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Introduction: Fusarium verticillioides (Fv) is a major phytopathogen responsible
for maize root rot, affecting crop productivity globally. A probable infection
mechanism has been suggested in Fusarium, involving the disruption, and partial
degradation of the plant cell wall by the colonizing fungal hyphae.

Methods: In this study, the highly virulent Fv DA42 strain was subjected to whole-
genome sequencing, in silico secretome analysis and SEM structural analysis to
elucidate its pathogenic mechanism.

Results: The assembled genome comprised 175 contigs (=200 pb) totaling 42.27
Mb, with an N50 of 1.24 Mb and GC content of 48.51%. A total of 14,198 protein-
coding genes were predicted, of which 997 (7.03%) correspond to classical secreted
proteins. The predicted secretome includes 262 carbohydrate-active enzymes
(CAZymes), 62 proteases, 400 effectors, 481 virulence factors and 288
uncharacterized proteins. Functional annotation revealed enrichment in
enzymatic activities such as pectinesterases, feruloyl esterases, and glucosidases,
highlighting their role in host cell wall degradation. Chromosomal distribution
showed secretome genes concentrated on chromosomes 4 and 8, with the
highest density (49.2 genes/Mb) on chromosome 10. Scanning electron
microscopy confirmed degradation of maize root hairs and epidermis seven days
post-infection, this degradation may have occurred days prior to the observation.
STRING analysis identified key proteins like FVEG_10795 (pectinesterase) and
FVEG_09361 (feruloyl esterase) as central to coordinated enzymatic attacks.
Discussion: This integrative analysis offers crucial insights into Fv pathogenicity
and provides a molecular basis for targeted antifungal strategies and resistance
breeding in maize.
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1 Introduction

Maize root rot is an important fungal disease, which is a
constant menace to maize agriculture worldwide. The main
fungal phytopathogen associated with root rot are Fusarium spp.
However, the Fusarium incidence statistics in maize rots is limited
and it varies by geographic location, climate (humidity and
temperature) during the agriculture cycle, agricultural practices,
and the maize genetic background (Czarnecka et al., 2022).
Additionally, visual identification of root infection is not easy.
Reports show prevalence of this phytopathogen in corn field from
diverse agriculture regions around the world, for example, Serbia,
Croatia (Hajnal et al., 2023), Portugal (Simoes et al., 2023), Poland
(Czembor et al,, 2015), China (Xia et al.,, 2022), Germany (Pfordt
et al., 2020), and Mexico (Velarde Félix et al., 2018).

Fusarium species also cause other types of rot and blight,
affecting seedling health, stalk resistance, and grain quality
(Baldwin et al., 2014; Gai et al., 2018; Okello et al., 2019).
Fusarium maize rots are caused by several species (Leyva-
Madrigal et al., 2015; Okello et al., 2019), with the most
predominant being F. graminearum Schwabe and F. verticillioides
Sacc. Nirenberg (Hussein et al., 2003; Gortz et al., 2008; Atanasova-
Penichon et al., 2014; Leyva-Madrigal et al., 2015; Qiu et al., 2015;
de Sousa et al., 2022).

Fusarium verticillioides (Fv) like many fungal pathogens,
possesses a remarkable ability to infect maize plants at every
developmental stage, from seed and seedling through the
productive stage (Roman et al., 2020). The infectious potential of
Fusarium is evident in its ability to infiltrate not only in damaged
roots but also in stalks, and even developing grains through the
stigmas and silk channels (Duncan and Howard, 2010; Gai et al,,
2018; Thompson and Raizada, 2018), suggesting that this
phytopathogen could utilize diverse infection strategies (Beccari
et al, 2022). In soil, the root cell wall is the first barrier that
soilborne pathogens, such as Fv, must overcome to infect plants.
The mechanism of infection in tomato and pea roots by F.
oxysporum occurs mainly through cell-to-cell spaces, lateral root
emergence, or cell damage caused by rocks or insects. The hyphae
enter by disrupting, and causing partial degradation of the cell wall
(Bishop and Cooper, 1983). These hyphae form appressorium-like
infection structures or penetration pegs. These structure have also
been visualized in wheat coleoptiles (Qiu et al., 2019) and floral
organs (Boenisch and Schafer, 2011) colonized by F. graminearum
and F. culmorum (Kang and Buchenauer, 2002), as well as by other
fungal necrotrophic phytopathogens, such as Botrytis cinerea (Dinh
et al, 2011) and Rhizoctonia solani (Chethana et al., 2021). Using
SEM and red or green fluorescent protein tags, F. verticillioides has
been shown colonizing maize by penetration of the lateral root
breakage zones, and root epidermis through appressorium-like
structures (Murillo et al., 1999; Oren et al., 2003; Wu et al,, 2011).
During the first days of Fusarium root rot infection, symptoms start
as small pale-yellow root discolorations that progress to dark brown
color and eventually form necrotic spots (Wu et al., 2011; Quiroz-
Figueroa et al., 2023). Simultaneously, root hairs collapse, providing
a visual cue that suggests events associated with cell wall
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degradation in the epidermal cells caused possibly by Fv secreted
proteins (Quiroz-Figueroa et al., 2023). This intricate process of
invasion and colonization may shed light on the dynamic interplay
between Fv and maize, highlighting the importance of
understanding the physiological and molecular aspects of this
bipartite interaction.

The plant cell wall is a complex structure primarily composed of
polysaccharides such as cellulose, hemicellulose, pectin, and lignin
as well as proteins and phenolic compounds, such as ferulic acid.
These components provide structural support by crosslinking
different polysaccharides (Alberts et al.,, 2002). Fungal
phytopathogens, such as Fv, secrete an arsenal of lytic enzymes
and effector proteins, collectively known as the protein secretome.
These proteins act synergistically to degrade cell wall components,
which is crucial for nutrient acquisition, fungal colonization, and
dispersion within plant tissues (McCotter et al., 2016; Bradshaw
et al,, 2021). The secretome consists of proteases, lipases, protein
effectors, and carbohydrate-active enzymes (CAZymes), such as
cellulases, xylanases, and pectinases (Bradshaw et al., 2021).
Understanding the mechanisms that Fv and other
phytopathogens use to degrade the cell wall and overcome host
defenses will provide novel targets for disease control.

Whole-genome sequencing (WGS) has revolutionized fungal
pathogen research, enabling advancements in disease diagnostics
and the determination of evolutionary relationships between species
(Navale et al., 2022). Additionally, WGS offers a comprehensive
view of potential genetic factors. Next-generation sequencing
(NGS) technologies facilitate the identification of numerous
genes, including those involved in pathogenesis and secretome
gene products. In silico analysis of the secretome, which predicts
secreted gene products from gene sequences, allows for the
identification of key lytic enzymes and protein effectors involved
in plant cell wall degradation and pathogenic mechanisms. Six Fv
genome assemblies have been deposited at NCBI, ranging from
contigs to chromosome level, with genome sizes ranging from 41.84
to 44.65 Mb and containing between 15,053 to 20,574 protein-
coding genes (Ma et al., 2010; Navale et al., 2022). Recently, a report
was published on the gapless genome assembly of Fv strain 7600
using PacBio HiFi technology. The resulting final genome assembly
is 41.994 Mb and contains 15,230 protein-coding genes (Yao et al.,
2023). This genome assembly represents an improvement over the
first version, which had a size of 41.79 Mb and contained 14,335
protein-coding genes, along with other genome statistics (Ma
et al, 2010).

The Fv secretome could plays an important role in plant
pathogenesis (Quiroz-Figueroa et al., 2023) and human Fusariosis
(Georgiadou et al,, 2014), as well as in biotechnological potential
uses. Despite the importance of this fungal species, to our
knowledge, there are only a few reports on the Fv secretome. One
of these reports shows the potential for commercial use of Fv
secretome as a complement to commercial cellulases cocktail in
the saccharification (lignocellulose hydrolysis) of wheat straw, 166
Fv secreted proteins were identified by proteomic analysis, of which
57 are involved in the degradation of lignocellulosic material, these
include CAZymes that degrade cellulose, xylans, pectins, lignins;
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and other carbohydrate-modifying enzymes (Ravalason et al,
2012). Another report involved the in silico comparative analysis
of the Fv BIONCLA4 strain, which identified 2,058 proteins related to
the secretome. Of these, 676 corresponded to the classical secretion
pathway, while 569 were identified as pathogenesis-related proteins
(Navale et al., 2022).

Roots act as the first line of defense against soil pathogens such
as F. verticillioides. The pathogen has evolved mechanisms to
degrade the root cell wall, allowing its entry and subsequent
colonization of the plant. This occurs mainly through the
secretion of hydrolytic enzymes and effectors that turn off plant
immune system (Jones and Dangl, 2006) and break down structural
components (Pinto et al., 2025) such as proteins, cellulose,
hemicellulose, lignin and pectin, facilitating its dispersion inside
the plant tissues and the establishment of infection. In this study, we
used SEM, WGS and in silico secretome analysis to investigate the
molecular arsenal of Fyv and its significant role in maize root rot.
Our aim was to identify potentially key secreted proteins involved in
pathogenesis and cell wall degradation. This study could provide the
basis for the development of more effective control strategies for the
Fy-maize interaction and contribute to the protection of this
important crop, as well as other crops affected by Fusarium species.

2 Materials and methods
2.1 Seed infection

To evaluate the response to F. verticillioides (Fv) infection, a
maize inbred line highly susceptible (IL09) to root rot was used and
previously characterized by Roman (2017) and Roman et al. (2020).
The virulent Fv DA42 strain, described by Leyva-Madrigal et al.
(2015) was used for infection assays. Seed preparation followed
protocols previously described by Warham et al. (1996) and Roman
(2017), with minor modifications. Seeds were superficially
disinfected by sonication for 5 minutes in sterile distilled water
with Tween 20 (5 drops/100 mL) using an ultrasonic bath (2.8 L,
Fisher Scientific). This was followed by immersion in 1.5% sodium
hypochlorite at 52°C for 20 minutes in a thermostatic water bath
(FE-377, Felisa), and then rinsed thrice with sterile distilled water
under aseptic conditions in a biological safety cabinet (Herasafe KS,
Thermo Scientific).

The Fv strain was cultured on Spezieller Nahrstoffarmer agar
(SNA) medium (Leslie and Summerell, 2007) supplemented with a
1 cm? filter paper and incubated at 25 + 2°C for 14 days. Conidia
were harvested by adding 5 mL of sterile 0.8% NaCl solution to the
culture, followed by gentle agitation. A working conidial suspension
was prepared at 1 x 10° conidia/mL, quantified using a Neubauer
counting chamber (cat. No. 3110, Hausser Scientific, USA) and a
light microscope (B-383-M11, Optika, Italy). Disinfected seeds were
immersed for 5 minutes in the conidial suspension, while control
seeds were treated with sterile water. Ten seeds were placed every 2
cm along sterile, moistened Kraft paper sheets (40 x 20 cm), which
were rolled and placed in plastic bags. Seed germination was carried
out at 25°C under a 16:8 h light:dark photoperiod for 7 days.
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Moisture was maintained by daily irrigation with 15 mL of sterile
water. Daily visual observations and photographs were taken using
a stereo microscope (M205FA, Leica, Germany).

2.2 Microscopy analyses

Primary root tissues with and without necrosis symptoms were
harvested for scanning electronic microscopy (SEM) studies. These
samples were treated as previously described by Olivares-Garcia
etal. (2020) and observed using an FEI-Quanta250 FEG microscope
(Czech Republic) operated at an acceleration voltage of 5 kV.

2.3 DNA isolation and sequencing

The Fv DA42 strain culture (Leyva-Madrigal et al., 2015) was
grown in Petri dishes containing potato dextrose broth (Cat. 7041,
MCD Lab) and incubated at 25 + 2°C. After seven days of
incubation, the mycelium was harvested by scraping it with a
spatula. Approximately 100 mg of mycelium was used for
genomic DNA (gDNA) extraction using the CTAB protocol
(Zhang et al, 1998). The quality of gDNA was evaluated on a
0.8% agarose gel stained with GelRed (cat. 41003, Biotum) and
visualized using a Gel Doc XR+ (BioRad). Genomic DNA was
quantified with a Nanodrop spectrophotometer (Nanodrop 8000,
Thermo Fisher) and stored at -20°C. The DNA samples were
prepared according to the NGS library preparation workflow and
sequenced using the Illumina platform by Macrogen (whole
genome de novo sequencing, paired-end reads with a read length
of 151).

2.4 Assembly of raw data and gene and
secretome prediction

Raw reads quality was evaluated using FastQC (Andrews, 2023)
and trimmed to remove low quality bases using Trimmomatic
(Bolger et al.,, 2014) with default parameters for paired-end data.
These trimmed raw reads were filtered by performing a BLASTn
search against the mitochondrial genome of the teleomorph of Fv
(Gibberella moniliformis) (NCBI RefSeq: NC_016687.1). High
quality reads were then assembled de novo using the Shovill tool
(Seemann, 2017) with assemblers, where the Velvet assembler gave
the best metrics. The quality of the assembled genome was verified by
QUAST (Gurevich et al.,, 2013), which provides key metrics such as
genome size, N50, L50, the number of contigs, and the largest contig.
As a second filter to remove potential mitochondrial contaminants,
the contigs were BLASTed against a NR mitochondrial database
(https://ftp.ncbi.nlm.nih.gov/genomes/refseq/mitochondrion), and
those showing >90% identity was manually removed. Gene (nt)
and protein (aa) predictions were performed using AUGUSTUS
through gene models (Stanke and Waack, 2003), which were built
from the Fv 7600 strain (GCA_000149555.1) using Train Augustus.
These programs were implemented on the Galaxy USA platform
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(Galaxy, 2024). The predicted proteins were functionally annotated
by eggNOG-mapper databases (Huerta-Cepas et al., 2019). RefSeq
protein annotation was supported by local blast (rblast Version
0-99.4) using the GCF_000149555.1_ASM14955v1_protein.faa
database with the argument “max_target_seqs 1” in Rstudio
version 4.3.3. The UniProt database (UniProt, 2025), considering
Fv 7600 (Taxon ID 334819) was used to support the FVEG gene
name of the selected protein dataset.

Subcellular localization was predicted for this dataset using
Wolf PSORT (Horton et al., 2007). Signal peptides were predicted
using DeepSig (Savojardo et al., 2018). These programs were
implemented on the Galaxy Europe platform (Galaxy, 2024).
Transmembrane proteins were predicted using Phobius by
forcing the predictor to choose between two submodels (Kall
et al., 2007). Proteins lacking glycosylphosphatidylinositol (GPI)
were predicted using the PredGPI web tool (Pierleoni et al., 2008).
Carbohydrate-active enzyme (CAZymes) were predicted in the
DBCAN3 web server (Zheng et al., 2023). Effector proteins were
determined using EffectorP-fungi 3.0 (Sperschneider and Dodds,
2022), while virulence factors were predicted using the pathogen-
host interactions database PHI-base (Urban et al., 2022) with NCBI
BLAST+ blastp (Cock et al., 2015) on the Galaxy platform.
Phylogenetic analysis of the filtered proteins was conducted in
MEGAL11 (Tamura et al., 2021) using the UPGMA method.

2.5 Genome representation

Marker positions of the filtered protein dataset were obtained
from the GFF file of the Fv 7600 strain (GCA_000149555.1) and
then imported into R version 4.3.3. The qtl and LinkageMapView
packages (Ouellette et al., 2018) were loaded for linkage map
analysis and visualization. The maximum position (maxpos)
across chromosomes 1 to 11 was calculated, and an axis-tick
vector (at.axis) from 0 to maxpos in 1 cM increments was
generated, along with a label vector (axlab) at 20 ¢cM intervals.
Marker density was estimated using Imvdencolor with an
RColorBrewer color palette. Finally, all chromosomes were
plotted with marker labels (dupnbr=TRUE) and a density
gradient (denmap=TRUE) using Imv.linkage.plot with
“Chromosome %” as the unit.

2.6 GO and KEGG analysis

The online DAVID software (Sherman et al., 2022) was used to
obtain the gene ontology (Biological processes) of the filtered
proteins. GO terms and biological processes were summarized
and consolidated to build a specific functional database. This
database was used with the GGPLOT?2 package to build a GO bar
plot indicating the most abundant GO terms and its functions.
GGPLOT?2 in Rstudio version 4.3.3. was used to build a bar plot
showing the number of proteins identified in each pathway.
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2.7 String network analysis

Based on their reported function, a subset of the selected amino
acid sequences with assigned gene names was mapped in the
STRINGdb (https://string-db.org/) using the rba_string map_ids
function from rbioapi package, specifying the specie ID: 334819
(Fv) in Rstudio version 4.3.3. A selection of the STRING IDs
corresponding to “high identity sequences to the PHI-base” was
used to retrieve the interaction network for each protein using the
rba_string_interaction_partners function. The top ten protein
interactions were selected based on their scores for each chosen
protein, and a subset of proteins was visualized using the
rba_string network_image function.

2.8 Phylogenetic analysis of Fusarium
genomes

Fusarium verticillioides genomes (GCA013759275.1,
GCA020882315.1, GCA003316975.1, GCA017309895.1,
GCA_033110985.1, and GCA000149555.1) were retrieved from
GenBank and analyzed alongside the Fv DA42 genome using
whole-genome phylogeny with the ParSNP tool (Kille et al,
2024), with the GCA000149555.1 genome as reference. The
resulting Newick file was then visualized using the iTOLL web
server (Letunic and Bork, 2024).

2.9 Model of bipartite interaction

A basic version of the figure was initially generated using an AlI-
assisted tool (ChatGPT, OpenAl), and it was adapted and refined to
accurately represent the data and findings.

3 Results

3.1 Fusarium verticillioides degrades
epidermis and root hairs

To determine whether the mechanism of root infection involves
secretome-mediated degradation of the epidermis and root hair cell
walls, seeds were infected with Fv DA42 strain. The primary roots,
including apparently healthy tissue (without visible necrosis) and
necrotic tissue from 7-day-old seedlings, were observed by SEM
(Figure 1). In the root zone without visible necrosis, F. verticillioides
hyphae grew over the surface of the epidermis and among the root
hairs. Root hairs were abundant, and many of them in the basal
zone was collapsed and sunken, suggesting a loss of cell wall
firmness (Figure 1A). In contrast, in the necrotic root tissues,
there were no roots hairs, and the epidermal surface exhibited
extensive degradation, even showing holes (Figure 1B). Fv hyphae
grew profusely over the damaged tissue. The extensive degradation
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FIGURE 1

Appearance of the maize primary root epidermis seven days after

seed infection by Fusarium verticillioides DA42 strain. Two regions
with contrasting appearances were analyzed by SEM, (A) a region

without visible necrosis, and (B) a necrotic region. Root hairs with
collapsed bases or holes are marked with asterisks (*), and fungal

growth on the epidermis surface is indicated by arrowheads.

of the root epidermis and root hairs, along with the loss of cell wall
integrity, is consistent with the action of cell wall-degrading
enzymes present in the fungal secretome, supporting the
hypothesis that secretome-mediated degradation is a key
mechanism in the Fv root infection process.

3.2 Fusarium verticillioides genome
assembly

Previous evidence indicates that Fv secretes enzymes that play a
crucial role during the root infection process. Therefore, it is essential to
characterize the complete repertoire of Fv secreted proteins (the
secretome). The Fv genome was assembled de novo from paired-end
Illumina reads. The final assembly comprises 175 contigs, with the
largest contig measuring 2.911 Mb, yielding a total assembly size of
42.27 Mb, an N50 of 1.244 Mb, and an N90 of 0.431 Mb. Predicted
gene lengths ranged from 201 bp to 22,734 bp, with a mean gene length
of 1,492 bp, and an overall GC content of 48.51%. Mapping to the
reference genome was performed. Raw paired-end reads were aligned
to the F. verticillioides reference gap-less genome (GCA_027571605.1)
using Bowtie2 (v2.5.3). Mapping quality was evaluated with Qualimap
BamQC. Of 37,630,594 total reads, 36,178,219 (96.14%) mapped to the
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reference, leaving 452,375 reads (3.86%) unmapped. Properly paired
reads accounted for 36,178,219 (96.14%), while singleton mappings
represented 307,027 reads (0.82%). No duplicates were flagged in the
BAM file, but an estimated 13,628,671 reads were marked as duplicates,
yielding a duplication rate of 63.22%. The mean read length was 117
bp, and 1.8% of read pairs overlapped. The mean mapping quality
score was 40.21. Coverage analysis showed an average depth of 100.93x
(SD = 55.68), with per-chromosome mean coverages ranging from
95.68x (chr11: CM000588) to 102.92x (chr3: CM000580), and a GC
content of 48.83%. Insert sizes were broadly distributed (median = 486
bp; 1st-3rd quartiles = 419-567 bp), and the overall error rate
(mismatches plus indels) was 0.53%, comprising 16,648,075
mismatches, 770,398 insertions (2.02% of reads), and 352,021
deletions (0.8% of reads). This assembly quality provides a robust
foundation for downstream annotation and functional analyses.

3.3 Secretome prediction

To identify secreted proteins potentially involved in root cell
wall degradation and pathogenesis an in silico prediction of the
secretome was performed (Figure 2). A total of 14,198 protein-
coding genes were predicted from the F. verticillioides genome. The
secretome genes and proteins functionally annotated in the
eggNOG-mapper database identified 3,181 extracellular proteins;
1,279 proteins with signal peptide; 1,108 without transmembrane
domains, and 111 proteins with glycosylphosphatidylinositol
(GPI) anchors.

Out of the 14,198 proteins, 997 were predicted as classical
secreted proteins, representing 7.03% of the protein-coding genes
(Supplementary Table 1). The secretome of Fv revealed 16 lipases
(1.6%), 62 proteases (6.7%), and 288 unknow or uncharacterized
proteins (28.88%). The analyzed subset includes 262 CAZymes, 400
effectors, and 481 virulence factors. The use of diverse databases for
functional prediction resulted in redundant function or annotation.
In general, 26% of the secreted proteins corresponded to
unclassified metabolism, with three major groups related to
carbohydrate and glycan metabolism (31%), 11% to amino acid
metabolism, and 4% related to lipid metabolism, as identified by
BlastKoala (Kanehisa et al., 2016). Smaller proportions were
associated with genetic information processing (4%), protein
families related to metabolism (6%), and other minor categories
(<1%). This distribution highlights the abundance of carbohydrate
and amino acid metabolism related-proteins in the secretome,
suggesting their relevance in host-pathogen interactions and cell
wall degradation mechanism mediated by the secretome.

3.4 Genomic distribution and functional
annotation of the Fusarium verticillioides
secretome

The chromosomal distribution of secretome genes varied widely

across chromosomes (Figure 3), with the highest number found on
chromosomes 4 (137 genes) and 8 (123 genes). In contrast, the
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(14,198) (42.27 Mb)
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(3,181)
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Signal peptide
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No transmembrane
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(1,108)
]
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(16) (67) (262) (400) (481) (288)

FIGURE 2

Pipeline for predicting the putative secreted proteins (secretome) of Fusarium verticillioides DA42 strain and the distribution of the secretome

protein groups.

lowest number of protein-coding genes were observed on
chromosomes 7 (62 genes) and 9 (63 genes). However, the
secretome gene density was higher on chromosome 10, with 49.2
genes/Mb, while chromosome 1 had the lowest density with 14
genes/Mb. Eleven genes, including FVEG_14091 (ricin B lectin),
FVEG_13989 (gluconolactonase), and FVEG_14136 (alpha-
glucosidase), were not located on any chromosome, but were
instead found in the scaffolds NW_017387866.1,
NW_017387870.1, and NW_017387871.1 of the reference
genome. Gene ontology (GO) terms for the secretome proteins
were identified by functional category (Figure 3B). The molecular
function annotation term (green bars) for the secretome revealed
the presence of enzymatic activities associated with plant cell wall
degradation. The analysis of the most significantly enriched terms
identified proteins involved in rhamnogalacturonan endolyase
activity (GO:0102210), mannan endo-1,4-B-mannosidase activity
(GO:0016985), and glucan exo-1,3-B-glucosidase activity
(GO:0004338). Additional activities included galactose oxidase
(G0O:0045480), endo-1,3(4)-B-glucanase (GO:0052861), and
carbon-oxygen lyase acting on polysaccharides (GO:0016837).
Furthermore, proteolytic activities such as tripeptidyl-peptidase
(G0O:0008240) and metallocarboxypeptidase (GO:0004181) were
also detected, indicating potential roles in protein degradation
during host colonization. The presence of endo-1,4-B-xylanase
(GO:0031176) and o-L-arabinofuranosidase (GO:0046556), along
with other relevant and abundant activities for root cell wall
degradation were identified, such as pectin lyase activity
(GO:0047490) and feruloyl esterase activity (GO:0030600).
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The cellular component prominent GO terms (blue bars)
include apoplastic space (GO:0042597), extracellular region
(GO:0005615 and GO:0005576), and cell-wall, which are
consistent with the secretory nature of these proteins. The
biological processes GO terms (red bars) include catabolic
processes to degrade the principal component of cell wall,
including polysaccharides (simple and complex) (GO:0000272,
G0:0046355, GO:0045493, and GO:0046373), proteins
(GO:0009063 and GO:0006508), and lipids (GO:0016042). In
general, the extensive diversity and genomic distribution of these
genes, along with their functional profiles, suggest that many
secreted proteins participate in host interactions and extracellular
enzymatic activities characteristic of virulence factors and effectors
in pathogens.

3.5 Phylogenetic clustering of CAZymes
and proteases in the Fusarium
verticillioides secretome

A phylogenetic analysis was performed based on protein
evolutionary similarity within the two more abundant functional
groups of the Fv DA42 secretome: CAZymes (carbohydrate-active
enzymes) and proteases (Figure 4). The phylogenetic relationships
among various CAZymes involved in the degradation, modification,
or biosynthesis of carbohydrates are evident (Figure 4A). Branches
group proteins with similar sequences, indicating families that are
functionally or evolutionarily related. Several well-defined clades
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(e.g., highlighted in red, orange, and purple) suggest that certain
CAZymes share conserved domains or common activities, such as
glucosidases, cellulases, chitinases, and glucosyl hydrolases.
Additionally, a phylogenetic analysis of secreted proteases,
enzymes potentially involved in degrading host proteins and
contributing to virulence, reveals clustering by sequence similarity
(Figure 4B). Colored clusters reflect specific protease families, such
as serine proteases or metalloproteases, and the presence of multiple
distinct clades underscores the functional diversification among the
secreted proteases. Overall, the phylogenetic analysis highlights the
structural and functional differences and similarities between the
main secreted protein groups in Fv DA42 strain. Highly conserved
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proteins within each group suggest key roles in host interaction,
either by degrading plant cell wall components or by interfering
with host defenses through proteolytic activity.

3.6 Protein-protein interaction of key
enzymes and effectors identified through
STRING

Based on a global STRING analysis of 14 selected genes related
to cell wall degradation and infection process and their high identity
in the PHI-base database. (Supplementary Table 2), several genes
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(FVEG_03246, FVEG_10795, and FVEG_05849) with high
functional connectivity (scores > 0.7) were identified, exhibiting
very strong interactions related to cell cycle, plant cell wall
degradation, and putative adhesion functions, respectively. We
also detected polysaccharide degradation networks involving
multiple genes, such as FVEG_10795 (putative pectinesterase),
FVEG_09361 (putative ferulic acid esterase), FVEG_05642
(putative chitin binding protein), and FVEG_09702 (putative
pectate lyase), suggesting their coordinated role in modifying the
plant cell wall, potentially during fungal infection. In parallel,
FVEG_09149 (Mg peroxidase) and FVEG_04647 (putative
necrosis inducing protein) appear to be involved in cell wall
degradation through the depolymerization of lignin and necrosis
processes. Based on their high STRING score analysis and relevant
literature, a subset of genes was selected for visualization (Figure 5),
each linked to a specific enzyme or effector: FVEG_09361 (feruloyl
esterase, EC 3.1.1.73), FVEG_10795 (pectinesterase, EC 3.1.1.11),
FVEG_13183 (cell wall glycosyl hydrolase), FVEG_05642 (chitin-
binding type-4 domain protein), FVEG_09149 (peroxidase, EC
1.11.1), and FVEG_04647 (necrosis-inducing protein). This
analysis confirms the roles for these proteins in plant cell wall
degradation (pectinesterases, polygalacturonases, and esterases), as
virulence effectors (necrosis inducers or chitin-binding camouflage
proteins), and in oxidative responses (peroxidases). Specifically,
FVEG_10795 (pectinesterase) catalyzes the demethylation of pectin,
a prerequisite for its breakdown. It interacts most strongly with
FVEG_08451 (endo-polygalacturonase; score 0.933). Together,
these enzymes likely act sequentially; FVEG_10795 demethylates
pectin, and FVEG_08451 cleaves it into monomers. FVEG_09361
(feruloyl esterase) contributes to the breakdown of ferulic acid
cross-links in the plant cell wall. Its main partner is FVEG_16566
(score 0.372), an AB hydrolase-1 domain protein that may
participate in related hydrolytic pathways. FVEG_13183 (cell wall
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glycosyl hydrolase) probably targets glucans or other complex
polysaccharides. Its principal interactor is FVEG_12180 (score
0.366), an SGNH-type esterase involved in polysaccharide ester
modification, suggesting a shared depolymerization pathway.
FVEG_05642 (chitin-binding type-4 domain protein) acts as a
fungal effector, masking chitin from plant defenses. Its main
interactor is FVEG_12434 (pectate lyase; score 0.224); although
the score is low, this suggests potential collaborative mechanisms
for attacking chitin and pectate. FVEG_09149 (peroxidase) is
involved in oxidative processes, likely related to defense or stress
adaptations, and interacts primarily with FVEG_04068
(ribonuclease H2 subunit B; score 0.723), indicating a possible co-
expression or joint participation in damage-response or oxidative-
stress pathways. FVEG_04647 (necrosis-inducing protein) is a
putative fungal effector that triggers host cell death. Its main
interaction is with FVEG_04937 (cytochrome ¢ oxidase subunit;
score 0.490), implying a link to mitochondrial processes that may be
tied to necrosis or stress signaling in the host.

3.7 Phylogenetic relation of draft genome
analysis of Fusarium verticillioides DA42
strain

The phylogenetic analysis of the genomes included strains
isolated from the United States, Australia, India, and Mexico. The
phylogenetic tree (Figure 6) showed that the Fv DA42 strain
genome from Mexico clustered with the Fv 7600 reference
genome (GCA000149555.1) isolate in USA and an Indian strain
(GCAO033110985.1), however, Fv DA42 strain genome was more
closely related to the reference strain than to the Indian strain. In a
different tree branch another Fv isolate from USA
(GCA013759275.1) groups with the isolate from Italy
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(GCA020882315.1) and both are more distant to the isolate from
Australia (GCA003316975.1). The phylogenetic analysis supports a
close evolutionary relationship between the DA42 strain and the
reference genome 7600 strain, while revealing partial genetic
distances among isolates from different geographic regions
of origin.

4 Discussion

The extended agricultural life cycle of maize (6-8 months)
exacerbates the challenges associated with Fusarium infection.
From the vulnerable seedling stage to the critical phases of
vegetative and reproductive growth, the potential for Fusarium to
disrupt and delay normal development of maize remains a
persistent concern for both farmers and researchers (Bryla et al,
2022). The fungus’s ability to penetrate various plant tissues,
including roots, stalks, and seeds, underscores the need for a
comprehensive understanding of the mechanisms that facilitate
its entry and subsequent colonization within the host (Duncan
and Howard, 2010; Gai et al., 2018; Thompson and Raizada, 2018;
Roman et al.,, 2020). Wu et al. (2011) and Quiroz-Figueroa et al.
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(2023) describe the early manifestations of Fusarium infection,
which include yellow-brown discoloration and the subsequent
formation of necrotic spots on the roots. These symptoms not
only serve as visible indicators of infection but also suggests a
complex interaction between the pathogen and the host plant at the
cellular level. The collapse of root hairs further emphasizes the
severity of this interaction, suggesting the active degradation of cell
walls in the epidermal cells during a necrotrophic phase (Figure 1).
Although, the SEM observations were made at 7 days post infection
and thus correspond to an advanced stage of root necrosis, it is
highly likely that the degradative enzymatic machinery and
signaling are strongly activated several days earlier (Quiroz-
Figueroa et al, 2023). In the current study, the de novo high-
quality genome assembly of Fv DA42 strain allowed for
downstream annotation and functional analyses. The DA42 strain
showed a closest phylogenetic similarity to the genome reference Fv
7600 (GCA_000149555.1) reported by Ma et al. (2010) and the
improved gapless genome in Yao et al. (2023), than to the BIONCL4
(GCA_033110985.1) strain (Navale et al., 2022). This indicates a
close evolutionary relationship (Figure 6) and potentially similar
phenotypic behavior. Similar to the findings of Navale et al. (2022),
the genome assembly from Italy (GCA020882315.1) showed greater
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FIGURE 6
Whole-genome phylogenetic analysis of Fv DA42 strain. Fv,
Fusarium verticillioides and Fp, Fusarium proliferatum.

distance from the DA42 strain. The separation of strains from
Mexico (FvDA42) and U.S. (Fv USA), and as well as the
convergence of Mexican (FvDA42), U.S. (Fv7600 USA) and
Indian (Fv India) strains into different clades or shared clades
respectively, may reflect historical gene flow associated with the
global movement and exchange of commercial maize germplasm,
local adaptation and long-term cultivation of genetically distinct
maize varieties in each region could have driven the divergence of
associated Fv populations. Although our coverage analysis was over
100.9X and the mapping to the first version reference genome was
96.14%, these differences could be related either to sequence
technology or intra-species variability. Therefore, the genome of
Fv DA42 strain, which clusters closest to the reference Fv 7600
strain, may offer valuable insights into infection mechanisms within
the Fusarium genus, and represents a promising candidate for
comparative future pathogenicity assays.

Despite the importance of the Fv secretome, a few studies have
been conducted to identify secreted proteins. The results of this
study reinforce the key role of the secretome for Fv fungal infection
and colonization processes in maize roots. According to our
characterization, approximately 7% of the Fv DA42 proteome
corresponds to secreted proteins via classical pathways, primarily
consisting of CAZymes, proteases, effectors, and virulence factors,
which play important roles in cell wall degradation and overcoming
maize defenses. In accordance with the relevance of the integrity of
the host cell wall, recent finding on the maize glycosyltransferase
(ZmXYXT?2) showed that reinforcement of the cell walls restricted
F. verticillioides infection, whereas thinner cell walls in the zmxyxt2
mutant facilitated the colonization and fumonisin accumulation
(Xu et al, 2025). Studies on plant pathogens emphasize the
significance of secretomes in plant-fungus interactions, the
proportion of these secreted proteins ranges from 4% to 14% for
necrotrophs compared to biotrophs (Lowe and Howlett, 2012).
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Ravalason et al. (2012) reported the first proteome of Fv 7600,
identifying a total of 166 secreted proteins, which represented only
1.17% of the predicted proteome, a relatively low proportion of the
total protein-coding genes. This limited detection may be attributed
to the proteomic technique used at the time, which likely had lower
sensitivity and coverage compared to other advanced or
complementary techniques available today. A few years later,
Navale et al. (2022) performed whole-genome sequencing of F.
verticillioides BIONCL4 strain isolated from maize grains using
Mumina technology. They predicted a total of 15,053 protein-
coding-genes, of which 2,058 were secreted proteins and 676 were
associated with the classical secretory system. These represent
13.6% and 4.49% of the total of secreted proteins and classical
secretory pathways, respectively. The predicted secretome of F.
graminearum, is approximately 4.11% (Brown et al,, 2012). In the
in silico secretome of the palm dieback-causing agent F. oxysporum
f. sp. albedinis, 1,464 out of 16,887 genes (8.6%) were predicted as
secreted proteins (Rafigi et al., 2022). A recent study in F.
graminearum provides the first proteome secreted into the
apoplast of wheat coleoptiles, identifying the metalloprotease
effector Fg28, which induces cell death and reactive oxygen
species at the first day of infection (Li et al., 2025). Similarly, in F.
oxysporum, a novel secreted cysteine-rich protein, FolSCP1, was
identified as a virulence factor that promotes infection by binding
and inhibiting PR-5, a positive regulator of tomato immunity (Qian
et al,, 2025). In F. verticillioides, a RNA-seq analysis revealed that
FvLcpl, a secreted LysM protein required for fumonisin
production, which accumulates in appressoria and contributes to
host recognition, suppression of host cell death, and promotion of
fumonisin biosynthesis during maize kernel colonization (Zhang
et al., 2022). These studies highlight the role of secreted proteins in
Fusarium host interactions. In particular, these emphasize the
biological relevance of the Fv secretome and the need for further
studies to better understand its role in the molecular mechanisms of
maize-Fusarium interactions.

The GO analysis of the DA42 strain secretome (Figure 3B)
revealed enrichment in enzymatic activities such as
endogalacturonases, exoglucosidases, and feruloyl esterases, which
are essential for breaking down pectin, hemicellulose, and lignin.
These biological processes were classified under the carbohydrate
catabolism. Also, processes related to proteolysis, cell adhesion and
cell wall organization were identified. These results are consistent
with secretome analyses of necrotrophic fungi, such as
Neofusicoccum parvum (Nazar Pour et al, 2022) and Botrytis
cinerea (Nazar Pour et al, 2022), where CAZymes, including
pectinesterases, endopolygalacturonases, and proteases, are
involved in host protein degradation.

Similarly, several effectors were identified in Fv DA42, including
peroxidases and necrosis-inducing proteins, which are comparable
to those known to induce host necrosis or suppress host immunity
in other fungal pathogens (Cheung et al., 2020; Gupta et al., 2022;
Bougellah et al., 2023). A meta-analysis conducted by Jia et al.
(2023) on 150 phytopathogenic fungi revealed that secretomes vary
with fungal lifestyle, with necrotrophs tending to secrete a wide
range of CAZymes targeting pectin and xylan. One study showed
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of Fv infection: Day 0: The first interaction: Healthy maize root with abundant root hairs and no visible root damage. Conidia are deposited on the
epidermal surface. Days 1-2: Conidia germinate, forming germ tubes and initiating surface contact with epidermal cells. Root hairs remain intact
The secretome signaling is activated. Day 3-4: Early infection. The hyphae increase their enzyme secretion, and signs of color change appear in the
root epidermis. Root hairs are still present, but they are beginning to collapse at the base. Days 4-5: Advancing necrosis. Epidermal cells are
damage, root hairs disappear in infected zones, and the hyphal invasion expands. Days 6—7: Extensive colonization. Fungal hyphae are well-
established within inner tissues, and necrotic lesions dominate the infection site. This model proposes a dynamic interaction between Fv and the
roots of susceptible maize, highlighting the progressive loss of root integrity and root hairs as the infection advance. Root hair collapse is notably
associated with tissue necrosis and fungal invasion. A similar model cannot be ruled out for other necrotrophic fungi.

that the predicted secretome of F. graminearum, which includes 574
proteins, contains phytotoxic enzymes and effectors, many of which
are transcriptionally upregulated during infection (Brown et al,
2012). The interaction between CAZymes and proteases (Figure 4)
and the connected nodes in the protein—protein interaction network
(Figure 5) for FVEG_10795, FVEG_09361, and FVEG_09149
reinforce the hypothesis of a coordinated mechanism for fungal
attack. This could involve sequential pectin demethylation,
enzymatic breakdown, and oxidative stress, forming a tripartite
virulence strategy. The collapse of root hairs and degradation of the
cell wall epidermis observed by SEM microscopy (Figure 1)
confirms that enzymatic attack is effective during the early stages
of infection, as previously hypothesized by Quiroz-Figueroa
et al. (2023).

This research integrates scan electronic microscopy, genome
sequencing, in silico secretome analysis, and protein-protein
interaction analysis to decipher the infection strategy of F.
verticillioides in maize roots. Previous studies have addressed the
general pathogenicity of this species, primarily focusing on ear and
stalk infections. Our study provides the first integrated correlation
between in silico secretome composition and SEM observations of
early-stage root tissue degradation, including root hairs collapse
and breakage of epidermal cell walls. To our knowledge, this is the
first report that combines multi-layered genomic and proteomic
predictions with structural (SEM) evidence of infection in maize
roots by Fv. This integrative approach opens new aspects to
understand the molecular arsenal underlying fungal root
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pathogenesis and to identify specific secreted proteins as
promising targets for resistance breeding and antifungal
strategies, thereby contributing with valuable tools for sustainable
crop protection. In summary, the secretome of F. verticillioides plays
a central role in colonizing susceptible maize roots, making evident
the enrichment of enzymes related to cell wall degradation
(carbohydrate polymers, glucans and proteins), effectors, and
virulence. Although Fv has been described as a hemibiotroph, our
OMIC data and SEM observations (in this and our previous report)
suggest a predominantly necrotrophic lifestyle when interacting
with susceptible genotypes during the early infection stages, likely
driven by the early and sustained activation of cell wall-degrading
enzymes and necrosis-inducing factors through still unknown
mechanisms (Figure 7).

5 Conclusion

This study provides a multidimensional analysis of Fv DA42,
combining SEM, genome assembly, in silico secretome prediction,
interaction network analyses, and phylogenetic. We identified that
approximately 7% of the strain’s proteome consists of secreted
proteins, which are rich in CAZymes, proteases, peroxidases,
effectors and necrosis-inducing proteins. Through SEM, we
detected early-stage damage, including the collapse of root hairs
and degradation of root epidermal cell walls, directly linking
molecular predictions with structural evidence. Significant
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interaction, such as the sequential action of FVEG_10795
(pectinesterase) and FVEG_08451 (polygalacturonase), support a
model of coordinated enzymatic machinery that deconstructs
pectin in a stepwise manner during the initial colonization. To
our knowledge, this is the first integrated report that combines
whole-genome secretome annotation, protein-protein interaction
modeling, and root tissue-level SEM observations to elucidate the
molecular mechanisms of F. verticillioides root infection. The
specific secreted proteins identified emerge as promising targets
for future genetic resistance breeding or/and antifungal control
strategies. Our work thus lays a solid foundation for sustainable
prevention methods against maize root rot and enhances the
molecular understanding of Fusarium-maize interactions.
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