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Research on the intelligent
detection model of plant
diseases based on MamSwinNet
Ao Zhang and Wei Liu*

School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
Plant diseases pose a severe threat to global agricultural production, significantly

challenging crop yield, quality, and food security. Therefore, accurate and efficient

disease detection is crucial. Current detection methods have clear limitations:

CNN-based methods struggle to model long-range dependencies effectively and

have weak generalization abilities. Transformer-based methods, while adept at

long-range feature modeling, face issues with large parameter sizes and inefficient

calculations due to the quadratic complexity of the self-attention mechanism in

relation to image size. To address these challenges, this paper proposes the

MamSwinNet model. Its core innovation lies in: using the Efficient Token

Refinement module with an overlapping space reduction method, relying on

depthwise separable convolutions designed with “stride + 3” convolution kernels

to expand the image block overlap area and fully preserve boundary spatial

structure. This generates high-quality tokens and converts them into a fixed

number of latent tokens, reducing computational complexity while maximizing

the retention of key features. It integrates the Spatial Global Selective Perception

(SGSP) module and the Channel Coordinate Global Optimal Scanning (CCGOS)

module. The SGSP module uses a dual-branch structure (the spatial modeling

branch introduces 2D-SSM to scan four directions for capturing long-range

dependencies, and the residual compensation branch supplements features to

prevent loss; the two branches are combined using Hadamard product to enhance

spatial detail modeling). The CCGOS module combines channel and spatial

attention by embedding positional information through global average pooling

in the height and width dimensions, using the Mamba block for channel-selective

scanning and generating an attention map, enabling precise association of key

channel features like color with spatial distribution. Experimental results show that

the model achieves F1 scores of 79.47%, 99.52%, and 99.38% on the PlantDoc,

PlantVillage, and Cotton datasets, respectively. The model has only 12.97M

parameters (52.9% less than the Swin-T model) and a computational cost as low

as 2.71GMac, significantly improving computational efficiency. This study provides

an efficient and reliable intelligent solution for large-scale crop disease detection.
KEYWORDS
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1 Introduction

Plant diseases represent a major challenge to modern

agriculture, posing severe threats to global food production and

security. With the continuous development of agricultural

technologies, traditional manual detection methods, characterized

by strong subjectivity and high labor costs, have proven insufficient

for the needs of large-scale production. Consequently, crop disease

detection is rapidly shifting toward automation and intelligence,

driven in particular by breakthroughs in image processing and

machine learning.

In early studies, Panchal et al. (2019) proposed a machine-

learning-based approach for plant disease detection. Their method

employed K-means clustering for image segmentation, gray-level

co-occurrence matrices (GLCM) for feature extraction, and

classification through HSV classifiers and random forests. The

results achieved an accuracy of 98%, demonstrating the potential

of machine learning to enhance classification precision. Similarly,

Phadikar (2012) focused on morphological features of leaves,

analyzing the tonal distribution of diseased foliage and using

Bayesian classifiers and SVMs to identify brown spot and rice

blast with accuracies of 79.5% and 68.1%, respectively, thereby

validating the effectiveness of morphology-based analysis. Duhan

and colleagues, (2024) introduced an integrated recognition strategy

combining multiple machine learning techniques, including

preprocessing, segmentation, and feature extraction. Their work

showed that enhancing dataset diversity and image quality

significantly improves detection accuracy. Kusumo et al. (2018)

applied SVM and K-nearest neighbor (KNN) with image

segmentation and GLCM-based features to classify maize

diseases, achieving an accuracy of 92.7%, further underscoring the

importance of visual features in detection.

As technology advanced, research gradually shifted toward

more sophisticated deep learning models. Ashurov et al. (2025)

incorporated squeeze-and-excitation (SE) modules and optimized

residual connections into CNNs, raising accuracy to 98% with an

F1-score of 98.2%, effectively balancing performance and efficiency.

Ouamane et al. (2024) employed tensor subspace learning with

HOSVD-MDA to design CNNs for tomato disease detection,

achieving an accuracy of 92.6% and illustrating the benefit of

dimensionality reduction in handling complex image classification

tasks. Rakib et al. (2024) proposed a lightweight Q-CNN model

tailored for IoT devices, enabling the recognition of nine diseases at

98% accuracy even in resource-constrained environments, thus

providing a practical solution for intelligent agricultural devices.

Bhargava et al. (2024) developed a CNN-based system with data

augmentation that performed robustly across multiple plant species

and disease types.

In recent years, the success of Transformer architectures has

inspired new directions for plant disease detection. Visual

Transformer (ViT) models have proven effective in image

classification tasks, opening new opportunities for this domain.

Zhang et al. (2021) introduced a Swin-Transformer-based model

for rice disease recognition, leveraging shifted windows and

hierarchical design to achieve 93.4% accuracy, which represented
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a 4.1% improvement over traditional models. Ali et al. (2025)

utilized ViT’s self-attention to capture subtle lesion features,

significantly improving recognition accuracy. Baek (2025)

proposed the Multi-ViT model, integrating multiple ViTs to

enhance classification on apple, grape, and tomato datasets,

achieving F1-scores exceeding 90%.

Overall, existing methods for plant disease detection fall into

three main categories, each with unique strengths but also evident

limitations. Traditional machine learning approaches are

computationally efficient and interpretable but heavily rely on

handcrafted features, limiting generalization to diverse disease

patterns and large-scale applications. CNNs can automatically

extract features and support lightweight deployment, yet their

limited receptive field constrains their ability to capture long-

range dependencies, reducing robustness in complex backgrounds

while balancing accuracy and efficiency remains difficult. ViTs, with

their self-attention mechanism, excel in long-range modeling and

are particularly sensitive to subtle lesions; however, their quadratic

computational complexity with respect to image size imposes

excessive overhead, restricting deployment on resource-limited

platforms such as agricultural IoT devices. Thus, four major gaps

remain: (1) traditional machine learning lacks adaptive

generalization for complex lesion patterns; (2) CNNs struggle

between local feature extraction and long-range dependency

modeling; (3) Transformers face trade-offs between global

modeling power, efficiency, and boundary preservation; (4)

current methods are often limited to single-dimensional features,

failing to achieve channel–spatial–cross-dimensional synergy.

To address these challenges, this study proposes MamSwinNet,

a novel model built upon three innovative modules. (1) The

Efficient Token Refinement module employs stride+3 depthwise

separable convolutions to enlarge patch overlap, preserving lesion

boundary information while refining token selection to reduce

redundancy. This lowers parameter count to 12.97M (a 52.9%

reduction compared with Swin-T) and computational cost to 2.71

GMac. (2) The SGSP module integrates four-directional 2D-SSM

scanning with residual branches to strengthen spatial dependency

modeling and enhance complex lesion recognition. (3) The CCGOS

module fuses channel–spatial attention using global average pooling

and Mamba blocks, thereby improving robustness. Experimental

results demonstrate that MamSwinNet achieves F1-scores of

79.47%, 99.52%, and 99.38% on the PlantDoc, PlantVillage, and

Cotton datasets, respectively, effectively overcoming the limitations

of existing methods and achieving a balance between detection

accuracy, computational efficiency, and adaptability to

complex scenarios.
2 MamSwinNet model

The Swin Transformer is a hierarchical vision Transformer

architecture whose central innovations are window-based self-

attention (W-MSA) and the shifted window scheme (SW-MSA). In

W-MSA, the input image is evenly partitioned into non-overlapping

local windows, and self-attention is computed within each window
frontiersin.org
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rather than globally across the entire image. This design reduces the

quadratic complexity of traditional ViTs to a linear relationship with

the number of windows, eliminating redundant computations while

accurately capturing fine-grained local details. The SW-MSA

mechanism addresses the “information isolation” caused by fixed

local windows. By shifting the window partition in successive

Transformer layers (e.g., half-window displacement), features

originally separated into different windows are merged into the

same window, enabling cross-window information flow and feature

interaction. The combination of W-MSA and SW-MSA ensures that

Swin Transformer achieves an effective balance between

computational efficiency and global modeling capability. Moreover,

with its hierarchical representation and Patch Merging, Swin

progressively constructs multi-scale feature pyramids well-suited to

dense prediction tasks.

However, in the specific context of plant disease detection, Swin

Transformer still faces three major limitations. First, its fixed, non-

overlapping patch partitioning may fragment lesion boundary

structures, while redundant background tokens make it difficult to

jointly optimize computational efficiency and lesion feature

precision. Second, the locality of window-based attention restricts

its ability to model long-range spatial dependencies, such as the

spread of lesions across regions. Third, it lacks mechanisms to

jointly correlate color features of lesions with their spatial positional

attributes, reducing robustness under complex field conditions.

To overcome these challenges, this study introduces

MamSwinNet (Figure 1), a model built upon the principle of

“hierarchical feature construction with efficient enhancement.”

MamSwinNet retains the layered Swin backbone while

incorporating three novel modules within a four-stage framework.

The first three stages perform patch partitioning, linear embedding,

multiple Swin Transformer blocks, and Patch Merging to gradually

extract multi-scale hierarchical features, progressing from local

textures to global structural representations: Stage 1 applies two

blocks to the initial tokens, Stage 2 downsamples and processes with

four blocks, and Stage 3 stacks six blocks while increasing

dimensionality, yielding a feature pyramid that encodes both scale

diversity and hierarchical depth. The fourth stage integrates three

key modules: Efficient Token Refinement for reducing redundancy

while preserving lesion boundaries and balancing accuracy with

efficiency; SGSP for capturing long-range spatial dependencies,
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such as cross-region lesion spread, through directional scanning

with residual fusion; and CCGOS for channel–spatial coordination

by integrating lesion color cues with positional information.

Together, these modules enable precise extraction and efficient

fusion of disease-related features, enhancing robustness and

adaptability for complex plant disease detection scenarios.
2.1 Efficient token refinement module

In the field of plant disease detection, accurately identifying

disease features is crucial for ensuring agricultural production

safety. However, the complexity and diversity of disease features

(such as irregular shapes of lesions and subtle differences in color)

pose a significant challenge for feature extraction. The current

mainstream Transformer models adopt a fixed-size image

partitioning strategy, which, although capable of capturing global

features, fails to retain key boundary information of the image when

processing high-resolution disease images. This results in inefficient

extraction of high-quality tokens and leads to a large amount of

redundant computation. Not only does this increase computational

complexity and memory consumption, but it also makes real-time

detection more difficult.

To address this issue, this paper proposes an innovative Efficient

Token Refinement module (as shown in Figure 2). First, an

overlapping spatial reduction method is introduced, relying on

deep separable convolutions. The convolution kernel size is

designed as “stride + 3”, and by expanding the overlapping region

of image blocks, this method effectively represents the boundary

spatial structure. This design allows for more complete retention of

boundary information during spatial reduction, thereby improving

the quality of token features and the integrity of their spatial

structure. Secondly, high-quality tokens are converted into a fixed

number of latent tokens. This process reduces computational

complexity while maximizing the retention of key features,

providing strong support for the efficient processing of

subsequent modules.

First, the Efficient Token Refinement module performs

preliminary processing on input features through a 3×3

convolution, aiming to extract the feature map Finit with basic

spatial information and adjust the number of channels to match the
FIGURE 1

The four-stage feature extraction framework of the Swin-Mamba model.
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subsequent embedding dimension. The initial convolution

operation is expressed by the following formula:

Finit  =  Conv3� 3 ðXÞ;  Finit  ∈ RB�C�H�W

Among them, B、C、H、and W represent the batch size,

number of channels, height, and width, respectively.

On this basis, Finit first adopts a depthwise convolution with a

kernel size of “stride + 3” to carry out spatial dimension reduction

on the feature map, obtaining the feature representation Y ∈
RB�C�H0�W0

after spatial reduction.

Subsequently, the local refinement module constructed by 3×3

depthwise convolution is utilized to process Y Through linear

transformation and splitting operations, Y is divided into K ∈
RB�C�H0�W0

and V ∈ RB�C�H0�W0
, which is formulated as:

K, V = Split(Linear(Y + LR(Y)))

For the query vector Q ∈ RB�C�H�W, it is generated by

performing a linear transformation on the original input feature

x, and its mathematical expression is:

T = Linear(x)

Based on (Q, K, V), the softmax attention is calculated. The

output of the attention mechanism Z ∈ RC�H�W is realized

through the following formula:

Z = Softmax
QKTffiffiffi

d
p + B

� �
V

Among them,  B is the relative position bias, which is used to

encode the spatial correlation of the spatial attention map.

Finally, the module maps the enhanced features into a fixed

number of latent tokens through a linear transformation layer. The

specific process is as follows:
Frontiers in Plant Science 04
T = Linear(Fatt), T ∈ RB�T�E

Among them, T is the number of tokens, and  E is the

embedding dimension of each token. Through this process, the

module significantly reduces computational complexity, while

retaining key multi-scale and global features, providing a more

efficient input representation for subsequent modules.
2.2 SGSP Module

At the pixel - spatial dimension, to balance computational

efficiency, Transformer - based plant disease and pest detection

methods often adopt the shifted window attention mechanism.

However, this mechanism has limited capability in modeling the

global horizontal dimension of images, and plant disease and pest

images generally suffer from the problem of easily lost global

information. Inspired by the successful experience of Swin

Transformer in achieving long - range modeling with linear

complexity, we introduce the 2D Selective Spatial Scanning

Module (2D - SSM) into the plant disease and pest detection task.

As shown in Figure 3, the input feature X ∈ RCñHñW is processed

through two parallel branches:

Branch 1 (Spatial Modeling Branch): First, channels are

expanded via a linear layer, followed by depthwise convolution

(DWConv), SiLU activation, and finally connected to the 2D - SSM

layer with Layer Normalization (LN). The formula is:

X1 = LN(2D� SSM(SiLU(DWConv(Linear(X))))

Among them, the 2D - SSM module first performs

omnidirectional scanning on 2D image features along four

directions: top - left to bottom - right, bottom - right to top - left,

top - right to bottom - left, and bottom - left to top - right. After

integrating the feature information captured by multi - direction

scanning, it flattens the information into a one - dimensional

sequence. Subsequently, it models and captures the long - range

feature dependencies in the one - dimensional sequence using

discrete state - space equations, and strengthens the transmission

and association of key features through dynamic weight allocation.

Finally, through feature summation, merging, and dimension

reshaping operations, the processed features are restored to a 2D

structure. This mechanism can adaptively focus on and capture key

pixel information in images, effectively enhancing the network’s

ability to model subtle spatial features in plant disease and pest

images, and providing richer spatial detail support for the accurate

identification of subsequent disease features.

Branch 2 (Residual Compensation Branch): It only expands

channels via a linear layer and then applies SiLU activation. The

formula is:

X2 = SiLU(Linear(X)),

The features of the two branches are aggregated via the

Hadamard product ( o ̇). Finally, they are projected back to the

input dimension and undergo residual fusion. The formula is:
FIGURE 2

Efficient token refinement module structure.
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Xout = Linear(X1 ⨀X2) + X
2.3 CCGOS Module

When computing channel attention in image classification tasks

based on Mamba, conventional methods often rely on global max

pooling or average pooling operations. However, such approaches

tend to lose spatial location information associated with the target
Frontiers in Plant Science 05
region. To address this issue, we extend Mamba by introducing a

channel attention modeling mechanism, further enhancing the

spatial attention mechanism into a channel-spatial attention

module. By embedding precise spatial location information, the

network can more effectively focus on the most task-relevant

channel features, thereby improving its perceptual capability.

As illustrated in Figure 4, given an input X ∈ RC�H�W, average

pooling is first applied along the height and width dimensions:

Xh ∈ RC�1�W = AvgPoolh(X)
FIGURE 3

Schematic diagram of the SGSP module.
FIGURE 4

CCGOS Module Structure and Submodules (CFSSM/CBSSM) Working Principle Diagram.
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https://doi.org/10.3389/fpls.2025.1676148
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang and Liu 10.3389/fpls.2025.1676148
Xw ∈ RC�H�1 = AvgPoolw(X)

The results are then concatenated and processed sequentially

through a Conv-BN-ReLU operation, after which the feature map is

split back into two components:

Xhw ∈ RC�1�(H+W) = ReLU(BN(Conv(Concat(Xh, Xw))))

Xh ∈ RC�1�W, Xw ∈ RC�H�1 = Split(Xhw)

Next, Wh and Ww are fed into the channel-selective scanning

module, which consists of two parts: the Channel Forward Selective

Scanning Module (CFSSM) and the Channel Backward Selective

Scanning Module (CBSSM). After passing through the Sigmoid

activation, the height and width attention weights Wh and Ww are

obtained:

Wh = Sigmoid CFSSM(Xh)⨀ (Xh) + CBSSM(Xh)⨀ (Xh)ð Þ

Ww = Sigmoid CFSSM(Xw)⨀ (Xw) + CBSSM(Xw)⨀ (Xw)ð Þ
Finally, the adjusted channel features with Wh and Ww are

combined through a 1×1 convolution and a Softmax activation

function to produce the output of the CCGOS module:

Y ∈ RC�H�W = Ww ⨀Wh ① Softmax(Conv(X)) + X

Through this design, the CCGOS module not only preserves

global contextual information but also embeds spatial coordinate

information during the modeling process, thereby addressing the

limitations of traditional pooling-based attention mechanisms in

representing spatial distr ibutions. While maintaining

computational efficiency, the module significantly enhances the

model’s ability to perceive and classify complex disease features.
3 Experiments

3.1 Experimental datasets

This study selected three representative datasets—PlantDoc,

PlantVillage, and Cotton Disease—to systematically validate the

effectiveness and robustness of the proposed model. All datasets

followed a uniform partitioning strategy, randomly divided into

training, validation, and test sets in an 8∶1∶1 ratio. To mitigate the

influence of randomness on the experimental outcomes, each

experiment was independently repeated five times, and the

median performance across repetitions was adopted as the final

evaluation metric, thereby ensuring the stability and scientific rigor

of the results.

1. PlantDoc Dataset

The PlantDoc dataset is a high-quality open-source resource

specifically developed for plant disease detection tasks, providing

real-world samples collected under natural field conditions. It

encompasses 13 major crops (such as maize, tomato, and wheat)

and 27 representative plant diseases (including rust, powdery

mildew, and leaf spot), all of which are precisely annotated by

experts. Compared with laboratory-collected data, PlantDoc images
Frontiers in Plant Science 06
more faithfully capture the complexity and diversity of plant disease

manifestations in natural environments, including variations in

lighting, background interference, and lesion morphology. This

realism considerably increases the difficulty of the recognition

task while enhancing its practical relevance. Owing to these

characteristics, PlantDoc has become a key benchmark dataset for

evaluating the robustness and applicability of plant disease

detection models. Figure 5 illustrates several representative

samples from the dataset. The dataset is publicly accessible via the

following link: https://github.com/pratikkayal/PlantDoc-Dataset

2. PlantVillage Dataset

The PlantVillage dataset is one of the most widely used open-

source datasets for leaf disease recognition, designed and released

by the Spandan Mohanty team. It includes 14 major crops (such as

tomato, apple, and maize) and 38 disease categories. All samples

were collected under controlled laboratory conditions,

characterized by clean backgrounds, uniform illumination, and

clearly visible lesions. This standardized acquisition method

ensures high data quality, facilitating the training and validation

of deep learning models. Thanks to its advantages of environmental

controllability and distinct disease features, PlantVillage is

frequently employed for model pre-training and performance

benchmarking, and has become an important reference dataset in

plant disease detection research. Figure 6 presents several

representative samples from this dataset. PlantVillage can be

accessed via the following link: https://www.kaggle.com/datasets/

abdallahalidev/plantvillage-dataset

3. Cotton Disease Dataset

The Cotton Disease dataset is dedicated to research on cotton

plant diseases, with a particular focus on the automatic recognition

of cotton leaf diseases. It includes five representative disease

categories—aphid infestation, bollworm damage, bacterial blight,

powdery mildew, and target spot—while also incorporating healthy

leaf images as control samples. The dataset’s class design not only

covers the major and prevalent diseases in cotton production but

also provides a reliable benchmark for evaluating models in multi-

class disease classification tasks. Figure 7 presents several

representative image samples from this dataset. The dataset is

publicly available at the following link: https://www.kaggle.com/

datasets/dhamur/cotton-plant-disease.
3.2 Experimental environment and
evaluation metrics

The experiments in this study were conducted under the

following hardware and software settings to ensure efficient

training and inference of the deep learning models. The hardware

platform comprised an NVIDIA RTX 2080Ti GPU with 12 GB of

memory and an Intel Xeon Platinum 8336C CPU. The software

environment was configured with Python 3.8 and PyTorch 1.11.0,

with model training implemented on CUDA 11.3.All experiments

were standardized with an input image size of 224 × 224, a batch size

of 50, and an initial learning rate of 5e-5. The AdamW optimizer was

adopted for training. To comprehensively evaluate the performance
frontiersin.org
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of the proposed MamSwinNet model in plant disease recognition,

several evaluation metrics were employed. These include Precision,

Recall, and F1-Score to assess classification performance, as well as

model complexity indicators—number of parameters and GMACs

(Giga Multiply–Accumulate operations)—to measure computational

efficiency. The definitions of these metrics are as follows:

1. Precision

Precision measures the proportion of samples predicted as

diseased that are actually diseased. It is defined as:

Precision =
TP

TP + FP
Frontiers in Plant Science 07
where TP (True Positive) represents the number of samples

correctly predicted as diseased, and FP (False Positive) denotes the

number of healthy samples incorrectly predicted as diseased. A

higher precision indicates that the model makes fewer errors when

classifying healthy samples as diseased, thereby reducing

unnecessary pesticide application and resource waste.

2. Recall

Recall measures the proportion of truly diseased samples that

are correctly identified by the model. It is defined as:

Recall =
TP

TP + FN
FIGURE 5

Sample images from the PlantDoc dataset.
frontiersin.org
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where FN (False Negative) refers to the number of diseased samples

incorrectly predicted as healthy. A higher recall reflects the model’s

ability to capture more diseased samples, thereby reducing the risk of

missed detections. This is especially important in detecting severe plant

diseases, where higher recall helps in timely warning and prevention.

3. F1-Score

The F1-score integrates both Precision and Recall, balancing the

trade-off between the two, and serves as a comprehensive indicator

of model performance. It is defined as:

F1 − Score = 2� Precision� Recall
Precision + Recall

The F1-score ranges from 0 to 1, with higher values indicating

better overall classification performance, especially in minimizing

the trade-off between false alarms and missed detections. In this
Frontiers in Plant Science 08
study, the F1-score is used as the key metric for evaluating the

overall classification accuracy of plant disease detection.

4. Number of Parameters

This metric reflects the scale of trainable parameters within the

model, measured in millions (M). A smaller parameter size

indicates a lighter-weight model, which requires less storage and

computational cost, making it more practical for deployment in

resource-constrained agricultural scenarios.

5. GMACs

GMACs (Giga Multiply–Accumulate Operations) measure the

computational complexity of the model during inference, with units

representing billions of multiply–accumulate operations. A lower

GMAC value implies faster inference speed and higher

computational efficiency, which is essential for real-time plant

disease detection and large-scale agricultural applications.
FIGURE 6

Sample images from the PlantVillage dataset.
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3.2.1 Experimental results
In the validation experiments on the PlantDoc dataset, the

MamSwinNet model demonstrated strong capability in classifying

plant diseases under complex natural conditions, while also

revealing certain limitations. As shown by the classification

metrics (Table 1), the model performs well across most

categories. Specifically, categories 15, 16, and 25 achieved

Precision, Recall, and F1-Score values of 100%, indicating

excellent discriminative power for disease types with distinct and

representative features. Similarly, categories 9, 10, 13, 17, and 26

maintained overall metrics above 90%, further confirming the

model’s stability and reliability in identifying mainstream disease

types. However, several categories exhibited notably lower

performance; for instance, categories 7 and 20 achieved F1-Scores

of only 22.22% and 20.00%, respectively, while categories 3, 4, and

12 remained within the 50%–60% range. This disparity primarily

arises from significant differences in the visual characteristics of

various disease categories.
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As illustrated in Figure 8, for low-performing categories such as

grape black rot, pepper leaf spot, and corn gray leaf spot, lesion

colors are highly similar to the leaf background and exhibit blurred

boundaries, making it difficult for the model to focus accurately on

key lesion regions. In contrast, for high-performing categories such

as pumpkin powdery mildew, tomato gray mold, and tomato late

blight (Figure 9), the lesion boundaries are clear and the

morphological features are distinctive, enabling the model to

effectively capture discriminative regions and achieve precise

classification. This phenomenon indicates that the visual

separability between lesion and background is a critical factor

affecting classification performance.

The confusion matrix (Figure 10) further supports this

conclusion. The concentration of values along the main diagonal

shows that most predicted categories are consistent with their true

labels. For instance, nearly all samples of categories 0, 16, and 25

were correctly classified, reflecting the model’s stability and

robustness in feature extraction and discrimination for these
FIGURE 7

Sample images from the cotton disease dataset.
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categories. Meanwhile, some off-diagonal regions exhibit noticeable

confusion, such as misclassifications between categories 7 and 2,

confusion between 12 and 11, and the low recognition rate of

category 20, revealing the model’s limitations when handling classes

with low feature distinctiveness or ambiguous lesion boundaries.

Furthermore, the training curves (Figures 11, 12) indicate that

MamSwinNet possesses good convergence and feature-learning

capability. During the first 10 epochs, Precision rapidly increased

from 0 to over 75%, accompanied by a significant reduction in loss.

After 20 epochs, the model entered a fluctuating convergence stage,

with Precision stabilizing between 75% and 80% and the loss curve

flattening out, suggesting that the model can efficiently learn
Frontiers in Plant Science 10
discriminative representations and maintain stable performance

within a relatively short training cycle.

Overall, MamSwinNet achieves stable recognition results across

most disease categories but still shows room for improvement when

dealing with complex scenes involving similar colors, blurred edges, or

inconspicuous features. Future research could further enhance model

performance through the following strategies: (1) introducing a multi-

scale feature extractionmechanism to capture both fine-grained textures

and global structural information at different scales, thereby enhancing

lesion detail modeling; (2) integrating contrastive learning to enlarge the

feature-space distance between lesions and background samples,

improving the model’s discriminative ability for easily confused

categories; (3) further optimizing the attention mechanism design to

strengthen the model’s focus on key regions and reduce interference

from illumination variation and background noise; and (4) exploring

domain adaptation and transfer learning techniques to improve

generalization across different crop types and environmental conditions.

3.2.2 Comparative experiments
To comprehensively evaluate the performance of MamSwinNet

in plant disease detection, we conducted detailed comparative

experiments against mainstream deep learning models. The

baseline models included Shufflenet (Zhang et al., 2018),

EfficientNet (Atila et al., 2021), MobileNet V3 (Qian et al., 2021),

MobileViT (Mehta and Rastegari, 2021), ConvNeXt (Wu et al.,

2023), DenseNet (Zhu and Newsam, 2017), ResNet (Targ et al.,

2016), GoogLeNet (Al-Qizwini et al., 2017), RegNetX (Guo et al.,

2025), and Swin Transformer (Liu et al., 2021), along with classic

Transformer architectures. In addition, models specifically designed

for plant disease detection, such as T-CNN (Wang et al., 2021) and

ICVT (Yu et al., 2023), were included for comparison. The results

are summarized in Table 2.

In terms of core classification performance, MamSwinNet

demonstrates remarkable superiority. Its Precision reaches

81.50%, Recall 77.54%, and F1-Score 79.47%, significantly

outperforming most comparison models. When compared with

lightweight models such as ShufflenetV2×1.0 (F1 69.21%) and

MobileNetV3-Large (F1 61.07%), MamSwinNet achieves F1

improvements of 10.26 and 18.30 percentage points, respectively,

overcoming the inherent precision limitations of lightweight

architectures in handling complex plant disease datasets. Against

classic CNN models like DenseNet-121 (F1 72.84%) and ResNet-50

(F1 70.85%), MamSwinNet leverages its ability to model long-range

dependencies and cross-dimensional features, boosting F1 by 6.63

and 8.62 percentage points, respectively. For Transformer-based

methods, MobileViT-XS (F1 71.55%) and Swin Transformer Base

(F1 72.70%) struggle to balance accuracy and efficiency due to the

high computational cost of self-attention, whereas MamSwinNet’s

innovative modules improve F1 by 8.02 and 6.77 percentage points,

respectively. Even plant-disease-specific models such as T-CNN

(ResNet-101, Precision 74.44%) and ICVT (Precision 77.23%) fall

short, with MamSwinNet surpassing them by 7.06 and 4.27

percentage points in Precision, respectively.

In terms of computational efficiency, MamSwinNet achieves an

excellent balance between accuracy and resource consumption. It
TABLE 1 Classification performance statistics of the PlantDoc dataset
(by category).

Class
Precision

(%)
Recall (%) F1 Score (%)

0 90.00 90.00 90.00

1 77.78 77.78 77.78

2 100 80.00 88.89

3 66.67 50.00 57.14

4 62.50 55.56 58.83

5 75.00 81.82 78.26

6 87.50 70.00 77.78

7 20.00 25.00 22.22

8 69.23 75.00 72.00

9 100 90.00 94.74

10 100 88.89 94.12

11 53.84 87.50 66.66

12 75.00 37.50 50.00

13 87.50 100 93.33

14 60.00 75.00 66.67

15 100 100 100

16 100 100 100

17 90.00 100 94.74

18 50.00 100 66.67

19 100 62.50 76.92

20 100 11.11 20.00

21 77.78 70.00 73.69

22 85.71 60.00 70.59

23 75.00 100 85.71

24 60.00 100 75.00

25 100 100 100

26 100 87.50 93.33

ALL 81.50 77.54 79.47
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contains only 12.97M parameters and a computational complexity

of 2.71 GMac. In contrast, DenseNet-161 (F1 74.75%) has 26.53M

parameters, more than 2.04× larger, while Swin Transformer Base

(F1 72.70%) requires 15.19 GMac, which is approximately 5.6×

higher than MamSwinNet.

Taken together, MamSwinNet comprehensively outperforms

mainstream models in both accuracy and efficiency, highlighting its

distinctive advantages and broad applicability for plant disease

detection tasks.

3.2.3 Ablation study: module contribution
analysis

To quantify the independent contributions and synergistic

effects of each core module in MamSwinNet, four groups of

ablation experiments were conducted (Table 3). Using Swin-T as

the baseline, the comparison was carried out in terms of both

classification performance (Precision, Recall, F1-Score) and

computational efficiency (number of parameters and GMACs).

Experiment 1: Baseline Model (Swin-T).

Using Swin Transformer Tiny (Swin-T) as the benchmark, the

model achieved a Precision of 76.78%, Recall of 74.15%, and F1-

Score of 75.44%. Although it demonstrated basic classification
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capability, its large parameter count (27.54M) and computational

cost (4.38 GMac) impose significant limitations on efficient

deployment in real-world agricultural scenarios, highlighting the

necessity of further optimization.

Experiment 2: Removal of the Efficient Token RefinementModule.

When the SGSP and CCGOS modules were retained but

Efficient Token Refinement was removed, model accuracy

improved slightly (Precision 78.54%, Recall 75.91%, F1-Score

77.20%). However, parameters increased to 16.68M and

complexity to 3.09 GMac, indicating that this module plays a

crucial role in reducing parameters and computational overhead.

Its removal yields marginal accuracy gains but undermines the

lightweight advantage.

Experiment 3: Removal of the SGSP Module.

Retaining Efficient Token Refinement and CCGOS while

removing SGSP resulted in Precision 79.74%, Recall 76.27%, and

F1-Score 77.97%. Parameter count dropped to 12.93M and

computational cost to 2.71 GMac, closely matching the efficiency

of the complete model. However, the F1-Score decreased by 1.50

percentage points, underscoring the indispensable role of SGSP in

modeling long-range spatial dependencies, which is key to

improving classification accuracy for complex plant diseases.
FIGURE 9

Representative samples of categories with superior recognition performance by the model.
FIGURE 8

Representative samples of categories with insufficient recognition performance by the model.
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Experiment 4: Removal of the CCGOS Module.

When Efficient Token Refinement and SGSP were retained but

CCGOS removed, Precision declined to 78.38%, Recall to 75.33%,

and F1-Score to 76.82%. Parameters totaled 12.94M with 2.70

GMac, but this setting produced the lowest accuracy among all

“single-module removal” experiments. This confirms that CCGOS

is irreplaceable for channel–spatial feature fusion.

Experiment 5: Replacing SGSP and CCGOS with Standard

Transformer Blocks.
Frontiers in Plant Science 12
Replacing SGSP and CCGOS with standard Transformer

modules while retaining Efficient Token Refinement produced

Precision 80.01%, Recall 76.75%, and F1-Score 78.35%. However,

parameters increased to 14.85M and complexity to 2.93 GMac.

Although accuracy exceeded the baseline, it was 1.12 percentage

points lower than the complete model, with greater computational

cost. This suggests that while standard Transformer blocks provide

basic feature modeling, they lack the efficiency and task-specific

adaptability of SGSP and CCGOS.
FIGURE 10

Confusion matrix heatmap for the PlantDoc test set classification.
FIGURE 11

Model training loss curve over epochs.
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FIGURE 12

Model training precision curve over epochs.
TABLE 2 Comparison of classification performance and efficiency (parameters, Glops) for different models.

Model Precision (%) Recall (%) F1 (%) Model parameters (M) GMACs

ShufflenetV2 ×1.0 70.15 68.29 69.21 1.2 0.15

ShufflenetV2 ×2.0 74.12 71.21 72.64 5.4 0.59

EfficientNet-B0 70.52 69.75 70.13 4.04 0.40

EfficientNett-B1 72.15 71.86 72.00 6.55 0.59

MobileNetV3-Small 58.66 56.78 57.70 1.55 0.059

MobileNetV3-Large 63.42 58.89 61.07 4.24 0.23

MobileViT-S 72.01 71.51 71.76 4.95 1.56

MobileViT-XS 73.32 69.87 71.55 1.94 0.80

MobileViT-XXS 67.56 63.14 65.27 0.86 0.24

ConvNeXt-Tiny 72.01 71.34 71.67 27.84 4.49

ConvNeXt-Small 65.96 63.89 64.91 49.48 8.73

DenseNet-121 74.10 71.63 72.84 6.98 2.90

DenseNet-161 76.72 72.88 74.75 26.53 7.85

DenseNet-201 75.08 72.32 73.67 18.14 4.39

ResNet-34 70.70 65.67 68.09 21.30 3.68

ResNet-50 74.21 67.79 70.85 23.56 4.13

GoogLeNet 70.81 65.25 67.92 10.01 1.51

regnetx-1.6 69.34 68.54 68.94 8.30 1.83

regnetx-3.2 71.24 70.56 70.89 14.31 3.62

Regnetx-4.0 74.62 74.41 74.51 20.79 4.40

Transformer Base 55.58 57.51 56.53 85.82 16.88

Swin Transformer Tiny 76.72 72.95 74.79 27.54 4.38

Swin Transformer Base 74.75 70.76 72.70 86.77 15.19

T-cnn(ResNet-101) 74.44 – – – –

ICVT 77.23 – – – –

MamSwinNet 81.50 77.54 79.47 12.97 2.71
F
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Experiment 6: Complete MamSwinNet.

The full integration of Efficient Token Refinement, SGSP, and

CCGOS yielded the best performance: Precision 81.50%, Recall

77.54%, and F1-Score 79.47%, with only 12.97M parameters and

2.71 GMac. Compared to the baseline, parameters were reduced by

52.8% and computation by 38.1%, alongside significant accuracy

gains. These results highlight the synergistic effect of the three

modules: Efficient Token Refinement optimizes token quality and

reduces redundancy, SGSP enhances long-range spatial dependency

modeling, and CCGOS strengthens channel–spatial feature fusion.

Collectively, they achieve a dual breakthrough in accuracy
Frontiers in Plant Science 14
enhancement and efficiency optimization, demonstrating the

necessity and superiority of the complete architecture.

3.2.4 Model visualization analysis based on Grad-
CAM

To further assess MamSwinNet’s capacity for lesion-focused

feature capture and decision interpretability, this section employs

Gradient-weighted Class Activation Mapping (Grad-CAM) on

representative disease samples to visualize attention heatmaps

during classification. In these maps, colors from blue to red

indicate increasing feature contribution. A greater overlap
TABLE 3 Ablation experiment results.

Experiment Precision (%) Recall (%) F1 (%) Model parameters GMACs

1 76.78 74.15 75.44 27.54 4.38

2 78.54 75.91 77.20 16.68 3.09

3 79.74 76.27 77.97 12.93 2.71

4 78.38 75.33 76.82 12.94 2.70

5 80.01 76.75 78.35 14.85 2.93

6 81.50 77.54 79.47 12.97 2.71
FIGURE 13

Grad-CAM comparison on apple rust disease samples (Top: complete MamSwinNet model; Bottom: after removing the Efficient Token Refinement
module).
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between red regions and the ground-truth lesions signifies more

accurate focus on disease-critical features during decision-making,

thereby providing intuitive, visual evidence of the model’s

reasoning process.

Figure 13 presents a Grad-CAM comparison on apple rust

samples. In the complete model, high-contribution (red) regions

align closely with the reddish-brown, near-circular raised lesions on

the leaf surface in both location and morphology, leading to a

correct classification as “apple rust leaf.” However, after removing

the Efficient Token Refinement module, the coverage of red regions

over the lesions declines markedly, lesion boundaries become

blurred, and the model ultimately misclassifies the sample as

“apple black spot leaf.” This comparison indicates that the

Efficient Token Refinement module plays a pivotal role in

preserving the spatial structural information of lesion boundaries,

enabling precise focus on disease-core regions and supporting

correct classification.

Figure 14 shows the visualization for maize rust samples. With

the complete model, high-contribution regions are highly consistent

with the diffusely distributed rust pustules across the leaf, yielding

an accurate classification as “maize rust leaf.” After the SGSP

module is ablated, the heatmap becomes fragmented and lacks

continuity. Although the final label remains “maize rust leaf,” the

model’s overall coverage and focus on the dispersed lesion pattern
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are substantially reduced. This suggests that SGSP is crucial for

modeling long-range dependencies characteristic of diffuse

lesion distributions.

Figure 15 illustrates the results for apple black spot samples.

Under the complete model, the high-contribution regions align

closely with black spot lesions along the leaf margin, resulting in a

correct prediction of “apple black spot leaf.” In contrast, removing

the CCGOS module significantly diminishes focus on the lesion

area, shifts the attention distribution, and leads to a

misclassification as “blueberry leaf.” These findings indicate that

CCGOS is essential for joint channel–spatial feature modeling,

effectively suppressing background interference and highlighting

discriminative lesion cues. Without this module, the model

becomes more prone to confusion in complex backgrounds,

degrading classification accuracy.

In summary, the interpretability analysis of MamSwinNet

demonstrates that its attention distribution aligns closely with the

actual lesion regions. The three key modules play essential roles in

preserving spatial structure, modeling long-range dependencies,

and enhancing channel–spatial feature fusion, thereby improving

both the accuracy and robustness of plant disease recognition.

These findings are consistent with the high performance reported

in the experimental results, further underscoring the robustness and

practical value of MamSwinNet.
FIGURE 14

Grad-CAM comparison on maize rust disease samples (Top: complete MamSwinNet model; Bottom: after removing the SGSP module).
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3.2.5 Impact of regularization methods on model
performance

To explore the regulatory effect of regularization strategies on

the feature learning preferences and generalization ability of the

MamSwinNet model, comparative experiments were designed

using three configurations: L1 regularization, L2 regularization,

and no regularization. The evaluation was conducted on the

PlantDoc dataset using Precision, Recall, and F1-Score (Table 4).

The experimental results show that L1 regularization

significantly improved the model’s performance: Precision

reached 81.50%, Recall was 77.54%, and F1-Score was 79.47%,

outperforming both L2 regularization (Precision 80.51%, Recall

76.49%, F1-Score 78.45%) and no regularization (Precision
Frontiers in Plant Science 16
79.97%, Recall 75.86%, F1-Score 77.86%). The core mechanism

behind this lies in the sparsity-inducing nature of L1 regularization:

by applying L1 norm penalties to the weights, the model tends to

learn highly discriminative “core features” (such as the edge

contours of lesions and the specific response of color channels)

while suppressing redundant noise features (such as the vein texture

of the background leaf or lighting interference), allowing the feature

representation to focus more on the essential patterns of the disease.

In contrast, L2 regularization uses a global weight decay

strategy, which can alleviate overfitting by reducing the weight

scale, but due to the lack of feature selection, it may excessively

compress fine-grained features of the disease spot (such as the

texture of tiny spots), leading to a decrease in Recall (1.05

percentage points lower than L1). In the case of no regularization,

the model tends to overfit sample-level noise in the training set

(such as leaf wrinkles and shadows in the images), which results in

poor generalization ability on the test set (F1-Score is 1.61

percentage points lower than L1), further confirming the critical

role of regularization in preventing overfitting.

In summary, L1 regularization, through “sparse feature

selection,” adapts to the heterogeneity of plant disease features

(such as lesion shapes and color diversity), enhancing model

robustness while improving classification accuracy, making it an
FIGURE 15

Grad-CAM comparison on apple black spot disease samples (Top: complete MamSwinNet model; Bottom: after removing the CCGOS module).
TABLE 4 Comparison of classification performance indicators for L1, L2,
and no regularization strategies.

Regularization
methods

Precision (%) Recall (%) F1 (%)

L1 81.50 77.54 79.47

L2 80.51 76.49 78.45

No Regularization 79.97 75.86 77.86
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efficient strategy for optimizing the MamSwinNet model’s

performance in disease detection.
3.2.6 Token dimensions and quantity impact on
model performance

To explore the impact of token dimensions and quantity in the

Efficient Token Refinement module on model classification

performance and computational efficiency, experiments were

conducted by adjusting token quantities (64, 256, 324, 400) and

dimensions (32, 64, 128, 256). The system analyzed Precision,

Recall, F1-Score, and computational cost (model parameters,

Glops) for different configurations, with results shown in Table 5.

At the same token quantity, increasing the dimension

significantly improved performance. For example, with a fixed

token quantity of 64, when the dimension increased from 32 to

128, the model’s performance gradually optimized:At dimension 32,

the F1-Score was 74.77%, with 12.30M parameters and 2.62 Glops.

At dimension 64, the F1-Score increased to 75.97%, with slight

increases in parameters and Glops. At dimension 128, the F1-Score

reached 79.47%, with Precision and Recall at 81.50% and 77.54%,

respectively, 12.97M parameters, and 2.71 Glops, showing

significant performance improvement and controllable

computational cost compared to dimension 32.

This indicates that appropriately increasing the token

dimension enhances feature expression, better capturing complex

features such as lesion color gradients and texture details.

Particularly at dimension 128, it achieved a good balance

between precision and efficiency. At the same dimension,

increasing the token quantity did not lead to continuous

performance improvement. For instance, with a fixed dimension

of 128:When the token quantity was 64, the F1-Score was

79.47%.Increasing the token quantity to 256 caused the F1-Score

to drop to 74.38%, with parameters and Glops remaining relatively

stable. Increasing to 324 and 400 led to a slight recovery in F1-Score

(77.26% and 77.86%), but still lower than the performance with 64

tokens, while Glops increased to 2.79 and 2.81, adding to the

computational burden. This suggests that too many tokens

introduce redundant information (such as background noise),

reducing the model’s focus on key disease features and increasing

unnecessary computations.

Overall, the configuration with 64 tokens and 128 dimensions

performed optimally: F1-Score of 79.47%, 12.97M parameters, and

2.71 Glops, effectively balancing high classification accuracy with
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manageable computational cost, making it suitable for large-scale

deployment in agricultural scenarios. This result reveals that the

token configuration must balance feature expression capabilities

with computational efficiency, where increasing the dimension

moderately improves performance, but too many tokens

are counterproductive.

3.2.7 Generalization experiments
To systematically evaluate the adaptability of MamSwinNet

under heterogeneous data distributions and across different

disease types, two representative datasets were selected for

generalization experiments and compared against multiple

mainstream models (results in Tables 6, 7). The PlantVillage

dataset, covering 14 crops and 38 diseases with over 50,000

samples, was used to test the model’s ability to capture shared

disease features across multiple crops. In contrast, the Cotton

Disease dataset focuses on crop-specific lesion morphologies,

providing a more rigorous evaluation of adaptability in

specialized scenarios.

MamSwinNet achieved outstanding performance with

Precision 99.53%, Recall 99.52%, and F1-Score 99.52%,

outperforming all comparison models. Compared with PlantViT

(98.28%), ConvViT-S (98.17%), and TLMViT (98.73%), it achieved

improvements of 1.25, 1.35, and 0.79 percentage points,

respectively. Its advantage was even more pronounced over the

hybrid MobileNet-V2 + attention mechanism (96.65%). These

results demonstrate that MamSwinNet can effectively aggregate

generalized lesion features across diverse crops, enabling accurate

cross-crop classification.

MamSwinNet’s advantages were even more striking on the

Cotton Disease dataset, where it achieved Precision 99.32%,
TABLE 5 Model performance and efficiency (Parameters, Glops) for different token quantity and dimension combinations.

Token num Token dim Precision (%) Recall (%) F1 (%) Model parameters GMACs

64 32 76.14 73.45 74.77 12.30 2.62

64 64 77.09 74.88 75.97 12.48 2.65

64 128 81.50 77.54 79.47 12.97 2.71

256 128 75.34 73.45 74.38 12.98 2.72

324 256 79.20 75.42 77.26 13.03 2.79

400 256 78.62 77.11 77.86 13.05 2.81
TABLE 6 Generalization experiment results on the PlantVillage dataset.

Model
Precision

(%)
Recall
(%)

F1
(%)

PlantViT (Thakur et al., 2021) 98.24 98.33 98.28

ConvViT-S (Utku et al., 2025) 97.80 98.54 98.17

TLMVIT 98.72 98.76 98.73

pre-trained MobileNet-V2 and attention
mechanism (Chen et al., 2021)

97.49 95.83 96.65

MamSwinNet 99.53 99.52 99.52
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Recall 99.44%, and F1-Score 99.38%, ranking first among all

models. Compared with Swin Transformer Base (F1-Score

98.81%, 86.78M parameters, 15.19 GMacs), MamSwinNet not

only improved the overall F1 by 0.57 percentage points, but also

increased Precision and Recall by 0.44% and 0.70%, respectively.

Relative to Swin Transformer Tiny (F1-Score 98.53%, 27.55M

parameters, 4.38 GMacs) and Transformer Base (F1-Score

95.59%, 85.83M parameters, 16.88 GMacs), its superiority was

even more evident. Notably, MamSwinNet achieved these results

with only 12.97M parameters and 2.71 GMacs, significantly lower

than its competitors.

These findings confirm that MamSwinNet achieves state-of-

the-art performance while maintaining lightweight design and

computational efficiency. Its ability to generalize across both

broad multi-crop datasets and highly specialized disease scenarios

highlights its strong robustness, adaptability, and suitability for real-

world agricultural applications.
4 Conclusion

This study proposes MamSwinNet, a novel model tailored for

plant disease detection, which addresses key challenges by

integrating the hierarchical architecture of Swin Transformer with

three innovative modules: Efficient Token Refinement, SGSP, and

CCGOS. The model establishes a four-stage feature extraction

framework that balances detection accuracy and computational

efficiency. In the first three stages, patch partitioning, shifted

window attention, and patch merging progressively construct

multi-scale local representations, laying the foundation for high-

level semantic learning. The fourth stage incorporates the proposed

modules to specifically tackle long-range dependency modeling and

cross-dimensional feature fusion: Efficient Token Refinement

improves token quality and efficiency, SGSP enhances spatial

global-context perception, and CCGOS enables precise channel–

spatial feature integration.

Experimental validation demonstrates the superiority of

MamSwinNet. On the PlantDoc dataset, the model achieves

Precision 81.50%, Recall 77.54%, and F1-Score 79.47%,

outperforming mainstream models such as Shufflenet, MobileNet,

and Swin Transformer. Its cross-dataset generalization ability is also

remarkable, maintaining high accuracy on both PlantVillage (F1

99.52%) and Cotton Disease (F1 99.38%) datasets. Ablation

experiments confirm the complementary synergy of the proposed
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modules: compared to the Swin-T baseline, the complete model

reduces parameters by 52.8% and computation by 38.1%, while

boosting the F1-Score by 4.03 percentage points. Further, token

configuration and regularization studies identify 128-dimensional

tokens with a quantity of 64 and L1 regularization as the optimal

setting, underscoring the model’s practical deployment value.

Future research can focus on several key areas to further

enhance the performance of the MamSwinNet model. First,

optimizing the model’s real-time response capability is crucial,

especially for large-scale agricultural disease monitoring systems.

By improving the inference process and accelerating model

computation, the system’s processing speed can be increased to

meet real-time monitoring demands. Second, as environments and

crop types diversify, future studies should focus on improving the

model’s adaptability to complex environments. Techniques such as

transfer learning and domain adaptation can be employed to

enhance the model’s generalization capability across different

crops and pest types, ensuring its efficient application in real-field

scenarios. Moreover, combining other advanced deep learning

technologies, such as reinforcement learning and Generative

Adversarial Networks (GANs), can further increase the model’s

flexibility and robustness, enabling it to handle more complex

disease detection tasks. These research directions will lay the

foundation for the further optimization and widespread

application of the MamSwinNet model.
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Atila, Ü., Uçar, M., Akyol, K., and Uçar, E. (2021). Plant leaf disease classification using
EfficientNet deep learning model. Ecol. Inf. 61, 101182. doi: 10.1016/j.ecoinf.2020.101182

Baek, E. T. (2025). Attention score-based multi-vision transformer technique for
plant disease classification. Sensors 25, 270. doi: 10.3390/s25010270

Bhargava, R., Upadhyay, S. K., Sharma, R., Srivastava, N., and Mavi, H. (2024). “Plant
Disease detection using Machine learning and CNN on leaf images,” in Proceedings of
the 2024 1st International Conference on Advanced Computing and Emerging
Technologies (ACET). 1–7 (IEEE).

Chen, J., Zhang, D., Zeb, A., and Nanehkaran, Y. A. (2021). Identification of rice
plant diseases using lightweight attention networks. Expert Syst. Appl. 169, 114514.
doi: 10.1016/j.eswa.2020.114514

Duhan, S., Gulia, P., Gill, N. S., Yahya, M., Yadav, S., Hassan, M. M., et al. (2024). An
analysis to investigate plant disease identification based on machine learning
techniques. Expert Syst. 41, e13576. doi: 10.1111/exsy.13576

Guo, L., Huang, S., and Xin, B. (2025). MS-RegNet: A rock image classification algorithm
based on improved RegNet. Leading Edge 44, 33–42. doi: 10.1190/tle44010033.1

Kusumo, B. S., Heryana, A., Mahendra, O., and Pardede, H. F. (2018). “Machine
learning-based for automatic detection of corn-plant diseases using image processing,”
in Proceedings of the 2018 International Conference on Computer, Control, Informatics
and Its Applications (IC3INA). 93–97 (IEEE).
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/
CVF International Conference on Computer Vision. 10012–10022.

Mehta, S., and Rastegari, M. (2021). MobileViT: Light-weight, general-purpose, and
mobile-friendly vision transformer. arXiv Preprint arXiv:2110.02178. doi: 10.48550/
arXiv.2110.02178

Ouamane, A., Chouchane, A., Himeur, Y., Debilou, A., Nadji, S., Boubakeur, N., et al.
(2024). Enhancing plant disease detection: A novel CNN-based approach with tensor
subspace learning and HOWSVD-MDA. Neural Computing Appl. 36, 22957–22981.
doi: 10.1007/s00521-024-10454-1

Panchal, P., Raman, V. C., and Mantri, S. (2019). “Plant diseases detection and
classification using machine learning models,” in Proceedings of the 2019 4th
International Conference on Computational Systems and Information Technology for
Sustainable Solution (CSITSS). 1–6 (IEEE).

Phadikar, S. (2012). Classification of rice leaf diseases based on morphological
changes. Int. J. Geographical Inf. Sci. 2. doi: 10.7763/ijiee.2012.v2.137

Qian, S., Ning, C., and Hu, Y. (2021). “MobileNetV3 for image classification,” in
Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial
Intelligence and Internet of Things Engineering (ICBAIE). 490–497 (IEEE).

Rakib, A. F., Rahman, R., Razi, A. A., and Hasan, A. S. M. T. (2024). A lightweight
quantized CNNmodel for plant disease recognition. Arabian J. Sci. Eng. 49, 4097–4108.
doi: 10.1007/s13369-023-08280-z

Targ, S., Almeida, D., and Lyman, K. (2016). ResNet in ResNet: Generalizing residual
architectures. arXiv Preprint arXiv:1603.08029. doi: 10.48550/arXiv.1603.08029

Thakur, P. S., Khanna, P., Sheorey, T., and Ojha, A. (2021). “Vision transformer for
plant disease detection: PlantViT,” in Proceedings of the International Conference on
Computer Vision and Image Processing (Berlin and Heidelberg, Germany: Springer
International Publishing), 501–511.

Utku, A., Kaya, M., and Canbay, Y. (2025). A new hybrid ConvViT model for
dangerous farm insect detection. Appl. Sci. 15, 2518. doi: 10.3390/app15052518
frontiersin.org

https://doi.org/10.11591/ijece.v15i2.pp2334-2344
https://doi.org/10.3389/fpls.2024.1505857
https://doi.org/10.1016/j.ecoinf.2020.101182
https://doi.org/10.3390/s25010270
https://doi.org/10.1016/j.eswa.2020.114514
https://doi.org/10.1111/exsy.13576
https://doi.org/10.1190/tle44010033.1
https://doi.org/10.48550/arXiv.2110.02178
https://doi.org/10.48550/arXiv.2110.02178
https://doi.org/10.1007/s00521-024-10454-1
https://doi.org/10.7763/ijiee.2012.v2.137
https://doi.org/10.1007/s13369-023-08280-z
https://doi.org/10.48550/arXiv.1603.08029
https://doi.org/10.3390/app15052518
https://doi.org/10.3389/fpls.2025.1676148
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang and Liu 10.3389/fpls.2025.1676148
Wang, D., Wang, J., Li, W., and Guan, P. (2021). T-CNN: Trilinear convolutional
neural networks model for visual detection of plant diseases. Comput. Electron. Agric.
190, 106468. doi: 10.1016/j.compag.2021.106468

Wu, Q., Ma, X., Liu, H., Bi, C., Yu, H., Liang, M., et al. (2023). A classification method
for soybean leaf diseases based on an improved ConvNeXt model. Sci. Rep. 13, 19141.
doi: 10.1038/s41598-023-46492-3

Yu, S., Xie, L., and Huang, Q. (2023). Inception convolutional vision transformers for
plant disease identification. Internet Things 21, 100650. doi: 10.1016/j.iot.2022.100650
Frontiers in Plant Science 20
Zhang, Z., Gong, Z., Hong, Q., and Jiang, L. (2021). “Swin-transformer based classification
for rice diseases recognition,” in Proceedings of the 2021 International Conference on Computer
Information Science and Artificial Intelligence (CISAI). 153–156 (IEEE).

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 6848–6856.

Zhu, Y., and Newsam, S. (2017). “DenseNet for dense flow,” in Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP). 790–794 (IEEE).
frontiersin.org

https://doi.org/10.1016/j.compag.2021.106468
https://doi.org/10.1038/s41598-023-46492-3
https://doi.org/10.1016/j.iot.2022.100650
https://doi.org/10.3389/fpls.2025.1676148
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Research on the intelligent detection model of plant diseases based on MamSwinNet
	1 Introduction
	2 MamSwinNet model
	2.1 Efficient token refinement module
	2.2 SGSP Module
	2.3 CCGOS Module

	3 Experiments
	3.1 Experimental datasets
	3.2 Experimental environment and evaluation metrics
	3.2.1 Experimental results
	3.2.2 Comparative experiments
	3.2.3 Ablation study: module contribution analysis
	3.2.4 Model visualization analysis based on Grad-CAM
	3.2.5 Impact of regularization methods on model performance
	3.2.6 Token dimensions and quantity impact on model performance
	3.2.7 Generalization experiments


	4 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


