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An improved YOLOv8-seg-based
method for key part
segmentation of tobacco plants
Yihao Liu1, Du Chen2, Yawei Zhang1 and Xin Wang1*

1College of Engineering, China Agricultural University, Beijing, China, 2State Key Laboratory of
Intelligent Agricultural Power Equipment, Beijing, China
Accurate segmentation of key tobacco structures is essential for enabling

automated harvesting. However, complex backgrounds, variable lighting

conditions, and blurred boundaries between the stem and petiole significantly

hinder segmentation accuracy in field environments. To overcome these

challenges, we propose an enhanced instance segmentation approach based

on YOLOv8-seg, incorporating depth-based background filtering and

architectural improvements. Specifically, depth information from RGB-D

images is employed to spatially filter non-target background regions, thereby

enhancing foreground clarity. In addition, a Hybrid Dilated Residual Attention

Block (HDRAB) is integrated into the YOLOv8-seg backbone to improve

boundary discrimination between petioles and stems, while a Lightweight

Shared Detail-Enhanced Convolution Detection Head (LSDECD) is designed to

efficiently capture fine-grained texture features. Experimental results

demonstrate that depth filtering increases mAP50bb and mAP50seg by 7.9% and

6.3%, respectively, while the architectural enhancements further raise them to

89.5% and 91.1%, surpassing the YOLOv8-seg baseline by 5.2% and 10.0%.

Compared with mainstream models such as Mask R-CNN and SOLOv2, the

proposed method achieves superior segmentation accuracy with low

computational cost, highlighting its potential for practical deployment in

automated tobacco harvesting
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1 Introduction

Tobacco is one of China’s most important cash crops, accounting for approximately

half of the world’s total production (Tang et al., 2020; Shen et al., 2021). However, the

harvesting of tobacco leaves remains heavily reliant on manual labor, leading to high labor

costs and an increasingly aging workforce (Lencucha et al., 2022; Wang et al., 2023).

Consequently, the development of robotic systems capable of automating high-intensity

tobacco leaf harvesting has become an urgent priority (Thakur et al., 2023). A fundamental

prerequisite for intelligent harvesting is the accurate perception of key structural

components of the plant. Therefore, establishing a robust method for segmenting critical
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parts of tobacco—specifically the petioles and main stems—under

unstructured field conditions is of great significance for advancing

research on automated tobacco harvesting robots (Zhou

et al., 2022).

Most existing tobacco detection and segmentation methods

have primarily focused on phenotypic analysis (Li et al., 2022;

Zhang et al., 2023), maturity assessment of tobacco leaves (Lu et al.,

2023; Sun et al., 2023; Dai et al., 2024), pest and disease

identification, and weed detection (Zhu et al., 2017; Tufail et al.,

2021), rather than on automated harvesting. However, the unique

challenges posed by tobacco harvesting in complex field

environments remain largely unaddressed. Due to the growth

characteristics of tobacco plants, the petiole and main stem often

appear within the same side of the camera’s field of view during data

collection—resulting in frequent occlusions(with the petiole

occluding the stem). These occlusion scenarios account for

approximately 60% of all dataset instances (Figures 1B, D),

contrasting with cases where petioles grow on lateral branches of

the stem (Figure 1A). Furthermore, the petiole and main stem often

share similar coloration, making it difficult to distinguish clear

boundaries and adversely impacting segmentation accuracy. The

criteria for distinguishing between these two structures are detailed

in Section II.B.

In addition to structural occlusions, variability in lighting

conditions poses further challenges for segmenting key tobacco

structures. Under strong backlighting (Figure 1D), for example, low

illumination at the junction between the petiole and stem leads to

blurred contours, reducing detection model performance. Yue et al.

(2023) noted that illumination changes under natural light can

easily lead to segmentation errors in agricultural vision tasks. As

shown in Figure 1, the structural textures of petioles vary
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significantly under different lighting conditions, and standard

convolutional architectures often struggle to consistently extract

such heterogeneous features. Therefore, enhancing the model’s

ability to perceive fine-grained texture details under variable

illumination is essential.

To address these challenges, many studies have incorporated

structural enhancement modules such as attention mechanisms and

multi-scale convolutions (Xu et al., 2022; Zhang et al., 2023; Guo

et al., 2024). For instance, Shen et al. (2025) proposed the MSA-

YOLO model, introducing the Multi-scale Attention Mixing Head

(MAMH) to improve the segmentation of grape pedicels from

visually similar background elements. Wang et al. Qingyi et al.

(2025) developed the CS-YOLO network to tackle issues of

indistinct crack boundaries and scale variations, enhancing

detection of subtle textures through high-dimensional feature

mapping and multi-layer feature fusion. In another study, Wang

et al. (2024) proposed an improved NVW-YOLOv8s network

featuring a residual feature learning module based on a

Normalization-based Attention Module (NAM) to address

occlusions and boundary ambiguities in fruit segmentation.

At present, many researchers have focused on multimodal

detection and segmentation methods, such as infrared-based few-

shot object detection (Zhang et al., 2025b), visible-infrared person

re-identification (Zhang et al., 2025a), and RGB-D salient object

detection (Zhang et al., 2024). These studies highlight the

effectiveness of multimodal feature fusion in enhancing

robustness under diverse conditions. More recently, multimodal

strategies for land cover interpretation, such as diffusion model–

based remote sensing change captioning frameworks (Sun et al;

Pang et al., 2025), further underscore the effectiveness of cross-

modal integration in complex perception tasks. However, compared
FIGURE 1

Tobacco images under different lighting conditions. (A) Sunny day with direct light. (B) Sunny day with backlight. (C) Cloudy day with direct light.
(D) Cloudy day with backlight.
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with relatively stable industrial or surveillance environments,

agricultural scenarios are more complex and dynamic, requiring

solutions that address challenges such as occlusion, illumination

variation, and structural ambiguity. For instance, Li et al. (2022)

proposed PSegNet, which performs semantic and instance

segmentation on plant point clouds, demonstrating robust

structural discrimination. More recently, Xie et al. (2025)

developed a temporal semantic multispectral (TSM) point cloud

generation and feature fusion pipeline for greenhouse tomatoes,

integrating RGB-D and multispectral imaging to enable

comprehensive trait estimation. Although these point cloud or

multimodal strategies provide highly detailed structural and

spectral information, they often require sophisticated imaging

systems, multi-step registration, and radiometric calibration,

which considerably increase the cost and limit scalability in field

applications. In contrast, the RGB-D perception strategy adopted in

this study achieves a more cost-effective and practical balance,

offering sufficient structural cues while maintaining feasibility for

deployment in real-world tobacco harvesting scenarios.

Although structural enhancement modules can significantly

improve model accuracy, they often come at the cost of increased

parameter counts and computational demands. Consequently,

recent research has also focused on lightweight crop segmentation

models suitable for deployment on edge devices (Wang and He,

2021). For example, Paul et al. (2024) applied channel pruning

techniques to the YOLOv8s network to reduce model complexity

while achieving effective segmentation performance. However, such

lightweight designs may come at the expense of reduced

segmentation accuracy.

In summary, existing segmentation models primarily

emphasize distinguishing targets from complex backgrounds but

pay limited attention to differentiating internal structural

components, such as the junction between the petiole and main

stem in tobacco. Moreover, achieving a balance between high

segmentation accuracy and low computational complexity

remains a critical challenge for real-time and edge deployment.
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Thus, there is a pressing need for segmentation approaches

specifically designed to address the structural intricacies of

tobacco plants while maintaining computational efficiency.

To address the aforementioned challenges, this study proposes

an enhanced instance segmentation approach based on YOLOv8-

seg, incorporating depth information preprocessing and

architectural optimization. Firstly, RGB-D images captured by a

depth camera are utilized in conjunction with a background depth

thresholding strategy to filter out non-target regions, thereby

substantially improving foreground segmentation quality. Next, a

Hybrid Dilated Residual Attention Block (HDRAB) is integrated

into the YOLOv8 backbone, combining hybrid dilated convolutions

with channel attention mechanisms to enhance the model’s ability

to differentiate between petiole and stem boundaries under varying

lighting conditions. Finally, to further reduce computational

overhead, a lightweight detection head, termed LSDECD

(Lightweight Shared Detail-Enhanced Convolution Detection

Head), is developed by sharing convolutional layers between the

regression and classification branches to reduce computational

overhead, while introducing multi-directional differential

convolutions (DEConv) to improve the extraction of fine-grained

local features. The proposed method in this paper establishes a

robust perceptual foundation for automated tobacco harvesting and

structural analysis.
2 Materials and methods

2.1 Data acquisition

Data for this study were collected in April, 2024, in a tobacco

field located in Wengjiao Village, Mangshi City, Dehong Dai and

Jingpo Autonomous Prefecture, Yunnan Province, China (24°22′
21″N, 98°33′13″E). An RGB-D camera (Realsense D435 (Intel

RealSense, 2025)) was mounted on a tobacco leaf harvester, as

illustrated in Figure 2A, to capture the dataset. The harvester is
FIGURE 2

Data collection diagram. (A) Photograph of the harvesting vehicle. (B) Schematic of the sensor installation.
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equipped a gantry measuring 235 cm in height and 120 cm in width,

enabling it to straddle crop ridges and move directly above the

tobacco plants. To enhance operational stability under field

conditions, crawler-type tires were installed. The camera was

mounted beneath the front section of the gantry, aligned in the

direction of travel, and positioned at a downward tilt angle of 30°

relative to the horizontal plane. Continuous video recording was

employed for data acquisition, with videos recorded at a resolution

of 1280×720 pixels. The camera was maintained at an approximate

distance of 50~60 cm from the main stem of the plants, ensuring

operation well within the effective depth range of the D435 sensor.

A schematic of the installation setup is shown in Figure 2B.

Following recording, the video footage was segmented into still

frames for further processing.

To ensure diversity in lighting conditions, data were collected

under both sunny and cloudy skies, with forward and backlighting

scenarios represented, as shown in Figure 1. All images utilized in

this study were acquired from the right-side camera. A total of 2,366

tobacco images were extracted from the video footage, including

692 images under sunny backlighting, 455 under sunny front

lighting, 522 under cloudy backlighting, and 697 under cloudy

front lighting. The dataset was split into training, validation, and

test sets in a ratio of 8:1:1.
2.2 Annotation strategy

Due to the dense growth of tobacco plants and the presence of

similarly colored vegetation in the background, segmentation of key

structural parts is prone to interference. Previous studies have

demonstrated that background filtering can improve detection

performance (Arsenovic et al., 2019). To address this issue, a depth-

based background filtering approach was employed in this study: pixels

with depth values greater than 60 cm were reassigned a grayscale value

of 128, thereby suppressing interference from background regions with

similar coloration. An illustration of this process is provided in Figure 3.

Following depth filtering, the tobacco images were manually

annotated using the Labelme tool, resulting in labels in JSON
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format. These annotations were subsequently converted into

YOLO-compatible.txt files. The labeling strategy is depicted in

Figure 4. For each petiole–stem pair, the growth node was used as

a reference point. From this node, the visible portion of the petiole

(including leaf veins) within the camera’s field of view was

annotated, as shown in red in Figure 4. The main stem was

annotated from the ground up to the point where it becomes

occluded by the petiole, as annotated in green. Only unobstructed

regions were labeled to ensure annotation consistency. To enhance

boundary clarity, magnified insets focusing on the junctions

between petioles and stems are provided in the lower left corner

of Figure 4.

During training, automatic data augmentations were applied,

expanding the size of the training set by approximately tenfold and

thereby mitigating the risk of model overfitting.
2.3 Model improvements

YOLO is a state-of-the-art single-stage object detection model

that has been widely adopted in both industrial and agricultural

applications due to its excellent performance (Zhou et al., 2022;

Badgujar et al., 2024). YOLOv8, developed by the Ultralytics team

in collaboration with numerous contributors, builds upon the

YOLOv5 framework with extensive architectural improvements to

support real-time, multi-task learning. It further improves model

accuracy and generalization capabilities, while significantly

outperforms earlier models in terms of deployment efficiency on

edge devices. In this study, YOLOv8-seg is selected as the baseline

model for further improvement and comparison. At the time our

work was initiated, YOLOv8-seg was the latest and most stable

segmentation framework available, widely adopted in the

community. Although newer versions such as YOLOv9–

YOLOv13 have since been released, their segmentation branches

have not yet been as mature or reproducible, with most updates

focusing on detection rather than instance segmentation. Therefore,

YOLOv8-seg provides a more reliable and practical baseline for

enhancement in the context of tobacco plant segmentation.
FIGURE 3

Depth filtering diagram.
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2.3.1 Multi-scale attention-based structural
enhancement module

In YOLOv8 architecture, the C2f module (CSP Bottleneck with

Two Convolutions and Fusion) serves as a key component for

feature extraction. It is an improved version of the Cross Stage

Partial (CSP) structure, specifically designed to enhance feature

extraction and fusion efficiency. Compared to the traditional CSP

architecture, C2f further reduces computational costs, enabling

YOLOv8 to achieve a more effective balance between lightweight

design and high performance. By integrating direct connections for

a subset of features with bottleneck-style transformations for the

remainder, C2f improves computational efficiency while preserving

strong feature representation capabilities. A schematic illustration

of the C2f architecture is provided in Figure 5.

Traditional bottleneck modules typically employ 3×3

convolutions for feature extraction; however, their limited

receptive fields constrain the ability to capture global contextual

information. To enhance the capability of YOLOv8-seg in

segmenting complex key parts of tobacco plants, the bottleneck

component within the C2f structure was replaced with a Hybrid
Frontiers in Plant Science 05
Dilated Residual Attention Block (HDRAB), as shown in Figure 6.

Unlike conventional bottlenecks, HDRAB integrates hybrid dilated

convolutions with residual attention mechanisms, facilitating multi-

scale feature fusion and significantly improving the model’s

capacity to capture spatial details across varying scales. This

architectural enhancement contributes to better instance

segmentation performance in complex agricultural scenarios (Wu

et al., 2024).

The Channel Attention Module (CAM) is composed of Global

Average Pooling (GAP), a convolutional layer, ReLU, and a Sigmoid

activation function. CAM is used to explore the inter-channel

dependencies among convolutional features. In Figure 7, the “⊗”

symbol represents element-wise multiplication, representing

channel-wise reweighting.

To further optimize the original HDRAB, two additional 1×1

convolutions before and after each dilated convolution (DConv), as

shown in pink in Figure 7. The first 1×1 convolution reduces the

feature dimensionality, while the second restores the number of

channels. This pre-reduction and post-restoration strategy reduces

computational cost while preserving feature integrity. Moreover, it
FIGURE 4

Annotation strategy for key parts of tobacco. (A) Sunny day with direct light. (B) Sunny day with backlight. (C) Cloudy day with direct light. (D) Cloudy
day with backlight.
FIGURE 5

C2f structure diagram.
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enables more efficient feature processing within the DConv layers,

improving information flow and achieving a better balance between

computational efficiency and object detection accuracy.

In practice, tobacco petioles and stems often exhibit blurred or

overlapping boundaries, especially under complex lighting. The

HDRAB structure was therefore designed to enlarge the receptive

field while preserving spatial resolution, enabling the network to

capture both global context and fine boundary cues. By coupling

residual connections with channel attention, HDRAB selectively

strengthens boundary-relevant features and mitigates the ambiguity

at stem–petiole junctions.
Frontiers in Plant Science 06
2.3.2 Improved lightweight detection head
The detection head in YOLOv8-seg adopts a multi-scale feature

fusion strategy, performing object detection and instance

segmentation on feature maps at 3 different scales—P3, P4, and

P5—as illustrated in Figure 8A. Each feature map first undergoes

dimensionality reduction through a 1×1 convolution to decrease

computational cost and enhance feature expressiveness, followed by

a 3×3 convolution for further local feature extraction.

Based on this structure, the detection head is divided into three

task-specific branches: a mask branch, a regression branch, and a

classification branch. In YOLOv8-seg, the mask branch operates on
FIGURE 7

The architecture of the HDRAB.
FIGURE 6

C2f-HDRAB structure diagramThe Hybrid Dilated Residual Attention Block (HDRAB) consists of two components: a hybrid dilated residual block and
a Channel Attention Module (CAM), as illustrated in Figure 7. The hybrid dilated residual block comprises multiple hybrid dilated convolutions
(denoted as n-DConv in Figure 7) with ReLU activations. These dilated convolutions are connected via multiple skip connections, enabling the
capture of rich local features. Here, n represents the dilation rate, ranging from 1 to 4, and the “⊕” symbol denotes element-wise addition, which
facilitates aggregation of spatial information across scales.
FIGURE 8

Detection head. (A) original detection head. (B) improved detection head.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1673202
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1673202
top of detection outputs, such that improvements in detection

accuracy directly enhance segmentation performance.

To further optimize this process, we propose a novel detection

head, termed Lightweight Shared Detail-Enhanced Convolution

Detection Head (LSDECD), as shown in Figure 8B, to replace the

original design. In LSDECD, the 3×3 convolutions in the regression

and classification branches across P3, P4, and P5 are shared, effectively

reducing computational load. Given the structural randomness in the

growth of key tobacco components in unstructured environments,

multi-directional differential convolutions (DEConv) are employed as

the shared 3×3 convolution layers to improve fine-grained detail

extraction and enhance the accuracy of the lightweight detection

head. Since instance segmentation demands high-resolution

boundary predictions, the Conv_mask module is not shared with

other branches, thereby preserving the segmentation precision.

The full name of DEConv is Detail-Enhanced Convolution

(Chen et al., 2024), which is specifically designed to enhance the

detection head’s ability to extract fine-grained details, particularly in

response to the unstructured growth patterns of tobacco plants. As

shown in Figure 9, DEConv consists of five parallel convolutional

layers: one standard (vanilla) convolution layer and four difference-

based convolution layers. These four layers are: Central Difference

Convolution (CDC), Angular Difference Convolution (ADC),

Horizontal Difference Convolution (HDC), and Vertical

Difference Convolution (VDC). Each is responsible for extracting

local gradient information in a specific direction, enabling the

network to better capture high-frequency features such as edges

and texture details.

DEConv exhibits distinctive behavior in convolutional

operations. When multiple convolutional kernels with identical

size, stride, and padding are applied in parallel to the same input,

the sum of their outputs is mathematically equivalent to summing

the kernels first and then performing a single convolution. As a
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result, DEConv does not increase the number of parameters or

computational cost, making it well-suited for lightweight

applications. Given an input feature map, the output of DEConv

can be expressed as Equation 1:

Fout =o
5

i=1
Fin*Ki = Fin*Kcut (1)

where Ki(i = 1 : 5) represents the five individual convolution

kernels, ∗ denotes the convolution operation, and Kcut is the

equivalent kernel obtained by summing the parallel kernels.

DEConv enables efficient extraction of fine-grained image features

such as texture, shape, and color, making it particularly effective for

meeting the detailed requirements of instance segmentation tasks.

Considering the need for efficient field deployment, the LSDECD

head integrates shared convolutional layers to reduce redundancy

between classification and regression branches. At the same time, the

DEConvmodule enhances sensitivity to local high-frequency gradients,

which is critical for distinguishing slender petioles from occluding

leaves. This combination allows the model to achieve fine-grained

feature extraction while maintaining lightweight computation.
2.3.3 YOLOv8 network overall structure
To enhance the model’s structural perception of key tobacco

components, a structural enhancement module—Hybrid Dilated

Residual Attention Block (HDRAB)—is introduced, combining

multi-scale dilated convolutions with a channel attention

mechanism. While replacing all C2f modules with HDRAB could

improve feature extraction capabilities, such extensive modification

would inevitably degrade inference speed and hinder deployment

on field devices. Therefore, a selective modification strategy is

adopted based on the specific requirements of key-part

segmentation in tobacco plants.
FIGURE 9

The architecture of the DEConv.
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In the YOLOv8 backbone, the shallow C2f modules primarily

extract low-level features such as edges and textures. Introducing

attention mechanisms at this stage may overemphasize irrelevant

channels and lead to overfitting on redundant features. Thus, the

original C2f structures are retained in the shallow layers. In

contrast, the mid-to-deep layers (Stages 3 to 5) are critical for

semantic aggregation and for modeling the spatial relationships

between the tobacco stem and petiole. Accordingly, HDRAB

modules are embedded into these stages to enhance the model’s

capacity for capturing structural continuity and non-local

semantic dependencies.

Within the network’s neck, HDRAB is not applied to the

downsampling path to maintain computational efficiency.

However, HDRAB modules are incorporated into the upsampling

path to reinforce boundary detail representation in high-resolution

feature maps. This modification is particularly beneficial near the

output layers—such as the P3 level—where the non-local modeling

capability of HDRAB significantly improves the distinction between

the petiole and the main vein. Furthermore, in the final C2f module

before the detection head output—where semantic features are

densely fused and exert substantial influence on segmentation

accuracy—HDRAB is also introduced to further enhance

structural feature representation. The complete integration

strategy is illustrated in Figure 10.
2.4 Experimental conditions

All model training and testing were conducted on a desktop

workstation with the following hardware configuration: Windows

10 operating system, Intel Core i5-13490F CPU, NVIDIA GeForce

RTX 4060 Ti GPU, and 32 GB of RAM. The software environment
Frontiers in Plant Science 08
included PyTorch 2.0.0, CUDA 11.8, and Python 3.9. The model

was trained for 300 epochs with an input resolution of 640 × 640

and a batch size of 4. We employed the SGD optimizer with an

initial learning rate of 0.01, momentum of 0.937, and weight decay

of 0.0005, following the default YOLOv8 training strategy.
2.5 Evaluation indicators

Given the importance of accurate mask and localization

performance in evaluating segmentation models, we adopt both

bounding box mean Average Precision (mAP) and mask mAP as

the primary evaluation metrics for key part segmentation in this

study. Two types of Intersection over Union (IoU) thresholds are

used: a fixed threshold of 0.5, denoted as mAP50, and a range from

0.5 to 0.95 (in increments of 0.05), averaged and referred to as

mAP50–95. A predicted bounding box is considered a true positive if

its IoU with the ground truth polygon exceeds the specified threshold.

Otherwise, it is treated as a false positive. If no predicted box meets

the IoU threshold for a given ground truth object, that object is

counted as a false negative. Precision is defined as the ratio of true

positives to the total number of predicted positives, while recall is the

ratio of true positives to the total number of ground truth instances.

The mean Average Precision (mAP) summarizes model performance

across varying confidence thresholds and IoU values. The definitions

of these metrics are as follows Equations 2–4:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
FIGURE 10

Improved YOLOv8-seg model architecture.
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mAP =
1
Co

C

c=1

1
No

N

i=1
APc,i

 !
(4)

where C denotes the number of categories, N represents the

number of IoU thresholds, and APc,i is the average precision of the

c-th category at the i-th IoU threshold.
3 Experimental results and analysis

3.1 Comparative experiment before and
after depth filtering

To evaluate the effectiveness of the proposed depth filteringmethod

for eliminating background interference, a comparative experiment was

conducted using two datasets: one with depth filtering applied and one

without. Both datasets were evaluated under identical conditions using

the same instance segmentation model, YOLOv8-seg.The experimental

results are presented in Figure 11.

As shown in Table 1, applying depth filtering significantly

improves segmentation performance under the same model.

Specifically, the mAP50bb increases by 7.9%, and the mAP50seg

improves by 6.3%. Depth filtering effectively removes background

interference, such as distant plants (Figures 11A, B), as well as other
Frontiers in Plant Science 09
non-target objects in the background (Figures 11C, D), thereby

enhancing the accuracy of key part segmentation.
3.2 Ablation experiments

3.2.1 Comparison of different detection heads
Table 2 presents the segmentation results obtained using

different detection head architectures. As shown in the data, when

the DEConv module is not incorporated—i.e., when the detection

head is replaced with LSCD—channel sharing across different layers

reduces computational cost. However, this simplification results in a

slight decline in segmentation performance.

After integrating the DEConv module and upgrading the

detection head to LSDECD, the model demonstrates an

improvement across all segmentation metrics. This indicates that

LSDECD not only preserves computational efficiency through its

shared structure but also significantly enhances the model’s ability

to capture fine-grained details, thereby leading to superior overall

segmentation performance.

3.2.2 C2f-HDRAB embedding location ablation
study

Given that HDRAB offers strong structural modeling

capabilities but also introduces additional computational

overhead, a full-scale replacement of all C2f modules may result

in unnecessary performance costs. To systematically investigate the

actual impact of HDRAB on segmentation performance, and to

evaluate its adaptability and contribution at different network

depths, a grouped ablation study was conducted focusing on the

replacement positions of the C2f modules. The results are
FIGURE 11

Comparison of segmentation effects. (A) before depth filtering. (B) after depth filtering. (C) before depth filtering. (D) after depth filtering.
TABLE 1 Comparison of experimental results of different dataset types.

Dataset type mAP50bb/% mAP50seg/%

Before depth filtering 76.4 74.8

After depth filtering 84.3 81.1
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summarized in Table 3, where “–” indicates retention of the original

C2f structure, and “✓“ denotes substitution with the C2f-HDRAB

module. Each row in Table 3 corresponds to the specific network

variants (a–e) illustrated in Figure 12.

As shown in Table 3, enhancing the C2f modules with HDRAB

in the deeper layers of the backbone and neck improves the model’s

segmentation accuracy. When all C2f modules are replaced with

C2f-HDRAB, the model achieves the highest segmentation

performance, with mAP50bb and mAP50seg reaching 89.2% and

88.7%, respectively. However, when only the deep-layer C2f

modules in the backbone and neck are replaced (as in the fifth

row of Table 3), the mAP50bb and mAP50seg slightly decrease to

89.0% and 88.3%, respectively, while the total computational cost is

reduced by 1.2 GFLOPs compared to the full replacement strategy.

These results indicate that substituting C2f modules in shallow

layers yields limited performance gains while introducing

unnecessary computational overhead. Therefore, we adopt the

improvement strategy shown in the fifth row—modifying only

the deep layers—is adopted as the final configuration. The

corresponding network structure is illustrated in Figure 12D.

3.2.3 Ablation experiments on detection head
and improved C2f

Table 4 presents the ablation results for the improved detection

head and the enhanced C2f module, along with the mAP scores for

petioles and main stems across different model variants. Compared

to petiole segmentation, the models consistently demonstrate better

performance in detecting and segmenting the main stem. This

disparity may be attributed to the irregular growth patterns and

complex contours of petioles.

However, in the subsequent task of computing key distances,

petioles are primarily used to locate specific key points, and a

complete view of the petiole is not necessary. In contrast, the

accuracy of the main stem contour is critical, as it directly affects

measurement precision. Therefore, the observed segmentation
Frontiers in Plant Science 10
performance for petioles remains acceptable within the context of

this application.

The combination of the improved C2f module and the

enhanced detection head yields the best overall performance,

producing the most significant improvements in both detection

and segmentation across all target categories. Compared to the

baseline model, mAP50bb and mAP50-95bb increased by 5.2% and

9.4%, respectively, while mAP50seg and mAP50-95seg improved by

10% and 6.3%. The integration of HDRAB into the C2f module

enhances the model’s ability to extract and fuse multi-scale features,

while the incorporation of the DEConv module into the detection

head strengthens fine-detail extraction. The synergy of these two

architectural enhancements contributes to the optimal performance

of the proposed segmentation model.
3.3 Comparison of different models

To further validate the effectiveness of our proposed

improvements, the performance of our model was compared

against several widely used instance segmentation models on the

validation set. YOLOv8-seg, known for its real-time performance,

serves as a strong single-stage segmentation baseline. Mask R-CNN, a

representative two-stage object detection and segmentation

framework, is recognized for its high accuracy and is commonly

used as a benchmark model. SOLOv2 is another high-performing

segmentation algorithm that achieves precise instance segmentation

without relying on an explicit object detection stage. Accordingly,

Mask R-CNN, SOLOv2, YOLOv8-seg (baseline), and our improved

model were selected for comparative evaluation. Transformer-based

segmentation models (e.g., SegFormer, Mask2Former) were also

considered during our experimental design. However, the

implementations available in MMDetection are typically large-scale

models with high memory and computational demands, making

them unsuitable for our experimental settings and impractical for
TABLE 2 Ablation study of the detection head.

Head mAP50bb/% mAP50-95bb/% mAP50seg/% mAP50-95seg/%

v8-Head 84.3 51.0 81.1 44.5

LSCD 82.6 49.7 80.2 42.3

LSDECD 86.0 55.1 85.2 47.1
TABLE 3 Ablation study of c2f-hdrab embedding position.

Shallow
Backbone

Deep
Backbone

Shallow
Neck

Deep
Neck

mAP50bb/%
mAP50-
95bb/%

mAP50seg/%
mAP50-
95seg/%

GFLOPs

– – – – 84.3 51.0 81.1 44.5 42.7

– ✓ – – 86.7 53.1 85.5 44.8 43.1

– – – ✓ 85.9 52.2 84.6 44.9 43.4

– ✓ – ✓ 89.0 55.0 88.3 45.2 43.8

✓ ✓ ✓ ✓ 89.2 55.3 88.7 45.5 45.0
fr
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edge deployment scenarios. As the primary goal of this work is to

enhance YOLOv8 for real-time agricultural applications, rather than

to optimize transformer-based frameworks, these models were not

included in the current comparative evaluation.

As shown in Table 5, Mask R-CNN achieves the highest

segmentation performance among all compared models, with

mAP50bb and mAP50seg reaching 85.5% and 87.2%, respectively.
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However, it has the lowest computational efficiency, requiring 131

GFLOPs. YOLOv8-seg demonstrates the highest computational

efficiency, with a FLOPs count of only 42.7 GFLOPs, but its

segmentation performance is relatively lower, with mAP50bb and

mAP50seg at 84.3% and 81.1%, respectively.

In contrast, our improved model achieves the best overall

performance, with mAP50bb and mAP50seg reaching 89.5% and
FIGURE 12

The network structure of the backbone and neck parts in different situations.
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91.1%, respectively. It also obtains the highest precision and recall

scores: Precisionbb at 92.0%, Recallbb at 89.5%, Precisionseg at 93.7%,

and Recallseg at 92.5%. Despite this performance, the model

maintains a low computational cost of 43.8 GFLOPs, making it

well-suited for deployment on edge devices.

Figure 13 presents the segmentation results on the same image

using four models: SOLOv2, Mask R-CNN, YOLOv8-seg, and our

improved model, YOLO-HDRAB-LSDECD. As illustrated, our

improved model successfully segments all key parts of the tobacco

plant, outperforming SOLOv2 and YOLOv8-seg. Mask R-CNN

ranks second in terms of segmentation completeness.

A closer comparison between YOLO-HDRAB-LSDECD and

Mask R-CNN reveals that Mask R-CNN struggles to accurately

distinguish between petioles and main stems, often producing

overlapping segmentations. This issue is evident in the 2nd, 3rd,

and 4th rows of Figure 13B, where petiole–stem overlaps are

observed, potentially compromising subsequent calculations of

internodal spacing. Moreover, Mask R-CNN tends to generate

false positives, as seen on the right side of the 2nd row in

Figure 13B, further affecting downstream processing.

In contrast, our improved model demonstrates the clearest

boundary distinction between petioles and main stems,

highlighting the effectiveness of the HDRAB module in

addressing boundary ambiguity and improving structural

segmentation accuracy.

In addition to the successful segmentation results, we also

present some challenging cases (Figure 14). For example, under

severe occlusion, one petiole was correctly identified, while another

petiole was missed due to leaf occlusion and unfavorable viewing

angles, as highlighted by the yellow box in the figure. These failure

cases indicate that incorporating more training samples with such

occlusion scenarios can further improve the model performance.

This will be considered in our future work.
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4 Discussion

This study addresses the problem of instance segmentation for

tobacco plants, specifically targeting the complex structures and

blurred boundaries between petioles and main stems. A refined

segmentation method based on an improved YOLOv8-seg

framework is proposed. To tackle the boundary ambiguity

encountered in traditional methods when dealing with intricate

plant structures, a Hybrid Dilated Residual Attention Block

(HDRAB) is introduced to enhance the model’s capability for

joint modeling of local and global information.

Compared with classic methods such as Mask R-CNN (He

et al., 2017) and SOLOv2 (Wang et al., 2020), the proposed model

demonstrates superior performance in fine-grained boundary

segmentation under complex field conditions. Specifically, while

Mask R-CNN achieves high overall segmentation accuracy, it

frequently produces overlapping detections and false positives in

the petiole–stem junction areas, which negatively impacts

subsequent internodal distance measurements. Although SOLOv2

circumvents the dependency on object detection, it lacks the

capacity for fine-scale texture modeling, resulting in insufficient

boundary detail representation.

Yang et al. proposed an improved DeepLabv3+ method

incorporating DenseASPP and strip pooling strategies (Jia et al.,

2023), achieving a mean Intersection-over-Union (mIoU) of 90.8%

in leaf segmentation and exhibiting good boundary handling.

However, their approach shows limited effectiveness when applied

to plants with complex intertwined branches, such as tobacco.

Similarly, Li et al. developed PSegNet (Li et al., 2022), which

achieves robust segmentation performance in plant point cloud

data, particularly in distinguishing leaf and stem structures.

Nevertheless, point cloud acquisition is costly and less practical

for real-time field applications.
TABLE 4 Ablation study of detection head and C2f.

C2f-HDRAB LSDECD Class mAP50bb/% mAP50-95bb/% mAP50seg/% mAP50-95seg/%

– –

all 84.3 51.0 81.1 44.5

petiole 74.2 42.6 69.5 29.8

stem 91.1 54.4 92.2 54.1

✓ –

all 89.0 55.0 88.3 45.2

petiole 85.5 51.6 82.5 31.7

stem 92.5 58.5 94.0 58.7

– ✓

all 86.0 55.1 85.2 47.1

petiole 76.3 48.0 72.2 32.1

stem 95.7 66.2 97.3 62.2

✓ ✓

all 89.5 60.4 91.1 50.8

petiole 86.0 50.9 85.2 37.8

stem 94.9 65.6 98.1 63.8
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In contrast, the YOLO-HDRAB-LSDECD model proposed in

this study, operating on two-dimensional RGB-D images, combined

with a depth-based background filtering strategy, significantly

improves foreground segmentation quality and effectively

suppresses background vegetation interference, providing a more

reliable foundation for subsequent structural analysis and growth

metric extraction.

In terms of detailed feature modeling, the introduced Detail-

Enhanced Convolution (DEConv) module leverages multi-

directional gradient differences to enhance sensitivity to local

high-frequency features. Compared to existing hybrid vision

networks that combine keypoint detection with segmentation (Li

et al., 2024), the proposed approach achieves mAP50bb and

mAP50seg scores of 89.5% and 91.1%, respectively, surpassing

existing unimodal methods in terms of fine-grained boundary

delineation, all while maintaining low computational overhead.

Despite these promising results, several limitations and areas for

further investigation remain. Firstly, the current approach primarily

relies on RGB-D sensors; however, depth information can be easily

affected by strong illumination or weak reflectivity, potentially

resulting in the loss of key petiole points. Future work could

explore the integration of multi-modal sensor data, such as

hyperspectral or thermal imaging, combined with RGB-D data

(Kim and Chung, 2021), to enhance robustness under complex

lighting conditions.

Furthermore, the architectural components introduced in this

work were selected with specific challenges in mind. HDRAB was

designed to enlarge the receptive field while retaining spatial

resolution, thereby enhancing the discrimination of blurred

boundaries at the stem–petiole junctions. DEConv was

introduced to capture multi-directional gradient information,

strengthening fine-grained feature extraction under occlusion.

Although exhaustive comparisons with other attention modules

such as SE or CBAM were not included, the ablation experiments

(Section 3.2) demonstrate the effectiveness of the chosen designs.

Future studies will further investigate alternative lightweight

attention mechanisms to provide a broader comparative analysis.

In addition, the current dataset was collected in a relatively limited

geographical location and cultivation environment, which may restrict

the generalization ability of the model. Future work will focus on

expanding the dataset to include tobacco plants from multiple regions,

varieties, and growth stages, enabling more comprehensive validation

and further improving the robustness and adaptability of the proposed

approach. Beyond tobacco, the proposed framework also has the

potential to be adapted to other crops with similar structural

segmentation challenges, and future validation on species such as

tomato or cucumber will help further examine its generalizability.

Although the proposed method maintains good inference

efficiency under limited computational resources, further

optimization in model compression and acceleration is necessary

to enable broader real-time field deployment. In addition,

lightweight transformer-based segmentation architectures, once

they become more mature and efficient, could also be investigated

as complementary baselines to provide a broader comparison.

Quantitative analysis of model inference speed will also be carried
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out, with potential exploration into lightweight transformer

architectures or acceleration techniques based on pruning and

quantization, aiming to reduce the deployment barrier.

In conclusion, this study proposes an effective method for the

instance segmentation of key structural components in tobacco

plants. The approach achieves superior performance in boundary

ambiguity handling and fine-grained texture extraction compared to

existing methods, validating the effectiveness of the proposed module

designs and providing a solid foundation for future research in plant

structure recognition and intelligent perception applications.
Frontiers in Plant Science 14
5 Conclusions

This study addresses the task of segmenting key structural

components of tobacco plants by proposing an enhanced instance

segmentation method based on the YOLOv8-seg framework.

Considering the complexity of field environments, targeted

improvements were introduced at both the network architecture

and data preprocessing levels.

Specifically, a depth-based background filtering strategy was

employed to suppress interference from non-target vegetation,
FIGURE 13

Segmentation results of different algorithms. (A) SOLOv2. (B) Mask R-CNN. (C) YOLOv8-seg. (D) YOLO-HDRAB-LSDECD.
FIGURE 14

Case of segmentation failure.
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significantly enhancing foreground segmentation quality. The

backbone was augmented with a Hybrid Dilated Residual Attention

Block (HDRAB) to strengthen multi-scale contextual feature

extraction, while the detection head was redesigned into a

lightweight LSDECD structure incorporating a Detail-Enhanced

Convolution (DEConv) module to improve the representation of fine

textures and boundary details.

Experimental results demonstrate that the introduction of the

depth filtering mechanism improves mAP50bb from 76.4% to 84.3%

and mAP50seg from 74.8% to 81.1%, achieving gains of 7.9% and

6.3%, respectively, thereby validating its effectiveness in mitigating

background noise. Furthermore, architectural enhancements

through HDRAB and LSDECD boost mAP50bb and mAP50seg to

89.5% and 91.1%, corresponding to improvements of 5.2% and

10.0% over the baseline YOLOv8-seg model.

Compared to mainstream instance segmentation models such as

Mask R-CNN and SOLOv2, the proposed method demonstrates

significant advantages in both segmentation accuracy and

computational efficiency. Specifically, Mask R-CNN achieves

mAP50bb and mAP50seg scores of 85.5% and 87.2% on the

validation set but incurs a high computational cost of 131 GFLOPs,

making it unsuitable for real-time deployment in field conditions.

SOLOv2, while eliminating dependency on an explicit detection stage,

attains an mAP50seg of 85.4%, but still falls short in fine-grained

boundary delineation. YOLOv8-seg, as a single-stage baseline model,

achieves the highest inference efficiency with only 42.7 GFLOPs;

however, its segmentation accuracy is relatively lower, with mAP50bb

and mAP50seg scores of 84.3% and 81.1%, respectively.

In contrast, the proposed YOLO-HDRAB-LSDECD model

achieves a better balance between segmentation accuracy and

efficiency, reaching mAP50bb and mAP50seg scores of 89.5% and

91.1%, respectively. Furthermore, it attains Precisionbb and Recallbb

scores of 92.0% and 89.5%, and Precisionseg and Recallseg scores of

93.7% and 92.5%, respectively, while maintaining a low computational

cost of just 43.8 GFLOPs. This method not only significantly improves

segmentation accuracy in regions with blurred boundaries but also

maintains low computational complexity, demonstrating excellent

potential for deployment in real-world agricultural field environments.
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