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Editorial on the Research Topic

Plant biology for indoor vertical farming: a multi-discipline approach to
controlled environment agriculture

One of the most significant challenges of the 21st century is feeding a growing
population while minimizing environmental impact amid climate change, water and
nutrient scarcity, extreme weather, and biodiversity loss. By 2050, the global population
is projected to reach 9-10 billion, 60% of whom will live in regions characterized by limited
agricultural output and increased vulnerability to food insecurity as a result of climate
stressors (see Tchonkouang et al., 2024, and Marzi et al.,, 2021, for a review). Meeting the
FAQ’s projected 70% increase in food production by 2050 (FAO, 2009) will require
innovative production systems that go beyond conventional agriculture (Van Dijk et al,
2021). One of these alternative approaches is vertical farming, which can produce food
independently of weather or seasons. With its potential for high yields, space efficiency, and
resource optimization, vertical farming stands at the forefront of agricultural research and
innovation. However, realizing its full potential requires more than just stacking plants
indoors and relying on technology to address challenges. Balancing its inherent high energy
costs demands an integrated understanding of controlled environments, high-density
cropping systems, and plant physiological responses.

This Research Topic of Frontiers in Plant Science explores the multidisciplinary
approaches necessary to advance indoor vertical farming. It highlights the critical need
for integrating research across plant biology, cultivar selection, environmental science, and
technological innovations to optimize crop production in controlled, high-

density environments.
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Optimizing nutrient dynamics for
sustainable crop production in
controlled environments

Controlled environment agriculture (CEA), including vertical
farming, has transformed food production through hydroponic and
aeroponic systems that allow for precise control over nutrient
delivery. However, effective nutrient management remains a
critical factor for optimizing yield, maintaining crop quality, and
achieving environmental sustainability. While the role of
macronutrients such as nitrogen (N), phosphorus (P), and
potassium (K) is well-established, secondary nutrients such as
chloride and micronutrients also play essential roles in plant
physiology and crop performance.

Phosphorus, a crucial nutrient for plant growth, can become a
limiting factor in CEA systems due to its potential for leaching.
Westmoreland and Bugbee demonstrated that excessive
phosphorus application to Cannabis sativa did not improve yield
or quality but rather significantly increased nutrient runoff, thereby
raising environmental concerns. Similarly, He et al. investigated
nitrogen metabolism under varying light conditions, demonstrating
that increased light intensity enhances nitrogen assimilation but
also increases nitrate reductase activity and total nitrogen content.
Nitrate reductase is known to be a light-dependent enzyme (Deng
et al,, 1991; Lillo, 1994), and its positive response to increased light
intensity confirms its role in modulating nitrogen assimilation in
photosynthetic leaves. These findings underscore the necessity of
light-optimized fertigation strategies to maintain a balance between
photosynthetic efficiency and nutrient use efficiencies.

Microbial solutions offer promising approaches for nutrient
recovery and leachate utilization. Tan et al. explored the role of
Trichoderma harzianum in phosphorus and nitrogen uptake,
revealing that its efficacy is highly dependent on light conditions.
Under high-light conditions, Trichoderma enhances nutrient
uptake; however, under low-light conditions, it may shift toward
parasitism, competing with the plant for resources (discussed
further below). These findings highlight the need for strategic
integration of beneficial microbes within hydroponic nutrient
management systems to optimize nutrient cycling and
minimize inefficiencies.

Chloride, often viewed as a stress factor, is also critical for
photosynthesis, osmotic balance, and ion homeostasis (White and
Broadley, 2001; Raven, 2017, but see also Li et al., 2017). Fitzner et al.
investigated chloride accumulation in halophytes and found that
light regimes and salinity levels significantly influence chloride
uptake and stress responses. Their results suggest that improper
chloride management in hydroponic solutions can disrupt plant
water relations and nutrient balance in salt-sensitive crops. Given
the complexities of nutrient interactions in high-density CEA
systems, adaptive fertigation models that integrate real-time
nutrient monitoring (Lim et al., 2024, but see also Ahamed et al.,
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2025), advanced mass balance (Langenfeld et al., 2022), or microbial
cycling strategies are necessary for optimizing plant growth
and sustainability.

Harnessing light strategies to enhance
photosynthetic efficiency and crop
performance

Light management is a fundamental component of vertical
farming, influencing plant growth, development, and resource use
efficiency. The spectral composition, intensity, and duration of light
exposure regulate key physiological processes, including
photosynthesis, photomorphogenesis, and secondary metabolite
production (Kaiser et al., 2024). While red and blue light have
traditionally been optimized for plant growth, recent studies
emphasize the roles of far-red light (Demotes-Mainard et al., 2016;
Zhen et al,, 2022; Kelly and Runkle, 2024; Shomali et al., 2025), green
wavelengths (Smith et al., 2017; Liu and Van Iersel, 2021; Chen et al,
2024; Paradiso et al., 2025), and upward lighting strategies (Zhang et al.,
2015; Yamori et al,, 2021) in modulating plant responses.

The spectral composition of light affects both photosynthetic
efficiency and plant morphology. Van de Velde et al. demonstrated
that far-red supplementation enhanced the light-use efficiency in
butterhead lettuce by promoting leaf expansion and photon capture
rather than directly increasing photosynthesis. However, excessive
far-red exposure led to reduced chlorophyll content and increased
stress markers, indicating the need for precise control of spectral
tuning. Similarly, Saito and Goto investigated upward lighting
strategies, showing that redistributing light within dense canopies
improves net photosynthetic rates and carbon assimilation
efficiency. These findings highlight the potential of spectral and
spatial light optimization in mitigating shading effects in high-
density cultivation.

Light intensity and duration also impact nutrient assimilation
and overall crop productivity. He et al. examined the effects of
different light intensities and durations on Portulaca oleracea,
demonstrating that increased light exposure enhances nitrogen
metabolism, root and shoot biomass accumulation, and nitrate
reductase activity. However, continuous light exposure negatively
affected photosynthetic efficiency, emphasizing the need for
optimized photoperiod management. Fitzner et al. investigated
the effects of different spectra on halophytes and found that light
quality significantly influenced pigment accumulation, stress
tolerance, and overall metabolic stability under saline conditions.

These findings underscore the necessity of dynamic, responsive
lighting systems in vertical farming, as highlighted by Abedi et al.
and Kaiser et al. (2024). Precision spectral tuning, optimized light
distribution, and adaptive photoperiod management can enhance
resource-use efficiency, improve crop quality, and maximize
productivity while minimizing energy expenditure.
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Leveraging plant-microbe interactions
to enhance crop performance in
controlled environments

Integrating plant-microbe interactions in CEA presents a
promising opportunity for improving nutrient efficiency,
enhancing stress resilience, and optimizing plant health. Beneficial
microbial inoculants, including fungi and bacteria, can promote
plant growth through nutrient solubilization (Shahwar et al., 2023),
root architecture modification (Galindo-Castaneda et al., 2022), and
systemic resistance induction (Elnahal et al., 2022). However, the
success of microbial applications depends on environmental
conditions such as light intensity, nutrient availability, and plant
species specificity.

Tan et al. examined Trichoderma harzianum in Nicotiana
benthamiana under different light conditions, revealing that
microbial symbiosis is a dynamic process influenced by
environmental cues. Under high-light conditions, Trichoderma
enhanced plant growth and nutrient uptake; however, under low-
light conditions, Trichoderma became parasitic, hindering plant
growth and phosphorus assimilation. These findings emphasize the
importance of maintaining optimal lighting conditions to foster
mutualistic relationships between plants and microbes.

Microbial interactions also play a key role in nutrient cycling
and leachate management in hydroponic systems. Trichoderma has
been shown to improve phosphorus solubilization, which aligns
with the findings by Westmoreland and Bugbee on phosphorus
leaching in Cannabis sativa (see also Hershkowitz et al.,, 2025).
Leveraging microbial solutions for phosphorus recycling could
enhance the sustainability of closed-loop hydroponic systems.

Future directions: innovation and
sustainability in controlled
environment agriculture

The future of vertical farming lies in the continued refinement
of multidisciplinary approaches that integrate plant biology,
lighting optimization, nutrient recycling, microbial interactions,
and automated environmental control. While current
advancements have demonstrated the feasibility of high-efficiency
indoor agriculture, several challenges remain in achieving
widespread scalability and sustainability. The integration of
artificial intelligence and machine learning for real-time climate
control, precision fertigation, and automated plant phenotyping
represents one of the most promising directions for improving
system efficiency and reducing resource waste. Data-driven models
combined with process-based models, as described by Abedi et al,,
that predict plant growth responses to dynamic environmental
variables could enable farms to fine-tune lighting, nutrient
delivery, and CO, supplementation in ways that maximize yield
while minimizing energy consumption.
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One area of interest for future research is the in-depth
exploration of plant-microbe interactions in controlled
environments and hydroponic cultivation. While studies have
shown that beneficial microbes, such as Trichoderma harzianum,
can enhance nutrient uptake and stress resilience, their efficacy is
often contingent upon environmental conditions. In some cases — as
described by Tan et al. - the mutualism can become parasitism. A
more detailed understanding of the response of these interactions to
varying light spectra, humidity, and nutrient availability will be
essential to optimizing microbial applications for vertical farming.

Additionally, environmental sustainability will be a key driver
in the future of controlled environment agriculture. Future research
should focus on drastic improvements in energy (light) use
efficiency. Furthermore, integrating renewable energy sources
such as solar or geothermal power into vertical farming
operations could help mitigate the high energy costs associated
with artificial lighting and climate control (Kaiser et al., 2024).
Closed-loop water and nutrient recycling systems will also play a
crucial role in minimizing waste and improving overall efficiency.
Advances in real-time sensor technology will allow for precise
monitoring of plant physiological responses, enabling a level of
control that enhances productivity while reducing
environmental impact.

Conclusion

This Research Topic of Frontiers in Plant Science showcases
cutting-edge research that advances our understanding of plant
biology in indoor vertical farming systems. It highlights that vertical
farming research is not limited to plants grown in vertical farms but
extends to the knowledge gained from plants cultivated under
artificial conditions. Furthermore, it underscores the inherent
complexity of integrating and interpreting multiple parameters—
including light, nutrients, biophysics, and microbiome interactions.
This complexity makes vertical farming challenging to operate but
presents an unprecedented opportunity to optimize our food system
by maximizing resource efficiency and crop productivity.

By integrating multidisciplinary research, vertical farming can
evolve into a truly sustainable, high-efficiency food production
system. Advancements in nutrient optimization, light
management, and plant-microbe interactions provide a
foundation for future innovations. The incorporation of real-time
monitoring technologies, precision fertigation, and adaptive climate
control will be essential to driving the next generation of controlled
environment agriculture and ensuring food security in a changing
global landscape.
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