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The immune receptor XA21
causes semi-male sterility
and grain loss in rice
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Yatendra Singh2, Jian-Liang Li3, Shamsunnaher1, Gao-Lu Ding1,
Sixue Chen2 and Wen-Yuan Song1*

1Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of
Florida, Gainesville, FL, United States, 2Department of Biology, University of Mississippi, Oxford,
MS, United States, 3Integrative Bioinformatics, National Institute of Environmental Health Sciences,
National Institutes of Health, Research Triangle Park, Durham, NC, United States
As part of an armory against pathogens, plants carry resistance (R) genes despite

the fitness costs they can incur. While these detrimental effects have been

associated with the presence and interactions of numerous R genes in various

plant species, molecular models do not exist for the mechanisms underlying R

gene-mediated fitness costs. The rice R gene Xa21, encoding a cell-surface

immune receptor, specifies robust resistance to Xanthomonas oryzae pv. oryzae.

Here, we demonstrate that Xa21 expression causes drastic fertility defects,

including reduced pollen viability, impaired anther dehiscence, and severe

grain loss, at a low temperature (24°C) and in a dose-dependent manner.

Under such growth conditions, Xa21 plants displayed abundant accumulation

of reactive oxygen species in their anthers and decreased expression of genes

related to jasmonate biosynthesis, signaling, and response in their spikelets

during anthesis. Consequently, jasmonate contents in XA21 spikelets were

lower than those in the control. The exogenous application of methyl

jasmonate largely rescued the anther dehiscence of Xa21 plants. Given the key

roles of lipid-derived jasmonates in stamen development and maturation in

plants, our findings link R gene expression, jasmonic acid (JA) signaling, and

fertility defects; identify temperature as an environmental factor influencing the

range of R gene functions; and explain the abundant accumulation of 17

transposable-like elements previously observed in the Xa21 locus.
KEYWORDS

fertility defect, anther dehiscence, jasmonate signaling, disease resistance, innate
immune receptor, Oryza sativa
Introduction

Extensive research over the past three decades has led to the molecular characterization

of diverse plant species of more than 300 disease resistance (R) genes that confer resistance

to a variety of pathogens (Kourelis and van der Hoorn, 2018). Major families of

characterized R genes include those encoding intracellular receptors containing
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nucleotide-binding and leucine-rich repeat (NLR) domains (Jones

et al., 2016, 2024), cell-surface receptor-like proteins (RLPs), and

receptor-like kinases (RLKs) (Thomas et al., 1998; Sun et al., 2004;

Chen et al., 2006; Hu et al., 2017; Ercoli et al., 2022; Jones et al.,

2024). Many R loci were identified in wild relatives during the

breeding of disease-resistant crops (Jones et al., 2024). Often, R loci

contain small gene families with alleles present in disease-

susceptible individuals (Song et al., 1997; Parniske et al., 1997;

Deng et al., 2017). In natural populations, both resistant and

susceptible alleles may have coexisted for millions of years.

R genes are beneficial to host survival only when pathogen

invasion occurs, while accumulating evidence shows that the

presence of R genes can impose negative impacts on plant growth

and reproduction in the absence of obvious infection (Kruger et al.,

2002; Karasov et al., 2017; Calvo-Baltanas et al., 2020; Gao et al.,

2024). This phenomenon is known as the fitness cost of resistance,

which forms an important component of a more prevalent

observation called growth-defense trade-offs (Huot et al., 2014;

He et al., 2022). Pioneered by Vanderplank’s studies in the 1960s,

fitness costs were first used to explain the lack of more durable

partial resistance in potato varieties to late blight (caused by

Phytophthora infestans) (Vanderplank, 1963; Brown and Rant,

2013). The barley recessive gene mlo confers strong, durable

resistance to powdery mildew (Büschges et al., 1997) and has

been widely deployed through plant breeding in Europe and

other areas, but mlo resistance incurs a 5%–15% grain loss, causes

necrotic leaf spotting, and increases susceptibility to other diseases

(Jørgensen, 1992; Brown and Rant, 2013). Likewise, transgenic

Arabidopsis plants harboring RPM1 or RPS5 (two NLR-type R

genes countering Pseudomonas bacteria) produce 5%–10% fewer

seeds than the susceptible controls in field trials (Tian et al., 2003;

Karasov et al., 2014). Such costs of resistance have likely prevented

fixation of R alleles within populations. Similarly, yield reduction

has been observed in rice cultivars carrying either the NLR gene

Pi-ta (a yield penalty of 12%) or the pyramided NLR genes Pib, Pi25,

and Pi54, which specify resistance against rice blast disease caused

by the fungal pathogen Magnaporthe oryzae (Jia et al., 2004; Dean

et al., 2012; Wang et al., 2015; Ning et al., 2017; Peng et al., 2021;

Tan et al., 2023). A large-scale genome-wide association study of

1,495 hybrid and parental rice lines revealed a correlation between

high yields and alleles responsible for susceptibility to blight and

blast diseases, reflecting a trade-off between yield performance and

disease resistance to both bacteria and fungi in this agronomically

important crop (Huang et al., 2015). Despite the broad importance

of disease resistance in both evolution and agriculture, little is

known about the underlying physiological and molecular

mechanisms behind R gene-mediated fitness costs, particularly

those leading to defective seed development.

Anther dehiscence is the last stage of stamen maturation in

flowering plants and enables the release of mature pollen grains

from the opened anther. This key step in pollination influences

subsequent seed set (Wilson et al., 2011). Jasmonic acid (JA) and its

derivatives (collectively called jasmonates) are required for stamen

maturation and reproductive development, although JA signaling

generally plays a negative role in vegetative growth and acts
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antagonistically with growth-promoting hormones to modulate

growth-defense conflicts in plants (Wilson et al., 2011; Yang

et al., 2012; Huot et al., 2014; He et al., 2022; Dhakarey et al.,

2016; Acosta and Przybyl, 2019). Mutation of genes involved in JA

biosynthesis and perception in Arabidopsis and rice often leads to

male sterility, with deficiencies in pollen viability and anther

dehiscence (McConn and Browse, 1996; Xie et al., 1998; Sanders

et al., 2000; Stintzi and Browse, 2000; Ishiguro et al., 2001; Park

et al., 2002; Riemann et al., 2003; Schilmiller et al., 2007; Nguyen

et al., 2023). Although the pathways for JA biosynthesis and

signaling have largely been elucidated in model species, our

understanding of the regulatory networks controlling JA content

and JA response in stamen is far from complete.

The rice Xa21 gene confers resistance to the Gram-negative

bacterium Xanthomonas oryzae pv. oryzae (Xoo) that causes

bacterial leaf blight disease (Khush et al., 1990; Song et al., 1995).

Xa21 was originally isolated from a Mali accession of the African

wild rice species longistaminata, which differs from many rice

varieties in that it is perennial, its flowers are partially self-

incompatible, and it can propagate asexually through its rhizomes

(Khush et al., 1990; Tong et al., 2023). Xa21 encodes an RLK protein

(XA21) that is mainly localized on the plasma membrane and the

endoplasmic reticulum of rice cells (Park et al., 2010a; Chen et al.,

2010). XA21 binds to the sulfated Xoo peptide RaxX (RaxX-sY,

required for activation of XA21-mediated immunity X, tyrosine-

sulfated) that is homologous to phytohormones in the plant

Peptide-containing Sulfated tYrosine (PSY) family, with eight

members (OsPSY1–8) in rice (Pruitt et al., 2015, 2017; Luu et al.,

2019). The activation of XA21 by RaxX-sY triggers various defense

responses, including the production of reactive oxygen species

(ROS) (Pruitt et al., 2015; Chen et al., 2021).

Rice is a tropical/subtropical crop that produces grains normally

between 22 °C and 28 °C (Su et al., 2023). XA21-mediated resistance

is dose-dependent (Zhang et al., 2024) and can be primed using a

low-temperature treatment of 23 °C to 27°C (Chen et al., 2019).

Under low-temperature conditions, the steady-state level of the

XA21 protein is not significantly affected. We have recently

reported that the XA21 protein can be cleaved by a spikelet-

expressed rhomboid protease, OsRBL3b (Vergish et al., 2025).

The elevated accumulation of XA21 caused by OsRBL3b

mutations coincides with male sterility and yield reduction. In

this article, we demonstrate that Xa21 in the wild-type OsRBL3b

background impairs anther dehiscence, decreases pollen viability,

and reduces grain set at a lower temperature. Moreover, our data

reveal a function of the immune receptor in negatively regulating JA

levels and JA response and in positively modulating ROS

production in reproductive tissues of rice.
Materials and methods

Plant materials and growth conditions

Transgenic lines used in this study were in either theOryza sativa

L. ssp. japonica cv. Taipei 309 (TP309) or cv. Kitaake (Kitaake)
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background. Seed germination on half-strength Murashige and

Skoog medium supplemented with 30 g/L sucrose and 50 mg/mL

hygromycin and growth in a greenhouse in the subtropical climate of

Gainesville, FL, USA (29°39′55″N, 82°20′10″W) were described

previously (Shamsunnaher et al., 2020).
Plasmid construction and rice
transformation

A 2,204-bp promoter fragment of the Xa21 gene was PCR-

amplified with the Xa21Pro-1/Xa21Pro-2 primers and cloned into

the binary vector pCmH-GUS using HindIII–BamHI. The resulting

construct (Xa21pro:GUS) was transformed into rice cultivar TP309

using Agrobacterium-mediated transformation according to the

procedure described previously (Vergish et al., 2025).
Plant fertility, pollen viability, and anther
dehiscence assays

Plants were first grown to the early booting stage and then

moved to a temperature-controlled growth chamber [under LED

light (200 mmol m−2 s−1) with a 13-h light (24°C)/11-h dark (21°C)

photoperiod and 70% relative humidity] without pre-

acclimation treatment.

Plant fertility was measured based on the number of filled and

empty grains within the two uppermost panicles from at least five

plants per line. To determine pollen viability, approximately 10

anthers from five plants per line were randomly harvested and

squashed in a centrifuge tube. Five replicates per line were prepared.

After staining with 1% (w/v) iodine–potassium iodide (I2
−KI), the

released pollen grains were visualized using a BX43 LED

Fluorescence microscope (Olympus, Breinigsville, PA, USA). To

determine anther dehiscence/indehiscence, at least 100 spikelets per

line were harvested 2 hours after anthesis (HAA) from five plants.

The dissected spikelets were stained with I2
−KI solution and

visualized using the Olympus microscope to determine the

number of pollen grains on the stigmas. Anther indehiscence of a

spikelet was scored when I2
−KI-stained pollen grains were found

inside the anthers but not on the stigmas. Cross-sectioning of

anthers was performed after paraffin embedding. Briefly, collected

anthers were fixed in Dietrich’s Formalin Acetic Acid for 16 hours

at room temperature. Samples were processed using a Leica tissue

processor. After embedding in paraffin, samples were sectioned to

10 mm using a Rotary Microtome (HM 355 S) and visualized using

the Olympus microscope as above.
RNA-seq analysis

Twenty rice spikelets were harvested at anthesis from five plants

per line and pooled to minimize individual variations. Three

biological replicates were prepared. Total RNA was extracted

using TRIzol reagent (Ambion, Austin, TX, USA) according to
Frontiers in Plant Science 03
the manufacturer’s instructions. The RNA integrity (RIN) of each

sample was assessed to ensure RIN values greater than eight. To

enrich mRNA, poly(A) selection was performed using the KAPA

mRNA HyperPrep kit (Roche, Indianapolis, IN, USA). The purified

RNA was then used for RNA-seq library construction and paired-

end (2 × 151 base read length) sequencing using the NovaSeq 6000

platform (Illumina, San Diego, CA, USA) at the Comprehensive

Cancer Center (Monrovia, CA, USA). Approximately 60 million

paired reads were generated per sample. Following trimming for

adapters using the TrimGalore program (version 0.6.10), the

cleaned reads were aligned to the O. sativa ‘Nipponbare’ reference

genome (Kawahara et al., 2013) using HISAT2 (version v2.2.1)

(Kim et al., 2015). Ambiguous reads that mapped to more than one

region in the genome or those with a MAPQ score below 10 were

removed using the SAMtools software (Genome Research Limited).

Transcript quantification was performed using the Partek

Genomics Suite (version 7.18) to obtain raw read counts and

normalized read counts [reads per kilobase per million mapped

reads (RPKM)] (Mortazavi et al., 2008). Differential gene expression

was determined using generalized linear model approaches

implemented in the Bioconductor package edgeR (McCarthy

et al., 2012). The differentially expressed genes (DEGs) were

assessed for significance based on the following criteria: absolute

fold change of over 2 and false discovery rate (FDR) q-value below

0.05. Genes with a fold change greater than or equal to 2 were

considered upregulated, whereas those with a fold change less than

or equal to 2 were considered downregulated.
RT-qPCR analysis

Total RNA was extracted using TRIzol reagent (Ambion)

followed by purification using an RNAeasy MiniElute Cleanup

Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s

instructions. Single-stranded cDNA was synthesized with 2 mg total
RNA using a QuantiTect Reverse Transcription Kit (Qiagen). qPCR

was carried out using a LightCycler 480 System (Roche) according

to the manufacturer’s instructions under the following conditions:

95°C, 2 min; 45 cycles of 95°C, 5 sec and 60°C, 20 sec, and 72°C,

5 min. The gene expression levels were calculated by the DDCt
method using the geometric mean of riceUBIQUITIN 5 and ACTIN

expression levels to normalize the data (Jain et al., 2018). Primers

used for q-PCR are listed in Supplementary Table 1.
LC–tandem mass spectrometry
quantification of jasmonates

For JA quantification, spikelets that just opened were collected

(stage 14 of anther development). Twenty spikelets (~160 mg, fresh

weight) from five plants per line were transferred to a 2-mL screw

cap tube (Cole-Parmer, Vernon Hills, IL, USA) and immediately

frozen in liquid nitrogen. Four biological replicates/samples per line

were performed. For each sample tube, a 6-mm stainless steel

grinding ball (Cole-Parmer) was added. The sample was
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homogenized in a Spex® HG-400 MiniG® Homogenizer (Cole-

Parmer) at 1,000 rpm for 5 min, with 1-min intervals. During

grinding, liquid nitrogen was added to the sample trays to

maintain the low temperature. After homogenization, internal

standards (10 mL of 100 mM lidocaine and 10 mL of 100 mM
10-camphorsulfonic acid) were added to each sample.

A serial extraction was performed with three pre-cooled

solvents: extraction solvent I (acetonitrile:isopropanol:water,

3:3:2), extraction solvent II (acetonitrile:water, 1:1), and extraction

solvent III (80% methanol). For each solvent, 800 mL was added,

followed by 10 min of mixing by vortex and sonication in ice water

for 6 min in 2-min intervals. After each extraction, samples were

centrifuged at 15,000 × g for 10 min at 4°C, and the supernatants

were collected. The three extracts were combined, lyophilized to

dryness, and stored at −20 °C until further analysis. For liquid

chromatography–tandemmass spectrometer (LC-MS/MS) analysis,

100 mL of 0.1% formic acid in water was added to each dried extract,

followed by solubilization and centrifugation (15,000 × g, 4 °C,

10 min). The supernatants were lyophilized again and reconstituted

in 25 mL of 0.1% formic acid in water. A final centrifugation step

was performed under the same conditions, and the supernatants

were transferred to LC–MS vials for analysis. The internal standards

and authentic standards of JA and JA-isoleucine (JA-Ile) were

purchased from Sigma (St. Louis, MO, USA).

Quantification analysis was performed using a microflow

UPLC-ZenoTOF 7600 mass spectrometer (MS) (SCIEX, Toronto,

ON, Canada), equipped with an OptiFlow™ Turbo V ion source.

Chromatographic separation was achieved on a nanoEase™ M/Z

Symmetry® C18 column (5 mm, 300 mm i.d. × 50 mm, 100 Å) at a

flow rate of 7 mL/min. The column chamber was maintained at

40°C, and the autosampler was maintained at 6°C. The injection

volume for all the samples was 1 mL. The total run time was 10 min.

The LC gradient consisted of mobile phase A (water with 0.1%

formic acid) and mobile phase B (acetonitrile with 0.1% formic

acid) and started at 90% A (0.0–0.5 min), decreased to 10% A (by

5 min), and, following a hold for 2 min, returned to 90% A (by

10 min). The eluent was introduced into the MS using the OptiFlow

Turbo V source with a microflow probe under electrospray

ionization (ESI) in positive mode. ESI source parameters were as

follows: curtain gas, 35 psi; Collisionally Activated Dissociation

(CAD) gas, 7 psi; GS1, 30 psi; GS2, 35 psi; and source temperature,

200°C. The MS/MS spectra for JA and JA-Ile were acquired using

the function of multiple reaction monitoring high resolution

(MRMhr) by including the [M + H]+ precursor ion. The

precursor of JA at m/z 211.13 [M + H]+ yields product ions m/z

133.10 (quantifier) and 69.07 (qualifier) at a collision energy of 20

eV. The precursor of JA-Ile at m/z 324.21 [M + H]+ yields product

ions m/z 151.11 (quantifier) and 86.09 (qualifier) at a collision

energy of 20 eV. The declustering potential was set at 40 V, and the

accumulation time was 0.05 ms for all MRMhr transitions. A five-

point calibration curve (2.56, 12.8, 64, 320, and 1,600 pg/mL) was
used for quantification. Data acquisition and processing were

performed using the SciexOS 3.1 software (SCIEX, 2015).
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Dehiscence restoration by exogenous
MeJA

To determine whether the dehiscence could be rescued, Myc-

Xa21L and Myc-Xa21H plants were treated with exogenous methyl

jasmonate (MeJA). Two panicles per plant (five plants of each line)

were sprayed with either MeJA solution [200 mMMeJA (PhytoTech

Labs, Lenexa, KS, USA) and 0.1% Tween] or mock solution (0.1%

Tween) in the morning. At least 100 spikelets were harvested 2

HAA and dissected to determine anther dehiscence/indehiscence as

described above.
Histochemical GUS staining

GUS staining was carried out as described (Anbu and Arul, 2013).

Freshly collected spikelets were immersed in GUS staining solution

[100 mM sodium phosphate, pH 7.0, 10 mM EDTA, 0.1% (v/v) Triton

X-100, 1 mM potassium ferrocyanide, 1 mM potassium ferricyanide,

20% (v/v) methanol, 2 mM X-Gluc], vacuum-infiltrated for 10 min,

and incubated overnight at 37 °C. The stained samples were incubated

in 100% (v/v) ethanol for 10 hours to remove chlorophyll.
ROS assays

Staining with 3,3′-diaminobenzidine (DAB) was performed as

described (Li et al., 2023). Freshly collected spikelets were immersed

in DAB solution (1 mg/mL, pH 3.8) overnight and then boiled in

ethanol for 10 min, followed by several washes in ethanol. Seven

DAB-stained anthers per line were used. Approximate borders of

DAB-stained areas in each anther were traced. The corresponding

areas were measured in pixels using the image processing software

Fiji/ImageJ (ImageJ, RRID: SCR_003070). Relative DAB-stained

areas were calculated by dividing the number of DAB-stained

pixels by the total number of anther pixels.
Results

XA21 drastically reduces grain set in a
dose-dependent manner at a lower
ambient temperature (24°C)

Since lower temperatures prime XA21 resistance to Xoo (Chen

et al., 2019), we reasoned that low temperature may be sufficient to

induce the XA21-dependent fertility defects even in the presence of

the functional OsRBL3b. To test this hypothesis, we used two

previously characterized transgenic lines (Myc-Xa21L and Myc-

Xa21H in the background of TP309) carrying the same construct

encoding an N-terminal c-Myc-tagged XA21 (Myc-XA21)

expressed from its native promoter (Xu et al., 2006; Wang et al.,

2006; Chen et al., 2019; Vergish et al., 2025). The Myc-XA21 protein
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accumulated to a higher level in line Myc-Xa21H than in line Myc-

Xa21L in spikelets at 28°C (Vergish et al., 2025). We normally grow

these plants in our outdoor greenhouse in Florida during the

summer, with daytime temperatures ranging from 30 °C to 43°C.

When grown at a lower temperature in a growth chamber

[under LED light (200 mmol m−2 s−1) with a 13-h light (24°C)/11-h

dark (21°C) photoperiod under 70% relative humidity, a growth

condition labeled 24°C], these plants displayed drastically reduced
Frontiers in Plant Science 05
grain set (Figure 1A) in the absence of the bacterial pathogen Xoo

(Xoo is a quarantine pathogen in the USA). The average rates of

grain set for the Myc-Xa21L and Myc-Xa21H plants were 30.52%

and 2.71%, respectively, compared to 79.53% for the empty vector

control line A36 (Figure 1B). These rates in Xa21 plants were

inversely correlated to the transcript levels of the Xa21 gene in the

spikelets at anthesis from plants grown at 24°C (Figure 1C). Apart

from the fertility defect, Xa21 plants appeared normal (Figure 1D).
FIGURE 1

Xa21 decreases grain set in rice at 24°C. (A) Panicle phenotypes of the rice lines A36 (empty vector control), Myc-Xa21L, and Myc-Xa21H. (B) Grain-
setting rates of plants in (A) Values are shown as the mean ± SD from five independent plants with two panicles each. Statistical analyses were
performed using Student’s t-test. Asterisks denote statistically significant differences (**p < 0.01). (C) Phenotypes of mature plants (top) and floral
structures (bottom) of the indicated lines in (A) Scale bars, 1 mm. The experiments were repeated twice with similar results. (D) Relative transcript
levels of the Xa21 gene in the spikelets of the indicated lines grown at 24°C at anthesis. Results were normalized relative to levels of the mRNAs
for UBIQUITIN 5 and ACTIN. Values are means ± SD of three biological replicates, each with three technical replicates. Statistical analyses were
performed using Student’s t-test. Asterisks denote statistically significant differences (**p < 0.01).
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When Myc-Xa21 plants were grown in the greenhouse during

the summer, no significant differences in grain set were observed

(Vergish et al., 2025). Similarly, a significant reduction in grain set

was also observed from the previously characterized transgenic line

20-1 (average rate of grain set: 62.70%), which expresses Myc-Xa21

under its native promoter (Park et al., 2010b), relative to the wild-

type control O. sativa ssp. japonica variety Kitaake (Kitaake, average

rate of grain set: 86.01%) when grown at 24°C (Supplementary

Figure S1). Compared to TP309, Kitaake is shorter in stature and

has a shorter life cycle of approximately 9 weeks (Kunihiro et al.,

1989; Kim et al., 2013). Together, these findings indicate that XA21

expression can induce a strong fertility defect in a dose- and

temperature-dependent manner.
XA21 plants display compromised pollen
viability and anther dehiscence at 24°C

Our recent study showed that osrbl3b Myc-Xa21 mutants

accumulate increased levels of the Myc-XA21 protein and exhibit

pollen and dehiscence defects (Vergish et al., 2025). We examined

whether XA21 expression affects pollen viability and anther

dehiscence at 24°C. The Myc-Xa21 plants produced lower levels

of viable pollen grains than the control (A36), as evidenced by

starch staining with iodine–potassium iodide (I2
−KI) solution

(Figures 2A, B).

To assess anther dehiscence, we first examined the presence of

pollen grains (stained with I2
−KI) in the anthers of Myc-Xa21 and

A36 plants before anthesis and 2 HAA. To confirm anther

dehiscence, we further examined the presence of pollen grains on

the stigmas and the breakage of anther walls 2 HAA. Among more

than 100 randomly chosen spikelets, most anthers opened in A36

spikelets, and indehiscent ones were rare (Figures 2C, D). In

contrast, 30%–69% of spikelets from the Myc-Xa21L and Myc-

Xa21H lines were indehiscent 2 HAA. These data demonstrate

that Myc-Xa21 plants have a defect in anther dehiscence, which

can partially explain the reduced grain set.
XA21 downregulates the expression of a
subset of JA-related genes at 24°C

The sterile osrbl3b-b Myc-Xa21H mutant at higher temperatures

shows the downregulation of JA-responsive and JA-signaling genes

relative to the fertile line Myc-Xa21H, although no obvious

enrichment of transcripts related to JA biosynthesis or transport

is evident in the mutant (Vergish et al., 2025). To understand the

mechanisms underlying the XA21-mediated fertility defects, we

sequenced the transcripts in spikelets at anthesis from the

temperature-sensitive Myc-Xa21H and the fertile A36 lines grown

at 24°C. We identified a total of 4,792 DEGs between these two lines

using an FDR value of <0.05 and log2FC cut-off criteria of >1 and

<−1. The downregulated genes included 11 JA-responsive and JA-

signaling genes in Myc-Xa21H, which encode nine JAZ

transcriptional repressors (Chini et al., 2007; Thines et al., 2007;
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Ye et al., 2009) and the transcription factors OsbHLH148 (Seo et al.,

2011) and OsWRKY71 (Liu et al., 2007) (Figure 3A). Among the 15

JAZ genes identified in the rice genome (Ye et al., 2009), only

OsJAZ15 was upregulated in Myc-Xa21H spikelets.

Interestingly, among the 70 genes related to JA biosynthesis and

transport in the rice genome (Marla and Singh, 2012; Matsuda et al.,

2012; Singh et al., 2012; Fukumoto et al., 2013; Riemann et al., 2013;

Huang et al., 2014; Qi et al., 2016; Liu et al., 2017; Deepika and

Singh, 2021), 20 were significantly downregulated (only two were

upregulated) in the spikelets of Myc-Xa21H compared to those of

the control (A36) (Figure 3B). The downregulated genes included

the key JA biosynthetic genes OsAOC1, OsAOS1, and OsOPR7

(Riemann et al., 2003, 2013; Hibara et al., 2016; Pak et al., 2021;

Fan et al., 2023; Wang et al., 2024). The downregulation of six of the

above genes was verified using qRT-PCR analysis (Figure 3C).

Therefore, the XA21-mediated downregulation of JA-responsive

genes may occur through the reduction of JA levels.

To test this, the abundance of JA and JA-Ile (the most bioactive

form of jasmonates) was quantified in the spikelets of Myc-Xa21H

and A36 plants grown at 24°C at anthesis using LC–MS/MS

analysis. JA and JA-Ile were identified in all the samples using

MS/MS spectral matching between authentic standards and

metabolites from the samples (Supplementary Figure S2). This is

level 1 structural identification, the most confident level based on

the well-accepted Metabolomics Standards Initiative (Sumner et al.,

2007). Based on the MS/MS fragmentation pattern of JA and JA-Ile,

specific multiple reaction monitoring (MRM) transitions were

selected for targeted metabolite quantification and validation.

Relative peak areas were normalized using lidocaine as the

internal standard, and then spikelet fresh weight was taken into

account for quantitative analysis. As shown in Figure 3D, JA levels

were significantly lower in Myc-Xa21H than in A36 spikelets, and

JA-Ile was also significantly decreased in Myc-Xa21H relative to

A36 spikelets.

To further test the above hypothesis, we sprayed the mature

panicles of Myc-Xa21L and Myc-Xa21H plants with either 200 mM
MeJA or a mock control. The dehiscence of male-sterile JA-related

mutants can be restored by treatment with exogenous MeJA

(Ishiguro et al., 2001; Song et al., 2018). Indeed, JA treatment

largely restored the anther dehiscence of Myc-Xa21 plants at 24°C

(Figure 3E). Together, these findings support that the compromised

anther dehiscence inMyc-Xa21 plants may be due to a deficiency in

JA levels within rice spikelets.
Xa21 is preferentially expressed in the
anther filaments, veins, and rachillae of rice
spikelets

To determine the expression sites of Xa21 in spikelets,

transgenic rice lines expressing the uidA (GUS reporter) gene

were generated under the control of the Xa21 promoter. This

2.0-kb promoter sequence is sufficient for directing Xa21

functions (Song et al., 1995; Vergish et al., 2025). GUS assays

detected strong activities in the anther filaments, the veins of the
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FIGURE 2

Xa21 impairs pollen viability and anther dehiscence at 24°C. (A, B) Myc-Xa21 plants exhibit reduced starch accumulation in their pollen grains.
I2
−KI-stained pollen grains from the indicated lines (A). Scale bars, 100 mM. Pollen viability was determined based on the number of stained pollen

grains (dark color in A) relative to the total pollen counted (B). Values are means ± SD, n = 5 (five independent samplings). Statistical analysis was
performed using Student’s t-test. Asterisks indicate statistically significant differences (**p < 0.01). This experiment was repeated two times with
similar results. (C) Pollen grains on the stigmas of the indicated lines after anthesis. The graph shows the distribution of dehiscent and indehiscent
spikelets among 100 random flower samples chosen from five individual plants of each indicated line. (D) Presence or absence of pollen grains on
the stigmas of the indicated lines after anthesis. (Top 2 rows) I2

−KI staining of pollen grains in anthers of the indicated lines before and after anthesis.
Scale bars, 500 mM. (Third row) Pollen grains on the stigmas of the indicated lines after anthesis. Scale bars, 200 mM. (Bottom row) Cross-sections of
anthers from the indicated lines after anthesis. Scale bars, 100 mM.
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FIGURE 3

Downregulation of jasmonic acid (JA)-related genes in the indehiscent Myc-Xa21H spikelets relative to the dehiscent A36 spikelets at anthesis at
24°C. (A) RNA-seq volcano plot showing differentially expressed JA-responsive and JA-signaling genes. The genes highlighted in purple are also
downregulated in the spikelets of osrblb-b Myc-Xa21H mutant during anthesis (Vergish et al., 2025). (B) RNA-seq volcano plot showing differentially
expressed JA biosynthesis and transport genes. Downregulated genes in (B) are OsPLA1a1, OsPLA1a3, OsPLA1b1, OsPLA1b2, OsLOX5, OsLOX6,
OsLOX9, OsLOX11, OsLOX12, OsLOXL-2, OsAOS1, OsAOS2, OsAOS3, OsAOC1, OsOPR1, OsOPR7, OsJMT1, OsABCG1, OsABCG22, and OsABCG23.
(C) Relative transcript levels, quantified by RT-qPCR, of indicated JA-responsive and JA biosynthesis genes in (A, B) Results were normalized relative
to transcript levels of UBIQUITIN 5 and ACTIN. Values are means ± SD of three biological replicates, each with three technical replicates. Statistical
analyses were performed using Student’s t-test. Asterisks denote significant differences (**p < 0.01). (D) Relative abundances of JA and JA-Ile,
quantified by MS/MS, in the spikelets of the fertile A36 and the semi-sterile Myc-Xa21H. Values are means ± SD of four biological replicates. Statistical
analyses were performed using Student’s t-test. Asterisks denote significant differences (**p < 0.01; *p < 0.05). A36 is a transgenic empty vector
control. (E) Restoration of anther dehiscence of XA21 plants by exogenous JA treatment at 24°C. Mature panicles of indicated plants were sprayed
with either 200 mM MeJA or mock solution. The graph shows the distribution of dehiscent and indehiscent spikelets among 100 random flower
samples chosen from five plants of each indicated line at 2 hours after anthesis (HAA).
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palea/lemma, and the rachillae of the spikelets (Figure 4). Notably,

little GUS activity was observed in anthers.
ROS levels increase in the anther of Myc-
Xa21 lines at anthesis at 24°C

The treatment of rice leaves expressing XA21 with RaxX-sY

induces the robust production of ROS (Pruitt et al., 2015, 2017;

Chen et al., 2021). We examined ROS accumulation in the anthers

of XA21-expressing lines and their control (A36) using DAB

staining, an assay that mainly detects the accumulation of

hydrogen peroxide in tissues (Daudi and O'Brien, 2012). As

shown in Figure 5, increasing levels of oxidized DAB were visible

in theMyc-Xa21L andMyc-Xa21H anthers at anthesis in the absence

of Xoo. This finding indicates that ROS production is shared by the

RaxX-sY-triggered XA21 defense response in the leaf and the

XA21-dependent alterations in the anther.
Discussion

R genes with high fitness costs in host plants rarely propagate/

survive through evolutionary selection. However, increasing

evidence indicates that plants have developed sophisticated

mechanisms by which significant R genes are retained to fight

against pathogen invasion. For instance, the Cf-2 gene discovered in

the wild tomato species Lycopersicon pimpinellifolium specifies

resistance against the fungus Cladosporium fulvum (Dixon et al.,

1996). In plants lacking a functional Rcr3 gene (e.g., in the cultivated

tomato Lycopersicon esculentum), which encodes a papain-like

cysteine endoprotease, Cf-2 activates autonecrosis (Kruger et al.,

2002). The rice gene PigmR confers broad-spectrum resistance to

M. oryzae, but its expression also causes a decrease in grain weight
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by approximately 2% (Deng et al., 2017). This detrimental effect is

compensated for by PigmS, a gene located in the same locus (called

Pigm), which is capable of increasing grain set by approximately 5%.

Consequently, the Pigm locus with both PigmR and PigmS has been

used for rice breeding for more than five decades without an overall

yield penalty. We recently reported a rhomboid-controlled, post-

translational regulatory mechanism through which rice prevents the

over-accumulation of the R protein XA21, and potentially other

transmembrane domain proteins, in spikelets to avoid fertility

defects (Vergish et al., 2025).

We demonstrate here that XA21 decreases pollen viability and

anther dehiscence. This study reveals the potent effect of

temperature [24°C (daytime)] on the XA21 function. These

findings are in line with our recent observation that an optimal

daytime temperature (28 °C) facilitates the male sterility observed in

the osrbl3b Myc-Xa21L mutant lines with a mutant rhomboid

protease and an increased abundance of Myc-XA21 (Vergish

et al., 2025) and with the previous discovery that a 4 °C decrease

in temperature (from 31 °C to 27°C) fully activates the

developmentally regulated Xa21 resistance to the incompatible

Xoo strain PXO99A at the seedling stage (Chen et al., 2019). In

contrast, high temperatures (31°C or above) can suppress Xa21

functions (Chen et al., 2019; Vergish et al., 2025). As an

intermediate level of resistance was observed at 29°C, we

speculate that 24°C may not represent a “low temperature”

threshold for XA21-induced fertility defects. Since its cloning in

1995 (Song et al., 1995), Xa21 has been genetically engineered into

various rice cultivars for the assessment of resistance and

deleterious effects on plant growth, presumably under normal

growth conditions. No developmental defects were reported in

most of these studies (Li et al., 2001; Gao et al., 2013; Gayen

et al., 2016; Zhang et al., 2024). Therefore, high-temperature

tropical environments seem to mitigate the effects of XA21 on

rice fertility. Since environmental conditions can greatly influence
FIGURE 4

Histochemical analysis of GUS activity from Xa21pro:GUS reporter lines in spikelets. GUS activity was detectable in veins (V) of lemma and palea, in
rachillae (R), and in anther filament (F) in the Xa21pro:GUS lines. Scale bars, 1 mm (red), 100 mm (black). Similar results were obtained from two
independent (Xa21pro:GUS) lines.
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disease resistance in various plants (Cheng et al., 2019; Cohen and

Leach, 2020), it is tempting to speculate that more examples of the

costs associated with R genes may exist when plants are grown

under distinct environments.

XA21-mediated fertility defects are dose-dependent and

strongly modified by ambient temperature. Dependent on the low

temperature, the Myc-Xa21H line (with a higher level of the XA21

protein) exhibits more severe fertility-related phenotypes than the

Myc-Xa21L line. Independent of the temperature, the osrbl3b-b

Myc-Xa21H mutant, which has even more abundant XA21 than

Myc-Xa21H, is sterile (Vergish et al., 2025). These findings suggest a

potential threshold of XA21 abundance that induces fertility

defects. In an empirical field study, marked yield loss was

observed in an Xa21 transgenic line with high resistance (Hao

et al., 2009). Such yield reduction could be attributed to a potentially

very high level of Xa21 expression (Zhang et al., 2024), although it is

unclear whether temperature (e.g., growth seasons) may be another

factor in this study. Notably, the highly resistant Pi-d2 and Pi-d3

lines also displayed yield penalties (Hao et al., 2009). Pi-d2 and

Pi-d3 confer resistance to the fungusM. oryzae and encode an RLK

with an extracellular domain of a bulb-type mannose-specific
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binding lectin and an NLR protein, respectively (Chen et al.,

2006; Shang et al., 2009). Like Xa21, these genes, which encode

distinct protein structures, may invoke the costs of fitness in a dose-

dependent manner.

To our knowledge, this work is the first to reveal the

physiological and molecular mechanisms underlying R gene-

instigated detrimental effects on reproduction. While the observed

impairments to anther dehiscence and pollen viability can partially

explain the semi-sterility of Myc-Xa21 plants, the compromised JA

signaling (Figure 3) could provide, at least in part, a molecular basis

for Xa21-mediated male sterility (see Figure 6 for a model). Among

the 11 downregulated JA-responsive and JA-signaling genes in the

semi-sterile line Myc-Xa21H at 24°C, four genes were also

differentially regulated in the sterile line osrbl3b-b Myc-Xa21H

under greenhouse conditions during the summer (Figure 3;

Vergish et al., 2025), suggesting that altered JA signaling may

have a role in the fertility defects of both Myc-Xa21H and osrbl3b-

b Myc-Xa21H. Furthermore, the sharp enrichment of differentially

downregulated JA biosynthesis genes in Myc-Xa21H in this study

suggests that XA21 signaling mediates the downregulation of JA

responsiveness, which may lead to fertility defects (Figure 6). This
FIGURE 5

Reactive oxygen species (ROS) production in the anthers of Myc-Xa21 plants at 24°C. (A) 3,3′-Diaminobenzidine (DAB) staining for H2O2 in anthers
harvested at anthesis from A36 (empty vector control), Myc-Xa21L, and Myc-Xa21H plants grown. Samples were incubated with DAB solution
overnight at room temperature. Scale bars, 1 mm. The experiments were repeated twice with similar results. (B) Quantification of ROS in the DAB-
stained anthers of the indicated lines. Values are shown as the mean ± SD from seven anthers. Statistical analyses were performed using Student’s t-
test. Asterisks denote statistically significant differences (**p < 0.01).
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hypothesis is supported by our observations that JA and JA-Ile

contents were decreased in Myc-Xa21H spikelets during anthesis

relative to the control (A36) and that exogenous treatment with

MeJA was capable of restoring Myc-Xa21 anther dehiscence at

24°C. Further support of the hypothesis comes from the promoter

GUS reporter assay, in which the Xa21 promoter was found to be

active in the anther filaments, the veins of the palea/lemma, and the

rachillae of the spikelets (Figure 4). Consistently, the Arabidopsis

Defective in Anther Dehiscence (DAD1) gene, key to JA biosynthesis

and anther dehiscence, is exclusively expressed in anther filaments

before anthesis (Ishiguro et al., 2001). It has been hypothesized that

JA accumulation in anther filaments promotes water movement

from anther locules to the filaments. This dehydration of anther

locules facilitates the maturation of pollen grains and induces

anther dehiscence (Ishiguro et al., 2001; Acosta and Przybyl,

2019). In addition, transgenic rice lines ectopically expressing

Xa21 from the constitutive maize ubiquitin promoter show very

high levels of XA21 and resistance to Xoo in the leaf but normal

grain set (Park et al., 2010b), indicating the need for the native

promoter to condition Xa21 costs. A related finding is our discovery

that the exogenous application of JA compromises XA21-mediated

resistance to Xoo at the 2-week-old seedling stage (Chen et al.,

2025), suggesting that XA21 function and JA signaling interact

antagonistically in rice.

It may be worth noting that the signaling mechanisms in the

semi-sterile lineMyc-Xa21H at 24°C and the sterile mutant osrbl3b-b

Myc-Xa21H at high temperatures (greenhouse conditions) may differ
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from each other. UnlikeMyc-Xa21H, no significant enrichment of the

altered expression of JA biosynthesis genes was observed in the sterile

osrbl3b-b Myc-Xa21H spikelets compared to the fertile Myc-Xa21H

spikelets at anthesis at high temperatures (Vergish et al., 2025). In

contrast to the osrbl3b-b Myc-Xa21H mutant, the enrichment of the

upregulated expression of NLR genes is not significant inMyc-Xa21H

(Supplementary Figure S3; Vergish et al., 2025). These discrepancies

may be due to the potential cleavage of additional signaling regulators

by OsRBL3b (Vergish et al., 2025) and the suppression effects of

elevated temperatures on XA21 signaling (Chen et al., 2019), which

collectively lead to the activation of distinct signaling pathways in the

osrbl3b-b Myc-Xa21H mutants.

The increased accumulation of ROS in spikelets may also

contribute to Xa21-mediated male sterility. During anther

development, proper levels of ROS trigger tapetal degradation,

which provides nutrients for pollen (Zhang et al., 2021; Xie et al.,

2022). However, the abnormal accumulation of ROS can damage

tapetal function and pollen development, leading to male sterility.

XA21-mediated fertility defects may be caused by the activation of

the receptor by an endogenous signal in rice spikelets (Figure 6).

Previous studies have shown that neither low-temperature

treatment nor abundant XA21 produced from ectopic expression

by the strong maize ubiquitin promoter can activate the receptor, as

XA21 plants are susceptible to the compatible Xoo strains under the

above conditions (Park et al., 2010b; Chen et al., 2019; Zhang et al.,

2024). Given that ROS production in XA21 leaves is triggered by the

Xoo peptide RaxX-sY (Pruitt et al., 2015; Chen et al., 2021), our
FIGURE 6

Simplified models of XA21-mediated signaling in spikelets and leaves. In spikelets during anthesis at 24°C, XA21 signaling is activated by an
unidentified rice-derived signal (yellow triangle), leading to the production of reactive oxygen species (ROS) and to the suppression of jasmonic acid
(JA) biosynthesis from its precursor linolenic acid (LA), which in turn represses JA signaling. Deceased JA signaling compromises anther dehiscence,
ultimately resulting in reduced grain set. In leaves, XA21-mediated signaling is activated by the Xoo peptide RaxX-sY, which results in ROS
production and resistance to Xoo. As described recently (Vergish et al., 2025), the rhomboid protease OsRBL3b prevents the over-accumulation of
XA21 in rice spikelets.
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observation of XA21-dependent ROS accumulation in anthers at

24°C suggests that the receptor may be activated by an endogenous

signal, although the impact of abundant ROS on grain development

remains to the determined. Low temperature (24°C) treatment here

likely primes the activation of XA21 signaling, as suggested

previously (Chen et al., 2019). XA21 is among a set of immune

receptors that are present in both plants and animals (Ronald and

Beutler, 2010; Ercoli et al., 2022). Autoimmunity and autoimmune

diseases (e.g., type I diabetes) have emerged as a worldwide threat to

public health (e.g., estimated yearly increase in the prevalence of

human autoimmune diseases is 12.5%) (Miller, 2023). Current

views underscore the importance of environmental cues

(including temperature) and genetic risk factors for the rise of

autoimmune disorders; however, mechanistic insights remain

elusive (Miller, 2023). Further studies may lead to a deeper

understanding of autoimmunity and to the development of

strategies to control such disorders.

In the 1990s, we identified a total of 17 transposable-like

elements (TEs) in the Xa21 locus, which harbors at least six

Xa21-related family members originating from O. longistaminata,

with member D being 98% identical to Xa21 at the DNA level (Song

et al., 1997, 1998). Interestingly, D provides partial resistance to the

same spectrum of Xoo strains as Xa21 does, likely because it is

compromised by insertion of a retrotransposon (called Retrofit) into

its coding region (Wang et al., 1998). At the time, the selective

advantage of the accumulation and movement of these TEs was

unclear (Song et al., 1998). Our findings in this study suggest that

the TEs may represent a genomic tool by which rice controls the

deleterious function of Xa21 and possibly member D. This idea is in

line with the prevalent hypothesis, proposed by Barbara McClintock

and others, that TEs may facilitate genome responses to challenges

(McClintock, 1984; Wessler, 1996; Slotkin and Martienssen, 2007).
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SUPPLEMENTARY FIGURE 1

Xa21 decreases grain-set in Oryza sativa ssp. japonica variety Kitaake at 24 °C.
(A) Panicle phenotypes of the rice lines Kitaake (wild-type control) and 20-1

(also called 20-1-18–1 or 18–1 in the lab) that expresses Myc-Xa21 under its
native promoter. (B) Phenotypes of mature plants of the indicated lines in (A).
(C)Grain-setting rates of plants in (A). Values are shown as the mean ± SD from

5 independent plants with top two panicles each. Statistical analyses were
performed using Student’s t-test. Asterisks denote statistically significant

differences (**P < 0.01). (D) Dehusked grains harvested from the indicated
lines in (A) showing the difference in grain set between these two lines.
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SUPPLEMENTARY FIGURE 2

Mass spectrometry identification of jasmonic acid (JA) and JA-isoleucine (JA-
Ile). In each panel, the top MS/MS spectrum in blue represents the authentic

standard spectrum, and the bottom spectrum in purple is from the samples.

SUPPLEMENTARY FIGURE 3

RNA-seq volcano plot showing differentially expressed rice NLR genes. A
complete list of transcript IDs detected is shown previously (Vergish et al.,

2025). Cut-off criteria for data: log2[Myc-Xa21H/A36] ≥ 1 and ≤ -1 and FDR-q
value < 0.05.
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