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An improved YOLOv8-seg-based
method for key part
segmentation of tobacco plants

Yihao Liu®, Du Chen?, Yawei Zhang" and Xin Wang™

!College of Engineering, China Agricultural University, Beijing, China, 2State Key Laboratory of
Intelligent Agricultural Power Equipment, Beijing, China

Accurate segmentation of key tobacco structures is essential for enabling
automated harvesting. However, complex backgrounds, variable lighting
conditions, and blurred boundaries between the stem and petiole significantly
hinder segmentation accuracy in field environments. To overcome these
challenges, we propose an enhanced instance segmentation approach based
on YOLOvV8-seq, incorporating depth-based background filtering and
architectural improvements. Specifically, depth information from RGB-D
images is employed to spatially filter non-target background regions, thereby
enhancing foreground clarity. In addition, a Hybrid Dilated Residual Attention
Block (HDRAB) is integrated into the YOLOv8-seg backbone to improve
boundary discrimination between petioles and stems, while a Lightweight
Shared Detail-Enhanced Convolution Detection Head (LSDECD) is designed to
efficiently capture fine-grained texture features. Experimental results
demonstrate that depth filtering increases mAP50°° and mAP50°¢9 by 7.9% and
6.3%, respectively, while the architectural enhancements further raise them to
89.5% and 91.1%, surpassing the YOLOv8-seg baseline by 5.2% and 10.0%.
Compared with mainstream models such as Mask R-CNN and SOLOV?2, the
proposed method achieves superior segmentation accuracy with low
computational cost, highlighting its potential for practical deployment in
automated tobacco harvesting

KEYWORDS
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1 Introduction

Tobacco is one of China’s most important cash crops, accounting for approximately
half of the world’s total production (Tang et al., 2020; Shen et al., 2021). However, the
harvesting of tobacco leaves remains heavily reliant on manual labor, leading to high labor
costs and an increasingly aging workforce (Lencucha et al., 2022; Wang et al,, 2023).
Consequently, the development of robotic systems capable of automating high-intensity
tobacco leaf harvesting has become an urgent priority (Thakur et al., 2023). A fundamental
prerequisite for intelligent harvesting is the accurate perception of key structural
components of the plant. Therefore, establishing a robust method for segmenting critical
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parts of tobacco—specifically the petioles and main stems—under
unstructured field conditions is of great significance for advancing
research on automated tobacco harvesting robots (Zhou
et al., 2022).

Most existing tobacco detection and segmentation methods
have primarily focused on phenotypic analysis (Li et al., 2022;
Zhang et al., 2023), maturity assessment of tobacco leaves (Lu et al.,
2023; Sun et al, 2023; Dai et al, 2024), pest and disease
identification, and weed detection (Zhu et al., 2017; Tufail et al,
2021), rather than on automated harvesting. However, the unique
challenges posed by tobacco harvesting in complex field
environments remain largely unaddressed. Due to the growth
characteristics of tobacco plants, the petiole and main stem often
appear within the same side of the camera’s field of view during data
collection—resulting in frequent occlusions(with the petiole
occluding the stem). These occlusion scenarios account for
approximately 60% of all dataset instances (Figures 1B, D),
contrasting with cases where petioles grow on lateral branches of
the stem (Figure 1A). Furthermore, the petiole and main stem often
share similar coloration, making it difficult to distinguish clear
boundaries and adversely impacting segmentation accuracy. The
criteria for distinguishing between these two structures are detailed
in Section IL.B.

In addition to structural occlusions, variability in lighting
conditions poses further challenges for segmenting key tobacco
structures. Under strong backlighting (Figure 1D), for example, low
illumination at the junction between the petiole and stem leads to
blurred contours, reducing detection model performance. Yue et al.
(2023) noted that illumination changes under natural light can
easily lead to segmentation errors in agricultural vision tasks. As
shown in Figure 1, the structural textures of petioles vary

10.3389/fpls.2025.1673202

significantly under different lighting conditions, and standard
convolutional architectures often struggle to consistently extract
such heterogeneous features. Therefore, enhancing the model’s
ability to perceive fine-grained texture details under variable
illumination is essential.

To address these challenges, many studies have incorporated
structural enhancement modules such as attention mechanisms and
multi-scale convolutions (Xu et al., 2022; Zhang et al., 2023; Guo
et al., 2024). For instance, Shen et al. (2025) proposed the MSA-
YOLO model, introducing the Multi-scale Attention Mixing Head
(MAMH) to improve the segmentation of grape pedicels from
visually similar background elements. Wang et al. Qingyi et al.
(2025) developed the CS-YOLO network to tackle issues of
indistinct crack boundaries and scale variations, enhancing
detection of subtle textures through high-dimensional feature
mapping and multi-layer feature fusion. In another study, Wang
et al. (2024) proposed an improved NVW-YOLOv8s network
featuring a residual feature learning module based on a
Normalization-based Attention Module (NAM) to address
occlusions and boundary ambiguities in fruit segmentation.

At present, many researchers have focused on multimodal
detection and segmentation methods, such as infrared-based few-
shot object detection (Zhang et al., 2025b), visible-infrared person
re-identification (Zhang et al., 2025a), and RGB-D salient object
detection (Zhang et al., 2024). These studies highlight the
effectiveness of multimodal feature fusion in enhancing
robustness under diverse conditions. More recently, multimodal
strategies for land cover interpretation, such as diffusion model-
based remote sensing change captioning frameworks (Sun et al;
Pang et al.,, 2025), further underscore the effectiveness of cross-
modal integration in complex perception tasks. However, compared

FIGURE 1

Tobacco images under different lighting conditions. (A) Sunny day with direct light. (B) Sunny day with backlight. (C) Cloudy day with direct light.

(D) Cloudy day with backlight.
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with relatively stable industrial or surveillance environments,
agricultural scenarios are more complex and dynamic, requiring
solutions that address challenges such as occlusion, illumination
variation, and structural ambiguity. For instance, Li et al. (2022)
proposed PSegNet, which performs semantic and instance
segmentation on plant point clouds, demonstrating robust
structural discrimination. More recently, Xie et al. (2025)
developed a temporal semantic multispectral (TSM) point cloud
generation and feature fusion pipeline for greenhouse tomatoes,
integrating RGB-D and multispectral imaging to enable
comprehensive trait estimation. Although these point cloud or
multimodal strategies provide highly detailed structural and
spectral information, they often require sophisticated imaging
systems, multi-step registration, and radiometric calibration,
which considerably increase the cost and limit scalability in field
applications. In contrast, the RGB-D perception strategy adopted in
this study achieves a more cost-effective and practical balance,
offering sufficient structural cues while maintaining feasibility for
deployment in real-world tobacco harvesting scenarios.

Although structural enhancement modules can significantly
improve model accuracy, they often come at the cost of increased
parameter counts and computational demands. Consequently,
recent research has also focused on lightweight crop segmentation
models suitable for deployment on edge devices (Wang and He,
2021). For example, Paul et al. (2024) applied channel pruning
techniques to the YOLOvV8s network to reduce model complexity
while achieving effective segmentation performance. However, such
lightweight designs may come at the expense of reduced
segmentation accuracy.

In summary, existing segmentation models primarily
emphasize distinguishing targets from complex backgrounds but
pay limited attention to differentiating internal structural
components, such as the junction between the petiole and main
stem in tobacco. Moreover, achieving a balance between high
segmentation accuracy and low computational complexity
remains a critical challenge for real-time and edge deployment.

FIGURE 2

10.3389/fpls.2025.1673202

Thus, there is a pressing need for segmentation approaches
specifically designed to address the structural intricacies of
tobacco plants while maintaining computational efficiency.

To address the aforementioned challenges, this study proposes
an enhanced instance segmentation approach based on YOLOvVS-
seg, incorporating depth information preprocessing and
architectural optimization. Firstly, RGB-D images captured by a
depth camera are utilized in conjunction with a background depth
thresholding strategy to filter out non-target regions, thereby
substantially improving foreground segmentation quality. Next, a
Hybrid Dilated Residual Attention Block (HDRAB) is integrated
into the YOLOVS backbone, combining hybrid dilated convolutions
with channel attention mechanisms to enhance the model’s ability
to differentiate between petiole and stem boundaries under varying
lighting conditions. Finally, to further reduce computational
overhead, a lightweight detection head, termed LSDECD
(Lightweight Shared Detail-Enhanced Convolution Detection
Head), is developed by sharing convolutional layers between the
regression and classification branches to reduce computational
overhead, while introducing multi-directional differential
convolutions (DEConv) to improve the extraction of fine-grained
local features. The proposed method in this paper establishes a
robust perceptual foundation for automated tobacco harvesting and
structural analysis.

2 Materials and methods
2.1 Data acquisition

Data for this study were collected in April, 2024, in a tobacco
field located in Wengjiao Village, Mangshi City, Dehong Dai and
Jingpo Autonomous Prefecture, Yunnan Province, China (24°22’
21”"N, 98°33’13”"E). An RGB-D camera (Realsense D435 (Intel
RealSense, 2025)) was mounted on a tobacco leaf harvester, as
illustrated in Figure 2A, to capture the dataset. The harvester is

120cm

235cm

Data collection diagram. (A) Photograph of the harvesting vehicle. (B) Schematic of the sensor installation.
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Depth Image

RGB Image

FIGURE 3
Depth filtering diagram.

equipped a gantry measuring 235 cm in height and 120 cm in width,
enabling it to straddle crop ridges and move directly above the
tobacco plants. To enhance operational stability under field
conditions, crawler-type tires were installed. The camera was
mounted beneath the front section of the gantry, aligned in the
direction of travel, and positioned at a downward tilt angle of 30°
relative to the horizontal plane. Continuous video recording was
employed for data acquisition, with videos recorded at a resolution
of 1280720 pixels. The camera was maintained at an approximate
distance of 50~60 cm from the main stem of the plants, ensuring
operation well within the effective depth range of the D435 sensor.
A schematic of the installation setup is shown in Figure 2B.
Following recording, the video footage was segmented into still
frames for further processing.

To ensure diversity in lighting conditions, data were collected
under both sunny and cloudy skies, with forward and backlighting
scenarios represented, as shown in Figure 1. All images utilized in
this study were acquired from the right-side camera. A total of 2,366
tobacco images were extracted from the video footage, including
692 images under sunny backlighting, 455 under sunny front
lighting, 522 under cloudy backlighting, and 697 under cloudy
front lighting. The dataset was split into training, validation, and
test sets in a ratio of 8:1:1.

2.2 Annotation strategy

Due to the dense growth of tobacco plants and the presence of
similarly colored vegetation in the background, segmentation of key
structural parts is prone to interference. Previous studies have
demonstrated that background filtering can improve detection
performance (Arsenovic et al., 2019). To address this issue, a depth-
based background filtering approach was employed in this study: pixels
with depth values greater than 60 cm were reassigned a grayscale value
of 128, thereby suppressing interference from background regions with
similar coloration. An illustration of this process is provided in Figure 3.

Following depth filtering, the tobacco images were manually
annotated using the Labelme tool, resulting in labels in JSON
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Set the pixel values in the
RGB image with a depth
greater than 60cm to gray

Result

format. These annotations were subsequently converted into
YOLO-compatible.txt files. The labeling strategy is depicted in
Figure 4. For each petiole-stem pair, the growth node was used as
a reference point. From this node, the visible portion of the petiole
(including leaf veins) within the camera’s field of view was
annotated, as shown in red in Figure 4. The main stem was
annotated from the ground up to the point where it becomes
occluded by the petiole, as annotated in green. Only unobstructed
regions were labeled to ensure annotation consistency. To enhance
boundary clarity, magnified insets focusing on the junctions
between petioles and stems are provided in the lower left corner
of Figure 4.

During training, automatic data augmentations were applied,
expanding the size of the training set by approximately tenfold and
thereby mitigating the risk of model overfitting.

2.3 Model improvements

YOLO is a state-of-the-art single-stage object detection model
that has been widely adopted in both industrial and agricultural
applications due to its excellent performance (Zhou et al., 2022;
Badgujar et al., 2024). YOLOVS, developed by the Ultralytics team
in collaboration with numerous contributors, builds upon the
YOLOV5 framework with extensive architectural improvements to
support real-time, multi-task learning. It further improves model
accuracy and generalization capabilities, while significantly
outperforms earlier models in terms of deployment efficiency on
edge devices. In this study, YOLOVS-seg is selected as the baseline
model for further improvement and comparison. At the time our
work was initiated, YOLOv8-seg was the latest and most stable
segmentation framework available, widely adopted in the
community. Although newer versions such as YOLOv9-
YOLOV13 have since been released, their segmentation branches
have not yet been as mature or reproducible, with most updates
focusing on detection rather than instance segmentation. Therefore,
YOLOVS8-seg provides a more reliable and practical baseline for
enhancement in the context of tobacco plant segmentation.
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FIGURE 4

=

" A

Annotation strategy for key parts of tobacco. (A) Sunny day with direct light. (B) Sunny day with backlight. (C) Cloudy day with direct light. (D) Cloudy

day with backlight.

2.3.1 Multi-scale attention-based structural
enhancement module

In YOLOVS architecture, the C2f module (CSP Bottleneck with
Two Convolutions and Fusion) serves as a key component for
feature extraction. It is an improved version of the Cross Stage
Partial (CSP) structure, specifically designed to enhance feature
extraction and fusion efficiency. Compared to the traditional CSP
architecture, C2f further reduces computational costs, enabling
YOLOVS to achieve a more effective balance between lightweight
design and high performance. By integrating direct connections for
a subset of features with bottleneck-style transformations for the
remainder, C2f improves computational efficiency while preserving
strong feature representation capabilities. A schematic illustration
of the C2f architecture is provided in Figure 5.

Traditional bottleneck modules typically employ 3x3
convolutions for feature extraction; however, their limited
receptive fields constrain the ability to capture global contextual
information. To enhance the capability of YOLOv8-seg in
segmenting complex key parts of tobacco plants, the bottleneck
component within the C2f structure was replaced with a Hybrid

Dilated Residual Attention Block (HDRAB), as shown in Figure 6.
Unlike conventional bottlenecks, HDRAB integrates hybrid dilated
convolutions with residual attention mechanisms, facilitating multi-
scale feature fusion and significantly improving the model’s
capacity to capture spatial details across varying scales. This
architectural enhancement contributes to better instance
segmentation performance in complex agricultural scenarios (Wu
et al., 2024).

The Channel Attention Module (CAM) is composed of Global
Average Pooling (GAP), a convolutional layer, ReLU, and a Sigmoid
activation function. CAM is used to explore the inter-channel
dependencies among convolutional features. In Figure 7, the “®”
symbol represents element-wise multiplication, representing
channel-wise reweighting.

To further optimize the original HDRAB, two additional 1x1
convolutions before and after each dilated convolution (DConv), as
shown in pink in Figure 7. The first 1x1 convolution reduces the
feature dimensionality, while the second restores the number of
channels. This pre-reduction and post-restoration strategy reduces
computational cost while preserving feature integrity. Moreover, it

C2f
— CBS Bottleneck 4| Bottleneck H Concat |—> CBS —
n |
FIGURE 5
C2f structure diagram.
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C2f-HDRAB

A

>
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HDRAB [>...» HDRAB |» Concat |

—»

CBS

| n

FIGURE 6

C2f-HDRAB structure diagramThe Hybrid Dilated Residual Attention Block (HDRAB) consists of two components: a hybrid dilated residual block and
a Channel Attention Module (CAM), as illustrated in Figure 7. The hybrid dilated residual block comprises multiple hybrid dilated convolutions
(denoted as n-DConv in Figure 7) with ReLU activations. These dilated convolutions are connected via multiple skip connections, enabling the
capture of rich local features. Here, n represents the dilation rate, ranging from 1 to 4, and the "@®" symbol denotes element-wise addition, which

facilitates aggregation of spatial information across scales.

= > = > > > > > > =
= (=l — O o 32
) = 5 =) s = 5 =] g 3 s P= z 2 = =
— o183 g S 3—g 3 3 S DD- ¢S 3 Sobpro£52 ~E5E 8 p——
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i — o [} <t o o = — — % = 2
\
FIGURE 7

The architecture of the HDRAB.

enables more efficient feature processing within the DConv layers,
improving information flow and achieving a better balance between
computational efficiency and object detection accuracy.

In practice, tobacco petioles and stems often exhibit blurred or
overlapping boundaries, especially under complex lighting. The
HDRAB structure was therefore designed to enlarge the receptive
field while preserving spatial resolution, enabling the network to
capture both global context and fine boundary cues. By coupling
residual connections with channel attention, HDRAB selectively
strengthens boundary-relevant features and mitigates the ambiguity

at stem-petiole junctions.

2.3.2 Improved lightweight detection head

The detection head in YOLOv8-seg adopts a multi-scale feature
fusion strategy, performing object detection and instance
segmentation on feature maps at 3 different scales—P3, P4, and
P5—as illustrated in Figure 8A. Each feature map first undergoes
dimensionality reduction through a 1x1 convolution to decrease
computational cost and enhance feature expressiveness, followed by
a 3x3 convolution for further local feature extraction.

Based on this structure, the detection head is divided into three
task-specific branches: a mask branch, a regression branch, and a
classification branch. In YOLOv8-seg, the mask branch operates on

———————————————————» Proto Proto
Conv_ GN Conv_GN
> = Conv_Mask —» = —
=t I - a0 Ll I o ek skl
Conv_GN
P3 BN (€ ] ConvReg —»  Scale —» 1x1 I e ik loss
1x1 box loss
Conv_GN
i C Mask —»
L, ISR —» Conv.Cls —» bt I P dkctoss
151 clSloss
Conv_GN Conv Reg |—» Scale —»
I s I Conv*ms‘( meskloss o loes
Conv Cls —»
P4 |, RGN Conv Reg —»  Scale —» = etstoss
1x1 boxiloss - |, convoN
1x1
> ConvReg [—» Sale ——»
Conv_GN - box loss
L o Conv_Cls —» —
Ix1 3x3 > 3x3
> Conv.Cls {——»
cls loss
_, Comv GN > Conv_Mask —» Conv_GN
1x1 - mask loss E> M
Conv Reg [—» Scale —»
F—— box loss
Ps [ > - Conv_Reg —»  Scale —»
bl box loss
Conv_Cls 1—»
- cls loss
Conv_GN

L1 l et HS.IOSS
FIGURE 8

Detection head. (A) original detection head. (B) improved detection head.
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FIGURE 9

The architecture of the DEConv.

top of detection outputs, such that improvements in detection
accuracy directly enhance segmentation performance.

To further optimize this process, we propose a novel detection
head, termed Lightweight Shared Detail-Enhanced Convolution
Detection Head (LSDECD), as shown in Figure 8B, to replace the
original design. In LSDECD, the 3x3 convolutions in the regression
and classification branches across P3, P4, and P5 are shared, effectively
reducing computational load. Given the structural randomness in the
growth of key tobacco components in unstructured environments,
multi-directional differential convolutions (DEConv) are employed as
the shared 3x3 convolution layers to improve fine-grained detail
extraction and enhance the accuracy of the lightweight detection
head. Since instance segmentation demands high-resolution
boundary predictions, the Conv_mask module is not shared with
other branches, thereby preserving the segmentation precision.

The full name of DEConv is Detail-Enhanced Convolution
(Chen et al., 2024), which is specifically designed to enhance the
detection head’s ability to extract fine-grained details, particularly in
response to the unstructured growth patterns of tobacco plants. As
shown in Figure 9, DEConv consists of five parallel convolutional
layers: one standard (vanilla) convolution layer and four difference-
based convolution layers. These four layers are: Central Difference
Convolution (CDC), Angular Difference Convolution (ADC),
Horizontal Difference Convolution (HDC), and Vertical
Difference Convolution (VDC). Each is responsible for extracting
local gradient information in a specific direction, enabling the
network to better capture high-frequency features such as edges
and texture details.

DEConv exhibits distinctive behavior in convolutional
operations. When multiple convolutional kernels with identical
size, stride, and padding are applied in parallel to the same input,
the sum of their outputs is mathematically equivalent to summing
the kernels first and then performing a single convolution. As a

Frontiers in Plant Science

result, DEConv does not increase the number of parameters or
computational cost, making it well-suited for lightweight
applications. Given an input feature map, the output of DEConv
can be expressed as Equation 1:

5
Fou = ElFin*Ki = Fiy# Koy (1)
=

where K;(i = 1:5) represents the five individual convolution
kernels, #* denotes the convolution operation, and K, is the
equivalent kernel obtained by summing the parallel kernels.
DEConv enables efficient extraction of fine-grained image features
such as texture, shape, and color, making it particularly effective for
meeting the detailed requirements of instance segmentation tasks.
Considering the need for efficient field deployment, the LSDECD
head integrates shared convolutional layers to reduce redundancy
between classification and regression branches. At the same time, the
DEConv module enhances sensitivity to local high-frequency gradients,
which is critical for distinguishing slender petioles from occluding
leaves. This combination allows the model to achieve fine-grained

feature extraction while maintaining lightweight computation.

2.3.3 YOLOV8 network overall structure

To enhance the model’s structural perception of key tobacco
components, a structural enhancement module—Hybrid Dilated
Residual Attention Block (HDRAB)—is introduced, combining
multi-scale dilated convolutions with a channel attention
mechanism. While replacing all C2f modules with HDRAB could
improve feature extraction capabilities, such extensive modification
would inevitably degrade inference speed and hinder deployment
on field devices. Therefore, a selective modification strategy is
adopted based on the specific requirements of key-part
segmentation in tobacco plants.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1673202
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

In the YOLOVS8 backbone, the shallow C2f modules primarily
extract low-level features such as edges and textures. Introducing
attention mechanisms at this stage may overemphasize irrelevant
channels and lead to overfitting on redundant features. Thus, the
original C2f structures are retained in the shallow layers. In
contrast, the mid-to-deep layers (Stages 3 to 5) are critical for
semantic aggregation and for modeling the spatial relationships
between the tobacco stem and petiole. Accordingly, HDRAB
modules are embedded into these stages to enhance the model’s
capacity for capturing structural continuity and non-local
semantic dependencies.

Within the network’s neck, HDRAB is not applied to the
downsampling path to maintain computational efficiency.
However, HDRAB modules are incorporated into the upsampling
path to reinforce boundary detail representation in high-resolution
feature maps. This modification is particularly beneficial near the
output layers—such as the P3 level—where the non-local modeling
capability of HDRAB significantly improves the distinction between
the petiole and the main vein. Furthermore, in the final C2f module
before the detection head output—where semantic features are
densely fused and exert substantial influence on segmentation
accuracy—HDRAB is also introduced to further enhance
structural feature representation. The complete integration
strategy is illustrated in Figure 10.

2.4 Experimental conditions

10.3389/fpls.2025.1673202

included PyTorch 2.0.0, CUDA 11.8, and Python 3.9. The model
was trained for 300 epochs with an input resolution of 640 x 640
and a batch size of 4. We employed the SGD optimizer with an
initial learning rate of 0.01, momentum of 0.937, and weight decay
of 0.0005, following the default YOLOVS training strategy.

2.5 Evaluation indicators

Given the importance of accurate mask and localization
performance in evaluating segmentation models, we adopt both
bounding box mean Average Precision (mAP) and mask mAP as
the primary evaluation metrics for key part segmentation in this
study. Two types of Intersection over Union (IoU) thresholds are
used: a fixed threshold of 0.5, denoted as mAP50, and a range from
0.5 to 0.95 (in increments of 0.05), averaged and referred to as
mAP50-95. A predicted bounding box is considered a true positive if
its IoU with the ground truth polygon exceeds the specified threshold.
Otherwise, it is treated as a false positive. If no predicted box meets
the IoU threshold for a given ground truth object, that object is
counted as a false negative. Precision is defined as the ratio of true
positives to the total number of predicted positives, while recall is the
ratio of true positives to the total number of ground truth instances.
The mean Average Precision (mAP) summarizes model performance
across varying confidence thresholds and IoU values. The definitions
of these metrics are as follows Equations 2-4:

. TP
Precision = TP P 2)
All model training and testing were conducted on a desktop *
workstation with the following hardware configuration: Windows TP
10 operating system, Intel Core i5-13490F CPU, NVIDIA GeForce Recall = TP+ EN 3)
RTX 4060 Ti GPU, and 32 GB of RAM. The software environment
s e | e oy X T e ——
! | Backbone 1. ‘ | | C2{-HDRAB !
1 1 |
: o BS 0 cBs S[splie }o[ HDRAB |>...o{ HDRAB || Concat |+ cBS !
1 1 Ly 1
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""""" iz b :
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i | : v :
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FIGURE 10
Improved YOLOvV8-seg model architecture.
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where C denotes the number of categories, N represents the
number of IoU thresholds, and AP, ; is the average precision of the
c-th category at the i-th IoU threshold.

3 Experimental results and analysis

3.1 Comparative experiment before and
after depth filtering

To evaluate the effectiveness of the proposed depth filtering method
for eliminating background interference, a comparative experiment was
conducted using two datasets: one with depth filtering applied and one
without. Both datasets were evaluated under identical conditions using
the same instance segmentation model, YOLOv8-seg.The experimental
results are presented in Figure 11.

As shown in Table 1, applying depth filtering significantly
improves segmentation performance under the same model.
Specifically, the mAP50" increases by 7.9%, and the mAP50°¢
improves by 6.3%. Depth filtering effectively removes background
interference, such as distant plants (Figures 11A, B), as well as other

TABLE 1 Comparison of experimental results of different dataset types.

Dataset type mAP50°°/% mAP50%%9/%
Before depth filtering 76.4 74.8
After depth filtering 84.3 81.1

petiole 0.91 0.90""w
&
petiole 0.65 st s
— >
B 2 g

FIGURE 11

10.3389/fpls.2025.1673202

non-target objects in the background (Figures 11C, D), thereby
enhancing the accuracy of key part segmentation.

3.2 Ablation experiments

3.2.1 Comparison of different detection heads

Table 2 presents the segmentation results obtained using
different detection head architectures. As shown in the data, when
the DEConv module is not incorporated—i.e., when the detection
head is replaced with LSCD—channel sharing across different layers
reduces computational cost. However, this simplification results in a
slight decline in segmentation performance.

After integrating the DEConv module and upgrading the
detection head to LSDECD, the model demonstrates an
improvement across all segmentation metrics. This indicates that
LSDECD not only preserves computational efficiency through its
shared structure but also significantly enhances the model’s ability
to capture fine-grained details, thereby leading to superior overall
segmentation performance.

3.2.2 C2f-HDRAB embedding location ablation
study

Given that HDRAB offers strong structural modeling
capabilities but also introduces additional computational
overhead, a full-scale replacement of all C2f modules may result
in unnecessary performance costs. To systematically investigate the
actual impact of HDRAB on segmentation performance, and to
evaluate its adaptability and contribution at different network
depths, a grouped ablation study was conducted focusing on the
replacement positions of the C2f modules. The results are

petiole 0.95

petiole 0.67

Comparison of segmentation effects. (A) before depth filtering. (B) after depth filtering. (C) before depth filtering. (D) after depth filtering.
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TABLE 2 Ablation study of the detection head.

mAP50°°/% mAP50-95°°/% mAP50°°9/% mAP50-95¢9/%
v8-Head 84.3 51.0 81.1 44.5
LSCD 82.6 49.7 80.2 42.3
LSDECD 86.0 55.1 85.2 47.1

« »

summarized in Table 3, where “-” indicates retention of the original ~ performance for petioles remains acceptable within the context of
C2f structure, and “v“ denotes substitution with the C2f-HDRAB  this application.
module. Each row in Table 3 corresponds to the specific network The combination of the improved C2f module and the
variants (a—e) illustrated in Figure 12. enhanced detection head yields the best overall performance,
As shown in Table 3, enhancing the C2f modules with HDRAB  producing the most significant improvements in both detection
in the deeper layers of the backbone and neck improves the model’s  and segmentation across all target categories. Compared to the
segmentation accuracy. When all C2f modules are replaced with  baseline model, mAP50" and mAP50-95" increased by 5.2% and
C2f-HDRAB, the model achieves the highest segmentation  9.4%, respectively, while mAP50*® and mAP50-95%® improved by
performance, with mAP50°® and mAP50*¢ reaching 89.2% and  10% and 6.3%. The integration of HDRAB into the C2f module
88.7%, respectively. However, when only the deep-layer C2f  enhances the model’s ability to extract and fuse multi-scale features,
modules in the backbone and neck are replaced (as in the fifth  while the incorporation of the DEConv module into the detection
row of Table 3), the mAP50™® and mAP50° slightly decrease to  head strengthens fine-detail extraction. The synergy of these two
89.0% and 88.3%, respectively, while the total computational costis  architectural enhancements contributes to the optimal performance
reduced by 1.2 GFLOPs compared to the full replacement strategy.  of the proposed segmentation model.
These results indicate that substituting C2f modules in shallow
layers yields limited performance gains while introducing

unnecessary computational overhead. Therefore, we adopt the 3.3 Comparison of different models
improvement strategy shown in the fifth row—modifying only

the deep layers—is adopted as the final configuration. The To further validate the effectiveness of our proposed
corresponding network structure is illustrated in Figure 12D. improvements, the performance of our model was compared

against several widely used instance segmentation models on the
3.2.3 Ablation experiments on detection head validation set. YOLOvS-seg, known for its real-time performance,
and improved C2f serves as a strong single-stage segmentation baseline. Mask R-CNN, a

Table 4 presents the ablation results for the improved detection ~ representative two-stage object detection and segmentation
head and the enhanced C2f module, along with the mAP scores for ~ framework, is recognized for its high accuracy and is commonly
petioles and main stems across different model variants. Compared  used as a benchmark model. SOLOV2 is another high-performing
to petiole segmentation, the models consistently demonstrate better ~ segmentation algorithm that achieves precise instance segmentation
performance in detecting and segmenting the main stem. This  without relying on an explicit object detection stage. Accordingly,
disparity may be attributed to the irregular growth patterns and ~ Mask R-CNN, SOLOv2, YOLOVS8-seg (baseline), and our improved
complex contours of petioles. model were selected for comparative evaluation. Transformer-based

However, in the subsequent task of computing key distances,  segmentation models (e.g., SegFormer, Mask2Former) were also
petioles are primarily used to locate specific key points, and a  considered during our experimental design. However, the
complete view of the petiole is not necessary. In contrast, the  implementations available in MMDetection are typically large-scale
accuracy of the main stem contour is critical, as it directly affects ~ models with high memory and computational demands, making
measurement precision. Therefore, the observed segmentation  them unsuitable for our experimental settings and impractical for

TABLE 3 Ablation study of c2f-hdrab embedding position.

Backbone | Backbone | Neck | Neck MAPSOPU% gl mapsox Ghop  GRLops
- - - - 84.3 51.0 81.1 44.5 42.7
- 4 - - 86.7 53.1 85.5 44.8 43.1
- - - v 85.9 522 84.6 44.9 434
- v - v 89.0 55.0 88.3 452 43.8
v 4 v v 89.2 55.3 88.7 45.5 45.0
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The network structure of the backbone and neck parts in different situations.

edge deployment scenarios. As the primary goal of this work is to
enhance YOLOVS for real-time agricultural applications, rather than
to optimize transformer-based frameworks, these models were not
included in the current comparative evaluation.

As shown in Table 5, Mask R-CNN achieves the highest
segmentation performance among all compared models, with
mAP50™ and mAP50°8 reaching 85.5% and 87.2%, respectively.
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However, it has the lowest computational efficiency, requiring 131
GFLOPs. YOLOvS8-seg demonstrates the highest computational
efficiency, with a FLOPs count of only 42.7 GFLOPs, but its
segmentation performance is relatively lower, with mAP50" and
mAP50°® at 84.3% and 81.1%, respectively.

In contrast, our improved model achieves the best overall
performance, with mAP50™ and mAP50*¢ reaching 89.5% and
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TABLE 4 Ablation study of detection head and C2f.

10.3389/fpls.2025.1673202

C2f-HDRAB  LSDECD Class mAP50°°/% mAP50-95°°/% = mAP50°9/%  mAP50-95°°9/%

all 84.3 51.0 81.1 44.5

- - petiole 74.2 42.6 69.5 29.8
stem 91.1 54.4 92.2 54.1

all 89.0 55.0 88.3 452

v - petiole 85.5 51.6 82.5 31.7
stem 92.5 58.5 94.0 58.7

all 86.0 55.1 85.2 47.1

- v petiole 76.3 48.0 72.2 32.1
stem 95.7 66.2 97.3 62.2

all 89.5 60.4 91.1 50.8

v v petiole 86.0 50.9 85.2 37.8
stem 94.9 65.6 98.1 63.8

91.1%, respectively. It also obtains the highest precision and recall
scores: Precision® at 92.0%, Recall®® at 89.5%, Precision®® at 93.7%,
and Recall**® at 92.5%. Despite this performance, the model
maintains a low computational cost of 43.8 GFLOPs, making it
well-suited for deployment on edge devices.

Figure 13 presents the segmentation results on the same image
using four models: SOLOv2, Mask R-CNN, YOLOv8-seg, and our
improved model, YOLO-HDRAB-LSDECD. As illustrated, our
improved model successfully segments all key parts of the tobacco
plant, outperforming SOLOv2 and YOLOvS8-seg. Mask R-CNN
ranks second in terms of segmentation completeness.

A closer comparison between YOLO-HDRAB-LSDECD and
Mask R-CNN reveals that Mask R-CNN struggles to accurately
distinguish between petioles and main stems, often producing
overlapping segmentations. This issue is evident in the 2nd, 3rd,
and 4th rows of Figure 13B, where petiole-stem overlaps are
observed, potentially compromising subsequent calculations of
internodal spacing. Moreover, Mask R-CNN tends to generate
false positives, as seen on the right side of the 2nd row in
Figure 13B, further affecting downstream processing.

In contrast, our improved model demonstrates the clearest
boundary distinction between petioles and main stems,
highlighting the effectiveness of the HDRAB module in
addressing boundary ambiguity and improving structural
segmentation accuracy.

In addition to the successful segmentation results, we also
present some challenging cases (Figure 14). For example, under
severe occlusion, one petiole was correctly identified, while another
petiole was missed due to leaf occlusion and unfavorable viewing
angles, as highlighted by the yellow box in the figure. These failure
cases indicate that incorporating more training samples with such
occlusion scenarios can further improve the model performance.
This will be considered in our future work.

Frontiers in Plant Science

12

4 Discussion

This study addresses the problem of instance segmentation for
tobacco plants, specifically targeting the complex structures and
blurred boundaries between petioles and main stems. A refined
segmentation method based on an improved YOLOvV8-seg
framework is proposed. To tackle the boundary ambiguity
encountered in traditional methods when dealing with intricate
plant structures, a Hybrid Dilated Residual Attention Block
(HDRAB) is introduced to enhance the model’s capability for
joint modeling of local and global information.

Compared with classic methods such as Mask R-CNN (He
et al,, 2017) and SOLOv2 (Wang et al., 2020), the proposed model
demonstrates superior performance in fine-grained boundary
segmentation under complex field conditions. Specifically, while
Mask R-CNN achieves high overall segmentation accuracy, it
frequently produces overlapping detections and false positives in
the petiole-stem junction areas, which negatively impacts
subsequent internodal distance measurements. Although SOLOv2
circumvents the dependency on object detection, it lacks the
capacity for fine-scale texture modeling, resulting in insufficient
boundary detail representation.

Yang et al. proposed an improved DeepLabv3+ method
incorporating DenseASPP and strip pooling strategies (Jia et al,
2023), achieving a mean Intersection-over-Union (mIoU) of 90.8%
in leaf segmentation and exhibiting good boundary handling.
However, their approach shows limited effectiveness when applied
to plants with complex intertwined branches, such as tobacco.
Similarly, Li et al. developed PSegNet (Li et al., 2022), which
achieves robust segmentation performance in plant point cloud
data, particularly in distinguishing leaf and stem structures.
Nevertheless, point cloud acquisition is costly and less practical
for real-time field applications.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1673202
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al. 10.3389/fpls.2025.1673202

In contrast, the YOLO-HDRAB-LSDECD model proposed in
this study, operating on two-dimensional RGB-D images, combined
3 % 3 4 with a depth-based background filtering strategy, significantly
improves foreground segmentation quality and effectively
suppresses background vegetation interference, providing a more
. reliable foundation for subsequent structural analysis and growth
é\ metric extraction.
é g 7 8 & In terms of detailed feature modeling, the introduced Detail-
E.’ Enhanced Convolution (DEConv) module leverages multi-
directional gradient differences to enhance sensitivity to local
N high-frequency features. Compared to existing hybrid vision
2 IR networks that combine keypoint detection with segmentation (Li
g T et al., 2024), the proposed approach achieves mAP50" and
mAP50°® scores of 89.5% and 91.1%, respectively, surpassing
N existing unimodal methods in terms of fine-grained boundary
"Z o lwla delineation, all while maintaining low computational overhead.
:% g g 4 Despite these promising results, several limitations and areas for
& further investigation remain. Firstly, the current approach primarily
relies on RGB-D sensors; however, depth information can be easily
& affected by strong illumination or weak reflectivity, potentially
% o a @ resulting in the loss of key petiole points. Future work could
g ¥ ¥R explore the integration of multi-modal sensor data, such as
E hyperspectral or thermal imaging, combined with RGB-D data
(Kim and Chung, 2021), to enhance robustness under complex
lighting conditions.
T =z Furthermore, the architectural components introduced in this
A work were selected with specific challenges in mind. HDRAB was
designed to enlarge the receptive field while retaining spatial
. resolution, thereby enhancing the discrimination of blurred
? boundaries at the stem-petiole junctions. DEConv was
§ - - introduced to capture multi-directional gradient information,
% strengthening fine-grained feature extraction under occlusion.
Although exhaustive comparisons with other attention modules
N such as SE or CBAM were not included, the ablation experiments
“; L m o e (Section 3.2) demonstrate the effectiveness of the chosen designs.
< B i Future studies will further investigate alternative lightweight
-é = attention mechanisms to provide a broader comparative analysis.
5 2 In addition, the current dataset was collected in a relatively limited
E g g8 =2 geographical location and cultivation environment, which may restrict
g E the generalization ability of the model. Future work will focus on
% expanding the dataset to include tobacco plants from multiple regions,
_§ I I varieties, and growth stages, enabling more comprehensive validation
g = 29 and further improving the robustness and adaptability of the proposed
£ approach. Beyond tobacco, the proposed framework also has the
g potential to be adapted to other crops with similar structural
§ e lels segmentation challenges, and future validation on species such as
g “ls e e tomato or cucumber will help further examine its generalizability.
ﬁ Although the proposed method maintains good inference
i efficiency under limited computational resources, further
'g § optimization in model compression and acceleration is necessary
§ L Z ¥ % to enable broader real-time field deployment. In addition,
g' g E E % lightweight transformer-based segr.nentation architecAtures,. once
o 2 <2'€ e g they become more mature and efficient, could also be investigated
; § as complementary baselines to provide a broader comparison.
E Quantitative analysis of model inference speed will also be carried
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FIGURE 13

Segmentation results of different algorithms. (A) SOLOv2. (B) Mask R-CNN. (C) YOLOv8-seg. (D) YOLO-HDRAB-LSDECD.

FIGURE 14
Case of segmentation failure.

out, with potential exploration into lightweight transformer
architectures or acceleration techniques based on pruning and
quantization, aiming to reduce the deployment barrier.

In conclusion, this study proposes an effective method for the
instance segmentation of key structural components in tobacco
plants. The approach achieves superior performance in boundary
ambiguity handling and fine-grained texture extraction compared to
existing methods, validating the effectiveness of the proposed module
designs and providing a solid foundation for future research in plant
structure recognition and intelligent perception applications.
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5 Conclusions

This study addresses the task of segmenting key structural
components of tobacco plants by proposing an enhanced instance
segmentation method based on the YOLOvVS-seg framework.
Considering the complexity of field environments, targeted
improvements were introduced at both the network architecture
and data preprocessing levels.

Specifically, a depth-based background filtering strategy was
employed to suppress interference from non-target vegetation,
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significantly enhancing foreground segmentation quality. The
backbone was augmented with a Hybrid Dilated Residual Attention
Block (HDRAB) to strengthen multi-scale contextual feature
extraction, while the detection head was redesigned into a
lightweight LSDECD structure incorporating a Detail-Enhanced
Convolution (DEConv) module to improve the representation of fine
textures and boundary details.

Experimental results demonstrate that the introduction of the
depth filtering mechanism improves mAP50 from 76.4% to 84.3%
and mAP50°® from 74.8% to 81.1%, achieving gains of 7.9% and
6.3%, respectively, thereby validating its effectiveness in mitigating
background noise. Furthermore, architectural enhancements
through HDRAB and LSDECD boost mAP50™ and mAP50*¢ to
89.5% and 91.1%, corresponding to improvements of 5.2% and
10.0% over the baseline YOLOv8-seg model.

Compared to mainstream instance segmentation models such as
Mask R-CNN and SOLOv2, the proposed method demonstrates
significant advantages in both segmentation accuracy and
computational efficiency. Specifically, Mask R-CNN achieves
mAP50°® and mAP50°8 scores of 85.5% and 87.2% on the
validation set but incurs a high computational cost of 131 GFLOPs,
making it unsuitable for real-time deployment in field conditions.
SOLOV2, while eliminating dependency on an explicit detection stage,
attains an mAP50°® of 85.4%, but still falls short in fine-grained
boundary delineation. YOLOVS-seg, as a single-stage baseline model,
achieves the highest inference efficiency with only 42.7 GFLOPs;
however, its segmentation accuracy is relatively lower, with mAP50*
and mAP50*® scores of 84.3% and 81.1%, respectively.

In contrast, the proposed YOLO-HDRAB-LSDECD model
achieves a better balance between segmentation accuracy and
efficiency, reaching mAP50™ and mAP50™8 scores of 89.5% and
91.1%, respectively. Furthermore, it attains Precision™ and Recall™
scores of 92.0% and 89.5%, and Precision®® and Recall**® scores of
93.7% and 92.5%, respectively, while maintaining a low computational
cost of just 43.8 GFLOPs. This method not only significantly improves
segmentation accuracy in regions with blurred boundaries but also
maintains low computational complexity, demonstrating excellent
potential for deployment in real-world agricultural field environments.
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