-Score values of 100%, indicating
excellent discriminative power for disease types with distinct and
representative features. Similarly, categories 9, 10, 13, 17, and 26
maintained overall metrics above 90%, further confirming the
model’s stability and reliability in identifying mainstream disease
types. However, several categories exhibited notably lower
performance; for instance, categories 7 and 20 achieved F1-Scores
of only 22.22% and 20.00%, respectively, while categories 3, 4, and
12 remained within the 50%-60% range. This disparity primarily
arises from significant differences in the visual characteristics of
various disease categories.
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As illustrated in Figure 8, for low-performing categories such as
grape black rot, pepper leaf spot, and corn gray leaf spot, lesion
colors are highly similar to the leaf background and exhibit blurred
boundaries, making it difficult for the model to focus accurately on
key lesion regions. In contrast, for high-performing categories such
as pumpkin powdery mildew, tomato gray mold, and tomato late
blight (Figure 9), the lesion boundaries are clear and the
morphological features are distinctive, enabling the model to
effectively capture discriminative regions and achieve precise
classification. This phenomenon indicates that the visual
separability between lesion and background is a critical factor
affecting classification performance.

The confusion matrix (Figure 10) further supports this
conclusion. The concentration of values along the main diagonal
shows that most predicted categories are consistent with their true
labels. For instance, nearly all samples of categories 0, 16, and 25
were correctly classified, reflecting the model’s stability and
robustness in feature extraction and discrimination for these
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TABLE 1 Classification performance statistics of the PlantDoc dataset
(by category).

Class Pre&s)b” Recall (%)  F1 Score (%)
0 90.00 90.00 90.00
1 77.78 77.78 77.78
2 100 80.00 88.89
3 66.67 50.00 57.14
4 62.50 55.56 58.83
5 75.00 81.82 78.26
6 87.50 70.00 77.78
7 20.00 25.00 22.22
8 69.23 75.00 72.00
9 100 90.00 94.74
10 100 88.89 94.12
11 53.84 87.50 66.66
12 75.00 37.50 50.00
13 87.50 100 93.33
14 60.00 75.00 66.67
15 100 100 100
16 100 100 100
17 90.00 100 94.74
18 50.00 100 66.67
19 100 62.50 76.92
20 100 11.11 20.00
21 77.78 70.00 73.69
22 85.71 60.00 70.59
23 75.00 100 85.71
24 60.00 100 75.00
25 100 100 100
26 100 87.50 93.33

ALL 81.50 77.54 79.47

categories. Meanwhile, some off-diagonal regions exhibit noticeable
confusion, such as misclassifications between categories 7 and 2,
confusion between 12 and 11, and the low recognition rate of
category 20, revealing the model’s limitations when handling classes
with low feature distinctiveness or ambiguous lesion boundaries.
Furthermore, the training curves (Figures 11, 12) indicate that
MamSwinNet possesses good convergence and feature-learning
capability. During the first 10 epochs, Precision rapidly increased
from 0 to over 75%, accompanied by a significant reduction in loss.
After 20 epochs, the model entered a fluctuating convergence stage,
with Precision stabilizing between 75% and 80% and the loss curve
flattening out, suggesting that the model can efficiently learn
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discriminative representations and maintain stable performance
within a relatively short training cycle.

Overall, MamSwinNet achieves stable recognition results across
most disease categories but still shows room for improvement when
dealing with complex scenes involving similar colors, blurred edges, or
inconspicuous features. Future research could further enhance model
performance through the following strategies: (1) introducing a multi-
scale feature extraction mechanism to capture both fine-grained textures
and global structural information at different scales, thereby enhancing
lesion detail modeling; (2) integrating contrastive learning to enlarge the
feature-space distance between lesions and background samples,
improving the model’s discriminative ability for easily confused
categories; (3) further optimizing the attention mechanism design to
strengthen the model’s focus on key regions and reduce interference
from illumination variation and background noise; and (4) exploring
domain adaptation and transfer learning techniques to improve
generalization across different crop types and environmental conditions.

3.2.2 Comparative experiments

To comprehensively evaluate the performance of MamSwinNet
in plant disease detection, we conducted detailed comparative
experiments against mainstream deep learning models. The
baseline models included Shufflenet (Zhang et al, 2018),
EfficientNet (Atila et al., 2021), MobileNet V3 (Qian et al., 2021),
MobileViT (Mehta and Rastegari, 2021), ConvNeXt (Wu et al,
2023), DenseNet (Zhu and Newsam, 2017), ResNet (Targ et al,
2016), GoogLeNet (Al-Qizwini et al., 2017), RegNetX (Guo et al,,
2025), and Swin Transformer (Liu et al., 2021), along with classic
Transformer architectures. In addition, models specifically designed
for plant disease detection, such as T-CNN (Wang et al., 2021) and
ICVT (Yu et al., 2023), were included for comparison. The results
are summarized in Table 2.

In terms of core classification performance, MamSwinNet
demonstrates remarkable superiority. Its Precision reaches
81.50%, Recall 77.54%, and F1-Score 79.47%, significantly
outperforming most comparison models. When compared with
lightweight models such as ShufflenetV2x1.0 (F1 69.21%) and
MobileNetV3-Large (F1 61.07%), MamSwinNet achieves F1
improvements of 10.26 and 18.30 percentage points, respectively,
overcoming the inherent precision limitations of lightweight
architectures in handling complex plant disease datasets. Against
classic CNN models like DenseNet-121 (F1 72.84%) and ResNet-50
(F1 70.85%), MamSwinNet leverages its ability to model long-range
dependencies and cross-dimensional features, boosting F1 by 6.63
and 8.62 percentage points, respectively. For Transformer-based
methods, MobileViT-XS (F1 71.55%) and Swin Transformer Base
(F1 72.70%) struggle to balance accuracy and efficiency due to the
high computational cost of self-attention, whereas MamSwinNet’s
innovative modules improve F1 by 8.02 and 6.77 percentage points,
respectively. Even plant-disease-specific models such as T-CNN
(ResNet-101, Precision 74.44%) and ICVT (Precision 77.23%) fall
short, with MamSwinNet surpassing them by 7.06 and 4.27
percentage points in Precision, respectively.

In terms of computational efficiency, MamSwinNet achieves an
excellent balance between accuracy and resource consumption. It
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FIGURE 8

Bell pepper leaf spot

Corn Gray leaf spot

Representative samples of categories with insufficient recognition performance by the model.

contains only 12.97M parameters and a computational complexity
of 2.71 GMac. In contrast, DenseNet-161 (F1 74.75%) has 26.53M
parameters, more than 2.04x larger, while Swin Transformer Base
(F1 72.70%) requires 15.19 GMac, which is approximately 5.6x
higher than MamSwinNet.

Taken together, MamSwinNet comprehensively outperforms
mainstream models in both accuracy and efficiency, highlighting its
distinctive advantages and broad applicability for plant disease
detection tasks.

3.2.3 Ablation study: module contribution
analysis

To quantify the independent contributions and synergistic
effects of each core module in MamSwinNet, four groups of
ablation experiments were conducted (Table 3). Using Swin-T as
the baseline, the comparison was carried out in terms of both
classification performance (Precision, Recall, F1-Score) and
computational efficiency (number of parameters and GMACs).

Experiment 1: Baseline Model (Swin-T).

Using Swin Transformer Tiny (Swin-T) as the benchmark, the
model achieved a Precision of 76.78%, Recall of 74.15%, and F1-
Score of 75.44%. Although it demonstrated basic classification

capability, its large parameter count (27.54M) and computational
cost (4.38 GMac) impose significant limitations on efficient
deployment in real-world agricultural scenarios, highlighting the
necessity of further optimization.

Experiment 2: Removal of the Efficient Token Refinement Module.

When the SGSP and CCGOS modules were retained but
Efficient Token Refinement was removed, model accuracy
improved slightly (Precision 78.54%, Recall 75.91%, F1-Score
77.20%). However, parameters increased to 16.68M and
complexity to 3.09 GMac, indicating that this module plays a
crucial role in reducing parameters and computational overhead.
Its removal yields marginal accuracy gains but undermines the
lightweight advantage.

Experiment 3: Removal of the SGSP Module.

Retaining Efficient Token Refinement and CCGOS while
removing SGSP resulted in Precision 79.74%, Recall 76.27%, and
F1-Score 77.97%. Parameter count dropped to 12.93M and
computational cost to 2.71 GMac, closely matching the efficiency
of the complete model. However, the F1-Score decreased by 1.50
percentage points, underscoring the indispensable role of SGSP in
modeling long-range spatial dependencies, which is key to
improving classification accuracy for complex plant diseases.

Squash Powdery mildew leaf

FIGURE 9

Tomato mold leaf

Tomato leaf late blight

Representative samples of categories with superior recognition performance by the model.
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FIGURE 10
Confusion matrix heatmap for the PlantDoc test set classification.
Experiment 4: Removal of the CCGOS Module. Replacing SGSP and CCGOS with standard Transformer

When Efficient Token Refinement and SGSP were retained but ~ modules while retaining Efficient Token Refinement produced
CCGOS removed, Precision declined to 78.38%, Recall to 75.33%,  Precision 80.01%, Recall 76.75%, and F1-Score 78.35%. However,
and F1-Score to 76.82%. Parameters totaled 12.94M with 2.70  parameters increased to 14.85M and complexity to 2.93 GMac.
GMag, but this setting produced the lowest accuracy among all  Although accuracy exceeded the baseline, it was 1.12 percentage
“single-module removal” experiments. This confirms that CCGOS  points lower than the complete model, with greater computational

is irreplaceable for channel-spatial feature fusion. cost. This suggests that while standard Transformer blocks provide
Experiment 5: Replacing SGSP and CCGOS with Standard  basic feature modeling, they lack the efficiency and task-specific
Transformer Blocks. adaptability of SGSP and CCGOS.
—e— Loss
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FIGURE 11

Model training loss curve over epochs.
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FIGURE 12

Model training precision curve over epochs.
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TABLE 2 Comparison of classification performance and efficiency (parameters, Glops) for different models.

Model Precision (%) Recall (%) F1 (%) Model parameters (M) GMACs
ShufflenetV2 x1.0 70.15 68.29 69.21 12 0.15
ShufflenetV2 x2.0 74.12 71.21 72.64 54 0.59

EfficientNet-B0 70.52 69.75 70.13 4.04 0.40
EfficientNett-B1 72.15 71.86 72.00 6.55 0.59
MobileNetV3-Small 58.66 56.78 57.70 1.55 0.059
MobileNetV3-Large 63.42 58.89 61.07 424 0.23
MobileViT-S 72.01 71.51 71.76 4.95 1.56
MobileViT-XS 73.32 69.87 71.55 1.94 0.80
MobileViT-XXS 67.56 63.14 65.27 0.86 0.24
ConvNeXt-Tiny 72.01 71.34 71.67 27.84 4.49
ConvNeXt-Small 65.96 63.89 64.91 49.48 8.73
DenseNet-121 74.10 71.63 72.84 6.98 2.90
DenseNet-161 76.72 72.88 74.75 26.53 7.85
DenseNet-201 75.08 72.32 73.67 18.14 4.39
ResNet-34 70.70 65.67 68.09 21.30 3.68
ResNet-50 74.21 67.79 70.85 23.56 4.13
GoogLeNet 70.81 65.25 67.92 10.01 1.51
regnetx-1.6 69.34 68.54 68.94 8.30 1.83
regnetx-3.2 71.24 70.56 70.89 14.31 3.62
Regnetx-4.0 74.62 74.41 74.51 20.79 4.40
Transformer Base 55.58 57.51 56.53 85.82 16.88
Swin Transformer Tiny 76.72 72.95 74.79 27.54 4.38
Swin Transformer Base 74.75 70.76 72.70 86.77 15.19
T-cnn(ResNet-101) 74.44 - - - _
ICVT 77.23 - - - -
MamSwinNet 81.50 77.54 79.47 12.97 271
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TABLE 3 Ablation experiment results.

10.3389/fpls.2025.1676148

Experiment Precision (%) Recall (%) F1 (%) Model parameters GMACs
1 76.78 74.15 7544 27.54 438
2 78.54 75.91 77.20 16.68 3.09
3 79.74 76.27 77.97 12.93 271
4 78.38 7533 76.82 12.94 270
5 80.01 76.75 78.35 14.85 293
6 81.50 77.54 79.47 1297 2.71

Experiment 6: Complete MamSwinNet.

The full integration of Efficient Token Refinement, SGSP, and
CCGOS yielded the best performance: Precision 81.50%, Recall
77.54%, and F1-Score 79.47%, with only 12.97M parameters and
2.71 GMac. Compared to the baseline, parameters were reduced by
52.8% and computation by 38.1%, alongside significant accuracy
gains. These results highlight the synergistic effect of the three
modules: Efficient Token Refinement optimizes token quality and
reduces redundancy, SGSP enhances long-range spatial dependency
modeling, and CCGOS strengthens channel-spatial feature fusion.
Collectively, they achieve a dual breakthrough in accuracy

enhancement and efficiency optimization, demonstrating the
necessity and superiority of the complete architecture.

3.2.4 Model visualization analysis based on Grad-
CAM

To further assess MamSwinNet’s capacity for lesion-focused
feature capture and decision interpretability, this section employs
Gradient-weighted Class Activation Mapping (Grad-CAM) on
representative disease samples to visualize attention heatmaps
during classification. In these maps, colors from blue to red
indicate increasing feature contribution. A greater overlap
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FIGURE 13

Grad-CAM comparison on apple rust disease samples (Top: complete MamSwinNet model; Bottom: after removing the Efficient Token Refinement

module).
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between red regions and the ground-truth lesions signifies more
accurate focus on disease-critical features during decision-making,
thereby providing intuitive, visual evidence of the model’s
reasoning process.

Figure 13 presents a Grad-CAM comparison on apple rust
samples. In the complete model, high-contribution (red) regions
align closely with the reddish-brown, near-circular raised lesions on
the leaf surface in both location and morphology, leading to a
correct classification as “apple rust leaf.” However, after removing
the Efficient Token Refinement module, the coverage of red regions
over the lesions declines markedly, lesion boundaries become
blurred, and the model ultimately misclassifies the sample as
“apple black spot leaf.” This comparison indicates that the
Efficient Token Refinement module plays a pivotal role in
preserving the spatial structural information of lesion boundaries,
enabling precise focus on disease-core regions and supporting
correct classification.

Figure 14 shows the visualization for maize rust samples. With
the complete model, high-contribution regions are highly consistent
with the diffusely distributed rust pustules across the leaf, yielding
an accurate classification as “maize rust leaf.” After the SGSP
module is ablated, the heatmap becomes fragmented and lacks
continuity. Although the final label remains “maize rust leaf,” the
model’s overall coverage and focus on the dispersed lesion pattern

Grad-CAM

10.3389/fpls.2025.1676148

are substantially reduced. This suggests that SGSP is crucial for
modeling long-range dependencies characteristic of diffuse
lesion distributions.

Figure 15 illustrates the results for apple black spot samples.
Under the complete model, the high-contribution regions align
closely with black spot lesions along the leaf margin, resulting in a
correct prediction of “apple black spot leaf.” In contrast, removing
the CCGOS module significantly diminishes focus on the lesion
area, shifts the attention distribution, and leads to a
misclassification as “blueberry leaf.” These findings indicate that
CCGOS is essential for joint channel-spatial feature modeling,
effectively suppressing background interference and highlighting
discriminative lesion cues. Without this module, the model
becomes more prone to confusion in complex backgrounds,
degrading classification accuracy.

In summary, the interpretability analysis of MamSwinNet
demonstrates that its attention distribution aligns closely with the
actual lesion regions. The three key modules play essential roles in
preserving spatial structure, modeling long-range dependencies,
and enhancing channel-spatial feature fusion, thereby improving
both the accuracy and robustness of plant disease recognition.
These findings are consistent with the high performance reported
in the experimental results, further underscoring the robustness and
practical value of MamSwinNet.
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Grad-CAM comparison on maize rust disease samples (Top: complete MamSwinNet model; Bottom: after removing the SGSP module).
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FIGURE 15

Grad-CAM comparison on apple black spot disease samples (Top: complete MamSwinNet model; Bottom: after removing the CCGOS module).

3.2.5 Impact of regularization methods on model
performance

To explore the regulatory effect of regularization strategies on
the feature learning preferences and generalization ability of the
MamSwinNet model, comparative experiments were designed
using three configurations: L1 regularization, L2 regularization,
and no regularization. The evaluation was conducted on the
PlantDoc dataset using Precision, Recall, and F1-Score (Table 4).

The experimental results show that L1 regularization
significantly improved the model’s performance: Precision
reached 81.50%, Recall was 77.54%, and F1-Score was 79.47%,
outperforming both L2 regularization (Precision 80.51%, Recall
76.49%, F1-Score 78.45%) and no regularization (Precision

TABLE 4 Comparison of classification performance indicators for L1, L2,
and no regularization strategies.

Regularization

methods Precision (%) Recall (%) F1 (%)
L1 ‘ 81.50 77.54 79.47
L2 ‘ 80.51 ‘ 76.49 ‘ 78.45
No Regularization ‘ 79.97 ‘ 75.86 ‘ 77.86
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79.97%, Recall 75.86%, F1-Score 77.86%). The core mechanism
behind this lies in the sparsity-inducing nature of L1 regularization:
by applying L1 norm penalties to the weights, the model tends to
learn highly discriminative “core features” (such as the edge
contours of lesions and the specific response of color channels)
while suppressing redundant noise features (such as the vein texture
of the background leaf or lighting interference), allowing the feature
representation to focus more on the essential patterns of the disease.

In contrast, L2 regularization uses a global weight decay
strategy, which can alleviate overfitting by reducing the weight
scale, but due to the lack of feature selection, it may excessively
compress fine-grained features of the disease spot (such as the
texture of tiny spots), leading to a decrease in Recall (1.05
percentage points lower than L1). In the case of no regularization,
the model tends to overfit sample-level noise in the training set
(such as leaf wrinkles and shadows in the images), which results in
poor generalization ability on the test set (F1-Score is 1.61
percentage points lower than L1), further confirming the critical
role of regularization in preventing overfitting.

In summary, L1 regularization, through “sparse feature
selection,” adapts to the heterogeneity of plant disease features
(such as lesion shapes and color diversity), enhancing model
robustness while improving classification accuracy, making it an
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efficient strategy for optimizing the MamSwinNet model’s
performance in disease detection.

3.2.6 Token dimensions and quantity impact on
model performance

To explore the impact of token dimensions and quantity in the
Efficient Token Refinement module on model classification
performance and computational efficiency, experiments were
conducted by adjusting token quantities (64, 256, 324, 400) and
dimensions (32, 64, 128, 256). The system analyzed Precision,
Recall, F1-Score, and computational cost (model parameters,
Glops) for different configurations, with results shown in Table 5.

At the same token quantity, increasing the dimension
significantly improved performance. For example, with a fixed
token quantity of 64, when the dimension increased from 32 to
128, the model’s performance gradually optimized:At dimension 32,
the F1-Score was 74.77%, with 12.30M parameters and 2.62 Glops.
At dimension 64, the F1-Score increased to 75.97%, with slight
increases in parameters and Glops. At dimension 128, the F1-Score
reached 79.47%, with Precision and Recall at 81.50% and 77.54%,
respectively, 12.97M parameters, and 2.71 Glops, showing
significant performance improvement and controllable
computational cost compared to dimension 32.

This indicates that appropriately increasing the token
dimension enhances feature expression, better capturing complex
features such as lesion color gradients and texture details.
Particularly at dimension 128, it achieved a good balance
between precision and efficiency. At the same dimension,
increasing the token quantity did not lead to continuous
performance improvement. For instance, with a fixed dimension
of 128:When the token quantity was 64, the F1-Score was
79.47%.Increasing the token quantity to 256 caused the F1-Score
to drop to 74.38%, with parameters and Glops remaining relatively
stable. Increasing to 324 and 400 led to a slight recovery in F1-Score
(77.26% and 77.86%), but still lower than the performance with 64
tokens, while Glops increased to 2.79 and 2.81, adding to the
computational burden. This suggests that too many tokens
introduce redundant information (such as background noise),
reducing the model’s focus on key disease features and increasing
unnecessary computations.

Overall, the configuration with 64 tokens and 128 dimensions
performed optimally: F1-Score of 79.47%, 12.97M parameters, and
2.71 Glops, effectively balancing high classification accuracy with

10.3389/fpls.2025.1676148

TABLE 6 Generalization experiment results on the PlantVillage dataset.

Precision Recall F1

Model o o °
(%) (%) (%)
PlantViT (Thakur et al., 2021) 98.24 98.33 98.28
ConvViT-S (Utku et al., 2025) 97.80 98.54 98.17
TLMVIT 98.72 98.76 98.73

pre-trained MobileNet-V2 and attention
. ~ 97.49 95.83 96.65
mechanism (Chen et al., 2021)

MamSwinNet 99.53 99.52 99.52

manageable computational cost, making it suitable for large-scale
deployment in agricultural scenarios. This result reveals that the
token configuration must balance feature expression capabilities
with computational efficiency, where increasing the dimension
moderately improves performance, but too many tokens
are counterproductive.

3.2.7 Generalization experiments

To systematically evaluate the adaptability of MamSwinNet
under heterogeneous data distributions and across different
disease types, two representative datasets were selected for
generalization experiments and compared against multiple
mainstream models (results in Tables 6, 7). The PlantVillage
dataset, covering 14 crops and 38 diseases with over 50,000
samples, was used to test the model’s ability to capture shared
disease features across multiple crops. In contrast, the Cotton
Disease dataset focuses on crop-specific lesion morphologies,
providing a more rigorous evaluation of adaptability in
specialized scenarios.

MamSwinNet achieved outstanding performance with
Precision 99.53%, Recall 99.52%, and F1-Score 99.52%,
outperforming all comparison models. Compared with PlantViT
(98.28%), ConvViT-S (98.17%), and TLMVIT (98.73%), it achieved
improvements of 1.25, 1.35, and 0.79 percentage points,
respectively. Its advantage was even more pronounced over the
hybrid MobileNet-V2 + attention mechanism (96.65%). These
results demonstrate that MamSwinNet can effectively aggregate
generalized lesion features across diverse crops, enabling accurate
cross-crop classification.

MamSwinNet’s advantages were even more striking on the
Cotton Disease dataset, where it achieved Precision 99.32%,

TABLE 5 Model performance and efficiency (Parameters, Glops) for different token quantity and dimension combinations.

Token num Token dim Precision (%) Recall (%)
64 3 76.14 7345
64 64 77.09 74.88
64 128 81.50 77.54
256 128 75.34 7345
324 256 79.20 7542
400 256 78.62 77.11

Frontiers in Plant Science

F1 (%) Model parameters GMACs
74.77 12.30 2.62
75.97 1248 2.65
79.47 1297 2.71
74.38 12.98 272
77.26 13.03 279
77.86 13.05 2.81
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TABLE 7 Generalization experiment results on the cotton disease dataset.

10.3389/fpls.2025.1676148

Model Precision (%) Recall (%) F1-Score (%) Model parameters GMACs
Swin transformer Base ‘ 98.88 98.74 ‘ 98.81 86.78 15.19
Swin transformer Tiny ‘ 98.54 98.53 ‘ 98.53 27.55 4.38
Transformer Base ‘ 95.68 95.50 ‘ 95.59 85.83 16.88
MamSwinNet ‘ 99.32 99.44 ‘ 99.38 12.97 2.71

Recall 99.44%, and F1-Score 99.38%, ranking first among all
models. Compared with Swin Transformer Base (F1-Score
98.81%, 86.78M parameters, 15.19 GMacs), MamSwinNet not
only improved the overall F1 by 0.57 percentage points, but also
increased Precision and Recall by 0.44% and 0.70%, respectively.
Relative to Swin Transformer Tiny (F1-Score 98.53%, 27.55M
parameters, 4.38 GMacs) and Transformer Base (FI1-Score
95.59%, 85.83M parameters, 16.88 GMacs), its superiority was
even more evident. Notably, MamSwinNet achieved these results
with only 12.97M parameters and 2.71 GMacs, significantly lower
than its competitors.

These findings confirm that MamSwinNet achieves state-of-
the-art performance while maintaining lightweight design and
computational efficiency. Its ability to generalize across both
broad multi-crop datasets and highly specialized disease scenarios
highlights its strong robustness, adaptability, and suitability for real-
world agricultural applications.

4 Conclusion

This study proposes MamSwinNet, a novel model tailored for
plant disease detection, which addresses key challenges by
integrating the hierarchical architecture of Swin Transformer with
three innovative modules: Efficient Token Refinement, SGSP, and
CCGOS. The model establishes a four-stage feature extraction
framework that balances detection accuracy and computational
efficiency. In the first three stages, patch partitioning, shifted
window attention, and patch merging progressively construct
multi-scale local representations, laying the foundation for high-
level semantic learning. The fourth stage incorporates the proposed
modules to specifically tackle long-range dependency modeling and
cross-dimensional feature fusion: Efficient Token Refinement
improves token quality and efficiency, SGSP enhances spatial
global-context perception, and CCGOS enables precise channel-
spatial feature integration.

Experimental validation demonstrates the superiority of
MamSwinNet. On the PlantDoc dataset, the model achieves
Precision 81.50%, Recall 77.54%, and F1-Score 79.47%,
outperforming mainstream models such as Shufflenet, MobileNet,
and Swin Transformer. Its cross-dataset generalization ability is also
remarkable, maintaining high accuracy on both PlantVillage (F1
99.52%) and Cotton Disease (F1 99.38%) datasets. Ablation
experiments confirm the complementary synergy of the proposed
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modules: compared to the Swin-T baseline, the complete model
reduces parameters by 52.8% and computation by 38.1%, while
boosting the F1-Score by 4.03 percentage points. Further, token
configuration and regularization studies identify 128-dimensional
tokens with a quantity of 64 and L1 regularization as the optimal
setting, underscoring the model’s practical deployment value.

Future research can focus on several key areas to further
enhance the performance of the MamSwinNet model. First,
optimizing the model’s real-time response capability is crucial,
especially for large-scale agricultural disease monitoring systems.
By improving the inference process and accelerating model
computation, the system’s processing speed can be increased to
meet real-time monitoring demands. Second, as environments and
crop types diversify, future studies should focus on improving the
model’s adaptability to complex environments. Techniques such as
transfer learning and domain adaptation can be employed to
enhance the model’s generalization capability across different
crops and pest types, ensuring its efficient application in real-field
scenarios. Moreover, combining other advanced deep learning
technologies, such as reinforcement learning and Generative
Adversarial Networks (GANSs), can further increase the model’s
flexibility and robustness, enabling it to handle more complex
disease detection tasks. These research directions will lay the
foundation for the further optimization and widespread
application of the MamSwinNet model.
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