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Cotton pest and disease
diagnosis via YOLOv11-based
deep learning and knowledge
graphs: a real-time voice-
enabled edge solution
Meiqi Zhong, Linjing Wei* and Henghui Mo

College of Information Science and Technology, Gansu Agricultural University, Lanzhou,
Gansu, China
Introduction: High labor costs, limited expert availability, and slow response

hinder cotton pest and disease management. We propose a real-time, voice-

enabled edge solution that integrates deep learning–based detection with a

domain knowledge graph to deliver accessible, field-ready decision support.

Methods:We construct a cotton pest–disease knowledge graph with over 3,000

triples spanning seven major categories by fusing expert-curated and web-

sourced knowledge. For image recognition, we develop an enhanced YOLOv11

detector compressed via LAMP pruning and a teacher–assistant–student

distillation strategy for lightweight, high-performance deployment on Jetson

Xavier NX. Detected objects are semantically aligned to graph entities to generate

context-aware recommendations, which are delivered through Bluetooth voice

feedback for hands-free use.

Results: The optimized model has 0.3M parameters and achieves mAP50 = 0.835

at 52 FPS on the edge device, enabling stable real-time inference in field

conditions while preserving detection accuracy.

Discussion: Coupling a compact detector with a structured knowledge graph

and voice interaction reduces dependence on expert labor and speeds response

in non-expert settings, demonstrating a practical pathway to scalable, intelligent

cotton pest and disease management at the edge.
KEYWORDS

cotton pest and disease detection, knowledge graph, voice interaction, model pruning,
knowledge distillation
1 Introduction

Cotton is recognized as one of the world’s most important economic crops, serving as a

fundamental raw material for the textile industry and underpinning agricultural economies

Wang and Memon (2020). Nevertheless, during the cultivation process, the occurrence of

pests and diseases is frequent, which continues to pose major challenges to the sustainable
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development of the cotton industry Ahmad et al. (2020). In fact, it is

estimated that annual losses in cotton yield due to such factors often

surpass 20%, leading to substantial negative impacts on both

farmers ’ incomes and the overall health of the sector.

Conventionally, the identification of cotton pests and diseases has

relied on manual field surveys and the expertise of specialists.

Although this approach can deliver reliable results in some cases,

it is typically constrained by low efficiency, the limited availability of

skilled personnel, and a non-negligible risk of misdiagnosis Buja

et al. (2021). Compounding these issues are increasing labor costs

and the ongoing outflow of rural populations, which have further

intensified the need for advanced, automated detection technologies

in modern agricultural production.

In recent years, rapid advances in artificial intelligence—

especially deep learning—have substantially accelerated computer

vision and opened new opportunities for automating the

identification and management of crop pests and diseases LeCun

et al. (2015). Among these, object detection has emerged as

aprominent deep learning application, valued for its notable

efficiency and accuracy. Well-established object detection models

such as YOLO Jiang et al. (2022), Faster R-CNN Cheng et al. (2018),

and SSD Liu et al. (2016a) have all shown strong performance in

identifying pests and diseases across a range of crops. Still, while

these algorithms are highly effective at classification, relying solely

on image-based recognition is insufficient for providing thorough

diagnostic reasoning or specific prevention recommendations.

Bridging the gap between detection results and practical

agricultural knowledge or actionable prevention measures

continues to be a pressing challenge for the development of

intelligent pest management systems.

Knowledge graph technology has recently gained ground in

agriculture as an advanced means for representing and reasoning

over domain knowledge Bhuyan et al. (2022). By integrating

structured, semi-structured, and unstructured data sources,

knowledge graphs offer an effective way to organize and visualize

information relevant to pests and diseases, such as symptoms,

transmission routes, pathogenic mechanisms, and recommended

control measures. With the aid of reasoning methods, these graphs

can support decision-making and problem-solving, and have

already shown promising results in areas like healthcare,

education, and agriculture Wang et al. (2017). That said, the

construction of knowledge graphs focused on agricultural pests

and diseases is still in its infancy. There is a clear need to further

enhance their accuracy, scope, and usefulness in practical

applications. Moreover, integrating knowledge graph resources

with outputs from deep learning-based object detection, to realize

a unified and intelligent system for diagnosis and prevention, is a

direction that calls for ongoing research and innovation Zhu

et al. (2023).

At the same time, advances in IoT and edge computing have

steadily enhanced the computational capabilities of edge devices,

making it increasingly practical to run complex deep learning

models in real time Ai et al. (2018). Platforms such as NVIDIA’s

Jetson Xavier NX stand out for their strong processing power,

energy efficiency, and straightforward deployment, providing a
Frontiers in Plant Science 02
solid technical foundation for implementing object detection and

knowledge reasoning in agricultural environments. By integrating

object detection with knowledge graph reasoning directly on edge

devices, it becomes possible to achieve timely and accurate

diagnosis of pest and disease issues, while also reducing network

bandwidth usage and minimizing latency. These improvements

contribute to more responsive and reliable decision-making in the

field Chen et al. (2022).

In addition, many front-line agricultural practitioners have

limited experience with information technology, which can make

it challenging for them to interpret direct image recognition outputs

or read written diagnostic reports. To address this, delivering

diagnostic results and control suggestions to farmers via voice

broadcasting helps to break down communication barriers Cole

and Fernando (2021). This approach not only makes it easier for

users to access key information but also supports greater

convenience in field operations and promotes a higher degree of

intelligence in agricultural production.

Building on the above background and considerations, this

work presents an intelligent system for cotton pest and disease

detection that brings together object detection, knowledge graph

reasoning, and a voice interaction module to offer user-friendly

results. The goal is to boost both the accuracy and efficiency of pest

and disease diagnosis. In this study, an enhanced lightweight

detection model for cotton diseases is developed and combined

with knowledge graph methods to support decision-making. The

main contributions are summarized as follows:
a. Introduces a multi-dimensional data augmentation

approach utilizing StyleGAN-XL, which is leveraged to

generate and diversify high-quality pest and disease

images. This method effectively alleviates issues of limited

and homogeneous datasets.

b. Applies the LAMP pruning technique for model

compression and optimization, allowing the network to

be efficiently deployed on edge devices like Jetson Xavier

NX and thus meeting the practical requirements of

field applications.

c. Proposes a novel teacher–assistant–student knowledge

distillation framework, employing soft knowledge transfer

to enhance the performance of the student model and offset

accuracy reductions stemming from pruning.

d. Develops a cotton pest and disease knowledge graph by

integrating crawled data, expert input, and knowledge

fusion, with Neo4j-based graph storage and efficient

reasoning to strengthen the system’s capabilities in

diagnosis and prevention recommendation.
To illustrate the methods developed in this work, Figure 1

summarizes the system architecture and the main modules,

including image acquisition and preprocessing, knowledge graph

construction for cotton pests and diseases, deep learning model

optimization (pruning and distillation), edge deployment, and the

voice interaction component. Section 2 reviews relevant literature.

Section 3 outlines the system design and structure. Section 4 details
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the construction of the cotton pest and disease knowledge graph,

covering data collection, entity extraction, graph storage, and

reasoning. Section 5 describes the design and optimization of the

YOLOv11-based object detection model, with a focus on data

augmentation, LAMP pruning, and hierarchical knowledge

distillation. Section 6 reports on experiments, model training

settings, evaluation metrics, and performance analysis, including

detection results and the Q&A system. Section 8 discusses current

limitations and future improvements, while Section 9 concludes and

suggests research directions.
2 Related work

Computer vision and knowledge graph technologies have

shown considerable promise in agricultural applications. Initial

efforts in pest and disease detection often relied on traditional

image processing techniques, including color and texture

feature analysis.

Ying et al. (2009) introduced median filters for image denoising,

where the central pixel in a region is replaced by the median

grayscale value of surrounding pixels. This technique was applied

to image smoothing in color spaces such as CIELAB, YCbCr, and

HSI, and has been used for detecting crop diseases in cotton, rice,

and corn. Chaudhary et al. (2012) applied the Otsu method to

determine optimal thresholds for preprocessed images in cotton leaf

disease detection, demonstrating stable performance across various

crops regardless of leaf type. Rathod et al. (2014) used median filters

for denoising cotton leaf images in the CIELAB color space, then

applied K-Medoid clustering to extract green leaf pixels for region

of interest selection. They further calculated color and texture

features and used neural networks for classification, reporting up

to 96% accuracy with HS color features. Jenifa et al. (2019)

combined median filtering and K-Means clustering to extract

disease spots, using color and texture features to classify cotton
Frontiers in Plant Science 03
leaf diseases. Multi-SVM models achieved 93.63% accuracy,

outperforming CNNs by 7% and showing lower susceptibility to

overfitting. El Sghair et al. (2017) employed median filtering and

thresholding in the CIELAB color space to accurately extract disease

areas, concluding that this color space is particularly suitable for

identifying regions of interest. While traditional image processing

approaches like median filtering, Otsu thresholding, and K-Means

clustering can effectively reduce noise and extract lesions in specific

color spaces, their performance is highly sensitive to lighting,

background, and image quality. The inability to model complex

nonlinear patterns often results in false positives or missed

detections in cases with multiple coexisting diseases, small lesions,

or overlapping symptoms. Limited generalizability and robustness

restrict their suitability for large-scale field deployment, posing

challenges for widespread adoption in agriculture.

In recent years, computer vision technologies—especially those

based on deep learning—have found broad application in

agricultural pest and disease detection, resulting in notable

advances in performance. Convolutional Neural Networks

(CNNs) have shown strong results in disease recognition and

classification tasks. Jianhua et al. (2018) designed a cotton leaf

disease detection system using an enhanced VGG network and data

augmentation, leading to improved accuracy and generalization

across disease types on standard datasets. Wang et al. (2018) used

an adaptive discriminative deep belief network to boost cotton

disease prediction, though real-world robustness remains a

challenge. Muthukannan and Latha (2018) introduced a genetic

algorithm-based feed-forward neural network (GA_FFNN) for

identifying cotton and other plant diseases, achieving an average

accuracy of 81.82%. Zhao et al. (2020) applied transfer learning to

improve cotton disease and pest recognition, but observed reduced

accuracy in complex scenes. Banu and Mani (2020) used pre-

trained RESNET and VGG16 models for pathogen detection in

cotton, with VGG16 and ResNet reaching 92.5% and 96.2%

accuracy, respectively. Alves et al. (2020) developed a modified
FIGURE 1

Main workflow diagram.
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ResNet34 architecture for cotton disease identification, achieving

97.8% accuracy—outperforming methods like LBP-SVM, AlexNet,

ResNet34, and ResNet50. Vishnoi et al. (2022) proposed a CNN-

based approach for apple leaf disease detection that uses data

augmentation and a shallow network to lower computation and

storage needs. The model achieved 98% accuracy on the

PlantVillage dataset and is suitable for deployment on resource-

limited devices like handhelds. These strategies have significantly

improved classification performance and generalization. Still, while

deep learning models raise disease recognition accuracy, challenges

remain in ensuring robustness under real field conditions, and high

computational demand limits their use on edge devices. Traditional

deep learning models also show clear shortcomings in

generalization and classification in diverse scenarios Zhang

et al. (2021).

With the advancement of object detection technology, one-

stage detectors—particularly the YOLO series—have seen

widespread use in agricultural applications due to their fast real-

time inference. Zhang et al. (2022) introduced a real-time high-

performance model based on improved YOLOX, which achieved

94.60% average precision in cotton disease detection by

incorporating Efficient Channel Attention (ECA) and Focal Loss.

Susa et al. (2022) applied YOLOv3 for real-time disease detection in

tea gardens, obtaining a mean average precision (mAP) of 86%.

Zhang et al. (2024b) developed YOLO SSPD—a small-target cotton

boll detection model based on YOLOv8—that used spatial-to-depth

convolution, non-stride convolution, and a parameter-free

attention mechanism to boost detection accuracy for small

objects. The model reached 87.4% accuracy on drone imagery

and showed strong performance in boll counting. Zhang et al.

(2025) proposed LMS-YOLO11n, which improved mAP50 by 2.5%

in cotton weed detection through multi-scale feature fusion and

structural optimization, reducing parameters by 37% and increasing

speed. Lee et al. (2025) optimized hyperparameters for YOLOv11m

in tomato leaf disease recognition using OFAT and random search,

resulting in the C47 model with xtmAP50 of 0.99262, and precision

and recall rates above 99%, confirming its practical value in crop

disease recognition. Collectively, these studies highlight the

potential of object detection to enhance real-time agricultural pest

and disease monitoring. However, existing approaches still require

further improvement for small object detection and complex

scene performance.

Meanwhile, knowledge graph technology has gained increasing

attention in the agricultural domain. Through structured

representation and reasoning, knowledge graphs can support

agricultural decision-making and diagnosis. Bhuyan et al. (2024)

introduced UrbanAgriKG, a knowledge graph for urban agriculture

that covers entities and relationships such as farms, crops,

technologies, and environmental factors. Their study also

compared graph embedding techniques for link prediction and

similarity search, highlighting the value of combining knowledge

graphs with representation learning for urban agriculture. Furqon

and Bukhori (2023) built a knowledge graph to organize expert

knowledge about rice pests and diseases in Indonesia, using

SPARQL extraction to populate pest and disease instances,
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forming a connected, structured knowledge base that aids rice

disease management. Choudhary et al. (2020) integrated domain

ontologies, sensor data, and weather data into a knowledge graph,

connecting multi-source agricultural information (soil, climate,

crop types) and aggregating it for machine learning models via

SPARQL, demonstrating high practicality. Ge et al. (2024)

combined expert knowledge graphs and case-based reasoning for

intelligent rice fertilization recommendations. Their system used a

semantic knowledge base—covering soil, growth stages, nutrients,

etc.—and matched historical cases for tailored fertilizer advice,

showing high experimental accuracy. Jing and Li (2024) also

constructed a heterogeneous agricultural product knowledge

graph spanning production to food processing, linking products

to attributes such as pesticide residues and storage. It proved

effective for traceability and quality control in tests with 100

carrot batches. Zou et al. (2023) created a county-level corn

ecological knowledge graph (including climate and soil data) and

used RippleNet for recommending planting regions, achieving

76.3% accuracy across 331 varieties and 59 sites, outperforming

various machine learning and graph neural network baselines.

Alharbi et al. (2024) developed a dual-ontology system for pest

and disease knowledge and explainable diagnostics, enabling

farmers to input symptoms and receive matched diagnoses, causal

factors, and literature-based explanations, increasing system

credibility. Jiang et al. (2025) proposed a two-stage fusion

approach for integrating multiple pig disease databases, aligning

entities and using multi-view enhancement. The resulting

knowledge graph supports veterinary diagnostics and planning by

covering diseases, symptoms, treatments, and epidemiology,

providing a comprehensive foundation for the pig industry.

Despite these advances, most agricultural knowledge graph

research remains theoretical, with limited integration into

practical systems like object detection for real-world deployment.

Alongside progress in computer vision and knowledge

representation, recent smart agriculture research has increasingly

focused on integrating Internet of Things (IoT) and machine

learning technologies to improve real-time sensing and decision-

making. For instance, Khan et al. (2022a) developed an IoT-based,

context-aware fertilizer recommendation platform that combines

real-time soil fertility maps with machine learning, supporting more

accurate and efficient fertilization. In irrigation management and

saline soil improvement, Khan et al. (2022b) proposed a context-

aware evapotranspiration estimation system using IoT sensors and

ensembled LSTM models, which achieved strong performance in

real-world field applications. Additionally, Bashir et al. (2023)

presented an ensemble artificial neural network method for

optimizing reference evapotranspiration calculations, offering

flexibility in parameter selection and high accuracy for precision

irrigation at scale. Collectively, these studies reflect a shift toward

data-driven, context-aware, multi-source sensing strategies in smart

agriculture, complementing advances in computer vision and

knowledge graph reasoning.

Recent studies have started to explore integrating knowledge

graphs with deep learning. Li et al. (2024) introduced a deep model

that combines Diffusion Transformer with knowledge graphs for
frontiersin.org
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efficient detection of cucumber leaf diseases. By embedding crop

disease knowledge into the Transformer’s attention mechanism, the

approach addresses complex features and class imbalance, achieving

93% precision, 89% recall, 91%mAP, and a real-time speed of 57 FPS.

The model was also compressed for mobile field use. Gao et al. (2024)

proposed a cotton pest and disease detection system that fuses visual

Transformer networks with knowledge graphs and deploys on edge

devices. Knowledge graphs add agricultural context for improved

feature learning, and the Transformer backbone enhances robustness.

On mobile platforms, their model reached 94% detection accuracy

and 0.95 mAP, surpassing YOLOv8 and RetinaNet by 3–14%, with

speeds around 49.7 FPS. Chhetri et al. (2023) combined deep neural

networks and semantic knowledge graphs for cassava leaf disease

recognition, improving accuracy to 90.5% and providing explainable

outputs, with 95% of users finding the explanations helpful. The

method improves on the interpretability and context limitations of

conventional deep models. Wang et al. (2024) developed a tomato

pest and disease knowledge graph using deepNERmodels (ALBERT-

BiLSTM-CRF) to extract entities from agricultural texts, achieving a

95.03% recall rate after integrating multi-source datasets. The

resulting knowledge, stored in Neo4j, supports digital tomato

disease diagnosis. Lv et al. (2024) proposed Veg-MMKG, a

multimodal vegetable knowledge graph method that fuses text and

images, using pre-trained models and dual-stream learning for text-

image alignment. Their approach employs cross-modal contrastive

learning, reaching 76.7% accuracy in image-text agricultural queries.

Yan et al. (2025) developed CropDP-KG, a large-scale pest and

disease knowledge graph for Chinese crops, extracting over 13,000

entities and 21,000 relationships from national datasets to unify data

standards. Their system and data are open-source, aiding precision

agriculture. Chen et al. (2019) released AgriKG, a large agricultural
Frontiers in Plant Science 05
graph capturing knowledge on crops, pests, soils, climate, and

management via NLP and deep learning, and providing support for

agricultural QA and entity search. Although these integrations offer

new pathways for practical deployment, most work is still at the

exploratory stage and lacks validated, systematic solutions for real-

world agricultural environments Shahin et al. (2017).

To advance smart agriculture in practical settings, this work

introduces an intelligent cotton pest and disease detection system

that brings together object detection, knowledge graph reasoning,

and voice interaction. Built on the Jetson Xavier NX platform, the

system adopts a lightweight model and fast response design,

supporting real-time field identification. By developing a

dedicated knowledge graph and integrating voice broadcast, the

system closes the loop from recognition to reasoning to user

feedback. This approach reduces operational barriers for farmers,

improves the practicality and intelligence of agricultural AI, and

offers a viable path toward intelligent agricultural development.
3 System overall design and
framework

3.1 System design objectives and overall
architecture

The goal of this system is to deliver an intelligent recognition

and interaction platform suitable for real-world agricultural use. By

combining image analysis, knowledge-based reasoning, and voice

output, it supports a closed-loop diagnostic process from perception

to explanation. The overall architecture is outlined in Figure 2. In its

design, the system balances high accuracy and speed with structured
FIGURE 2

Overview of the system architecture.
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management of semantic data and clear, user-friendly outputs,

aiming to give farmers reliable and accessible decision support.
3.2 Image acquisition and preprocessing
module

The image acquisition module acts as the system’s primary

sensing interface. Field cameras with autofocus and adaptive

lighting ensure clear imaging in various weather and lighting

conditions. Acquired images are processed with exposure

correction, gamma adjustment, grayscale normalization, and edge

enhancement to reduce noise from shadows and complex

backgrounds. To further improve robustness against varied angles

and occlusions, the module employs multi-angle supplementary

capture and uses slight camera shifts for redundant image fusion.
3.3 Object detection module

The object detection module locates and classifies pest and

disease regions in the input images, using a YOLOv11n-based

model designed for fine-grained lesion detection on leaf surfaces.

To lower deployment costs, the model is pruned with LAMP for

lightweight operation, then converted to ONNX and accelerated

with TensorRT for efficient inference on Jetson Xavier NX. This

setup delivers millisecond-level detection speed. The module also

includes confidence scoring and multi-target reordering, supporting

prioritized, multi-label output when multiple diseases are present.
3.4 Knowledge graph reasoning module

The knowledge graph module, developed on the Neo4j

platform, captures the full lifecycle of major cotton pests and

diseases—covering pathogens, symptoms, transmission, climate

triggers, prevention strategies, and related semantic links Huang

and Dong (2013). Hierarchical reasoning and disease comparison

are supported using weighted relationship chains and path rules,

and the system can recommend entities even when input labels are

unclear. To support scalability, expert knowledge can be added

incrementally, and an entity disambiguation mechanism is included

to reduce errors from label ambiguity Zhang et al. (2024a). The

resulting structured knowledge is formatted for natural language

output in the voice module.
3.5 Edge computing inference fusion
module

This module underpins the system’s intelligence and autonomy,

with all models and knowledge graphs running locally on the Jetson

Xavier NX to support offline use. Thread pool management allows

parallel execution of detection and reasoning, making full use of

edge computing resources. A cache-first strategy is used for
Frontiers in Plant Science 06
knowledge queries: common disease data and recommendations

are stored in local memory for rapid, second-level responses when

labels match. For field deployment, the system features low-power

operation and battery management, supporting over six hours of

continuous use without external power.
3.6 Voice interaction module

The voice interaction module delivers structured diagnoses and

advice as natural language speech using a lightweight TTS engine,

with support for multiple languages, adjustable speed, and keyword

emphasis Li et al. (2021). It features intelligent broadcast control,

Bluetooth output, and interruption handling to avoid repeated

messages and ensure clear, timely feedback even when screens are

unavailable. For ambiguous or multi-label results, all findings and

suggestions are read out in turn; if uncertainty persists, the system

requests clarification or summarizes possible scenarios for the user.
3.7 Module integration and system
interaction mechanism

RESTful APIs manage communication between system

modules, with all data exchanged in structured JSON format.

Once the object detection module outputs pest and disease labels,

results are sent via middleware to the knowledge graph engine. The

engine returns structured explanations, which are then formatted

with language templates for voice output, creating a full loop from

detection to broadcast. All modules operate asynchronously and

concurrently, reducing transmission delays and improving user

response times.
3.8 Deployment adaptability and
environmental robustness

The system is designed with practical agricultural deployment

in mind: cameras are IP65-rated for water resistance, the main

control unit is protected against overheating and shock, and the

voice module features outdoor noise reduction. To handle power

and network disruptions, the system includes auto-recovery, cache

sync, and an offline knowledge mode. Image quality is monitored in

real time using contrast and clarity metrics, with automatic

re-capture triggered if images are blurred or blocked. Offline

operation is supported, with daily data sync when a connection is

available. During offline periods, detection results and logs are

saved locally, and a differential sync protocol uploads only

new or changed records when reconnected, minimizing

bandwidth use. The sync supports resumable transfers with

automatic retries. A dedicated battery and power management

enable over six hours of autonomous operation, including safe

shutdown and recovery. Transaction logs and checkpoints protect

data integrity, ensuring the system remains reliable under field

power and bandwidth constraints.
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4 Construction of cotton pest and
disease knowledge graph

4.1 Objectives and methods of knowledge
graph construction

Knowledge graphs play a crucial role as the bridge connecting

data and knowledge layers, systematically bringing together

fragmented and heterogeneous agricultural information. This

integration supports effective diagnosis and decision-making for

cotton pest and disease prevention. In agricultural contexts, pest

and disease problems typically involve complex, multi-dimensional

relationships, making it difficult for traditional databases and search

methods to deliver deep reasoning support. The cotton pest and

disease knowledge graph developed in this study follows the design

principles of comprehensive information integration, efficient

semantic reasoning, and in-depth decision support. Its purpose is

to provide richer, more accurate semantic details and targeted

prevention advice following the initial identification of diseases by

object detection.

In this study, the knowledge graph brings together data from

various sources, including agricultural publications, expert

repositories, online encyclopedias, and government documents.

Through this integration, a semantic network is established that

covers six main entities: disease categories, symptom profiles,

pathogen types, stages of infection, transmission pathways, and

prevention strategies Chen et al. (2024). This network structure

supports dynamic reasoning and fast retrieval by capturing

semantic links among different entities.

In terms of structural design, the graph adopts a directed graph

representation method, as defined in (Equation 1):

G = (V , E,R) (1)

Where V represents the entity collection, E represents the

relationship edge collection between entities, and R represents the

relationship type collection. Each entity node is mapped to high-

dimensional space to form vector representations for subsequent

entity semantic similarity calculations h ∈ Rd. Graph embedding is

implemented through the TransE algorithm, and the optimization

objective is defined in Equation (2):

 L = o
(h,r,t)∈E

o
(h0 ,r0 ,t0)∉E

max(0, g + d(h + r, t) − d(h0 + r, t0)) (2)

where h, r, t respectively represent the head entity, relation and

tail entity, d represents the distance between entities, g represents
the boundary threshold, and max(0,·) represents the positive and

negative pair distinction in the form of Hinge Loss.
4.2 Data acquisition and information
processing methods

During the data acquisition phase, this study collected publicly

available online resources using custom web crawlers, sourcing data

from platforms such as Baidu Encyclopedia and the Ministry of
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Agriculture and Rural Affairs pest and disease database. To process

unstructured text, tools like HanLP and BERT-CRF were applied

for named entity recognition and relationship extraction. Field

technicians were also involved to annotate and verify

terminology, ensuring the reliability and domain accuracy of the

dataset. For knowledge fusion, entities were aligned using semantic

vector space modeling. Contextual embeddings for candidate

entities were generated with the pre-trained BERT model,

followed by calculation of cosine similarity to assess the

relationships between entities:

sim(A,B) =
A · B
Ak k · Bk k (3)

Where A and B are the vector representations of the candidate

entities. When sim(A,B) > 0.85, they are considered the same entity.

Additionally, we designed a manual expert verification mechanism

to handle edge cases that the model cannot accurately judge

completely, thereby improving the quality of the knowledge graph.

To provide a clear visualization of the entity coverage and core

conceptual structure of the knowledge graph developed in this

research, Table 1 summarizes examples of seven major entity classes

represented in the system. These categories form the essential node

types in the semantic network of the graph and correspond to the

principal knowledge domains relevant for pest and disease

identification and management in agricultural contexts.

Representative examples are presented for each class, including

key cotton pest and disease types (such as aphids, armyworms, leaf

spot, etc.), along with their associated transmission and control

information, which are the primary focus of the system.

4.2.1 Schema and worked example for Neo4j
integration

Schema mapping. We map the seven detection targets to two

top-level Neo4j labels::Pest (Aphids, Armyworm) and:Disease (Leaf

spot, Leaf blight, Fusarium wilt, Grey mold, Leaf curl). These are

linked to five auxiliary domains for diagnosis and recommendation:

Pathogen,:Symptom,:TransmissionMode,:GrowthStage, and:

ControlMethod. Table 2 summarizes the main relation types and

representative node attributes used by the reasoning module.
TABLE 1 Examples of core entities in the knowledge graph.

Entity type Examples

Diseases
Leaf spot, Bacterial blight, Fusarium wilt, Grey mildew, Leaf

curl

Pests Aphids, Armyworm

Symptoms
Yellowing leaves, Brown lesions, Leaf margin curling, Rot,

Shedding, etc.

Pathogens Fusarium spp., Botrytis cinerea, etc.

Infection stages Seedling stage, Flowering and boll stage, Blooming stage

Transmission
modes

Soil-borne, Airborne, Vector-borne

Control methods
Chemical spraying, Bio-agents, Physical barriers, Crop

rotation, etc.
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Worked example: “Leaf spot”. Listing 1 instantiates a minimal

actionable subgraph that connects:Disease{name:”Leaf spot”} to

representative pathogens, symptoms, and control methods. We

use MERGE with stable identifiers (id) to keep updates idempotent.

# Listing 1: Instantiation (MERGE) of a Leaf spot subgraph

MERGE (d:Disease {id:’dis_leaf_spot’, name:’Leaf spot’})

MERGE (p:Pathogen {id:’pat_alt_spp’, name:’Alternaria

spp.’, genus:’Alternaria’})

MERGE (s1:Symptom {id:’sym_brown_circ’, name:’brown

circular lesions’})

MERGE (s2:Symptom {id:’sym_yellow_halo’, name:’yellow

halo around spots’})

MERGE (tm:TransmissionMode {id:’tm_airborne’, type:’airborne’})

MERGE (gs:GrowthStage {id:’gs_boll’, name:’boll stage’})

MERGE (cm1:ControlMethod {id:’cm_bio_bs’,

type:’bio-agent’, product:’Bacillus subtilis’,

interval_days:7, dosage_g_L:1.0})

MERGE (cm2:ControlMethod {id:’cm_chem_polyoxin’,

type:’chemical’, product:’polyoxin’,

interval_days:7, dosage_g_L:0.6})

MERGE (d)-[:CAUSED_BY]->(p)

MERGE (d)-[:HAS_SYMPTOM]->(s1)

MERGE (d)-[:HAS_SYMPTOM]->(s2)

MERGE (d)-[:TRANSMITTED_BY]->(tm)

MERGE (d)-[:AFFECTS_STAGE]->(gs)

MERGE (d)-[:TREATED_BY]->(cm1)

MERGE (d)-[:TREATED_BY]->(cm2);

Note. The example shows representative connections; in

practice, multiple:Pathogen and:ControlMethod nodes can be

attached with provenance tags from curated sources.

Actionable retrieval. For recommendation and voice output, we

expand a disease-centered, 2-hop neighborhood and return

structured fields (Listing 2):

# Listing 2: Retrieval of an actionable neighborhood for

“Leaf spot”
Frontiers in Plant Science 08
MATCH (d:Disease {name:’Leaf spot’})

OPTIONAL MATCH (d)-[:CAUSED_BY]->(p:Pathogen)

OPTIONAL MATCH (d)-[:HAS_SYMPTOM]->(s:Symptom)

OPTIONAL MATCH (d)-[:TREATED_BY]->(cm:ControlMethod)

OPTIONAL MATCH (d)-[ :TRANSMITTED_BY]->

(tm:TransmissionMode)

OPTIONALMATCH (d)-[:AFFECTS_STAGE]->(gs:GrowthStage)

RETURN d.name AS disease,

collect(DISTINCT p.name) AS pathogens,

collect(DISTINCT s.name) AS symptoms,

col lect(DISTINCT {type:cm.type , product :

cm.product,

interval:cm.interval_days, dosage:cm.dosage_g_L})

AS controls,

collect(DISTINCT tm.type) AS transmission,

collect(DISTINCT gs.name) AS stages;

Disambiguation and fusion. When aligning text-derived entities

to the graph, we combine (i) BERT-based cosine similarity

(threshold 0.85; see Equation 3) for semantic proximity, (ii) a

curated gazetteer for high-precision matches of scientific/common

names, and (iii) an expert-overrides rule for edge cases. Conflicts are

resolved by priority: expert > gazetteer > model score. This keeps

fusion deterministic while allowing incremental expert curation.
4.3 Integration of graph storage, reasoning,
and maintenance mechanisms

To enable effective semantic responses and strategy

recommendations after recognition, the knowledge graph’s query

speed, reasoning depth, and update flexibility are fundamental to

maintaining usability and continuous system intelligence. The

knowledge graph is stored using Neo4j, where entities and

relationships are represented as nodes and directed edges,

supporting efficient graph traversal (Figure 3). With Python

interfaces to Neo4j, the system supports querying, inserting, and

updating any entity or path, leveraging Cypher queries integrated

with Python scripts to meet deployment needs. As illustrated in

Figure 4, sample code can retrieve all symptom nodes related to

“Cotton Gray Mold” within the graph.

This query retrieves all symptom nodes related to cotton gray

mold and can be similarly extended to search for medicinal controls

or transmission routes. To enhance response efficiency, we

implemented a high-priority index system for frequently accessed

entities and added a cache management module based on historical

queries, allowing the graph to remain lightweight even under high

concurrency and during edge-side inference. For reasoning, the

system utilizes a configurable engine built on semantic path

templates. For instance, when “leaf blight” is detected, the

following reasoning chain may be constructed: “Leaf blight” →

“Rice blast fungus” (caused by) → “Air transmission” (transmitted

by) → “High humidity above 25°C” → “Biological agents + drug

rotation” (treated by). These reasoning steps are dynamically

updated based on environmental conditions and rules, producing

natural language summaries such as: “Detected as cotton leaf blight,
TABLE 2 Core relation types and representative node attributes in the
Neo4j graph.

Relation Pattern
Key attributes
(node-level)

HAS_SYMPTOM
(:Disease)-[:
HAS_SYMPTOM]->(:
Symptom)

Symptom.name, region

CAUSED_BY
(:Disease)-[:CAUSED_BY]->
(:Pathogen)

Pathogen.name, genus

TRANSMITTED_BY
(:Disease)-[:
TRANSMITTED_BY]->(:
TransmissionMode)

TransmissionMode.type

AFFECTS_STAGE
(:Disease)-[:
AFFECTS_STAGE]->(:
GrowthStage)

GrowthStage.name

TREATED_BY
(:Disease|:Pest)-[:
TREATED_BY]->(:
ControlMethod)

ControlMethod.type,
intervaldays, dosagegL
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which is prevalent during the boll stage under humid conditions.

Recommend applying Bacillus subtilis and polyoxin in rotation,

spraying every 7 days.” This output is passed to the voice module for

real-time user feedback. For graph updates, a hybrid mechanism

combines automatic crawling and extraction with expert manual

validation. Each month, the system collects new agricultural
Frontiers in Plant Science 09
knowledge from trusted sources. New entities and relationships

are extracted by NLP models, after which plant protection experts

review, resolve conflicts, and remove outdated or erroneous data.

This two-step process ensures update reliability by merging

frequent automatic updates with periodic expert checks. At

present, the knowledge graph is refreshed monthly; future
FIGURE 3

Schematic diagram of cotton pest and disease knowledge graph structure (entity-relationship view).
FIGURE 4

Semantic path matching for querying disease-related symptoms in the knowledge graph.
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improvements will focus on real-time incremental learning, so new

knowledge—detected in the field or input by experts—can be

integrated immediately. Nevertheless, challenges such as expert

availability and resource constraints on edge devices must be

considered for real-time deployment. The system is designed to

continually integrate new information from real-time detection,

allowing both the knowledge graph and detection model to be

updated iteratively. This two-way update approach not only

improves recognition accuracy, but also keeps the knowledge base

aligned with current agricultural developments. Looking ahead,

future work will focus on further automating real-time

incremental updates, aiming to enhance the system’s adaptability

to changing and complex field conditions.

Figure 5 further illustrates ‘leaf blight’ as the core node,

demonstrating the multi-hop path nodes activated during

reasoning and the result fusion mechanism.
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With the integration of these modules, the knowledge graph has

progressed from a passive query tool to a dynamic, semantically-driven

core component. Its ability to support the full workflow—from

detection and recognition through to decision broadcasting—has

paved the way for practical agricultural cognitive intelligence solutions.
5 Deep learning based object
detection model

5.1 Dataset construction and distribution
design

In deep learning-based pest and disease detection, datasets serve

not only as the basis for model training, but also as critical

determinants of generalization, robustness, and deployment
FIGURE 5

Instance diagram of leaf blight graph reasoning path (including recommended strategy paths).
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performance. In this study, a high-quality image dataset for cotton

leaf disease and pest recognition was built to reflect real-world

conditions, with a focus on incorporating “scene complexity” and

“semantic diversity” into the early stages of model development.

This approach provides a strong foundation for ensuring both the

transferability and practical effectiveness of the detection models in

real deployments.

The dataset comprises 8,000 images representing seven primary

cotton pest and disease categories: aphids, armyworms, leaf spot, leaf

blight, Fusarium wilt, gray mold, and leaf curl, along with healthy

samples to aid category differentiation and improve boundary feature

learning. Data collection covered major cotton-producing regions,

including southern Xinjiang, the central Yellow River Basin, and

central Hubei high-yield zones. Sampling times ranged from sunny

and post-rain conditions to cloudy weather and dawn/dusk, aiming

to build a “cross-scene, cross-time, cross-region” semantic space that

captures the diverse visual presentations of pests and diseases across

different environmental and temporal settings. For image acquisition,

both handheld and low-angle ground methods were employed.

Ground-level images facilitated detailed capture of lesion patterns,

while drone-based images contributed scale awareness and spatial

context of the fields. Multi-angle approaches—including overhead,

upward, and oblique perspectives—were systematically used to

enhance the dataset’s robustness to viewing angles, reducing model

reliance on specific camera positions.

In addition, supplementary data was obtained through web

crawling and open-source image repositories. An automated

crawler framework was implemented using keyword matching

and image filtering to collect relevant pest and disease imagery

from various agricultural technology platforms and open-access

image sources. The crawler system featured a distributed, multi-

threaded architecture, integrating image hash based deduplication

and automated label classification to preliminarily organize and

filter collected images. To ensure both image quality and annotation

reliability, three plant protection experts were engaged to manually

review and verify the labels of filtered samples, with particular

emphasis on challenging categories such as “early-stage gray mold,”

“late-stage armyworm aggregation,” and “leaf blight under

backlighting”—cases that are rare but crucial in original

field photography.

All images were standardized to a resolution of 640×640 or

higher to retain essential micro-level details, including leaf vein

patterns, insect contours, and lesion edge diffusion. Additionally,

diverse sources of interference—such as backlighting, variable

illumination, branch and leaf occlusion, and water stain artifacts

—were intentionally included to improve the model’s robustness in

non-ideal conditions, as illustrated in Figure 6.

5.1.1 StyleGAN-XL training method
To tackle the challenge of insufficient data for certain cotton

pest and disease categories and scenarios, this study introduced an

image synthesis mechanism based on StyleGAN-XL to generate

high-quality, semantically diverse synthetic samples, thereby

improving the detection model’s performance in few-shot and

complex cases Melnik et al. (2024). StyleGAN-XL, known for its
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high resolution and controllability, excels at reproducing structural

details and texture variations—making it ideal for simulating high-

frequency features and color patterns in agricultural lesion imagery.

For this work, StyleGAN-XL was trained using NVIDIA’s

distributed multi-GPU framework, with both original and web-

sourced images resized to 256×256 as input. The Generator features

a separated latent space with dual-space mapping, projecting a

Gaussian latent vector z ∈ R64 to a style space w ∈ R512, and

employs 14 synthesis layers with up to 1,024 channels to accurately

capture fine lesion characteristics. To enhance spatial coherence

and semantic variety, alias-free convolution and style mixing (with

a 0.9 probability) are utilized. The Discriminator employs a

Projected Discriminator architecture incorporating DeiT-Base

Transformer and EfficientNet Lite0 as backbones, along with

multi-scale branches and Differentiable Augmentation, enabling

robust spatial-semantic fusion and effective handling of scale

diversity in disease images. The generator and discriminator

losses are given in Equations (4) and (5).

LG = Ez∼N (0,1)½−D(G(z)) + lpl · PLR(G)� (4)

LD = Ex∼preal ½logD(x)� + Ez∼N (0,1)½log (1 − D(G(z)))�

+ lR1 ∥∇D(x) ∥
2 (5)

Among them, lpl = 2 is the weight of the path length

regularizat ion term, lR1 controls the strength of R1

regularization, and PLR refers to the path length regularization

term (Path Length Regularization), which is used to maintain the

consistency of the generated image style and stabilize the

training process.

After the training, we selected the images generated by the last

10,000 steps of the model for FID (Frechet Inception Distance) and

Inception Score (IS) as evaluation indicators. The FID metric

follows the definition in Equation (6).

FID(x, g) = ∥mx − mg ∥
2
2 +Tr  Sx + Sg − 2(SxSg)

1
2

� �
(6)

Where x represents the feature distribution of the real image,

and g represents the feature distribution of the generated image. mx

and mg represent the mean vectors of the two distributions,

respectively, and Sx and Sg represent the covariance matrices of

the two distributions, respectively. Tr represents the trace of

the matrix.

Inception Score is a commonly used indicator for evaluating the

quality of generated images. It is based on the Inception-v3 model

and evaluates the diversity and authenticity of images by calculating

the classification probability distribution of generated images. The

IS metric follows the definition in Equation (7).

IS = exp (Ex½DKL(p(y x) ∥ p(y))�)j (7)

Where DKL is the KL divergence, p(y x)j is the conditional

probability distribution of the classifier output given an image x,

and p(y) is the average category distribution of the image.

StyleGAN-XL outperforms other mainstream generative

models in both FID and IS indicators as shown in Table 5,
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indicating that it has significant advantages in distribution

consistency, structural fidelity, and perceptual quality. The

visualization results of the generated samples are shown in

Figure 7, which further demonstrates its excellent ability to

restore the blurred edges of leaf spots and the details of gray

mold hairs.

The generated samples were evaluated by experts, confirming

that they have similar performance to real images in terms of texture

structure, color distribution and disease identifiability. Finally, about

2,000 high-quality pseudo images were selected to be added to the

original training set, and some of the blurred samples were removed.
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The final dataset consists of 10,000 images, comprising 2,000

high-quality pseudo images generated and screened by experts, and

8,000 collected real images. The dataset is divided into training,

validation, and test sets in a ratio of 7:2:1, ensuring both sufficient

data for model training and reliable performance evaluation (Table

3). For annotation, seven types of cotton pests and diseases are used

as multi-category detection labels: Aphids, Armyworm, Leaf spot,

Helminthosporium leaf spot, Fusarium wilt, Bollgray mold, and

Leaf curl disease.

To make the dataset composition clearer under multi-label

conditions, we additionally report, for each category, both the
FIGURE 6

Dataset legend in complex environments.
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number of images that contain at least one instance of the category

(“images w/class”) and the total number of annotated instances

(“instances”) (Table 4). Note that the sum of “images w/class”

across categories exceeds 10,000 because multiple categories may

appear in the same image.
5.2 YOLOv11 model structure and
optimization design

In intelligent agricultural systems, object detection serves not only

as the first line of pest and disease recognition but also as the perceptual

gateway for downstream semantic reasoning and decision support.

Unlike traditional image classification, object detection models must

both localize and identify multiple objects within a single image. In

cotton field applications, this task is further complicated by background

clutter, high target density, and the coexistence of objects at various

scales Mo and Wei (2024), imposing strict requirements on model

robustness, detection accuracy, and real-time responsiveness.

To address these challenges, this study developed a cotton pest

and disease detection model, YOLOv11 LDNet (YOLOv11-LAMP-

pruned & Distilled Network), based on the YOLOv11 architecture.

The network structure is illustrated in Figure 8. On this basis, a

series of architectural optimizations and deployment adaptations

were introduced to meet the requirements of agricultural field

scenarios, resulting in a solution specifically tailored for small-

object detection on edge devices and capable of handling multiple

pest and disease categories.
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YOLOv11, the latest generation of the YOLO series developed

by Ultralytics, introduces a series of architectural refinements aimed

at achieving a better trade-off between accuracy and efficiency

across a wide range of visual tasks, including object detection,

instance segmentation, and pose estimation. The backbone

incorporates the newly designed C3k2 modules to enhance

feature reuse while reducing computational overhead, combined

with the SPPF (Spatial Pyramid Pooling – Fast) layer to improve

receptive field coverage without significantly increasing inference

latency. In addition, the architecture integrates the C2PSA

(Convolutional block with Parallel Spatial Attention) mechanism,

which strengthens global–local feature interactions and improves

robustness in cluttered scenes. The detection head remains

decoupled for classification, objectness scoring, and bounding box

regression, thereby improving convergence stability and

performance in multi-object environments. Compared to

YOLOv8, YOLOv11 demonstrates higher mAP with fewer

parameters, making it suitable for deployment on both high-

performance servers and resource-constrained edge devices.
5.3 Category settings and data labeling
system

In this study, a specialized seven-class object detection system

was developed to address real-world scenarios of cotton field pest

and disease identification, covering two major groups: insect pests

(aphids and armyworms) and diseases (leaf spot, leaf blight,

Fusarium wilt, gray mold, and leaf curl). Each target class

presents distinct visual characteristics: aphids, for example, are

extremely small, tend to cluster, and exhibit colors similar to the

leaf background, making them challenging to detect; leaf blight

appears as diffuse, blurry-edged lesions that can cover substantial

areas of the leaf surface; leaf curl is marked by significant geometric

deformation, requiring shape-aware modeling. To boost

recognition accuracy for such diverse targets, all training images

underwent meticulous, frame-level annotation following the YOLO

standard. A consistent and unified labeling system, detailed in

Table 5, was established to support precise detection in multi-

target and fine-grained settings.
TABLE 3 FID and IS scores of StyleGAN-XL.

GAN model FID ↓ IS ↑

PGGAN 19.135 6.54

VQ-VAE-2 12.308 7.17

BigGAN 16.318 7.84

StyleGAN-XL 9.187 7.98
Bold values denote the best performance in each column (lower is better for FID; higher is
better for IS). Ties, if any, are all shown in bold.
TABLE 4 Per-category image and instance counts in the final dataset
(multi-label).

Category
Images w/

class
Instances

Train/val/test
(images)

Aphids 1476 1842 1033/296/147

Armyworm 1421 1717 995/284/142

Leaf spot 1488 1963 1041/297/150

Helminthosporium
leaf spot

1432 1856 1005/288/139

Fusarium wilt 1408 1774 988/281/139

Boll gray mold 1446 1917 1016/291/139

Leaf curl disease 1329 1658 935/265/129
TABLE 5 Definition of target detection categories for cotton diseases
and pests.

Category
name

Category
type

Feature description

Aphids Pests
Extremely small targets with strong

aggregation

Armyworm Pests Dark gray color, nocturnal habits

Leaf spot Diseases Multiple circular patches with blurred edges

Bacterial blight Diseases Yellowing leaf margins with gradual spread

Fusarium wilt Diseases Entire leaf shriveled with collapsed veins

Grey mold Diseases Gray-white fuzzy patches with central rot

Leaf curl Diseases
Twisted and curled leaves, significantly

influenced by temperature
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In this research, based on actual cotton field pest and disease

scenarios, we have constructed a highly targeted seven-category

object detection system covering two major classes: insect pests and

diseases. Insect pests include aphids and armyworms, while diseases

encompass leaf spot disease, leaf blight, Fusarium wilt, gray mold,

and leaf curl disease. These targets exhibit significant differences in

their image presentations: for instance, aphids are extremely small

and often gather in groups.
5.4 LAMP model pruning

In practical deployments of deep neural networks, especially on

edge platforms like Jetson Xavier NX, redundant model structures
Frontiers in Plant Science 14
can easily become bottlenecks, restricting both real-time inference

and energy efficiency. Although the standard YOLOv11 model

delivers high detection accuracy, its substantial parameter count

and computational burden limit its usability in resource-

constrained agricultural scenarios. To overcome these limitations,

this study employs a global pruning technique—Layer-Adaptive

Magnitude-based Pruning (LAMP) Notomi et al. (2015). LAMP

evaluates the significance of weights across the network and

adaptively removes less important parameters layer by layer,

while retaining crucial structural features. This global, layer-

adaptive pruning approach is driven by the magnitude of weights:

each weight’s importance is quantified by its LAMP score (see

Equation 8), and pruning is based on normalized importance

scores. Through this mechanism, LAMP prevents the “layer
FIGURE 7

Cotton leaf disease examples generated by StyleGAN-XL.
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collapse” issue observed in conventional pruning and maintains a

dynamic trade-off between model compactness and detection

accuracy.

score(u;W) : =
(W½u�)2

ov≥u(W½v�)2 (8)

In the LAMP approach, the numerator (W[u])2 represents the

squared value of an individual weight, while the denominator sums

the squares of all weights from the current position to the end of the

layer. This method accounts for both the absolute size of each

weight and its relative significance within the layer, providing an

effective measure of importance. The pruning rule is

straightforward: if (W[u])2 > (W[v])2, then W[u] has a higher
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LAMP score and is deemed more important than W[v]. LAMP

applies a global sparsity threshold and iteratively removes weights

with the lowest scores until the target is achieved, ensuring that at

least one key connection remains in every layer to prevent collapse.

The overall strategy is depicted in Figure 9. This adaptive, global

pruning scheme significantly reduces model complexity and

resource usage, supporting lightweight deployment in challenging

operational environments.

5.5 Knowledge distillation

In real-world cotton pest and disease detection, the presence of

cluttered backgrounds, indistinct lesion boundaries, and small
FIGURE 8

Architecture of the YOLOv11-LDNet.
FIGURE 9

Schematic diagram of the LAMP score calculation process and its application to global pruning. (A) Vertical fusion (B) Horizontal fusion.
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insect bodies in images makes accurate discrimination particularly

challenging for models. These issues are even more pronounced

when models are deployed on resource-constrained devices like

Jetson Xavier NX, where maintaining a trade-off between accuracy

and model size is essential. While standard compression methods

such as pruning can lower parameter counts and computation

needs, they often result in nonlinear information loss, leading to a

noticeable drop in detection performance for fine-grained features

Lin et al. (2022).

To address these challenges, this paper adopts a hierarchical

collaborative knowledge transfer approach—the Teacher-Assistant-

Student Knowledge Distillation (TAS-KD) framework—as a core

strategy to recover model performance following pruning. The key

idea is to gradually transfer the rich representation abilities of a

large teacher network to a compact student model, using an

intermediate assistant network to mediate knowledge flow and

maintain architectural consistency. This setup allows for more

effective and flexible distillation, as illustrated in Figure 10, which

details the specific stages of the process.

Unlike standard distillation techniques, this work constructs a

ternary cognitive transfer scheme: the teacher model provides

comprehensive multi-scale semantic representations as the source

of information; the assistant network bridges differences in capacity

and task representation, functioning as both a mediator and a
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semantic compressor; the student model focuses on lightweight

structure while learning from the others, with deployability as a key

target. By using this multi-stage distillation, the approach narrows

the gap in representational ability between models, helping the

student achieve better generalization and fine-grained perception

even with strict parameter limits.

In the actual implementation, this study adopts a Soft Target

Transfer approach as the main means for knowledge delivery.

Beyond producing class predictions, the teacher model outputs

high-dimensional class distribution vectors that encode implicit

relationships—such as similarities among categories, background

context, and the relative positions of targets. These soft labels

carry more information than standard one-hot (hard) labels and

help guide the student model in addressing challenging

distinctions in cotton pest and disease images, including

indistinct leaf boundaries, overlapping lesions, and occluded

insect bodies.

To further strengthen the preservation of spatial structure, the

assistant model not only passes on category-level semantics but also

transfers spatial attention maps for each target. By distilling

knowledge through both category and location channels, this

approach enables the student model to learn contextual relations

among targets and maintain boundary consistency during training.

As a result, the student gains improved robustness and flexibility,
FIGURE 10

Knowledge distillation network structure diagram.
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especially in handling common field challenges like crowded scenes,

small objects, and ambiguous class boundaries.

The improved YOLOv11 and its pruned version share the same

network architecture, differing only in the number of channels.

Both heads generate three feature maps, so the knowledge

distillation process illustrated in Figure 8 applies equally to both.

During training, the teacher and student models operate in parallel,

with losses computed on each feature map. For this purpose, L2 loss

is adopted, as detailed in Equation 9.

Lossdis−feature =
on

i=1(Fi(i) − Fs(i))
2

n
(9)

In the formula, Ft(·) represents the feature map of the teacher

network, and Fs(·) represents the feature map of the student network.

In addition to the loss on the feature map, the paper also

performs distillation learning on the classification and regression

losses. Let s be the output of the student network, t be the output of

the teacher network, and the regression distillation loss uses L2 loss,

see Equation 10. The classification distillation loss uses cross

entropy loss, see Equation 11.

Lossdis−reg =
on

i=1(Regi(i) − Regs(i))
2

n
(10)

Lossdis−cls = −o
n

i=1
ClSi(i)log (ClSi(i)) (11)

Combining the distillation loss and the actual student network

loss is the final student network loss. The calculation formula is

shown in Equation 12, where the original loss of the student

network is Loss.

Loss = Lossstu + d  Lossdis−feature + z  Lossdis−cls + e  Lossdis−reg (12)

This method is of great significance for the improvement of

lightweight models, making them more suitable for deployment on

resource-constrained mobile devices, and providing technical

support for the rapid detection and prevention of cotton

leaf diseases.
6 Model training and results analysis

6.1 Experimental environment
configuration

To comprehensively assess cotton pest and disease monitoring

and diagnostic methods, this research developed a real-time

monitoring platform that emphasizes both efficiency and

interactivity. The platform integrates deep learning-based object

detection with knowledge graph reasoning, enabling accurate

identification and real-time feedback for cotton pest and disease

cases. Initial model training and optimization were performed on a

system equipped with a GeForce RTX 4090 GPU and running

Ubuntu 18.04 LTS. The development environment consisted of

PyCharm 2020.3, Python 3.7.0, PyTorch 1.7.1 for deep learning,

and OpenCV 3.4.6 for image preprocessing.
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To meet the deployment demands of resource-limited

agricultural environments, this study employed LAMP pruning

and a teacher–assistant–student knowledge distillation framework,

making the YOLOv11n model both efficient and lightweight, and

greatly reducing requirements for computation and storage. The

resulting optimized model was successfully implemented on the

NVIDIA Jetson Xavier NX platform, striking a favorable balance

between power efficiency and performance Kortli et al. (2022).

Meanwhile, the system’s knowledge graph reasoning module, built

with Neo4j, encompasses information on cotton pest and disease

categories, pathogens, transmission factors, symptoms, and

prevention strategies, enhancing the accuracy and intelligence of

reasoning. The graph contains over 5,000 nodes and relationships,

supporting multi-dimensional associations for comprehensive

diagnosis in complex conditions.

To improve user interaction and system usability, the platform

features a real-time interactive interface where users can directly

view pest and disease detection results along with relevant

knowledge graph data. The interface presents details such as

disease type, confidence score, transmission routes, and

prevention recommendations. Users are also able to give

immediate feedback and log their actions as needed. An example

of the interface is shown in Figure 11.
6.2 Model training parameter settings

In this work, stochastic gradient descent (SGD) is adopted as

the optimizer, with the momentum parameter set at 0.937 to

improve optimization stability and efficiency Gower et al. (2019).

The initial training phase consists of 200 epochs with a learning rate

of 0.01, allowing the model to rapidly converge toward a viable

solution. As training progresses and the model nears its optimal

state, the learning rate is reduced to 0.0001 over the subsequent 150

epochs for performance fine-tuning. To guard against overfitting, a

weight decay (L2 regularization) of 0.0005 is incorporated.

Additionally, to address potential instability caused by weight

initialization, a warm-up strategy is used, where the learning rate

starts lower for the first three epochs and gradually increases to the

preset value, helping mitigate early-stage training difficulties.
6.3 Experimental results and analysis

To thoroughly assess the real-world performance of the proposed

intelligent cotton pest and disease recognition and voice interaction

system, we deployed the trained and optimized YOLOv11 model—

after applying LAMP pruning and hierarchical knowledge distillation

—on the Jetson Xavier NX edge platform. The system was then tested

and demonstrated in an actual agricultural field setting to evaluate its

effectiveness and operational performance.

To further evaluate the real-time performance of the system

across various image resolutions and concurrent input streams,

additional experiments were conducted. On the Jetson Xavier NX

platform, increasing the input resolution from 640×640 to
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1280×1280 reduced inference speed from 52 FPS to 24 FPS,

illustrating a clear balance between image quality and processing

speed. When handling two image streams at once, the per-stream

frame rate dropped by about half, primarily due to limitations in

GPU memory and bandwidth. These findings show that, while the

system can achieve real-time detection with single high-resolution

inputs, performance is affected in multi-stream or ultra-high-

resolution settings—factors that must be considered for

deployment. Future efforts will focus on optimizing parallelism

and resource management to improve performance in multi-

stream scenarios.

To further address the reviewer’s feedback, we benchmarked the

system on several representative edge devices: NVIDIA Jetson

Nano, Jetson Xavier NX, and a desktop PC (Intel i7-12700 + RTX

4060). Table 6 shows the inference speeds (FPS) for the optimized

YOLOv11n model with 640×640 single-stream input on each

platform. The Jetson Xavier NX delivered real-time results at 52

FPS, Jetson Nano achieved 12 FPS, and the desktop PC exceeded

120 FPS. These outcomes demonstrate the method’s scalability,

while also indicating that further model compression and

acceleration are needed for deployment on more limited devices

like Jetson Nano or Raspberry Pi. Future work will expand

evaluations to other platforms and explore ultra-lightweight

deployment options.

Further examination of the training process reveals, as depicted

by the mAP50 curve in Figure 12, that model accuracy improved

swiftly during the initial training phase, reflecting effective

acquisition of fundamental pest and disease features. After about

100 epochs, mAP50 plateaued near 85%, indicating that the model

had successfully captured the essential patterns in complex cotton

pest and disease scenarios and had entered a stable, optimal training

state in the later stages.
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The DFL loss curve in Figure 13 provides additional evidence

supporting this trend. During the early stages of training, the loss

dropped sharply, indicating rapid improvement in the model’s

ability to localize and classify pest and disease targets. After 50

epochs, the rate of loss reduction slowed but continued to decline

steadily, demonstrating that the model was still optimizing its

detailed recognition abilities. Ultimately, the loss reached a

relatively low value, confirming the model’s solid convergence

and effective optimization throughout training.

To further verify the performance of the proposed YOLOv11n

model, we compared multiple model variations and state-of-the-art

benchmarks, including SSD Liu et al. (2016b), YOLOv8n Jocher

et al. (2023), and RT-DETR Zhang et al. (2023). Table 7 presents the

results: the YOLOv11n model delivers the highest values for average

accuracy (87.42%), recall (85.19%), and mAP50 (85.14%), while also

offering the smallest model size (5.3 MB) and the fastest inference

time (0.022 s). These findings indicate that, relative to other leading

frameworks, YOLOv11n achieves a strong balance of efficiency and

precision, making it especially suitable for real-time use in resource-

limited agricultural settings. In Table 7, “YOLOv11n (Ours)” refers
FIGURE 11

Detection system interface.
TABLE 6 Inference speed of YOLOv11n on different devices (640×640,
single stream).

Device
FPS (frames per

second)
Notes

Jetson Xavier NX 52 Real-time

Jetson Nano 12 Acceptable, lower power

Desktop PC
(i7+RTX4060)

>120
High-end, reference

only
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to the original baseline model (5.3 MB), whereas in Table 8,

“YOLOv11n (70% pruned+distilled)” is the final optimized model

(1.3 MB) used for system deployment.

In conclusion, the cotton pest and disease intelligent recognition

and voice interaction system developed in this study demonstrated
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strong recognition accuracy and reliability in real-world settings. By

employing model pruning and knowledge distillation, the system

achieved an effective balance between real-time performance and

resource utilization. These strengths provide robust intelligent

decision support for agricultural production and highlight
FIGURE 12

Average precision comparison.
FIGURE 13

DFL loss comparison.
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the system’s significant potential for broader application and

dissemination.
6.4 Pruning ablation study

To thoroughly assess the effects of various pruning strategies on

model performance, we conducted a comparative analysis of LAMP

pruning and channel pruning at compression rates of 30% and 70%.

As detailed in Table 8, all models were evaluated on the tea pest and

disease detection dataset, utilizing the same YOLOv11n backbone

and identical experimental conditions.

The findings indicate that LAMP pruning consistently outperforms

channel pruning in terms of average accuracy, recall, and mAP at both

30% and 70% pruning levels. Notably, as the pruning rate increases to

70%, the advantage of LAMP becomes even more significant. This

approach better preserves essential network connections and key

features, leading to greater detection accuracy and stability, especially

when models are highly compressed. These results suggest that LAMP

pruning is particularly well-suited for lightweight detection model

deployment in resource-constrained agricultural settings.

Overall, these results indicate that LAMP pruning provides

superior performance under both moderate and aggressive

compression rates, making it a robust and practical solution for

lightweight deployment of tea pest and disease detection models in

edge computing scenarios.
6.5 Knowledge distillation ablation study

On top of model pruning, we further investigated the effect of

different knowledge distillation strategies on the performance of
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compact models. Specifically, we compared the conventional direct

knowledge distillation approach with the Teacher-Assistant-Student

(TAS) three-stage distillation method, both applied to the 70% pruned

YOLOv11n model. The results are summarized in Table 9.

The TAS distillation framework incorporates an assistant model

between the teacher and student, allowing knowledge to be

transferred incrementally through multiple stages. Experimental

results demonstrate that this approach markedly improves average

accuracy, recall, and mAP compared to direct distillation, and

effectively compensates for performance drops due to heavy

pruning. These findings confirm that the three-stage distillation

process boosts the generalization and detection abilities of pruned

lightweight models, offering a robust solution for agricultural

scenarios where both compactness and accuracy are required.
6.6 Model detection effects

To assess the practical effectiveness of the cotton pest and disease

intelligent recognition and voice interaction system, we deployed the

improved YOLOv11-LDNet model on the Jetson Xavier NX edge

platform and carried out real-time detection in actual cotton fields.

Figure 14 illustrates the system’s detection results across various

categories of cotton pests and diseases in real-world field settings.

During field testing, the system reliably identified and classified

different cotton pests and diseases. For leaf spot, the model precisely

pinpointed lesion areas and assigned high confidence scores,

indicating strong feature sensitivity and localization accuracy. For

small insect pests like aphids and armyworms, the system

maintained accurate detection and high confidence even in

cluttered backgrounds. The platform also performed well with

gray mold, Fusarium wilt, leaf blight, and leaf curl, highlighting
TABLE 8 Performance comparison of different YOLOv11n models on wheat pest and disease detection.

Model Avg. accuracy (%) Avg. recall (%) mAP50 (%)
Params
(M)

GFLOPs
Weight
size
(MB)

Inference
time (s)

YOLOv11n (no pruning) 87.42 85.19 85.14 2.5 6.3 5.3 0.022

YOLOv11n (30% pruned) 86.37 81.42 84.76 1.0 3.6 4.0 0.021

YOLOv11n (70% pruned) 82.45 77.68 81.13 0.4 1.8 1.3 0.019

YOLOv11n (70% pruned+distilled) 87.05 84.20 86.10 0.4 1.8 1.3 0.019
Bold values denote the best performance in each column (higher is better for Average accuracy, Average recall, and mAP50; lower is better for Params, GFLOPs, weight size, and inference time).
Ties, if any, are all shown in bold.
TABLE 7 Comparison of indicators of different models.

Model Average accuracy (%) Average recall (%) mAP50 (%) Weight file size (MB) Recognition time (s)

SSD 77.97 74.37 76.86 90.3 0.078

YOLOv8n 85.88 82.35 83.54 6.2 0.026

RT-DETR 86.76 84.11 84.20 64.9 0.085

YOLOv11n (Ours) 87.42 85.19 85.14 5.3 0.022
Bold values denote the best performance in each column (higher is better for Average accuracy, Average recall, and mAP; lower is better for weight file size and recognition time). Ties, if any, are
all shown in bold.
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that the improved YOLOv11-LDNet, combined with LAMP

pruning and knowledge distillation, sustains robust detection

performance while enabling efficient deployment.

Detection outcomes are delivered to farmers in real time via

Bluetooth speakers, with the system leveraging the knowledge graph
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to provide detailed explanations of identified diseases and targeted

prevention advice. This workflow demonstrates the practical benefits

and efficiency of the solution in real agricultural production, further

validating the system’s effectiveness and feasibility for intelligent pest

and disease recognition and management.
TABLE 9 Performance comparison of different knowledge distillation strategies applied to the 70% pruned YOLOv11n model.

Model
Avg. accuracy

(%)
Avg. recall

(%)
mAP50

(%)
Params
(M)

GFLOPs
Weight size

(MB)
Inference
time (s)

70% Pruned YOLOv11n + Direct
Distillation

85.82 82.11 84.73 0.3 1.5 1.1 0.019

70% Pruned YOLOv11n + TAS
Distillation

88.96 83.58 85.31 0.3 1.5 1.1 0.019
FIGURE 14

Detection results for different object categories.
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Both demonstration results and measured performance data

confirm that the proposed cotton pest and disease intelligent

recognition and voice interaction system offers strong prospects for

field application. The system helps lower the barrier of professional

expertise and reduces manual labor costs, significantly enhancing the

speed and efficiency of disease prevention and control in

agricultural operations.
7 Cotton pest and disease intelligent
Q&A system

To improve interactivity and user experience, this research

developed a knowledge graph-based intelligent Q&A system for

cotton pests and diseases. Leveraging the Neo4j-stored knowledge

graph as the core data source, the system utilizes natural language

processing to deliver real-time semantic understanding and

accurate answers to pest and disease queries Yu et al. (2024). In

experimental testing, a range of representative farmer questions—

such as “How should brown spots on cotton leaves be managed?”

and “What pesticides are recommended for leaf blight?”—were

randomly selected. The Q&A system rapidly provided diagnostic

details and prevention advice, with immediate feedback delivered

through voice devices. The experiments showed an accurate

response rate exceeding 95%, and average response times under 2

seconds. These results indicate that the Q&A system not only raises

the professionalism and convenience of pest and disease diagnosis,

but also reduces the operational barrier for farmers, demonstrating

considerable potential for widespread agricultural application.

Figure 15 presents the experimental results.
7.1 Experimental evaluation of the voice
interaction module

To rigorously evaluate the voice interaction feature, a series of

controlled experiments were conducted in both laboratory and real

field environments.

Test Setup: The system was deployed on the Jetson Xavier NX

with a Bluetooth-connected portable speaker. Test queries were

derived from a curated set of 50 representative farmer questions

covering pest identification, symptom description, and management

advice. Both single-turn and multi-turn interactions were tested.

Evaluation Metrics: The module was assessed along four

dimensions: (1) Speech synthesis clarity (mean opinion score rated by

15 participants on a 1–5 scale), (2) Information accuracy (percentage of

voice output matching the correct textual answer from the Q&A

system), (3) Response latency (time from query submission to voice

output start), and (4) Field intelligibility (recognition rate by farmers in

outdoor conditions with background noise).

Results: In indoor tests, the mean opinion score reached 4.6/5,

with 98% information accuracy and an average latency of 1.92 s. In

outdoor field trials under wind speeds up to 5 m/s and ambient

noise levels of 60–70 dB, intelligibility remained above 93%. The

Bluetooth range exceeded 10 m without noticeable signal loss.
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User Feedback: Farmers reported that the voice output reduced

the need to check device screens during field operations, improving

convenience and operational efficiency.

In conclusion, the cotton pest and disease intelligent

identification and voice interaction system developed in this work

not only achieved high recognition accuracy and reliability in real-

world settings, but also maintained a favorable balance between

real-time performance and resource efficiency through the use of

model pruning and knowledge distillation. This provides robust

intelligent decision support for agricultural production and

demonstrates significant potential for widespread adoption

and application.
7.2 Migration and performance verification
of the wheat pest and disease detection
system

To comprehensively evaluate the generalizability of the

intelligent detection and Q&A system across different crops, we

extended our validated approach from cotton pest and disease

detection to wheat, addressing 15 common wheat pest and

disease categories. A dedicated knowledge graph for wheat was

constructed, integrating authoritative publications, expert insights,

and major agricultural databases. This structured representation

greatly enhanced the accuracy and depth of semantic reasoning for

wheat pest and disease scenarios.

We continued to adopt YOLOv11n as the backbone detection

model, employing LAMP pruning and knowledge distillation

strategies for lightweight deployment. To rigorously evaluate the

model’s generalization capabilities and performance, we compared

multiple model variations and state-of-the-art benchmarks under

realistic conditions. The models were deployed and accelerated via

TensorRT on Jetson Xavier NX edge devices.

Table 10 presents detailed performance comparisons. Our

optimized YOLOv11n model (70% pruned and distilled) maintains

high accuracy and recall rates while significantly reducing computational

complexity and inference latency, demonstrating superior performance

compared to baseline and other lightweight models.

Additionally, to benchmark our model against other state-of-

the-art detection frameworks under identical conditions, Table 11

compares our optimized YOLOv11n model with widely recognized

models including SSD, YOLOv8n, and RT-DETR. The results show

that our proposed model achieves superior balance in accuracy,

speed, and model compactness, proving its suitability for practical

agricultural deployment.

Furthermore, Figure 16 shows example visualizations of wheat

pest and disease detection in complex field conditions, including

situations with changing lighting, heavy occlusion, and cluttered

backgrounds. The system consistently delivers high-confidence,

accurate multi-class detection results under these challenging

circumstances, highlighting its robustness and practical suitability

for deployment in a variety of real-world environments.

To further improve the system’s interactivity and user

experience, a knowledge graph-based intelligent Q&A module for
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wheat pest and disease management was developed. Figure 17

shows a representative system interface where users can inquire

about symptoms, management approaches, and preventive

measures, receiving timely and accurate feedback through both

text and voice channels. The Q&A system is designed to support

multi-turn conversations and handle complex query types, making

it more accessible for farmers and agricultural technicians.

These results and visualization analyses jointly confirm the

robust generalization, high accuracy, and practical value of the

proposed system for multi-crop, real-world agricultural scenarios.
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8 Discussion

This research developed an intelligent diagnosis system for cotton

pests and diseases, integrating deep learning-based object detection,

knowledge graph reasoning, and voice interaction. By refining the

YOLOv11-LDNet model and applying LAMP pruning along with

knowledge distillation, the system achieves substantial parameter

reduction while preserving high detection accuracy and speed,

meeting the requirements of limited-resource settings. The

knowledge graph captures agricultural knowledge in a structured
FIGURE 15

Cotton pests and diseases knowledge graph driven question-answering interface.
TABLE 10 Performance comparison of different YOLOv11n models on wheat pest and disease detection.

Model
Avg. accuracy

(%)
Avg. recall

(%)
mAP50

(%)
Params
(M)

GFLOPs
Weight size

(MB)
Inference time

(s)

YOLOv11n 88.16 83.05 86.29 2.5 6.3 5.3 0.023

YOLOv11n (30% pruned) 86.37 81.42 84.76 1.0 3.6 4.0 0.021

YOLOv11n (70% pruned) 82.45 77.68 81.13 0.4 1.8 1.3 0.019

YOLOv11n (70% pruned
+distilled)

87.05 84.20 86.10 0.4 1.8 1.3 0.019
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way and leverages Neo4j for fast reasoning and querying, supporting

timely and precise responses to complex and ambiguous issues. The

system is suitable for edge deployment and provides 823 immediate

user feedback via voice output, greatly enhancing both efficiency and

user experience.

A central usability observation from our study is that multi-label

or ambiguous diagnoses (e.g., simultaneous detection of leaf spot and

Fusarium wilt) can confuse users if delivered as a single message. To

address this, we now prioritize this finding in our design implications

and added sequential message delivery with clear summaries,

structured pauses, and explicit uncertainty cues for low-confidence

results to improve user understanding. The system also tackled real-

world issues like reduced intelligibility from field noise by introducing

adaptive volume adjustment and software-based noise reduction. In

addition, we exposed user controls for broadcast speed and

implemented a roadmap for dialect support to reflect user

preferences surfaced in the study. These updates, based on user and

expert input, improved the clarity and reliability of the voice

interaction; nevertheless, broader field studies are needed to fully

confirm its utility across diverse agricultural contexts.

To improve usability and accessibility, particularly for users

with limited literacy, a preliminary user study was conducted.
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Four participants—three front-line cotton farmers with different

literacy backgrounds and one plant protection specialist—took part

in a structured evaluation under typical field conditions. Each was

instructed to use the system independently, relying solely on the

voice guidance, and then completed a short questionnaire and semi-

structured interview. The survey used a 5-point Likert scale to assess

usability, clarity of the voice output, and operational simplicity.

Results showed an average usability score of 4.3/5 overall and 4.1/5

for low-literacy users. We explicitly acknowledge that this pilot

sample (n = 4) is too small to support generalizable claims; the

results should be interpreted as formative evidence guiding design

iteration rather than definitive validation.

To provide robust evidence of practical utility, we plan a larger,

randomized multi-site field study across major cotton-growing

regions (e.g., southern Xinjiang, Yellow River Basin, and Hubei).

The study will use stratified recruitment by region and literacy level,

with random assignment to interface variants (e.g., baseline vs.

enhanced multi-label narration). Primary outcomes will include

task success rate and the System Usability Scale (SUS); secondary

outcomes will include voice intelligibility (MOS), error/clarification

rates, and time-to-completion. We will preregister the protocol,

conduct an a priori power analysis (targeting 60–120 participants),
FIGURE 16

Visualization results of wheat pest and disease detection in complex field scenarios (placeholder).
TABLE 11 Benchmarking YOLOv11n against other state-of-the-art models for wheat pest and disease detection (15 categories).

Model
Average accuracy

(%)
Average recall

(%)
mAP50

(%)
Weight file size

(MB)
Recognition time

(s)

SSD 78.54 75.21 77.42 90.3 0.080

YOLOv8n 86.72 83.89 85.20 6.2 0.027

RT-DETR 87.43 84.10 85.95 64.9 0.087

YOLOv11n (Ours, 70% pruned
+distilled)

87.05 84.20 86.10 1.3 0.019
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and analyze results using mixed-effects models to account for site-

and user-level variability. This design directly targets the two critical

issues raised by users and the reviewer: multi-label confusion and

the need for dialect support and broadcast-speed control.

Nonetheless, this study has several limitations. First, the current

training dataset is limited in both size and variety, which may

hinder accurate detection of less common or newly emerging cotton

diseases and pests. Second, the knowledge graph lacks a real-time

incremental update mechanism, so new disease cases or evolving

farming practices may not be captured promptly. Third, language

support in the voice module is currently restricted, and advanced
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customization options are not available, which may limit the

system’s 857 use among multilingual and diverse user groups.

For future development, it will be important to further expand and

diversify the training dataset, strengthen the model’s generalization and

its ability to recognize rare diseases, and implement an automated

incremental update mechanism for the knowledge graph. On the

interaction side, we will further refine multi-label narration via

hierarchical summarization, calibrated confidence disclosures, and

interactive clarification turns (e.g., “Did you mean A or B?”), while

broadening dialect coverage through lexicon expansion and lightweight

on-device TTS/ASR adaptation. In addition, extending multi-language
FIGURE 17

User interface of the wheat pest and disease knowledge graph-based question-answering system (placeholder).
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capabilities and offering more personalized options in the voice module

will be a priority, so the system can better adapt to various agricultural

contexts and the needs of different users.

Moreover, soil properties and precise irrigation practices are key

factors in the development and management of crop diseases and pests.

With advances in Internet of Things (IoT) and intelligent sensing,

context-aware smart fertilization and irrigation systems are increasingly

used in agriculture. For example, IoT-enabled fertilizer recommendation

platforms can monitor soil moisture and nutrient content in real time,

adjusting fertilization plans based on crop needs. Intelligent approaches

for Reference Evapotranspiration (ETo) allow irrigation to be fine-tuned

using climate, soil, and crop water demand data, while context-aware

evapotranspiration (ETs) models support more targeted and sustainable

irrigation, especially for saline soil remediation. Integrating these IoT-

based sensing and reasoning tools with the present system in future

work is expected to further improve its capabilities and support the

development of intelligent, sustainable agriculture.
9 Conclusion

This study developed an intelligent cotton pest and disease

recognition and voice interaction system that integrates object

detection and knowledge graphs, overcoming the shortcomings of

traditional approaches in efficiency, expertise, and timely response.

The main contributions are as follows:
Fron
1. Introduced the YOLOv11-LDNet model, which uses LAMP

pruning and knowledge distillation to achieve efficient

lightweight optimization, allowing real-time inference on

edge devices even in challenging field settings.

2. Built a comprehensive lifecycle knowledge graph for cotton

pests and diseases with Neo4j, covering causes, transmission

pathways, and preventionmeasures to support intelligent Q&A.

3. Applied natural language processing and knowledge graph

reasoning for semantic, dynamic Q&A, providing

immediate diagnosis and recommendations via voice

feedback, with a Q&A accuracy rate above 95%.

4. Deployed the system successfully on the Jetson Xavier NX,

utilizing a lightweight design and local reasoning to

maintain reliable offline operation.
Overall, the system delivers a closed-loop solution from

perception through cognition to action, combining high detection

accuracy, real-time operation, and improved user experience.

Future Work: The following directions are planned to further

advance this research:
1. We will work to boost real-time performance at scale by

exploring advanced model compression methods—such as

quantization-aware training and neural architecture search

—and by applying adaptive resource management. These

approaches are intended to support higher-resolution

inputs and multiple simultaneous detection tasks on

resource-limited devices.
tiers in Plant Science 26
2. Broader field trials and participatory user studies will be

carried out across different agricultural settings to

thoroughly evaluate system usability, robustness, and

real-world impact. Feedback from these studies will

inform iterative improvements in interface design, voice

interaction accuracy, and adaptability.

3. The system framework will be extended to detect pests and

diseases in other key crops, including wheat, rice, and

maize. With input from local agricultural experts, region-

specific knowledge graphs will 901 be built to assess the

transferability and scalability of the approach.

4. We also plan to integrate multimodal and proactive

interaction modules—such as image-based Q&A, mobile

advisory services, and weather-linked disease forecasting—

to deliver more complete, intelligent 904 support for

agricultural decision-making.
These targeted efforts will further reinforce the scientific and

practical value of the system and support its broader application in

smart agriculture.
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