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Introduction: Botrytis cinerea is a major pathogen in strawberry, and sustainable

alternatives to fungicides are needed to manage this disease. Induced resistance

(IR) through chemical elicitors represents a promising strategy, but the

effectiveness of such compounds remains poorly understood in commercial

strawberry (Fragaria × ananassa) cultivars.

Methods: In this study, we evaluated the efficacy of repeated applications of five

elicitors (i.e., b-aminobutyric acid (BABA), (R)-b-homoserine (RBH), indole-3-

carboxylic acid (I3CA), jasmonic acid (JA), and salicylic acid (SA)) in three

strawberry cultivars (Rowena, Soraya, and Durban).

Results: BABA and RBH significantly reduced B. cinerea lesion sizes in Rowena

and Soraya, while Durban showed no induced resistance to the elicitors.

Untargeted metabolomic profiling of Rowena and Soraya revealed cultivar-

specific responses to elicitor treatment and infection, with distinct patterns of

metabolite accumulation under both mock- and B. cinerea-inoculated

conditions. RBH in Rowena and BABA in Soraya induced the most extensive

priming-associated metabolic reprogramming, including enrichment of amino

acid, nucleotide, and secondary metabolite pathways such as flavonoids and

phenylpropanoids. Significantly, none of the elicitors negatively affected plant

growth, flowering, or fruit set.

Discussion: These results demonstrate that the effectiveness and mechanism of

IR in strawberry depend on both the elicitor and the cultivar, providing new

insights into the metabolomic basis of priming with implications for sustainable

disease management in strawberry cultivation.
KEYWORDS

grey mould, chemical elicitors, phytohormones, crop protection, b-aminobutyric acid,
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Introduction

The necrotrophic fungus Botrytis cinerea, the causal agent of

grey mould disease, is among the most economically damaging

pathogens affecting strawberry plants (Fragaria × ananassa Duch.;

Family: Rosaceae) (Petrasch et al., 2019). Strawberries are a

significant global commodity, with an annual production of

approximately 10 million tons worldwide (FAO, U. W., and

WOAH, 2023). However, this productivity is severely threatened

because of the crop’s high susceptibility to B. cinerea (Bestfleisch

et al., 2015). Grey mould manifests as necrotic lesions that rapidly

develop into water-soaked areas, where the fungus spreads,

producing dense mycelial growth and spores, ultimately leading

to the collapse of the affected organs (Williamson et al., 2007). It is

estimated that over half of the strawberry yield can be lost at

postharvest if plants are not treated with fungicides before the

harvest (Hassan et al., 2021; Petrasch et al., 2019). Despite the

emergence of B. cinerea-resistant strains and the potential adverse

effects on human health and the environment, chemical fungicides

remain widely used due to their high efficacy (Chen et al., 2016).

Consequently, it is crucial to develop new sustainable chemical

alternatives to reduce B. cinerea incidence in strawberry. A deeper

understanding of strawberry defence responses to B. cinerea is

therefore essential. One promising strategy for sustainable crop

protection is harnessing the plant immune responses using

naturally derived compounds to stimulate Induced Resistance

(IR). When exposed to local and temporary stress stimuli, plants

can develop an IR phenotype, characterized by enhanced defence

capacity and reduced susceptibility to future challenges (De Kesel

et al., 2021). This response may involve direct activation of defences,

which can impose severe plant fitness costs due to the constant

expression of defence mechanisms, or a more energy-efficient

process known as priming, where plants, after the perception of a

first stimulus, are sensitised to respond more rapidly and strongly to

subsequent attacks (He et al., 2022; Mauch-Mani et al., 2017; van

Hulten et al., 2006). Priming is particularly attractive as it offers the

benefits of enhanced defences with minimal fitness costs (Martinez-

Medina et al., 2016). It can be long-lasting, creating a durable

immunological memory that is maintained throughout the plant’s

life cycle and even transmitted across generations, being particularly

relevant for vegetatively propagated crops (Catoni et al., 2022), such

as strawberry. Several exogenous chemical agents, known as

elicitors, can trigger IR and prime the plant’s defences. For

instance, the application of the phytohormones jasmonic acid

(JA) and salicylic acid (SA) can prime plant defences (Pastor

et al., 2013). Typically, JA mediates defence against necrotrophic

pathogens, while SA is more effective against biotrophs (Ghozlan

et al., 2020; Liao et al., 2022). JA has successfully primed tomato

defences against B. cinerea when applied to seeds or seedlings,

without causing any growth reduction (Luna, 2016; Worrall et al.,

2012). On the contrary, the role of SA in defence against B. cinerea

is unclear. While beneficial effects were observed following the

application of SA in tomato (Li and Zou, 2017), pepper (Mekawi
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et al., 2019), and strawberry (Babalar et al., 2007), enhanced

susceptibility was also reported (El Oirdi et al., 2011; Fugate et al.,

2013; Ha et al., 2021; Khanam et al., 2005). The contradictory

findings, together with the limited investigation of JA and SA as

preharvest treatments, highlight the necessity for specific case

studies within the B. cinerea-strawberry pathosystem (Koo et al.,

2020). The non-protein amino acid b-aminobutyric acid (BABA)

has emerged as a potent chemical priming agent. Once considered a

xenobiotic, BABA has recently been identified as a natural plant

metabolite involved in stress signalling (Thevenet et al., 2017).

BABA induces broad-spectrum resistance by priming multiple

signalling pathways, including both SA-dependent (Zimmerli

et al., 2001) and SA-independent mechanisms (Ton and Mauch-

Mani, 2004). In Arabidopsis thaliana, activation of defence-related

pathways is mediated by binding of the active (R)-enantiomer of

BABA to aspartyl-tRNA synthetase (AspRS) (Luna et al., 2014a).

BABA has shown efficacy in several crops, including the model

plant A. thaliana (Koen et al., 2014; van Hulten et al., 2006;

Zimmerli et al., 2001) and tomato (Koen et al., 2014; Luna et al.,

2016, 2020; van Hulten et al., 2006; Wilkinson et al., 2017; Zimmerli

et al., 2001) as well as in postharvest protection of grapevine

(Csikász-Krizsics et al., 2013), onions (Polyakovskii et al., 2008),

and strawberries (Wang et al., 2016). Its effect on the strawberry

plant is highly variable, from enhanced resistance to increased

susceptibility, depending on application method, BABA

concentrations, and plant developmental stage (Badmi et al.,

2022, 2019).

Despite its potential, BABA application for crop protection has

been hampered by its growth-inhibiting properties, which result

from the inhibitory binding of BABA to AspRS enzymes, thereby

competing with Asp and preventing its binding (Luna et al., 2014a).

However, while some studies reported remarkable effects on growth

and yield (Badmi et al., 2019; Buswell et al., 2018; van Hulten et al.,

2006), others report just a transient growth reduction (Luna et al.,

2014b; Wilkinson et al., 2017) or no effects (Badmi et al., 2019),

highlighting the importance of species-specific evaluation. To

overcome these drawbacks, BABA analogues, such as (R)-b-
homoserine (RBH), have been investigated against B. cinerea.

RBH retains IR-inducing properties without causing growth

suppression and has been shown to prime JA defences in tomato

and to provide long-lasting protection in Fragaria vesca plants

(Badmi et al., 2019; Buswell et al., 2018). Another candidate priming

agent is indole-3-carboxylic acid (I3CA), a metabolite that has been

found to accumulate in BABA-primed A. thaliana upon infection

with Plectosphaerella cucumerina (Gamir et al., 2012, 2014). When

exogenously applied, I3CA was effective in inducing resistance

against P. cucumerina, but the I3CA-IR appeared to be

independent of the SA and JA pathways (Gamir et al., 2014).

Moreover, no study has been conducted to assess its effects on

plant growth. Therefore, further studies are needed to understand

the mechanisms underlying I3CA-induced resistance against

necrotrophic pathogens and evaluate its suitability for crop

protection. BABA, RBH, and I3CA showed no direct antifungal
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activity, supporting the idea that their efficacy is plant-mediated

rather than due to directly killing the pathogen (Badmi et al., 2019;

Buswell et al., 2018; Gamir et al., 2014). However, their efficacy in

strawberry, as well as the underlying mechanisms, remains

underexplored. Priming induced by elicitor application presents a

sustainable and promising strategy for protecting crops from B.

cinerea. Since priming involves complex biochemical changes,

metabolomic approaches provide a powerful tool for unravelling

the complex mechanisms behind defence priming. Identifying key

metabolic pathways and markers associated with IR could facilitate

the development of more sustainable chemical strategies. To date, a

comprehensive metabolomic analysis to unravel IR mechanisms

primed by SA, JA, BABA, RBH, and I3CA in strawberry against B.

cinerea is lacking.

No fully resistant genotypes have been identified, and the

genetic and biochemical factors contributing to resistance against

B. cinerea remain largely unknown (Bestfleisch et al., 2015). For

instance, the resistance of strawberry against B. cinerea is described

as quantitative disease resistance (QDR), which leads to partial

resistance, and its success may be highly affected by external factors,

such as environment, plant species and variety, and plant

developmental stages. On the other hand, the high pathogenicity

of B. cinerea in strawberry arises from the ability to deploy a rich

toolbox of nonspecific pathogenicity factors for which no known

resistance (R) genes in strawberry are available (Bi et al., 2023).

Moreover, non-genetic variables in field studies (e.g., row density,

climatic conditions) have been considered as the primary cause of

slight differential susceptibility (Rhainds et al., 2002).

Thus, this study investigates: (1) the efficacy of BABA, RBH,

I3CA, JA, and SA in inducing resistance to B. cinerea in three

commercial strawberry cultivars (Durban, Rowena, and Soraya); (2)

the mechanisms of IR through untargeted metabolomics; (3) the

metabolic pathways and key metabolites involved in priming; and

(4) the potential growth reduction and fitness costs of elicitor

treatments. Our results aim to provide novel insights into the

defence responses of strawberries to B. cinerea and the

mechanisms of defence priming agents, thereby developing new

sustainable crop protection strategies.
Materials and methods

Plant material and growth conditions

Plants of three Fragaria × ananassa cultivars, Durban, Rowena,

and Soraya, were obtained from achenes (ABZ seeds, UK, kindly

provided by Saturn Bioponics https://saturnbioponics.com/).

Achenes were germinated on wetted filter paper in sealed Petri

dishes under long-day conditions (16 h light/8 h dark, 25 °C/20 °C,

100% relative humidity) in a growth chamber. After two weeks,

uniformly germinated seedlings were transplanted into alveolar

trays (80 mL volume per cell) filled with Levington M3 compost

(catalogue number: PHSM-1-1-1-1). Plants were grown under the

same photoperiod, temperatures, and light intensity until they

reached 18 weeks of age. Water and nutrient supply were
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commercial fertigation protocols of Vitax Organic Strawberry

Fertiliser (Catalogue number 5LSF1).
Pathogen culture and inoculum
preparation

Botrytis cinerea isolate BcI16 (Faretra and Pollastro, 1991) was

cultured on potato dextrose agar (PDA) plates. A single agar plug

from a sporulated colony was transferred to fresh PDA and

incubated in the dark at room temperature for four weeks as

previously described (Stevens et al., 2025). Spores were collected

in sterile water containing 0.01% Tween-20, filtered through

Miracloth® (EDM Millipore, Burlington, MA, USA), and pelleted

by centrifugation (10 min at 4,000 rpm). The final spore

concentration of the inoculum was adjusted to 5 × 105 spores/mL

in half-strength potato dextrose broth (PDB).
Elicitor treatments

Five elicitors were tested: b-aminobutyric acid (BABA), (R)-b-
homoserine (RBH), indole-3-carboxylic acid (I3CA), jasmonic acid

(JA), and salicylic acid (SA). Compounds were obtained from Sigma-

Aldrich and prepared freshly prior to application. BABA and RBH

were applied at 0.5 mM, I3CA at 0.150 μM, JA at 0.1 mM, and SA at 1

mM final concentrations. BABA, RBH, and I3CA were applied via soil

drenching by injecting a 10x concentrated solution at 10% of the tray’s

alveolus volume (80 mL). BABA and RBH were dissolved in sterile

distilled water (SDW). I3CA was dissolved in ethanol and then diluted

to the selected concentration. The final ethanol concentration in the

solution was 0.075%, and therefore, all soil drench solutions were

supplemented with ethanol to achieve this concentration. JA and SA

were applied as foliar sprays until runoff on both adaxial and abaxial

leaf surfaces. SA was dissolved in SDW. Stock solutions of JA were

prepared according to Luna et al. (2016) by dissolving 250 mg in 2 ml

of ethanol, then diluted in distilled water to a final stock concentration

of 10 mM, and stored at -20 °C. Before use, the 10 mM stock solution

was thawed and diluted to the final concentration in the spraying

solution, resulting in a final ethanol concentration of 0.042%.

Therefore, all other spraying solutions were supplemented with

0.042% ethanol. All foliar spray solutions contained 0.01% Silwet to

improve adherence to leaf surfaces. Solvent solutions only (without

chemicals) were used to treat control plants (i.e., Water treatment), and

the soil-drench solution and spraying solution were applied to each

treatment to equalise the amount of solvent in the soil or on the leaves.

All treatments were applied four times at 2-week intervals on plants

aged 6, 8, 10, and 12 weeks (Figure 1A).
Leaf infection assay with B. cinerea

Detached leaf assays were conducted five days after each

treatment application. One fully expanded leaf (trifoliate) was
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selected for infection in each plant. Detached leaves (n = 8-12) were

infected by applying 5 mL of the drop inoculum solution on either

side of the main vein (i.e., 2 drops/foliole). Mock leaves were

infected with ½ strength PDB only. Inoculated leaves were

incubated at 20 °C in the dark at 100% RH. Disease incidence

was measured as necrotic lesion diameter (mm) five days post-

inoculation using an electronic calliper (0.1 mm resolution).
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Growth and reproductive performance
assessment

Relative growth rate (RGR) for leaf area was calculated between

the time points one week before the fourth elicitor application (t1;

week 11 of the experiment) and two weeks after the same

application (t2; week 14 of the experiment). The following
FIGURE 1

Induced resistance to B. cinerea in strawberry cultivars treated with chemical elicitors. (A) Experimental timeline showing four elicitor applications at
6, 8, 10, 12, and 18 weeks of plant age and subsequent leaf inoculations with B. cinerea for disease assessment. The brown dots indicate leaf
inoculations performed five days after the application of the elicitors. The red cross indicates the treatments that were excluded from the long-term
assessment. Lesion diameter in Durban (B), Rowena (C), and Soraya (D) after four elicitor applications. Lesion diameter six weeks after the final
elicitor application (18-week-old plants) in Rowena (E) and Soraya (F). Boxplots represent lesion diameter (mm) with the median line, interquartile
range (boxes), and whiskers extending to the minimum and maximum values. Each point represents biological replicates (individual plants) (n = 8–12
per treatment). Capital letters indicate statistical differences between the Water treatments of each variety. Lowercase letters indicate statistically
significant differences between elicitors within each variety (One‐way ANOVA followed by Tukey´s post hoc test or Welch’s ANOVA followed by
Dunnett’s T3; p < 0.05; n = 8–12) NS indicates not significant..
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formula was used: RGR = [ln(leaf areat2) – ln(leaf areat1)]/(t2 – t1).

Leaf area was measured with ImageJ Software [Version 1.54j,

https://imagej.net/ (Schneider et al., 2012)]. Flowering was

recorded on 11- and 13-week-old plants, while fruit production

was assessed on 18-week-old plants (six weeks after the fourth

application), by counting the number of flowers and fruits

per treatment.
Statistical analysis

Data normality was assessed using the Shapiro-Wilk test (p ≥

0.05). Homogeneity of variance was evaluated with Levene’s test.

For normally distributed data with equal variances, one-way

ANOVA followed by Tukey’s post hoc test was used. When

variances were unequal, Welch’s ANOVA followed by Dunnett’s

T3 test was applied. Analyses were performed in GraphPad Prism 9

(GraphPad Software, San Diego, CA, USA).
Metabolomic analysis

Sample collection for metabolomic analysis
For metabolomic analysis, leaves were collected from individual

plants (n = 8-12) of Rowena and Soraya, following treatment with

Water, BABA, RBH, and JA 5 days after the final application.

Infected and mock-infected leaves were collected 24 hours post-

infection (hpi), snap-frozen in liquid nitrogen, ground in liquid

nitrogen, and lyophilized before metabolite extraction. For each

condition, three biological replicates were used. Each biological

replicate consisted of a pool of one leaf per plant, using four plants

for the Water treatments and two to three plants for the

chemical treatments.

Metabolite extraction and LC-QTOF analysis
Three biological replicates and three techniques were used for

the analysis (n = 6). The metabolites were extracted using a mixture

of MeOH and H2O (30:70) supplemented with 0.01% HCOOH.

Then, 1 mL of 30% MeOH was added to 300 mg of powdered

freeze-dried tissue, and the samples were incubated on ice for 30

min. After shaking for 15 min and centrifugation at 15.000 rpm for

15 min at 4 °C, the supernatant was filtered using a 0.2 μm cellulose

filter. An aliquot (5 μL) of each sample was injected into the hybrid

tandem UPLC-QTOF (Synapt, Waters) mass spectrometer in the

positive (ESI +) and negative (ESI −) ion modes for electrospray

ionization. Samples elution was performed through a reversed-

phase C-18 column (Kinetex EVO C18 Core-Shell, 2.6 μm particle

size, Phenomenex) with a gradient of MeOH and H2O

supplemented with 0.01% HCOOH. Raw data can be found in

Metabolights (ID: MTBLS12834, https://www.ebi.ac.uk/

metabolights/MTBLS12834).

Raw data were transformed into. mzML format using the

MSConvert tool from ProteoWizard (Chambers et al., 2012). Data

were processed using R software [version 4.4.1 (R Core Team,
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2024)] where ESI+ and ESI- signals were analysed separately. Signal

corrections were obtained using the Centwave algorithm for R. The

amount of each compound was determined from the normalized

peak area relative to the dry weight of each sample.

Global data visualization and statistical analysis
Global visualization of the combined ESI+ and ESI- data was

performed using Principal Component Analysis (PCA) and a

heatmap in Metaboanalyst 6.0 (Pang et al., 2024), applying

filtering through the interquartile range (<40%), normalization by

median, followed by cube root transformation and Pareto scaling

for combined positive and negative ionization mode data. For PCA,

statistical significance between the treatment groups was evaluated

using PERMANOVA (p ≤ 0.05). Heatmaps were obtained using

hierarchical clustering, Euclidean distance measurement, and

Ward’s clustering method, and metabolite expression was

represented as group averages. A log2 fold change measure was

used to determine up- or down-expression levels of metabolites.

Venn diagrams were drawn using Venny [version 2.1.0 (Oliveros,

2007-2015)], and the significant putative metabolites associated

with each treatment and infection condition were determined

using a two-sample t-test (FDR, p ≤ 0.05) between the elicitor

and Water treatments under both mock and B. cinerea infection.

Pathway enrichment analysis of priming
metabolites

Priming metabolites were isolated from Venn diagrams by

comparing the elicitor vs. Water upon mock infection and the

elicitor vs. Water upon pathogen infection and selecting significant

metabolites solely associated with infection. These metabolites were

putatively identified through several metabolite libraries, one

available in the KEGG database for Fragaria vesca and one

internal library kindly provided by Dr. Pastor’s group, created

using pure chemical standards to record the specific retention

time, exact mass, and spectrum fragmentation, as described in

Gamir et al. (2014). The priming metabolites specific to each

compound underwent enrichment pathway analysis using the

MarVis-Suite software [version 2.0, https://marvis.gobics.de/

(Kaever et al., 2015, 2009)]. Adduct and isotope correction,

followed by merging of the positive and negative ionization mode

data, was performed using the MarVis-Filter, while the pathways

were obtained from the MarVis-Pathway. Entry-based enrichment

analysis calculated p-values based on a hypergeometric distribution,

which were then adjusted using FDR (Benjamini-Hochberg)

correction. Pathways with p-values ≤0.05 were considered

significantly enriched. The putatively annotated Metabolites of

enriched pathways were further identified at a confidence level

(MS1 MS2) in MassLynx (version 4.2, Waters Corporation, https://

www.waters.com/) through ChromaLynx. When fragmentation

spectra were not available in the selected libraries, fragmentation

spectra from online databases of PubChem (https : / /

pubchem.ncbi.nlm.nih.gov/), and Human Metabolome Database

(HMDB, https://www.hmdb.ca/) were considered, with similar

LC-MS/MS experimental conditions and ionization modes.
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Results

Efficacy of elicitors in inducing resistance
to B. cinerea

To evaluate the ability of five chemical elicitors (i.e., BABA,

RBH, I3CA, JA, and SA) to induce resistance against B. cinerea, four

applications were carried out at two-week intervals on strawberry

cultivars Durban, Rowena, and Soraya at 6, 8, 10, and 12 weeks of

age (Figure 1A). A leaf infection assay was carried out five days after

the application of the elicitors. Following inoculation, disease

incidence was measured as lesion diameter (mm) five days

post-infection.

Before elicitor analysis, basal resistance levels among the three

cultivars were first assessed for Water-treated controls. No

significant differences were observed after the first application

(Supplementary Figure 1A). However, after the second

application, Rowena exhibited higher susceptibility than Soraya,

while Durban showed an intermediate response (Supplementary

Figure 1B). These differences were not observed after the third

application (Supplementary Figure 1C). However, after four

applications, Rowena exhibited significantly higher susceptibility

compared to Durban, indicating the lowest basal resistance at the

12-week-old stage, while Soraya showed intermediate lesion sizes

compared to Durban and Rowena (Figures 1B-D).

IR was analysed after each elicitor application. A single

treatment was insufficient to induce resistance in any of the

cultivars (Supplementary Figure 1A). However, from the second

application, resistance began to emerge in some treatments. In

Durban, JA significantly reduced lesion size by 72.5% and 88.4%

after the second and third applications, respectively (Supplementary

Figures 1B, C). This effect was not sustained after the fourth

application (Figure 1B), where none of the elicitors reduced lesion

size in Durban. In contrast, in Rowena and Soraya, none of the

elicitors induced statistically significant reductions in lesion size

until the fourth application (Supplementary Figures 1A-C;

Figures 1C, D). After the fourth application, whereas JA, SA, and

I3CA did not induce resistance in Rowena, BABA treatment

reduced lesion size by 41.6% compared to the Water control

(Figure 1C). RBH was even more effective, reducing lesion size by

67.5% compared to Water (Figure 1C). In Soraya, RBH also

significantly reduced lesion size by 64% after four applications

(Figure 1D). However, none of the other elicitors, including

BABA, result in a statistically significant difference in lesion

size (Figure 1D).

To test the durability of these effects, additional assays were

conducted on 18-week-old plants, six weeks after the final elicitor

application. Differences in basal resistance between Rowena and

Soraya at this developmental stage were not found (Figures 1E, F).

In Rowena, BABA was the only elicitor to result in a reduced lesion

size (45.3% compared to the control) (Figure 1E). In Soraya, RBH

maintained a 42.6% reduction (Figure 1F). Interestingly, BABA and

JA treatments also reduced lesion sizes by 44.8% and 40.7%,

respectively (Figure 1F). These findings indicate that BABA, RBH,

and JA can induce long-lasting resistance effects in specific cultivars.
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Relative growth rate analysis, flowering,
and fruit production assessment

To evaluate whether repeated elicitor treatments impacted

strawberry development, we assessed plant growth and

reproductive traits following four consecutive applications from

the seedling to the mature stage. RGR was calculated from non-

destructive leaf area measurements between weeks 11 and 14. No

significant differences (p > 0.05) in RGR were observed across

treatments in any of the three cultivars (Supplementary Figure 2).

This approach enabled the tracking of individual plant growth over

time, thereby avoiding the need for destructive harvesting and

allowing for the subsequent assessment of flowering and fruiting.

Flowering was recorded on 11- and 13-week-old plants, while fruit

production was assessed on 18-week-old plants (six weeks after the

fourth application), by counting the number of flowers and fruits

per treatment. No statistically significant differences in inhibition of

flower (Supplementary Table 1) or fruit (Supplementary Table 2)

production were found in any cultivar. While flower numbers were

generally higher than fruit numbers, this reduction was observed

across all treatments, including Water controls, indicating poor

flower-to-fruit conversion irrespective of elicitor application.

Although some differences in mean flower and fruit numbers

were observed between treatments, variability between individual

plants was high, and these differences were not statistically

significant (Supplementary Tables 1, 2).
Metabolomic profiling of elicitor-induced
resistance

To investigate the underlying mechanisms of induced

resistance, an untargeted metabolomic analysis was conducted in

Rowena and Soraya treated with Water, BABA, RBH, and JA, and

then challenged with B. cinerea or a mock treatment. A total of

14,603 metabolomic features were detected, including 9,647 under

positive electrospray ionization (ESI+) and 4,956 under negative

mode (ESI−).
Variety-specific metabolomic profiles to
infection

First, to investigate whether differences in basal resistance

between cultivars could be associated with distinct constitutive

metabolic profiles, we performed a PCA and hierarchical

clustering heatmap analysis on mock- and B. cinerea-infected

Water-treated plants (Figure 2). This was done to mirror the

assessment shown in Figures 1C,D, where cultivar-specific

differences in lesion size were observed. Figure 2A shows a PCA

based on metabolomic features of Rowena and Soraya in the

absence and presence of B. cinerea. The first two principal

components (PC) explained 13.8% of the total variability, with

the first component (PC1) accounting for 8,2% and the second

component (PC2) accounting for 5.6%. While B. cinerea infection
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alone did not significantly alter the global metabolome at 24 hpi

(PERMANOVA, F = 0.28, R² = 0.04, p = 0.942), orientation along

PC1 reflects underlying metabolic differences between the two

cultivars. The heatmap revealed a strong separation between

Rowena and Soraya, with mock and infected samples clustered
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closely within each cultivar (Figure 2B). This supports the PCA

results and confirms that infection had minimal impact on the

global metabolic profile at 24 hpi, and that constitutive

metabolomic differences exist between cultivars with contrasting

basal resistance.
FIGURE 2

Basal metabolomic differences between strawberry cultivars with contrasting susceptibility to B. cinerea. (A) Principal Component Analysis (PCA) of
metabolomic profiles in Water-treated Rowena and Soraya plants under mock- and B. cinerea-inoculated conditions. Samples were collected 24
hours post-inoculation. Each point in the PCA represents one replicate (n = six per condition; three biological replicates; two technical replicates).
PERMANOVA was used to assess statistical significance. Ellipses represent the 95% confidence intervals for each treatment group means.
(B) Hierarchical clustering heatmap of metabolomic features from the same samples.
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Metabolomic impact of BABA, RBH, and JA
in Rowena and Soraya

Next, we assessed whether elicitor treatments triggered changes

in the metabolic profiles of each cultivar and whether these changes

were influenced by B. cinerea infection. While the PCA plots

displayed relatively low explanatory variance on the first two

components, this is a common feature in untargeted

metabolomics datasets where high dimensionality and biological

variability can limit the percentage of explained variance. Despite

this, the observed separations were statistically supported by

PERMANOVA analyses, indicating that the metabolic profiles

among treatments and cultivars were significantly different and

biologically meaningful. In the PCA of Rowena samples under

mock conditions, the first two PCs explained 24.5% of the total

variability, with PC1 accounting for 13.6% and PC2 accounting for

10.9%. This PCA revealed clear separation between treatment

groups (PERMANOVA, F = 5.66, R² = 0.45, p = 0.001;

Figure 3A), with RBH showing the most distinct profile

compared to Water, JA, and BABA. Under B. cinerea infection,

PCs explained 28.9% of the total variability, with PC1 accounting

for 17.9% and PC2 accounting for 11%. Again, it showed a

significant treatment effect (PERMANOVA, F = 5.37, R² = 0.44, p

= 0.001; Figure 3B). Notably, RBH remained the most metabolically

distinct, while BABA showed a more evident divergence from

Water upon infection than in the mock conditions.

In the PCA of Soraya samples under mock conditions, PCs

explained 25.7% of the total variability, with PC1 accounting for

15.9% and PC2 accounting for 9.8%. Upon B. cinerea infection, PCs

explained 27.1% of the total variability, with PC1 accounting for

15.8% and PC2 accounting for 11.3%. Similarly to the previous case,

in Soraya, PCA also revealed significant treatment effects under

both mock (PERMANOVA, F = 2.71, R² = 0.29, p = 0.027;

Figure 3C) and infected conditions (PERMANOVA, F = 3.20, R²

= 0.32, p = 0.012; Figure 3D). BABA had the most substantial

impact, significantly altering the metabolome compared to Water

and RBH in mock conditions and to Water under infection. These

results suggest that elicitor-induced metabolic changes vary

depending on both the cultivar and the presence of B. cinerea,

with RBH being most effective in Rowena and BABA in Soraya.

A global view of elicitor-induced metabolic changes was further

assessed through hierarchical clustering heatmap analysis, where

the metabolic features detected in both ESI+ and ESI− modes were

grouped according to treatment and compared between mock- and

B. cinerea-inoculated conditions (Figures 3E, F).

In Rowena, clustering analysis revealed six significant

metabolite clusters with expression patterns across treatments and

infection conditions (Figure 3E). Cluster 1 included metabolites

upregulated by RBH under mock conditions, downregulated by

infection in Water-treated plants, and subsequently upregulated

again in both BABA- and RBH-infected samples. Cluster 2

consisted of metabolites consistently upregulated by BABA under

both mock and infected conditions. Cluster 3 showed metabolites

upregulated by JA in both mock and infected samples,

downregulated by RBH following infection (i.e., priming of RBH
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cluster), and an upregulated by BABA upon infection (i.e., priming

of BABA cluster). Cluster 4 was defined by metabolites that were

specifically upregulated after RBH treatment and infection (i.e.,

priming of the RBH cluster). Cluster 5 includes metabolites

downregulated by RBH under both mock and infected conditions,

with a greater impact of the infection (i.e., priming of RBH cluster).

Cluster 6 represented metabolites that were consistently

downregulated by all three elicitor treatments, regardless of the

infection status.

In Soraya, six distinct clusters were identified (Figure 3F).

Cluster 1 included metabolites with different profiles upon

treatments and infection. Cluster 2 was associated with

metabolites downregulated in BABA treatment and, to a much

greater extent, in BABA-infected samples (i.e., priming of the BABA

cluster). Cluster 3 was defined by downregulation of metabolites

after BABA treatment and infection (i.e., priming of the BABA

cluster). Cluster 4 contained features downregulated in the BABA

mock and upregulated in the JA mock. Cluster 5 captured

metabolites that were upregulated under BABA mock conditions

and to a much greater extent in BABA-infected samples (i.e.,

priming of the BABA cluster). Finally, Cluster 6 grouped features

that were upregulated in BABA mock, downregulated in Water-

infected plants, and upregulated in JA upon infection (i.e., priming

of the JA cluster).
Isolation of direct and priming compounds
and primed pathways identification in
Rowena

To identify metabolites specifically associated with elicitor-

induced resistance, we performed pairwise comparisons between

each elicitor treatment and the Water control under both mock-

and B. cinerea-inoculated conditions. Significant metabolites

unique to either condition were categorised as “direct” (mock

only) or “priming” (infection only).

In Rowena, when comparing all the putative metabolites under

mock conditions, we observed that RBH triggered the most

substantial metabolic reprogramming, with 348 (41.7%) induced

metabolites, followed by JA (222, 26.6%) and BABA (32, 3.8%)

(Supplementary Figure 3A). Shared metabolite changes included 64

between the three elicitors, 124 between RBH and JA, 27 between

RBH and BABA, and 17 between JA and BABA. Upon B. cinerea

infection, RBH continued to dominate the metabolic response,

inducing 357 (58.8%) metabolites, followed by BABA (136,

22.4%) and JA (7, 1.2%) (Supplementary Figure 3B). Infected

samples had no shared metabolites between the three elicitors,

and only 107 were shared between BABA and RBH.

To isolate direct activators (elicitor-induced under mock

conditions only), Venn diagrams between mock and infected for

each elicitor showed 425 JA-, 339 RBH-, and 82 BABA-associated

metabolites (Supplementary Figure 3C). These were further

grouped to identify metabolites uniquely associated with each

elicitor (Figure 4A). After this filtering (where the impact of the

infection was removed), the effect of JA on the metabolome was
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FIGURE 3

Metabolomic shifts in strawberry cultivars following elicitor treatments under mock and B. cinerea-inoculated conditions. Principal Component
Analysis (PCA) of metabolic profiles in Rowena (A) and Soraya (C) under mock conditions and in Rowena (B) and Soraya (D) under B. cinerea
infection. Samples were collected 24 hours post-inoculation. Each point represents one biological replicate (n = six per condition; three biological
replicates; two technical replicates). Significant separation of treatment groups was observed by PERMANOVA (p < 0.05). Ellipses represent the 95%
confidence intervals for each treatment group means. (E) Hierarchical clustering heatmap of metabolomic features in Rowena across treatments
(Water, BABA, RBH, and JA) under both mock and infected conditions. (F) Hierarchical clustering heatmap of metabolomic features in Soraya across
the same treatments and conditions. Clusters highlight treatment- and cultivar-specific metabolic reprogramming.
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more pronounced than the previously observed effect of RBH, with

306 (44.2%) metabolites being induced, followed by 221 (31.9%)

RBH-induced and 32 (4.6%) BABA-induced (Figure 4A).

Priming-associated metabolites (elicitor-induced only upon B.

cinerea infection) were also identified. Similar filtering was done to

isolate metabolites associated only with the infection, which

resulted in 240 RBH-specific, followed by 185 BABA- and 5 JA-

associated features (Supplementary Figure 3C). After this filtering

(where the impact of the direct effect of the elicitor was removed),

we observed that 207 (52.1%) were exclusive to RBH, 152 (38.3%) to

BABA, and 5 (1.3%) to JA. Only a shared group of 33 (8.3%)

metabolites was found between BABA and RBH (Figure 4B).

Priming-associated metabolites from Rowena were selected

based on their unique association with BABA, RBH, or JA

treatments, as identified in the Venn diagrams. These metabolites

were subjected to putative annotation by comparison with two

reference libraries: the KEGG database for Fragaria vesca and an

internal library kindly provided by Dr. Pastor’s group. Metabolite

identifications were made in MassLynx using ChromaLynx, with

confidence levels based on retention time and spectral matching
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(MS level). Where fragmentation spectra were not available in the

selected libraries, complementary spectra were retrieved from

public databases (e.g., PubChem, HMDB) using similar LC-MS/

MS experimental parameters and ionization modes.

A total of 62 metabolites were putatively identified in Rowena:

23 were uniquely associated with BABA, 37 with RBH, and 2 were

common to both treatments (Table 1). Enrichment analysis

revealed statistically significant metabolic pathways related to

these priming responses for BABA and RBH only. For BABA,

enriched pathways included Alanine metabolism (3 metabolite; 2

up, 1 up), Flavonoids (5 metabolites, all down), Histidine

metabolism (5 metabolites; 4 up, 1 down), Lignans (1 metabolite,

up), Pyrimidine metabolism (4 metabolites; 3 up, 1 down), and 2-

Oxocarboxylic acid metabolism (5 metabolites: 4 up, 1 down)

(Figure 4C). RBH-associated priming metabolites were

significantly enriched in Biosynthesis of amino acids (2

metabolites, down), Flavonoids (7 metabolites; 6 down, 1 up),

Monoterpenoid biosynthesis (1 metabolite up), Phenylalanine-

tyrosine-tryptophan biosynthesis (2 metabolites, 1 up, 1 down),

Phenylalanine metabolism (4 metabolites; 3 down, 1 up),
FIGURE 4

Metabolomic responses to elicitor treatments in Rowena. (A) Venn diagram showing the number of metabolites exclusively induced under mock
conditions (no infection) by RBH, BABA, and JA in Rowena. (B) Venn diagram showing the number of metabolites exclusively induced under B.
cinerea infected conditions by RBH, BABA, or JA in Rowena. Percentages represent each elicitor’s contribution to the total number of direct/
priming-associated features. The number of shared metabolites between treatments is also indicated. (C) Pathway enrichment of priming-associated
metabolites in Rowena. Putatively annotated priming-associated metabolites uniquely induced by BABA and RBH in B. cinerea-infected Rowena
plants were subjected to pathway enrichment analysis using the KEGG database for Fragaria vesca and one internal library. Pie charts represent the
percentage of statistically significant enriched pathways (p < 0.05) for BABA (left) and RBH (right), based on the number of annotated metabolites per
pathway, are shown for each elicitor.
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TABLE 1 Summary of the pathways enriched by BABA, RBH and JA treatment in Rowena and the identified metabolites associated to those pathways.

Pathway Putative compound Predicted formula Adduct Parental ion Fragments BABA RBH JA

72.70>78.600 Up – –

55.0183>71.013>73.029 Down – –

58.0298>114.018>88.039 Up – –

78,959 – Down –

80.9736>118.0651>146.060 – Down –

133,029 Down Down –

109.028>133.028>223.007 – Down –

183.0121>284.0322 – Up –

255.0296>271.0258>300.0268 – Down –

91.0544>149.060>201.046 – Down –

151.0028>271.039>285.039 – Down –

284.0318<301.0701 Down Down –

83.049>183.0113>205.0643 Down – –

221.045>235.060>259.061 Down – –

119.0495>269.0444>283.0243 Down – –

2.033>56.049>66.033>81.0447 Up – –

71.631>81.044 Down – –

72.70>78.600 Up – –

41.999>59.013>81.00094 Up – –

41.998>44.0142>102.056 Up – –

399,1467 Up – –

153,127>171,138 – Up –

40.9000>43.00>70.800 Down – –

72.700>78.600 Up – –

60.043>71.048>74.022 Up – –

46.9961>59.0139 Up – –
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Alanine; aspartate and glutamate
metabolism

2-Ketoglutaric acid C5H6O5 [M-H]- 145.0290

Fumaric acid C4H4O4 [M+H]+ 117.0180

N-Acetyl-L-aspartic acid C6H9NO2 [M-H]- 174.0119

Biosynthesis of amino acids
Carbamoyl phosphate CH4NO5P [M-H]- 140.0065

(3-Indolyl)-glycerol phosphate C11H14NO6P [M+H]+ 288.0849

Flavonoids

5;7-Dihydroxychromone C9H6O4 [M-H]- 177.0552

Luteolin C15H10O6 [M-H]- 285.0403

Tectorigenin C16H12O6 [M-H]- 299.0192

Avicularin C20H18O11 [M+H]+ 435.0569

Sec-O-Glucosylhamaudol C21H26O10 [M-H]- 437.1000

Astilbin C21H22O11 [M-H]- 449.1093

Isoquercitrin C21H20O12 [M-H]- 463.0775

4-Hydroxychalcone C15H12O2 [M+H]+ 225.1117

Cimifugin C16H18O6 [M+H]+ 307.1154

Homoplantaginin C22H22O11 [M-H]- 461.1084

Histidine metabolism

Imidazole acetaldehyde C5H6N2O [M+H]+ 111.0446 4

Imidazole-4-acetate C5H6N2O2 [M-H]- 125.0240

2-Ketoglutaric acid C5H6O5 [M-H]- 145.0290

4;5-Dihydro-4-oxo-5-
imidazolepropanoate

C6H8N2O3 [M-H]- 154.9982

N-Formyl-L-glutamate C6H9NO5 [M-H]- 174.0120

Lignanes Deoxypodophyllotoxin C22H22O7 [M+H]+ 399.1244

Monoterpenoid metabolism 6-endo-Hydroxycineole C10H18O2 [M+H]+ 171.1502

2-Oxocarboxylic acid metabolism

2-Keto-3-methylbutyric acid C5H8O3 [M+H]+ 117.0187

2-Ketoglutaric acid C5H6O5 [M-H]- 145.0291

N-Acetylornithine C7H14N2O3 [M+H]+ 175.1469

3-Methylthiopropyl-
desulfoglucosinolate

C11H21NO6S2 [M-H]- 326.0956
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TABLE 1 Continued

Pathway Putative compound Predicted formula Adduct Parental ion Fragments BABA RBH JA

80.965>111.9710>181.9586 Up – –

81.0335>109.0284>137.0230 – Up –

80.9736>118.0651>146.060 – Down –

65.039>77.039>91.055 – Down –

49.136>71.784>76.966 – Down –

41.038>55.054>81.069 – Up –

83.0861>95.086>113.096 – Down –

91.054>93.0331>119.049 – Down –

9>107.050>121.0295>161.060 – Down –

117.034>119.050>163.040 – Down –

117.034>119.050>191.056 – Up –

59.013>135.045>339.108 – Down –

42.0338>44.013>55.03 – Up –

65.000>92.300>96.900 – Down –

78,959 – Down –

76.971>78.970>138.936 – Up –

107.036>108.0203>135.031 – Down –

151.025>169.035>197.030 – Up –

54>442.017>503.972>807.009 – Down –

78,959 – Down –

41.998>59.02488.039 – Up –

113.0541>178.061 – Down –

81.033>94.040>112.051 – Down –

42.034>52.018>70.029>71.013 Up – –

41.153>41.999 Down – –

41.998>68.0136>85.005 Up – –
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5-Methylthiopentyl
glucosinolate

C13H25NO9S3 [M-H]- 434.1026

Phenylalanine; tyrosine; tryptophan
biosynthesis

3;4-Dihydroxybenzoic acid C7H6O4 [M+H]+ 155.0163

Indole-3-glycerol phosphate C11H14NO6P [M+H]+ 288.0849

Phenylalanine metabolism

Phenylacetaldehyde C8H8O [M-H]- 119.0500

Phenylacetic acid C8H8O2 [M-H]- 135.0296

8-Methyl-6-nonenoic acid C10H18O2 [M+H]+ 171.1502

Benzenecarboxylic acid C7H6O2 [M+H]+ 123.0444

Phenylpropanoid biosynthesis

4-Vinylphenol C8H8O [M-H]- 119.0500

Eugenol C10H12O2 [M-H]- 163.0954 65.0

beta-D-Glucosyl-2-coumarate C15H18O8 [M-H]- 325.0924

p-Coumaroyl quinic acid C16H18O8 [M-H]- 337.0774

Coniferin C16H22O8 [M-H]- 341.1394

Purine metabolism

4-Imidazolone; C3H4N2O [M+H]+ 85.0289

Hypoxanthine C5H4N4O [M-H]- 135.0296

Carbamoyl phosphate CH4NO5P [M-H]- 140.0065

Allantoic acid C4H8N4O4 [M-H]- 177.0397

Deoxyinosine C10H12N4O4 [M-H]- 251.1135

Uric acid C10H12N4O7 [M-H]- 299.0192

Diguanosine tetraphosphate C20H28N10O21P4 [M-H]- 867.0674 158.9

Pyrimidine metabolism

Carbamoyl phosphate CH4NO5P [M-H]- 140.0065

N-Carbamoyl-L-aspartate C5H8N2O5 [M-H]- 177.0397

2’;3’-Cyclic CMP C9H12N3O7P [M+H]+ 306.0697

2’-Deoxycytidine5’-
monophosphate

C9H14N3O7P [M+H]+ 308.0922

(Z)-3-Aminoacrylate C3H5NO2 [M+H]+ 88.0759

5-Methyluracil C5H6N2O2 [M-H]- 125.0240

Uracil-6-carboxylic acid C5H4N2O4 [M-H]- 154.9982
3

2
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Phenylpropanoid biosynthesis (5 metabolites; 4 down, 1 up), Purine

metabolism (7 metabolites; 4 down, 3 up), Pyrimidine metabolism

(4 metabolites; 3 down, 1 up), Riboflavin metabolism (2

metabolites; 1 up, 1 down), Stilbenoid biosynthesis (3 metabolites;

2 up, 1 down), and Tryptophan metabolism (2 metabolites; 1 up, 1

down) (Figure 4C; Table 1).
Isolation of direct and priming compounds
and primed pathways identification in
Soraya

A similar analysis was performed in Soraya. In contrast to

Rowena, BABA triggered the most extensive metabolic

reprogramming in Soraya under mock conditions, with 503

(97.3%) metabolites induced, whereas RBH and JA affected only 2

(0.4%) and 1 (0.2%) features, respectively (Supplementary

Figure 4A). Minimal overlap was observed between treatments,

with only 2 metabolites shared between BABA and RBH and 9

metabolites between BABA and JA. Upon B. cinerea infection,

BABA continued to drive the strongest response, inducing 190

(41.1%) metabolites, followed by JA (103, 22.4%) and RBH (74,

16.1%) (Supplementary Figure 4B). Infected samples showed low

shared responses, with 59 features shared between BABA and JA, 15

between BABA and RBH, 8 between JA and RBH, and only 10

features common to all treatments.

Direct-acting metabolites, i.e. those uniquely regulated under

mock conditions, were predominantly BABA-associated (433), with

JA and RBH contributing only 9 and 2 metabolites, respectively

(Supplementary Figure 4C) This was also observed when

comparing the filtered metabolites, where the dominance of

BABA persisted with 425 (97.5%) metabolites remaining specific

to this elicitor. In comparison, JA and RBH contributed 3 and 0

metabolites, respectively (Figure 5A).

Priming-associated metabolites (elicitor-induced only in the

presence of B. cinerea) revealed more balanced contributions.

BABA was associated with 193 features, JA with 179, and RBH

with 105 (Supplementary Figure 4C). Comparison of the priming

effects by each elicitor revealed 140 metabolites (34.5%) exclusive to

BABA, 129 (31.8%) to JA, and 74 (18.2%) to RBH (Figure 5B). The

Venn diagram identified 8 metabolites (2%) shared by the three

elicitors, 10 (2.5%) shared between JA and RBH, 32 (7.5%) shared

between BABA and JA, and 13 (3.2%) shared between BABA and

RBH. Pathway enrichment analysis was also performed in Soraya. A

total of 16 priming-associated metabolites were putatively

identified: 3 specific to BABA, 7 to RBH, and 5 to JA (Table 2).

As with Rowena, metabolites were annotated using the KEGG

database for Fragaria vesca and an internal reference library, and

identifications were confirmed using ChromaLynx and MS spectral

matching. Where in-library spectra were unavailable, additional

spectral data were sourced from public databases such as PubChem

and HMDB. Pathway enrichment analysis revealed that the

Flavonoid biosynthesis pathway was significantly enriched

for both BABA- and JA-associated priming metabolites, involving

3 metabolites (all upregulated) and 5 metabolites (3 upregulated,

2 downregulated), respectively. In contrast, RBH-primed
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metabolites were enriched in Pyruvate metabolism (4 metabolites

all down) and Pyrimidine metabolism (3 metabolites all down)

(Figure 5C; Table 2).
Discussion

This study shows that the effectiveness of chemical elicitors in

inducing resistance to B. cinerea in strawberry is both cultivar- and

compound-dependent. Notably, RBH in Rowena and BABA in

Soraya led to significant metabolome changes and reduced lesion
Frontiers in Plant Science 14
development, even in long-term assessments. These findings

highlight how cultivar-specific metabolic responses influence

induced resistance, providing insight into potential pathways and

biomarkers underlying the priming process.

Three commercial strawberry varieties, Durban, Rowena, and

Soraya were tested for their capacity to express induced resistance

against B. cinerea. In strawberry, there are no genotypes fully

resistant to B. cinerea (Bestfleisch et al., 2015; Petrasch et al.,

2019). However, our results highlight differences in basal

resistance among the three cultivars and across developmental

stages. Durban and Rowena showed persistent susceptibility to B.
FIGURE 5

Metabolomic responses to elicitor treatments in Soraya. (A) Venn diagram showing the number of metabolites exclusively induced under mock
conditions (no infection) by RBH, BABA, and JA in Soraya. (B) Venn diagram showing the number of metabolites exclusively induced under B. cinerea
infected conditions by RBH, BABA, or JA in Rowena. Percentages represent each elicitor’s contribution to the total number of direct/priming-
associated features. The number of shared metabolites between treatments is also indicated. (C) Pathway enrichment of priming-associated
metabolites in Rowena. Putatively annotated priming-associated metabolites uniquely induced by BABA and RBH in B. cinerea-infected Soraya plants
were subjected to pathway enrichment analysis using the KEGG database for Fragaria vesca and one internal library. Pie charts represent the
percentage of statistically significant enriched pathways (p < 0.05) for BABA (left) and RBH (right), based on the number of annotated metabolites per
pathway, are shown for each elicitor.
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TABLE 2 Summary of the pathways enriched by BABA, RBH and JA treatment in Soraya and the identified metabolites associated to those pathways.

Pathway Putative compound Predicted formula Adduct Parental ion Fragments BABA RBH JA

[M-H]- 463.0877 255.029>284.031>301.071 Up – –

[M+H]+ 467.0796 83.013>151.002>313.0919 Up – –

[M-H]- 477.1114 201.046>235.061>259.060 Up – –

[M-H]- 289.0712 109.0287>203.0708>221.0806>289.0712 – – Down

[M+H]+ 275.1114 105.033>107.0489>139.0381 – – Up

[M+H]+ 289.0615 83.013>109.029>245.045 – – Up

[M-H]- 303.0500 151.0029>287.055 – – Down

[M-H]- 337.0774 117.0346>119.0500>191.0561 – – Up

[M-H]- 59.0154 41.003>59.013 – Down –

[M-H]- 89.0245 53.0026>72.992>89.023 – Down –

[M-H]- 113.0241 68.998 – Down –

[M-H]- 131.0345 41.007>43.0184>87.0082 – Down –

[M-H]- 59.0151 41.998 – Down –

[M-H]- 89.0244 41.002>59.013>71.013 – Down –

[M-H]- 113.0241 41.998>42.034 – Down –
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Flavonoid

Isoquercitrin C21H20O12

Plantagoside C21H22O12

Nepitrin C22H22O12

Epicatechin C15H14O6

Flavonoid biosynthesis

Afzelechin C15H14O5

Eriodictyol C15H12O6

Dihydroquercetin C15H12O7

p-Coumaroyl quinic acid C16H18O8

Pyruvate metabolism

Acetic acid C2H4O2

(S)-Lactate C3H6O3

2-Butynedioic acid C4H2O4

2-Oxobutanedioic acid C4H4O5

Pyrimidine metabolism

Carbamide CH4N2O

3-Hydroxypropanoate C3H6O3

Dihydrouracil C4H6N2O2

Up, metabolites upregulated; Down, metabolites downregulated compared to the corresponding treatme
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cinerea, while Soraya exhibited greater resilience after the

second application (Figure 1; Supplementary Figure 1B). These

differences, observed under controlled environmental conditions,

suggest a genetic basis for basal resistance rather than an

environmental influence.

We tested five chemical elicitors, BABA, RBH, I3CA, JA, and

SA, for their capacity to induce resistance. Surprisingly, a single

application of any elicitor was insufficient in all cultivars

(Supplementary Figure 1A). This lack of induced resistance may

be partially explained by the relatively low concentrations used in

our study, which fall at the lower end of the ranges reported in

successful induced resistance studies (Buswell et al., 2018). It is also

likely that intrinsic, cultivar-specific traits modulate the

responsiveness to these compounds. Strawberry cultivars exhibit

significant variations in both basal and inducible defences, and

previous studies have demonstrated differences in elicitor

responsiveness among varieties (Seijo et al., 2008). Our findings

reinforce the notion that genetic background plays a critical role in

shaping immune responses in strawberries.

Neither I3CA nor SA conferred resistance in any of the

cultivars. The ineffectiveness of I3CA could be hypothesized to be

due to its potential to act more as a downstream marker of defence

activation rather than as a true elicitor. Moreover, the lack of SA-

induced resistance is not unexpected, as SA is typically associated

with defence responses against biotrophic pathogens, whereas B.

cinerea is a necrotrophic. The antagonistic crosstalk between the SA

and JA signalling pathways often results in SA being ineffective in

necrotrophic pathogen resistance (Glazebrook, 2005; Spoel et al.,

2007). Interestingly, earlier studies have shown that activation of the

SA pathway can suppress JA-mediated responses, thus rendering

plants more susceptible to B. cinerea (El Oirdi et al., 2011; Fugate

et al., 2013; Ha et al., 2021; Khanam et al., 2005); however, we did

not observe this in our experiments. We indeed observed some

effects of JA, which significantly reduced lesion size in Durban after

the second and third applications, consistent with its well-

documented role in defence against necrotrophic pathogens.

The JA effect did not last after the third application and did not

happen in Rowena or Soraya. This suggests that the concentration

used may not have been strong enough to produce a strong

response. Alternatively, this lack of effectiveness could be due to

differences between the plant varieties in how they respond to

hormones or how sensitive their receptors are to JA. These

underlying factors highlight the complexity of elicitor interactions

in strawberry and emphasize the importance of optimizing

treatment conditions for each genetic background.

In contrast, RBH and BABA were highly effective in reducing

lesion sizes in Rowena and Soraya after four applications, and their

effectiveness continued beyond this point. RBH reduced lesion size

by 67.5% in Rowena and 64% in Soraya, while BABA reduced lesion

size by 41.6% in Rowena. Moreover, long-term resistance was

assessed in 18-week-old plants. In Rowena, BABA continued to

confer protection, while Soraya retained reduced lesion sizes with

both BABA and RBH. This supports the capacity of these

compounds to establish durable resistance, potentially through

priming mechanisms, and these findings align with previous
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reports in tomato and Fragaria vesca (Buswell et al., 2018;

Wilkinson et al., 2017). However, BABA has been shown to

induce susceptibility rather than resistance in F. vesca, with

transcriptional profiling confirming this response (Badmi et al.,

2022, 2019). On the contrary, RBH has been demonstrated to

induce resistance against B. cinerea in F. vesca, emphasising the

differential activity of these compounds across Fragaria species

(Badmi et al., 2019). Moreover, long-term induced resistance was

also observed in treatments with JA in Soraya, which was

unexpected due to the lack of short-term resistance induced by

this elicitor in both cultivars. This could be due to a delayed priming

imprinting of the effects of the plant hormone, or to the

developmental stage of Soraya. Durban showed no response to

the elicitor treatments, likely due to genetic or physiological traits

limiting its defence activation. Taken together, these results

demonstrate the importance of species- and cultivar-specific

responses to elicitors, suggesting that optimisation of elicitor use

in strawberry will require consideration of both the compound and

the cultivar.

None of the elicitors had a significant negative impact on the

relative growth rate (RGR), flowering or fruit production,

suggesting a low risk of fitness penalties under our treatment

conditions. This is particularly relevant for BABA, which

has been associated with phytotoxicity and growth suppression

in other species at higher doses (van Hulten et al., 2006).

In contrast, RBH has shown minimal impact on growth

and good systemic movement, supporting its potential use in

sustainable agriculture.

Metabolomic analyses confirmed that the efficacy and mode of

action of the elicitor are cultivar-dependent. PCA and hierarchical

clustering of Water-treated plants revealed clear separation between

Rowena and Soraya, independent of infection status (Figure 2B). At

24 hpi, B. cinerea had little effect on the global metabolome,

demonstrating that cultivar identity was the dominant factor

influencing baseline metabolic variation. These metabolomic

distinctions may underlie the differential responses to elicitor-

induced resistance observed in our study.

Next, we examined the impact of specific elicitors on the

metabolome of both varieties (Figure 3). In Rowena, RBH had the

most pronounced metabolic impact under both mock and infected

conditions, indicating a direct and priming effect. In Rowena, the

BABA effect was infection-dependent, suggesting a priming-specific

response. In Soraya, however, BABA had strong effects under both

conditions, consistent with a mechanism of direct activation. JA

exhibited minimal influence on Rowena but did alter the Soraya

metabolome during infection, indicating an infection-dependent

mode of action.

Venn diagrams and PCA-supported heatmaps revealed that

RBH in Rowena and BABA in Soraya triggered the most substantial

metabolic shifts (Figures 4, 5). In both cases, these elicitors led to a

higher diversity and abundance of priming-associated metabolites,

which were correlated with increased resistance phenotypes. This

indicates that elicitor efficacy depends on the plant’s ability to adjust

its metabolism in response to both treatment and pathogen. In

Soraya, while the four applications of BABA did not significantly
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reduce lesion size, there was a noticeable trend towards improved

resistance. Notably, long-term resistance was strongly induced

following BABA treatment, suggesting that while the direct

activation of defence responses may be transient or subtle,

durable priming effects are maintained over time. This supports a

model in which BABA acts through sustained priming rather than

immediate defence activation in Soraya.

Pathway enrichment analysis provided key insights into

elicitor-induced resistance mechanisms (Figures 4, 5). In Rowena,

RBH led to significant enrichment in various primary metabolic

pathways, including amino acids, nucleotides, cofactors,

and vitamins.

Amino acid metabolism was significantly impacted in Rowena,

especially in the phenylalanine, tyrosine, and tryptophan pathways,

with most metabolites generally downregulated upon RBH

treatment. Similarly, enrichment of purine and pyrimidine

metabolism also occurred, with most metabolites downregulated.

Allantoic acid, uric acid, and 4-imidazolone, within catabolism of

purine for storage and transport of nitrogen, were upregulated,

suggesting involvement of RBH in nitrogen metabolism (Ohyama

et al., 2023; Yang and Han, 2004). The overall downregulation of

primary metabolism under RBH treatment may suggest

reallocations of energy resources during priming, redirected

towards defence pathways (Rojas et al., 2014). Accordingly to our

results, amino acid metabolism was found to be suppressed during

priming (Schwachtje et al., 2019). Cofactors and vitamins

metabolism enriched by RBH in Rowena, included precursors of

riboflavin (Vitamin B2), whose efficacy as elicitor of systemic

resistance against fungal pathogens (including B. cinerea) relies

on activation of Reactive Oxygen Species (ROS) signalling, the

lipoxygenase pathway, pathogenesis-related proteins (PR), and

defence and antioxidant enzymes such as phenylalanine ammonia

lyase (PAL) and peroxidase (POD) (Azami-Sardooei et al., 2010;

Boubakri et al., 2013; Zhu et al., 2024). Within secondary

metabolism, monoterpenoid and stilbenoid biosynthesis were

upregulated by RBH in Rowena. Monoterpenoids can kill the

pathogen directly or, due to their volatile properties, act as long-

distance signals to trigger defence responses in the distal parts of the

plant (Riedlmeier et al., 2017). Stilbenoids’ role against B. cinerea

has been widely studied, especially for resveratol (Ahn et al., 2015;

Xu et al., 2018). In our study, Piceatannol, a hydroxylated derivative

of resveratrol, was found to be upregulated. Surprisingly, flavonoid

biosynthesis was largely downregulated in Rowena under RBH

treatment. Although most of the metabolites in phenylpropanoid-

linked pathways were downregulated, p-Coumaroyl quinic acid was

the only one upregulated. This metabolite is not only involved as an

intermediate in flavonoid and lignin pathways, but also plays a

central role in the antioxidant and ROS-scavenging mechanisms

(Lee et al., 2013).

Unlike for RBH, BABA-primed Rowena plants showed a

comparable enrichment of primary metabolism, particularly with

upregulation in amino acid (e.g., histidine, alanine, aspartate,

glutamate) and nucleotide (e.g., pyrimidine) metabolism, as well
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as 2-oxocarboxylic acid metabolism. Our results support previous

findings by Pastor et al. (2014), which demonstrate that the

influence of BABA on primary metabolism during the priming

phase includes the accumulation of amino acids and enhanced

Tricarboxylic acid (TCA) cycle activity. Similarly to Pastor et al.

(2014), TCA intermediates, 2-Ketoglutaric acidacid and Fumaric

acid, were enriched under BABA treatment. Interestingly, both

pyrimidine biosynthesis and degradation pathways were

upregulated within nucleotide metabolism, suggesting the

maintenance of nucleotide homeostasis. This is notable given that

the BABA receptor in Arabidopsis has been identified as an

aspartyl-tRNA synthetase, linking BABA perception to amino

acid metabolism and protein synthesis (Luna et al., 2014a).

Similarly to the effect of RBH, flavonoid and lignan biosynthesis

were also enriched, with most flavonoids downregulated and

lignans upregulated. During the priming phase, plants can

accumulate and store conjugates of compounds that play a role in

defences (Pastor et al., 2014). According to this, we found that

BABA and RBH induced the enrichment of the glucoside form of

quercetin, Isoquercitrin, which is hydrolysed by plant b-
glucosidases, releasing quercetin, a potent antioxidant, for ROS

scavenging of, thereby activating plant immune responses. For

instance, pre-treatment with quercetin induced resistance through

the SA-dependent signalling pathway in Arabidopsis against

Pseudomonas syringae, leading to the conclusion that similar

flavonoids (similar to quercetin) may also work (An et al., 2023).

Moreover, within flavonoids, also the 5,7-Dihydroxychromone was

consistently modulated in BABA- and RBH-treated plants. These

results highlight common metabolic signatures for BABA and RBH

in Rowena, consistent with an earlier study (Buswell et al., 2018)

and reinforce the idea that both compounds activate similar

metabolic pathways to improve resistance in this cultivar.

In conclusion, as a priming agent, RBH in Rowena suppresses

primary metabolism at the early stage of the infection and induces

selective secondary metabolism (upregulation of stilbenoids and

monoterpenoids). At the same time, BABA has a broader

metabolic impact, especially on upregulation of primary

metabolism, and induces selective secondary metabolism

(upregulation of lignanes). These results highlight different fine-

tuning metabolic reprogramming performed by RBH and BABA

in Rowena.

In Soraya, pathway enrichment analyses revealed distinct

metabolomic signatures for each elicitor. BABA-primed

metabolites were mainly enriched in flavonoid biosynthesis.

Specifically, several flavonol glycosides, including Isoquercitrin,

Plantagoside, and Nepitrin, were upregulated. Enrichment of

Isoquercitrin in BABA-treated Rowena and RBH-treated Soraya

suggests a potential role as a conserved marker of elicitor

responsiveness. JA-priming in Soraya also affected flavonoid

metabolism. While some precursors, such as Eriodictyol and

compounds like Afzelechin and p-Coumaroyl quinic acid, were

upregulated, key flavonoids such as Epicatechin and its precursor

Dihydroquercetin were downregulated, indicating a complex
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regulation of this pathway during JA-induced priming. Moreover,

RBH-primed Soraya plants showed downregulation of primary

metabolic pathways, including nucleotide (e.g., pyrimidine) and

carbohydrate (e.g., pyruvate) metabolism. The downregulation of

pyruvate metabolism may reflect energy conservation strategies

associated with priming. Similarly, suppression of pyrimidine

degradation pathways, which are crucial for nucleotide recycling

and homeostasis, may represent a stress-mediated reprogramming

strategy that contributes to effective resistance. Overall, the

differential modulation of energy-related and defence-associated

pathways illustrates how elicitor-induced priming operates through

cultivar-specific metabolic adaptations.

Together, our results show that BABA, RBH, and JA induce

distinct metabolomic reprogramming depending on the cultivar.

While RBH suppresses primary metabolism but activates different

secondary pathways in both cultivars, BABA elicits primary

metabolism in Rowena and secondary metabolism in Soraya. The

JA effect is weak and absent in Rowena but present in Soraya. The lack

of observed growth penalties further highlights the potential of these

elicitors in sustainable disease management strategies for strawberry.

While this study focused on leaf responses to elicitor treatments, we

acknowledge that B. cinerea is a major pathogen of strawberry fruit.

Leaves were selected as the target organ for metabolomic analysis due

to their uniformity and accessibility for early defence monitoring.

However, future studies, particularly the ones under field conditions

(greenhouse or open field) should complement the leaf assessment

with fruit collected from plants grown under field conditions, to

evaluate the efficacy of induced resistance in the most agronomically

relevant organs. Nevertheless, this study provides a comprehensive

metabolomic view of defence priming induced by BABA, RBH, and JA

in commercial strawberry cultivars. By integrating phenotypic and

metabolomic data, we reveal how cultivar-specific responses and

metabolic reprogramming influence the efficacy of elicitors. These

insights can inform the strategic deployment of chemical elicitors in

strawberry breeding and disease management programs to combat B.

cinerea in a sustainable way.
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SUPPLEMENTARY FIGURE 1

Lesion development in strawberry cultivars during early elicitor applications.

Lesion diameter in Durban, Rowena, and Soraya after the first (A), second (B),
Frontiers in Plant Science 19
and third (C) elicitor applications at 6, 8, and 10 weeks of plant age,
respectively. Inoculations were performed five days after each treatment

application. Boxplots represent lesion diameter (mm) with the median line,
interquartile range (boxes), and whiskers extending to the minimum and

maximum values. Each point represents biological replicates (individual

plants) (n = 8–12 per treatment). Capital letters indicate statistical
differences between the Water treatments of each variety. Lowercase

letters indicate statistically significant differences between elicitors within
each variety (One-way ANOVA followed by Tukey´s post hoc test or Welch’s

ANOVA followed by Dunnett’s T3; p < 0.05; n = 8–12).

SUPPLEMENTARY FIGURE 2

Assessment of growth following elicitor treatments. Relative Growth Rate (RGR)
was calculated based on leaf area expansion between weeks 11 and 14 using

ImageJ software. Boxplots represent RGR (cm2 week-1) with the median line,
interquartile range (boxes), and whiskers extending to the minimum and

maximum values. Each point represents biological replicates (individual plants).
ns indicates not significant differences (One-way ANOVA; p < 0.05; n = 8–12).

SUPPLEMENTARY FIGURE 3

Metabolite reprogramming in Rowena in response to elicitors. (A) Venn

diagram showing metabolites induced under mock condition by BABA,
RBH, and JA in Rowena. (B) Venn diagram showing metabolites induced

under B. cinerea infected condition. (C) Filtering of mock- (blue circles) and
infection (yellow circles)-specific metabolites for each treatment. The

diagram separates direct (mock-only) and priming (infection-only)

responses, prior to exclusive grouping in Figure 4.

SUPPLEMENTARY FIGURE 4

Metabolite reprogramming in Soraya in response to elicitors. (A) Venn

diagram showing metabolites induced under mock condition by BABA,
RBH, and JA in Soraya. (B) Venn diagram showing metabolites induced

under B. cinerea infected condition. (C) Filtering of mock- (blue circles) and

infection (yellow circles)-specific metabolites for each treatment. The
diagram separates direct (mock-only) and priming (infection-only)

responses, prior to exclusive grouping in Figure 5.
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