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Introduction: High labor costs, limited expert availability, and slow response
hinder cotton pest and disease management. We propose a real-time, voice-
enabled edge solution that integrates deep learning—based detection with a
domain knowledge graph to deliver accessible, field-ready decision support.
Methods: We construct a cotton pest—disease knowledge graph with over 3,000
triples spanning seven major categories by fusing expert-curated and web-
sourced knowledge. For image recognition, we develop an enhanced YOLOv11
detector compressed via LAMP pruning and a teacher—assistant—student
distillation strategy for lightweight, high-performance deployment on Jetson
Xavier NX. Detected objects are semantically aligned to graph entities to generate
context-aware recommendations, which are delivered through Bluetooth voice
feedback for hands-free use.

Results: The optimized model has 0.3M parameters and achieves mAPsq = 0.835
at 52 FPS on the edge device, enabling stable real-time inference in field
conditions while preserving detection accuracy.

Discussion: Coupling a compact detector with a structured knowledge graph
and voice interaction reduces dependence on expert labor and speeds response
in non-expert settings, demonstrating a practical pathway to scalable, intelligent
cotton pest and disease management at the edge.

cotton pest and disease detection, knowledge graph, voice interaction, model pruning,
knowledge distillation

1 Introduction

Cotton is recognized as one of the world’s most important economic crops, serving as a
fundamental raw material for the textile industry and underpinning agricultural economies
Wang and Memon (2020). Nevertheless, during the cultivation process, the occurrence of
pests and diseases is frequent, which continues to pose major challenges to the sustainable
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development of the cotton industry Ahmad et al. (2020). In fact, it is
estimated that annual losses in cotton yield due to such factors often
surpass 20%, leading to substantial negative impacts on both
farmers’ incomes and the overall health of the sector.
Conventionally, the identification of cotton pests and diseases has
relied on manual field surveys and the expertise of specialists.
Although this approach can deliver reliable results in some cases,
it is typically constrained by low efficiency, the limited availability of
skilled personnel, and a non-negligible risk of misdiagnosis Buja
et al. (2021). Compounding these issues are increasing labor costs
and the ongoing outflow of rural populations, which have further
intensified the need for advanced, automated detection technologies
in modern agricultural production.

In recent years, rapid advances in artificial intelligence—
especially deep learning—have substantially accelerated computer
vision and opened new opportunities for automating the
identification and management of crop pests and diseases LeCun
et al. (2015). Among these, object detection has emerged as
aprominent deep learning application, valued for its notable
efficiency and accuracy. Well-established object detection models
such as YOLO Jiang et al. (2022), Faster R-CNN Cheng et al. (2018),
and SSD Liu et al. (2016a) have all shown strong performance in
identifying pests and diseases across a range of crops. Still, while
these algorithms are highly effective at classification, relying solely
on image-based recognition is insufficient for providing thorough
diagnostic reasoning or specific prevention recommendations.
Bridging the gap between detection results and practical
agricultural knowledge or actionable prevention measures
continues to be a pressing challenge for the development of
intelligent pest management systems.

Knowledge graph technology has recently gained ground in
agriculture as an advanced means for representing and reasoning
over domain knowledge Bhuyan et al. (2022). By integrating
structured, semi-structured, and unstructured data sources,
knowledge graphs offer an effective way to organize and visualize
information relevant to pests and diseases, such as symptoms,
transmission routes, pathogenic mechanisms, and recommended
control measures. With the aid of reasoning methods, these graphs
can support decision-making and problem-solving, and have
already shown promising results in areas like healthcare,
education, and agriculture Wang et al. (2017). That said, the
construction of knowledge graphs focused on agricultural pests
and diseases is still in its infancy. There is a clear need to further
enhance their accuracy, scope, and usefulness in practical
applications. Moreover, integrating knowledge graph resources
with outputs from deep learning-based object detection, to realize
a unified and intelligent system for diagnosis and prevention, is a
direction that calls for ongoing research and innovation Zhu
et al. (2023).

At the same time, advances in IoT and edge computing have
steadily enhanced the computational capabilities of edge devices,
making it increasingly practical to run complex deep learning
models in real time Ai et al. (2018). Platforms such as NVIDIA’s
Jetson Xavier NX stand out for their strong processing power,
energy efficiency, and straightforward deployment, providing a
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solid technical foundation for implementing object detection and
knowledge reasoning in agricultural environments. By integrating
object detection with knowledge graph reasoning directly on edge
devices, it becomes possible to achieve timely and accurate
diagnosis of pest and disease issues, while also reducing network
bandwidth usage and minimizing latency. These improvements
contribute to more responsive and reliable decision-making in the
field Chen et al. (2022).

In addition, many front-line agricultural practitioners have
limited experience with information technology, which can make
it challenging for them to interpret direct image recognition outputs
or read written diagnostic reports. To address this, delivering
diagnostic results and control suggestions to farmers via voice
broadcasting helps to break down communication barriers Cole
and Fernando (2021). This approach not only makes it easier for
users to access key information but also supports greater
convenience in field operations and promotes a higher degree of
intelligence in agricultural production.

Building on the above background and considerations, this
work presents an intelligent system for cotton pest and disease
detection that brings together object detection, knowledge graph
reasoning, and a voice interaction module to offer user-friendly
results. The goal is to boost both the accuracy and efficiency of pest
and disease diagnosis. In this study, an enhanced lightweight
detection model for cotton diseases is developed and combined
with knowledge graph methods to support decision-making. The
main contributions are summarized as follows:

a. Introduces a multi-dimensional data augmentation
approach utilizing StyleGAN-XL, which is leveraged to
generate and diversify high-quality pest and disease
images. This method effectively alleviates issues of limited
and homogeneous datasets.

b. Applies the LAMP pruning technique for model
compression and optimization, allowing the network to
be efficiently deployed on edge devices like Jetson Xavier
NX and thus meeting the practical requirements of
field applications.

c. Proposes a novel teacher-assistant-student knowledge
distillation framework, employing soft knowledge transfer
to enhance the performance of the student model and offset
accuracy reductions stemming from pruning.

d. Develops a cotton pest and disease knowledge graph by
integrating crawled data, expert input, and knowledge
fusion, with Neo4j-based graph storage and efficient
reasoning to strengthen the system’s capabilities in
diagnosis and prevention recommendation.

To illustrate the methods developed in this work, Figure 1
summarizes the system architecture and the main modules,
including image acquisition and preprocessing, knowledge graph
construction for cotton pests and diseases, deep learning model
optimization (pruning and distillation), edge deployment, and the
voice interaction component. Section 2 reviews relevant literature.
Section 3 outlines the system design and structure. Section 4 details
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FIGURE 1

Main workflow diagram.

the construction of the cotton pest and disease knowledge graph,
covering data collection, entity extraction, graph storage, and
reasoning. Section 5 describes the design and optimization of the
YOLOvI11-based object detection model, with a focus on data
augmentation, LAMP pruning, and hierarchical knowledge
distillation. Section 6 reports on experiments, model training
settings, evaluation metrics, and performance analysis, including
detection results and the Q&A system. Section 8 discusses current
limitations and future improvements, while Section 9 concludes and
suggests research directions.

2 Related work

Computer vision and knowledge graph technologies have
shown considerable promise in agricultural applications. Initial
efforts in pest and disease detection often relied on traditional
image processing techniques, including color and texture
feature analysis.

Ying et al. (2009) introduced median filters for image denoising,
where the central pixel in a region is replaced by the median
grayscale value of surrounding pixels. This technique was applied
to image smoothing in color spaces such as CIELAB, YCbCr, and
HSI, and has been used for detecting crop diseases in cotton, rice,
and corn. Chaudhary et al. (2012) applied the Otsu method to
determine optimal thresholds for preprocessed images in cotton leaf
disease detection, demonstrating stable performance across various
crops regardless of leaf type. Rathod et al. (2014) used median filters
for denoising cotton leaf images in the CIELAB color space, then
applied K-Medoid clustering to extract green leaf pixels for region
of interest selection. They further calculated color and texture
features and used neural networks for classification, reporting up
to 96% accuracy with HS color features. Jenifa et al. (2019)
combined median filtering and K-Means clustering to extract
disease spots, using color and texture features to classify cotton
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leaf diseases. Multi-SVM models achieved 93.63% accuracy,
outperforming CNNs by 7% and showing lower susceptibility to
overfitting. El Sghair et al. (2017) employed median filtering and
thresholding in the CIELAB color space to accurately extract disease
areas, concluding that this color space is particularly suitable for
identifying regions of interest. While traditional image processing
approaches like median filtering, Otsu thresholding, and K-Means
clustering can effectively reduce noise and extract lesions in specific
color spaces, their performance is highly sensitive to lighting,
background, and image quality. The inability to model complex
nonlinear patterns often results in false positives or missed
detections in cases with multiple coexisting diseases, small lesions,
or overlapping symptoms. Limited generalizability and robustness
restrict their suitability for large-scale field deployment, posing
challenges for widespread adoption in agriculture.

In recent years, computer vision technologies—especially those
based on deep learning—have found broad application in
agricultural pest and disease detection, resulting in notable
advances in performance. Convolutional Neural Networks
(CNNs) have shown strong results in disease recognition and
classification tasks. Jianhua et al. (2018) designed a cotton leaf
disease detection system using an enhanced VGG network and data
augmentation, leading to improved accuracy and generalization
across disease types on standard datasets. Wang et al. (2018) used
an adaptive discriminative deep belief network to boost cotton
disease prediction, though real-world robustness remains a
challenge. Muthukannan and Latha (2018) introduced a genetic
algorithm-based feed-forward neural network (GA_FFNN) for
identifying cotton and other plant diseases, achieving an average
accuracy of 81.82%. Zhao et al. (2020) applied transfer learning to
improve cotton disease and pest recognition, but observed reduced
accuracy in complex scenes. Banu and Mani (2020) used pre-
trained RESNET and VGG16 models for pathogen detection in
cotton, with VGG16 and ResNet reaching 92.5% and 96.2%
accuracy, respectively. Alves et al. (2020) developed a modified
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ResNet34 architecture for cotton disease identification, achieving
97.8% accuracy—outperforming methods like LBP-SVM, AlexNet,
ResNet34, and ResNet50. Vishnoi et al. (2022) proposed a CNN-
based approach for apple leaf disease detection that uses data
augmentation and a shallow network to lower computation and
storage needs. The model achieved 98% accuracy on the
PlantVillage dataset and is suitable for deployment on resource-
limited devices like handhelds. These strategies have significantly
improved classification performance and generalization. Still, while
deep learning models raise disease recognition accuracy, challenges
remain in ensuring robustness under real field conditions, and high
computational demand limits their use on edge devices. Traditional
deep learning models also show clear shortcomings in
generalization and classification in diverse scenarios Zhang
et al. (2021).

With the advancement of object detection technology, one-
stage detectors—particularly the YOLO series—have seen
widespread use in agricultural applications due to their fast real-
time inference. Zhang et al. (2022) introduced a real-time high-
performance model based on improved YOLOX, which achieved
94.60% average precision in cotton disease detection by
incorporating Efficient Channel Attention (ECA) and Focal Loss.
Susa et al. (2022) applied YOLOV3 for real-time disease detection in
tea gardens, obtaining a mean average precision (mAP) of 86%.
Zhang et al. (2024b) developed YOLO SSPD—a small-target cotton
boll detection model based on YOLOv8—that used spatial-to-depth
convolution, non-stride convolution, and a parameter-free
attention mechanism to boost detection accuracy for small
objects. The model reached 87.4% accuracy on drone imagery
and showed strong performance in boll counting. Zhang et al.
(2025) proposed LMS-YOLO11n, which improved mAP5, by 2.5%
in cotton weed detection through multi-scale feature fusion and
structural optimization, reducing parameters by 37% and increasing
speed. Lee et al. (2025) optimized hyperparameters for YOLOvl1m
in tomato leaf disease recognition using OFAT and random search,
resulting in the C47 model with xtmAPs, of 0.99262, and precision
and recall rates above 99%, confirming its practical value in crop
disease recognition. Collectively, these studies highlight the
potential of object detection to enhance real-time agricultural pest
and disease monitoring. However, existing approaches still require
further improvement for small object detection and complex
scene performance.

Meanwhile, knowledge graph technology has gained increasing
attention in the agricultural domain. Through structured
representation and reasoning, knowledge graphs can support
agricultural decision-making and diagnosis. Bhuyan et al. (2024)
introduced UrbanAgriKG, a knowledge graph for urban agriculture
that covers entities and relationships such as farms, crops,
technologies, and environmental factors. Their study also
compared graph embedding techniques for link prediction and
similarity search, highlighting the value of combining knowledge
graphs with representation learning for urban agriculture. Furqon
and Bukhori (2023) built a knowledge graph to organize expert
knowledge about rice pests and diseases in Indonesia, using
SPARQL extraction to populate pest and disease instances,
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forming a connected, structured knowledge base that aids rice
disease management. Choudhary et al. (2020) integrated domain
ontologies, sensor data, and weather data into a knowledge graph,
connecting multi-source agricultural information (soil, climate,
crop types) and aggregating it for machine learning models via
SPARQL, demonstrating high practicality. Ge et al. (2024)
combined expert knowledge graphs and case-based reasoning for
intelligent rice fertilization recommendations. Their system used a
semantic knowledge base—covering soil, growth stages, nutrients,
etc.—and matched historical cases for tailored fertilizer advice,
showing high experimental accuracy. Jing and Li (2024) also
constructed a heterogeneous agricultural product knowledge
graph spanning production to food processing, linking products
to attributes such as pesticide residues and storage. It proved
effective for traceability and quality control in tests with 100
carrot batches. Zou et al. (2023) created a county-level corn
ecological knowledge graph (including climate and soil data) and
used RippleNet for recommending planting regions, achieving
76.3% accuracy across 331 varieties and 59 sites, outperforming
various machine learning and graph neural network baselines.
Alharbi et al. (2024) developed a dual-ontology system for pest
and disease knowledge and explainable diagnostics, enabling
farmers to input symptoms and receive matched diagnoses, causal
factors, and literature-based explanations, increasing system
credibility. Jiang et al. (2025) proposed a two-stage fusion
approach for integrating multiple pig disease databases, aligning
entities and using multi-view enhancement. The resulting
knowledge graph supports veterinary diagnostics and planning by
covering diseases, symptoms, treatments, and epidemiology,
providing a comprehensive foundation for the pig industry.
Despite these advances, most agricultural knowledge graph
research remains theoretical, with limited integration into
practical systems like object detection for real-world deployment.

Alongside progress in computer vision and knowledge
representation, recent smart agriculture research has increasingly
focused on integrating Internet of Things (IoT) and machine
learning technologies to improve real-time sensing and decision-
making. For instance, Khan et al. (2022a) developed an IoT-based,
context-aware fertilizer recommendation platform that combines
real-time soil fertility maps with machine learning, supporting more
accurate and efficient fertilization. In irrigation management and
saline soil improvement, Khan et al. (2022b) proposed a context-
aware evapotranspiration estimation system using IoT sensors and
ensembled LSTM models, which achieved strong performance in
real-world field applications. Additionally, Bashir et al. (2023)
presented an ensemble artificial neural network method for
optimizing reference evapotranspiration calculations, offering
flexibility in parameter selection and high accuracy for precision
irrigation at scale. Collectively, these studies reflect a shift toward
data-driven, context-aware, multi-source sensing strategies in smart
agriculture, complementing advances in computer vision and
knowledge graph reasoning.

Recent studies have started to explore integrating knowledge
graphs with deep learning. Li et al. (2024) introduced a deep model
that combines Diffusion Transformer with knowledge graphs for
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efficient detection of cucumber leaf diseases. By embedding crop
disease knowledge into the Transformer’s attention mechanism, the
approach addresses complex features and class imbalance, achieving
93% precision, 89% recall, 91% mAP, and a real-time speed of 57 FPS.
The model was also compressed for mobile field use. Gao et al. (2024)
proposed a cotton pest and disease detection system that fuses visual
Transformer networks with knowledge graphs and deploys on edge
devices. Knowledge graphs add agricultural context for improved
feature learning, and the Transformer backbone enhances robustness.
On mobile platforms, their model reached 94% detection accuracy
and 0.95 mAP, surpassing YOLOv8 and RetinaNet by 3-14%, with
speeds around 49.7 FPS. Chhetri et al. (2023) combined deep neural
networks and semantic knowledge graphs for cassava leaf disease
recognition, improving accuracy to 90.5% and providing explainable
outputs, with 95% of users finding the explanations helpful. The
method improves on the interpretability and context limitations of
conventional deep models. Wang et al. (2024) developed a tomato
pest and disease knowledge graph using deep NER models (ALBERT-
BiLSTM-CRF) to extract entities from agricultural texts, achieving a
95.03% recall rate after integrating multi-source datasets. The
resulting knowledge, stored in Neo4j, supports digital tomato
disease diagnosis. Lv et al. (2024) proposed Veg-MMKG, a
multimodal vegetable knowledge graph method that fuses text and
images, using pre-trained models and dual-stream learning for text-
image alignment. Their approach employs cross-modal contrastive
learning, reaching 76.7% accuracy in image-text agricultural queries.
Yan et al. (2025) developed CropDP-KG, a large-scale pest and
disease knowledge graph for Chinese crops, extracting over 13,000
entities and 21,000 relationships from national datasets to unify data
standards. Their system and data are open-source, aiding precision
agriculture. Chen et al. (2019) released AgriKG, a large agricultural
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graph capturing knowledge on crops, pests, soils, climate, and
management via NLP and deep learning, and providing support for
agricultural QA and entity search. Although these integrations offer
new pathways for practical deployment, most work is still at the
exploratory stage and lacks validated, systematic solutions for real-
world agricultural environments Shahin et al. (2017).

To advance smart agriculture in practical settings, this work
introduces an intelligent cotton pest and disease detection system
that brings together object detection, knowledge graph reasoning,
and voice interaction. Built on the Jetson Xavier NX platform, the
system adopts a lightweight model and fast response design,
supporting real-time field identification. By developing a
dedicated knowledge graph and integrating voice broadcast, the
system closes the loop from recognition to reasoning to user
feedback. This approach reduces operational barriers for farmers,
improves the practicality and intelligence of agricultural Al, and
offers a viable path toward intelligent agricultural development.

3 System overall design and
framework

3.1 System design objectives and overall
architecture

The goal of this system is to deliver an intelligent recognition
and interaction platform suitable for real-world agricultural use. By
combining image analysis, knowledge-based reasoning, and voice
output, it supports a closed-loop diagnostic process from perception
to explanation. The overall architecture is outlined in Figure 2. In its
design, the system balances high accuracy and speed with structured
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management of semantic data and clear, user-friendly outputs,
aiming to give farmers reliable and accessible decision support.

3.2 Image acquisition and preprocessing
module

The image acquisition module acts as the system’s primary
sensing interface. Field cameras with autofocus and adaptive
lighting ensure clear imaging in various weather and lighting
conditions. Acquired images are processed with exposure
correction, gamma adjustment, grayscale normalization, and edge
enhancement to reduce noise from shadows and complex
backgrounds. To further improve robustness against varied angles
and occlusions, the module employs multi-angle supplementary
capture and uses slight camera shifts for redundant image fusion.

3.3 Object detection module

The object detection module locates and classifies pest and
disease regions in the input images, using a YOLOvlln-based
model designed for fine-grained lesion detection on leaf surfaces.
To lower deployment costs, the model is pruned with LAMP for
lightweight operation, then converted to ONNX and accelerated
with TensorRT for efficient inference on Jetson Xavier NX. This
setup delivers millisecond-level detection speed. The module also
includes confidence scoring and multi-target reordering, supporting
prioritized, multi-label output when multiple diseases are present.

3.4 Knowledge graph reasoning module

The knowledge graph module, developed on the Neo4j
platform, captures the full lifecycle of major cotton pests and
diseases—covering pathogens, symptoms, transmission, climate
triggers, prevention strategies, and related semantic links Huang
and Dong (2013). Hierarchical reasoning and disease comparison
are supported using weighted relationship chains and path rules,
and the system can recommend entities even when input labels are
unclear. To support scalability, expert knowledge can be added
incrementally, and an entity disambiguation mechanism is included
to reduce errors from label ambiguity Zhang et al. (2024a). The
resulting structured knowledge is formatted for natural language
output in the voice module.

3.5 Edge computing inference fusion
module

This module underpins the system’s intelligence and autonomy,
with all models and knowledge graphs running locally on the Jetson
Xavier NX to support offline use. Thread pool management allows
parallel execution of detection and reasoning, making full use of
edge computing resources. A cache-first strategy is used for
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knowledge queries: common disease data and recommendations
are stored in local memory for rapid, second-level responses when
labels match. For field deployment, the system features low-power
operation and battery management, supporting over six hours of
continuous use without external power.

3.6 Voice interaction module

The voice interaction module delivers structured diagnoses and
advice as natural language speech using a lightweight TTS engine,
with support for multiple languages, adjustable speed, and keyword
emphasis Li et al. (2021). Tt features intelligent broadcast control,
Bluetooth output, and interruption handling to avoid repeated
messages and ensure clear, timely feedback even when screens are
unavailable. For ambiguous or multi-label results, all findings and
suggestions are read out in turn; if uncertainty persists, the system
requests clarification or summarizes possible scenarios for the user.

3.7 Module integration and system
interaction mechanism

RESTful APIs manage communication between system
modules, with all data exchanged in structured JSON format.
Once the object detection module outputs pest and disease labels,
results are sent via middleware to the knowledge graph engine. The
engine returns structured explanations, which are then formatted
with language templates for voice output, creating a full loop from
detection to broadcast. All modules operate asynchronously and
concurrently, reducing transmission delays and improving user
response times.

3.8 Deployment adaptability and
environmental robustness

The system is designed with practical agricultural deployment
in mind: cameras are IP65-rated for water resistance, the main
control unit is protected against overheating and shock, and the
voice module features outdoor noise reduction. To handle power
and network disruptions, the system includes auto-recovery, cache
sync, and an offline knowledge mode. Image quality is monitored in
real time using contrast and clarity metrics, with automatic
re-capture triggered if images are blurred or blocked. Offline
operation is supported, with daily data sync when a connection is
available. During offline periods, detection results and logs are
saved locally, and a differential sync protocol uploads only
new or changed records when reconnected, minimizing
bandwidth use. The sync supports resumable transfers with
automatic retries. A dedicated battery and power management
enable over six hours of autonomous operation, including safe
shutdown and recovery. Transaction logs and checkpoints protect
data integrity, ensuring the system remains reliable under field
power and bandwidth constraints.
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4 Construction of cotton pest and
disease knowledge graph

4.1 Objectives and methods of knowledge
graph construction

Knowledge graphs play a crucial role as the bridge connecting
data and knowledge layers, systematically bringing together
fragmented and heterogeneous agricultural information. This
integration supports effective diagnosis and decision-making for
cotton pest and disease prevention. In agricultural contexts, pest
and disease problems typically involve complex, multi-dimensional
relationships, making it difficult for traditional databases and search
methods to deliver deep reasoning support. The cotton pest and
disease knowledge graph developed in this study follows the design
principles of comprehensive information integration, efficient
semantic reasoning, and in-depth decision support. Its purpose is
to provide richer, more accurate semantic details and targeted
prevention advice following the initial identification of diseases by
object detection.

In this study, the knowledge graph brings together data from
various sources, including agricultural publications, expert
repositories, online encyclopedias, and government documents.
Through this integration, a semantic network is established that
covers six main entities: disease categories, symptom profiles,
pathogen types, stages of infection, transmission pathways, and
prevention strategies Chen et al. (2024). This network structure
supports dynamic reasoning and fast retrieval by capturing
semantic links among different entities.

In terms of structural design, the graph adopts a directed graph
representation method, as defined in (Equation 1):

G=(V,ER) (1)

Where V represents the entity collection, E represents the
relationship edge collection between entities, and R represents the
relationship type collection. Each entity node is mapped to high-
dimensional space to form vector representations for subsequent
entity semantic similarity calculations i € R”. Graph embedding is
implemented through the TransE algorithm, and the optimization
objective is defined in Equation (2):

L= 3 > max(0,y +d(h+1,t) - AW +r,t)) (@)
(hr )EE(H 7 ') EE
where h, 1, t respectively represent the head entity, relation and
tail entity, d represents the distance between entities, ¥ represents
the boundary threshold, and max(0,:) represents the positive and
negative pair distinction in the form of Hinge Loss.

4.2 Data acquisition and information
processing methods

During the data acquisition phase, this study collected publicly

available online resources using custom web crawlers, sourcing data
from platforms such as Baidu Encyclopedia and the Ministry of
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Agriculture and Rural Affairs pest and disease database. To process
unstructured text, tools like HanLP and BERT-CRF were applied
for named entity recognition and relationship extraction. Field
technicians were also involved to annotate and verify
terminology, ensuring the reliability and domain accuracy of the
dataset. For knowledge fusion, entities were aligned using semantic
vector space modeling. Contextual embeddings for candidate
entities were generated with the pre-trained BERT model,
followed by calculation of cosine similarity to assess the
relationships between entities:

A-B

im(A,B) = ———
sim(4 B) = 3]

3)
Where A and B are the vector representations of the candidate
entities. When sim(A,B) > 0.85, they are considered the same entity.
Additionally, we designed a manual expert verification mechanism
to handle edge cases that the model cannot accurately judge
completely, thereby improving the quality of the knowledge graph.
To provide a clear visualization of the entity coverage and core
conceptual structure of the knowledge graph developed in this
research, Table 1 summarizes examples of seven major entity classes
represented in the system. These categories form the essential node
types in the semantic network of the graph and correspond to the
principal knowledge domains relevant for pest and disease
identification and management in agricultural contexts.
Representative examples are presented for each class, including
key cotton pest and disease types (such as aphids, armyworms, leaf
spot, etc.), along with their associated transmission and control
information, which are the primary focus of the system.

4.2.1 Schema and worked example for Neo4j
integration

Schema mapping. We map the seven detection targets to two
top-level Neo4;j labels::Pest (Aphids, Armyworm) and:Disease (Leaf
spot, Leaf blight, Fusarium wilt, Grey mold, Leaf curl). These are
linked to five auxiliary domains for diagnosis and recommendation:
Pathogen,:Symptom,:TransmissionMode,:GrowthStage, and:
ControlMethod. Table 2 summarizes the main relation types and
representative node attributes used by the reasoning module.

TABLE 1 Examples of core entities in the knowledge graph.

Entity type Examples

i Leaf spot, Bacterial blight, Fusarium wilt, Grey mildew, Leaf
Diseases

curl
Pests Aphids, Armyworm
Yellowing leaves, Brown lesions, Leaf margin curling, Rot,
Symptoms )
Shedding, etc.
Pathogens Fusarium spp., Botrytis cinerea, etc.

Infection stages Seedling stage, Flowering and boll stage, Blooming stage

Transmission
Soil-borne, Airborne, Vector-borne
modes

Chemical spraying, Bio-agents, Physical barriers, Crop

Control methods .
rotation, etc.
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TABLE 2 Core relation types and representative node attributes in the
Neo4j graph.

Key attributes

Relation Pattern
(node-level)
(:Disease)-[:
HAS_SYMPTOM HAS_SYMPTOM]->(: Symptom.name, region
Symptom)

(:Disease)-[:CAUSED_BY]->

CAUSED_BY (:Pathogen) Pathogen.name, genus
(:Disease)-[:

TRANSMITTED_BY | TRANSMITTED_BY]->(: TransmissionMode.type
TransmissionMode)
(:Disease)-[:

AFFECTS_STAGE AFFECTS_STAGE]->(: GrowthStage.name
GrowthStage)
:Di :Pest)-[:
(:Diseasel:Pest)-{ ControlMethod.type,

TREATED_BY TREATED_BY]->(:

intervaldays, d L
ControlMethod) intervaidays, dosageg

Worked example: “Leaf spot”. Listing 1 instantiates a minimal
actionable subgraph that connects:Disease{name:”Leaf spot”} to
representative pathogens, symptoms, and control methods. We
use MERGE with stable identifiers (id) to keep updates idempotent.

# Listing 1: Instantiation (MERGE) of a Leaf spot subgraph

MERGE (d:Disease {id:’dis_leaf_spot’, name: Leaf spot’})

MERGE (p:Pathogen {id:’pat_alt_spp’, name:’Alternaria

spp.’, genus:’Alternaria’})

MERGE (s1:Symptom {id:’sym_brown_circ’, name:’brown

circular lesions’})

MERGE (s2:Symptom {id:’sym_yellow_halo’, name:’yellow

halo around spots’})

MERGE (tm:TransmissionMode {id:tm_airborne’, type:airborne’})

MERGE (gs:GrowthStage {id:’gs_boll’, name:’boll stage’})

MERGE (cm1:ControlMethod {id:’cm_bio_bs’,
type:’bio-agent’, product:’Bacillus subtilis’,
interval_days:7, dosage_g L:1.0})

MERGE (cm2:ControlMethod {id:’cm_chem_polyoxin’,
type:’chemical’, product:’polyoxin’,
interval_days:7, dosage_g 1:0.6})

MERGE (d)-[:CAUSED_BY]->(p)

MERGE (d)-[:HAS_SYMPTOM]->(s1)

MERGE (d)-[:HAS_SYMPTOM]->(s2)

MERGE (d)-[:TRANSMITTED_BY]->(tm)

MERGE (d)-[:AFFECTS_STAGE]->(gs)

MERGE (d)-[:TREATED_BY]->(cm1)

MERGE (d)-[:TREATED_BY]->(cm2);

Note. The example shows representative connections; in
practice, multiple:Pathogen and:ControlMethod nodes can be
attached with provenance tags from curated sources.

Actionable retrieval. For recommendation and voice output, we
expand a disease-centered, 2-hop neighborhood and return
structured fields (Listing 2):

# Listing 2: Retrieval of an actionable neighborhood for
“Leaf spot”
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MATCH (d:Disease {name: Leaf spot’})
OPTIONAL MATCH (d)-[:CAUSED_BY]->(p:Pathogen)
OPTIONAL MATCH (d)-[:HAS_SYMPTOM]->(s:Symptom)
OPTIONAL MATCH (d)-[-TREATED._BY]->(cm:ControlMethod)
OPTIONAL MATCH (d)-[:TRANSMITTED_BY]->
(tm:TransmissionMode)
OPTIONAL MATCH (d)-[:AFFECTS_STAGE]->(gs:GrowthStage)
RETURN d.name AS disease,
collect(DISTINCT p.name) AS pathogens,
collect(DISTINCT s.name) AS symptoms,
collect(DISTINCT ({type:cm.type, product:
cm.product,
interval:cm.interval_days, dosage:cm.dosage_g L})
AS controls,
collect(DISTINCT tm.type) AS transmission,
collect(DISTINCT gs.name) AS stages;
Disambiguation and fusion. When aligning text-derived entities
to the graph, we combine (i) BERT-based cosine similarity
(threshold 0.85; see Equation 3) for semantic proximity, (ii) a
curated gazetteer for high-precision matches of scientific/common
names, and (iii) an expert-overrides rule for edge cases. Conflicts are
resolved by priority: expert > gazetteer > model score. This keeps
fusion deterministic while allowing incremental expert curation.

4.3 Integration of graph storage, reasoning,
and maintenance mechanisms

To enable effective semantic responses and strategy
recommendations after recognition, the knowledge graph’s query
speed, reasoning depth, and update flexibility are fundamental to
maintaining usability and continuous system intelligence. The
knowledge graph is stored using Neo4j, where entities and
relationships are represented as nodes and directed edges,
supporting efficient graph traversal (Figure 3). With Python
interfaces to Neo4j, the system supports querying, inserting, and
updating any entity or path, leveraging Cypher queries integrated
with Python scripts to meet deployment needs. As illustrated in
Figure 4, sample code can retrieve all symptom nodes related to
“Cotton Gray Mold” within the graph.

This query retrieves all symptom nodes related to cotton gray
mold and can be similarly extended to search for medicinal controls
or transmission routes. To enhance response efficiency, we
implemented a high-priority index system for frequently accessed
entities and added a cache management module based on historical
queries, allowing the graph to remain lightweight even under high
concurrency and during edge-side inference. For reasoning, the
system utilizes a configurable engine built on semantic path
templates. For instance, when “leaf blight” is detected, the
following reasoning chain may be constructed: “Leaf blight” —
“Rice blast fungus” (caused by) — “Air transmission” (transmitted
by) — “High humidity above 25°C” — “Biological agents + drug
rotation” (treated by). These reasoning steps are dynamically
updated based on environmental conditions and rules, producing
natural language summaries such as: “Detected as cotton leaf blight,
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FIGURE 3
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Schematic diagram of cotton pest and disease knowledge graph structure (entity-relationship view).

mley

which is prevalent during the boll stage under humid conditions.
Recommend applying Bacillus subtilis and polyoxin in rotation,
spraying every 7 days.” This output is passed to the voice module for
real-time user feedback. For graph updates, a hybrid mechanism
combines automatic crawling and extraction with expert manual
validation. Each month, the system collects new agricultural

knowledge from trusted sources. New entities and relationships
are extracted by NLP models, after which plant protection experts
review, resolve conflicts, and remove outdated or erroneous data.
This two-step process ensures update reliability by merging
frequent automatic updates with periodic expert checks. At
present, the knowledge graph is refreshed monthly; future

query ="'

RETURN s.name AS symptom

with driver.session() as session:

for record in result:

FIGURE 4

MATCH (d:Disease)-[:has_symptom]->(s:Symptom)
WHERE d.name = $disease_name

result = session.run(query, disease_name="Boll graymold")

print(record["symptom"])

Semantic path matching for querying disease-related symptoms in the knowledge graph.
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improvements will focus on real-time incremental learning, so new
knowledge—detected in the field or input by experts—can be
integrated immediately. Nevertheless, challenges such as expert
availability and resource constraints on edge devices must be
considered for real-time deployment. The system is designed to
continually integrate new information from real-time detection,
allowing both the knowledge graph and detection model to be
updated iteratively. This two-way update approach not only
improves recognition accuracy, but also keeps the knowledge base
aligned with current agricultural developments. Looking ahead,
future work will focus on further automating real-time
incremental updates, aiming to enhance the system’s adaptability
to changing and complex field conditions.

Figure 5 further illustrates ‘leaf blight' as the core node,
demonstrating the multi-hop path nodes activated during
reasoning and the result fusion mechanism.

10.3389/fpls.2025.1671755

With the integration of these modules, the knowledge graph has
progressed from a passive query tool to a dynamic, semantically-driven
core component. Its ability to support the full workflow—from
detection and recognition through to decision broadcasting—has
paved the way for practical agricultural cognitive intelligence solutions.

5 Deep learning based object
detection model

5.1 Dataset construction and distribution
design

In deep learning-based pest and disease detection, datasets serve
not only as the basis for model training, but also as critical
determinants of generalization, robustness, and deployment

FIGURE 5
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Instance diagram of leaf blight graph reasoning path (including recommended strategy paths).
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performance. In this study, a high-quality image dataset for cotton
leaf disease and pest recognition was built to reflect real-world
conditions, with a focus on incorporating “scene complexity” and
“semantic diversity” into the early stages of model development.
This approach provides a strong foundation for ensuring both the
transferability and practical effectiveness of the detection models in
real deployments.

The dataset comprises 8,000 images representing seven primary
cotton pest and disease categories: aphids, armyworms, leaf spot, leaf
blight, Fusarium wilt, gray mold, and leaf curl, along with healthy
samples to aid category differentiation and improve boundary feature
learning. Data collection covered major cotton-producing regions,
including southern Xinjiang, the central Yellow River Basin, and
central Hubei high-yield zones. Sampling times ranged from sunny
and post-rain conditions to cloudy weather and dawn/dusk, aiming
to build a “cross-scene, cross-time, cross-region” semantic space that
captures the diverse visual presentations of pests and diseases across
different environmental and temporal settings. For image acquisition,
both handheld and low-angle ground methods were employed.
Ground-level images facilitated detailed capture of lesion patterns,
while drone-based images contributed scale awareness and spatial
context of the fields. Multi-angle approaches—including overhead,
upward, and oblique perspectives—were systematically used to
enhance the dataset’s robustness to viewing angles, reducing model
reliance on specific camera positions.

In addition, supplementary data was obtained through web
crawling and open-source image repositories. An automated
crawler framework was implemented using keyword matching
and image filtering to collect relevant pest and disease imagery
from various agricultural technology platforms and open-access
image sources. The crawler system featured a distributed, multi-
threaded architecture, integrating image hash based deduplication
and automated label classification to preliminarily organize and
filter collected images. To ensure both image quality and annotation
reliability, three plant protection experts were engaged to manually
review and verify the labels of filtered samples, with particular
emphasis on challenging categories such as “early-stage gray mold,”
“late-stage armyworm aggregation,” and “leaf blight under
backlighting”—cases that are rare but crucial in original
field photography.

All images were standardized to a resolution of 640x640 or
higher to retain essential micro-level details, including leaf vein
patterns, insect contours, and lesion edge diffusion. Additionally,
diverse sources of interference—such as backlighting, variable
illumination, branch and leaf occlusion, and water stain artifacts
—were intentionally included to improve the model’s robustness in
non-ideal conditions, as illustrated in Figure 6.

5.1.1 StyleGAN-XL training method

To tackle the challenge of insufficient data for certain cotton
pest and disease categories and scenarios, this study introduced an
image synthesis mechanism based on StyleGAN-XL to generate
high-quality, semantically diverse synthetic samples, thereby
improving the detection model’s performance in few-shot and
complex cases Melnik et al. (2024). StyleGAN-XL, known for its
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high resolution and controllability, excels at reproducing structural
details and texture variations—making it ideal for simulating high-
frequency features and color patterns in agricultural lesion imagery.
For this work, StyleGAN-XL was trained using NVIDIA’s
distributed multi-GPU framework, with both original and web-
sourced images resized to 256x256 as input. The Generator features
a separated latent space with dual-space mapping, projecting a
Gaussian latent vector z € R% to a style space w € R*'?, and
employs 14 synthesis layers with up to 1,024 channels to accurately
capture fine lesion characteristics. To enhance spatial coherence
and semantic variety, alias-free convolution and style mixing (with
a 0.9 probability) are utilized. The Discriminator employs a
Projected Discriminator architecture incorporating DeiT-Base
Transformer and EfficientNet Lite0 as backbones, along with
multi-scale branches and Differentiable Augmentation, enabling
robust spatial-semantic fusion and effective handling of scale
diversity in disease images. The generator and discriminator
losses are given in Equations (4) and (5).

Lg = B, _no,[~D(G(2)) + A, - PLR(G)] (4)
Lp =By, [log D(x)] + B, yo [log (1 - D(G(2)))]
+ At | VD() |7 (5)

Among them, A4, = 2 is the weight of the path length
regularization term, Ag; controls the strength of R1
regularization, and PLR refers to the path length regularization
term (Path Length Regularization), which is used to maintain the
consistency of the generated image style and stabilize the
training process.

After the training, we selected the images generated by the last
10,000 steps of the model for FID (Frechet Inception Distance) and
Inception Score (IS) as evaluation indicators. The FID metric
follows the definition in Equation (6).

FID(x, g) = || the — 4, 13 +Tr (Zx +2 - Z(ZXEg)%) (6)

Where x represents the feature distribution of the real image,
and g represents the feature distribution of the generated image. 1,
and U, represent the mean vectors of the two distributions,
respectively, and X, and X, represent the covariance matrices of
the two distributions, respectively. Tr represents the trace of
the matrix.

Inception Score is a commonly used indicator for evaluating the
quality of generated images. It is based on the Inception-v3 model
and evaluates the diversity and authenticity of images by calculating
the classification probability distribution of generated images. The
IS metric follows the definition in Equation (7).

IS = exp (B [Dx (p(y1) | p(¥))]) (7)

Where Dy; is the KL divergence, p(y|x) is the conditional
probability distribution of the classifier output given an image x,
and p(y) is the average category distribution of the image.

StyleGAN-XL outperforms other mainstream generative
models in both FID and IS indicators as shown in Table 5,
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FIGURE 6
Dataset legend in complex environments.

indicating that it has significant advantages in distribution
consistency, structural fidelity, and perceptual quality. The
visualization results of the generated samples are shown in
Figure 7, which further demonstrates its excellent ability to
restore the blurred edges of leaf spots and the details of gray
mold hairs.

The generated samples were evaluated by experts, confirming
that they have similar performance to real images in terms of texture
structure, color distribution and disease identifiability. Finally, about
2,000 high-quality pseudo images were selected to be added to the
original training set, and some of the blurred samples were removed.
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The final dataset consists of 10,000 images, comprising 2,000
high-quality pseudo images generated and screened by experts, and
8,000 collected real images. The dataset is divided into training,
validation, and test sets in a ratio of 7:2:1, ensuring both sufficient
data for model training and reliable performance evaluation (Table
3). For annotation, seven types of cotton pests and diseases are used
as multi-category detection labels: Aphids, Armyworm, Leaf spot,
Helminthosporium leaf spot, Fusarium wilt, Bollgray mold, and
Leaf curl disease.

To make the dataset composition clearer under multi-label
conditions, we additionally report, for each category, both the
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TABLE 3 FID and IS scores of StyleGAN-XL.

GAN model FID | IS 1
PGGAN 19.135 6.54
VQ-VAE-2 12.308 7.17
BigGAN 16318 7.84
StyleGAN-XL 9.187 7.98

Bold values denote the best performance in each column (lower is better for FID; higher is
better for IS). Ties, if any, are all shown in bold.

number of images that contain at least one instance of the category
(“images wi/class”) and the total number of annotated instances
(“instances”) (Table 4). Note that the sum of “images w/class”
across categories exceeds 10,000 because multiple categories may
appear in the same image.

5.2 YOLOv11 model structure and
optimization design

In intelligent agricultural systems, object detection serves not only
as the first line of pest and disease recognition but also as the perceptual
gateway for downstream semantic reasoning and decision support.
Unlike traditional image classification, object detection models must
both localize and identify multiple objects within a single image. In
cotton field applications, this task is further complicated by background
clutter, high target density, and the coexistence of objects at various
scales Mo and Wei (2024), imposing strict requirements on model
robustness, detection accuracy, and real-time responsiveness.

To address these challenges, this study developed a cotton pest
and disease detection model, YOLOv11 LDNet (YOLOv11-LAMP-
pruned & Distilled Network), based on the YOLOv11 architecture.
The network structure is illustrated in Figure 8. On this basis, a
series of architectural optimizations and deployment adaptations
were introduced to meet the requirements of agricultural field
scenarios, resulting in a solution specifically tailored for small-
object detection on edge devices and capable of handling multiple
pest and disease categories.

TABLE 5 Definition of target detection categories for cotton diseases
and pests.

Categor Categor -
gory gory Feature description
name type
Ext 1 11 ts with
Aphids Pests xtremely smal tarse s with strong
aggregation
Armyworm Pests Dark gray color, nocturnal habits
Leaf spot Diseases Multiple circular patches with blurred edges
Bacterial blight Diseases Yellowing leaf margins with gradual spread
Fusarium wilt Diseases Entire leaf shriveled with collapsed veins
Grey mold Diseases Gray-white fuzzy patches with central rot
Leaf curl Diseases Twiste‘d and curled leaves, significantly
influenced by temperature
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TABLE 4 Per-category image and instance counts in the final dataset
(multi-label).

Category Images w/ Instances Tra_in/val/test
class (images)
Aphids 1476 1842 1033/296/147
Armyworm 1421 1717 995/284/142
Leaf spot 1488 1963 1041/297/150
: ;‘:;‘;ih"sl’oﬂum 1432 1856 1005/288/139
Fusarium wilt 1408 1774 988/281/139
Boll gray mold 1446 1917 1016/291/139
Leaf curl disease 1329 1658 935/265/129

YOLOV11, the latest generation of the YOLO series developed
by Ultralytics, introduces a series of architectural refinements aimed
at achieving a better trade-off between accuracy and efficiency
across a wide range of visual tasks, including object detection,
instance segmentation, and pose estimation. The backbone
incorporates the newly designed C3k2 modules to enhance
feature reuse while reducing computational overhead, combined
with the SPPF (Spatial Pyramid Pooling - Fast) layer to improve
receptive field coverage without significantly increasing inference
latency. In addition, the architecture integrates the C2PSA
(Convolutional block with Parallel Spatial Attention) mechanism,
which strengthens global-local feature interactions and improves
robustness in cluttered scenes. The detection head remains
decoupled for classification, objectness scoring, and bounding box
regression, thereby improving convergence stability and
performance in multi-object environments. Compared to
YOLOvV8, YOLOvI1 demonstrates higher mAP with fewer
parameters, making it suitable for deployment on both high-
performance servers and resource-constrained edge devices.

5.3 Category settings and data labeling
system

In this study, a specialized seven-class object detection system
was developed to address real-world scenarios of cotton field pest
and disease identification, covering two major groups: insect pests
(aphids and armyworms) and diseases (leaf spot, leaf blight,
Fusarium wilt, gray mold, and leaf curl). Each target class
presents distinct visual characteristics: aphids, for example, are
extremely small, tend to cluster, and exhibit colors similar to the
leaf background, making them challenging to detect; leaf blight
appears as diffuse, blurry-edged lesions that can cover substantial
areas of the leaf surface; leaf curl is marked by significant geometric
deformation, requiring shape-aware modeling. To boost
recognition accuracy for such diverse targets, all training images
underwent meticulous, frame-level annotation following the YOLO
standard. A consistent and unified labeling system, detailed in
Table 5, was established to support precise detection in multi-
target and fine-grained settings.
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FIGURE 7
Cotton leaf disease examples generated by StyleGAN-XL.

In this research, based on actual cotton field pest and disease
scenarios, we have constructed a highly targeted seven-category
object detection system covering two major classes: insect pests and
diseases. Insect pests include aphids and armyworms, while diseases
encompass leaf spot disease, leaf blight, Fusarium wilt, gray mold,
and leaf curl disease. These targets exhibit significant differences in
their image presentations: for instance, aphids are extremely small
and often gather in groups.

5.4 LAMP model pruning

In practical deployments of deep neural networks, especially on
edge platforms like Jetson Xavier NX, redundant model structures
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can easily become bottlenecks, restricting both real-time inference
and energy efficiency. Although the standard YOLOvI1 model
delivers high detection accuracy, its substantial parameter count
and computational burden limit its usability in resource-
constrained agricultural scenarios. To overcome these limitations,
this study employs a global pruning technique—Layer-Adaptive
Magnitude-based Pruning (LAMP) Notomi et al. (2015). LAMP
evaluates the significance of weights across the network and
adaptively removes less important parameters layer by layer,
while retaining crucial structural features. This global, layer-
adaptive pruning approach is driven by the magnitude of weights:
each weight’s importance is quantified by its LAMP score (see
Equation 8), and pruning is based on normalized importance
scores. Through this mechanism, LAMP prevents the “layer
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FIGURE 8
Architecture of the YOLOv11-LDNet.

collapse” issue observed in conventional pruning and maintains a
dynamic trade-off between model compactness and detection
accuracy.

(Wul)?
EVZu(W[V])z

In the LAMP approach, the numerator (W[u])? represents the

score(u; W) : =

®)

squared value of an individual weight, while the denominator sums
the squares of all weights from the current position to the end of the
layer. This method accounts for both the absolute size of each
weight and its relative significance within the layer, providing an
effective measure of importance. The pruning rule is
straightforward: if (Wlul)®> > (W[v])% then W[u] has a higher
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LAMP score and is deemed more important than W[v]. LAMP
applies a global sparsity threshold and iteratively removes weights
with the lowest scores until the target is achieved, ensuring that at
least one key connection remains in every layer to prevent collapse.
The overall strategy is depicted in Figure 9. This adaptive, global
pruning scheme significantly reduces model complexity and
resource usage, supporting lightweight deployment in challenging
operational environments.

5.5 Knowledge distillation

In real-world cotton pest and disease detection, the presence of
cluttered backgrounds, indistinct lesion boundaries, and small
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FIGURE 9

Schematic diagram of the LAMP score calculation process and its application to global pruning. (A) Vertical fusion (B) Horizontal fusion.
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insect bodies in images makes accurate discrimination particularly
challenging for models. These issues are even more pronounced
when models are deployed on resource-constrained devices like
Jetson Xavier NX, where maintaining a trade-off between accuracy
and model size is essential. While standard compression methods
such as pruning can lower parameter counts and computation
needs, they often result in nonlinear information loss, leading to a
noticeable drop in detection performance for fine-grained features
Lin et al. (2022).

To address these challenges, this paper adopts a hierarchical
collaborative knowledge transfer approach—the Teacher-Assistant-
Student Knowledge Distillation (TAS-KD) framework—as a core
strategy to recover model performance following pruning. The key
idea is to gradually transfer the rich representation abilities of a
large teacher network to a compact student model, using an
intermediate assistant network to mediate knowledge flow and
maintain architectural consistency. This setup allows for more
effective and flexible distillation, as illustrated in Figure 10, which
details the specific stages of the process.

Unlike standard distillation techniques, this work constructs a
ternary cognitive transfer scheme: the teacher model provides
comprehensive multi-scale semantic representations as the source
of information; the assistant network bridges differences in capacity
and task representation, functioning as both a mediator and a

10.3389/fpls.2025.1671755

semantic compressor; the student model focuses on lightweight
structure while learning from the others, with deployability as a key
target. By using this multi-stage distillation, the approach narrows
the gap in representational ability between models, helping the
student achieve better generalization and fine-grained perception
even with strict parameter limits.

In the actual implementation, this study adopts a Soft Target
Transfer approach as the main means for knowledge delivery.
Beyond producing class predictions, the teacher model outputs
high-dimensional class distribution vectors that encode implicit
relationships—such as similarities among categories, background
context, and the relative positions of targets. These soft labels
carry more information than standard one-hot (hard) labels and
help guide the student model in addressing challenging
distinctions in cotton pest and disease images, including
indistinct leaf boundaries, overlapping lesions, and occluded
insect bodies.

To further strengthen the preservation of spatial structure, the
assistant model not only passes on category-level semantics but also
transfers spatial attention maps for each target. By distilling
knowledge through both category and location channels, this
approach enables the student model to learn contextual relations
among targets and maintain boundary consistency during training.
As a result, the student gains improved robustness and flexibility,
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FIGURE 10
Knowledge distillation network structure diagram.
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especially in handling common field challenges like crowded scenes,
small objects, and ambiguous class boundaries.

The improved YOLOvV11 and its pruned version share the same
network architecture, differing only in the number of channels.
Both heads generate three feature maps, so the knowledge
distillation process illustrated in Figure 8 applies equally to both.
During training, the teacher and student models operate in parallel,
with losses computed on each feature map. For this purpose, L2 loss
is adopted, as detailed in Equation 9.

D (Fi(i) = Fi(i)?

n

Lossdis—feature -

9

In the formula, F,(-) represents the feature map of the teacher
network, and F(-) represents the feature map of the student network.

In addition to the loss on the feature map, the paper also
performs distillation learning on the classification and regression
losses. Let s be the output of the student network, t be the output of
the teacher network, and the regression distillation loss uses L2 loss,
see Equation 10. The classification distillation loss uses cross
entropy loss, see Equation 11.

S (Reg; (i) — Reg,(i))?

n

(10)

Lossdis—reg =

= SIS, (ilog (CIS,(0))

i=1

Lossdis—cls - (1 1)

Combining the distillation loss and the actual student network
loss is the final student network loss. The calculation formula is
shown in Equation 12, where the original loss of the student

network is Loss.
Loss = LOSSSm +6 LOSSdis—feature + g LOSSdis—cls +é Lossdis—reg (12)

This method is of great significance for the improvement of
lightweight models, making them more suitable for deployment on
resource-constrained mobile devices, and providing technical
support for the rapid detection and prevention of cotton
leaf diseases.

6 Model training and results analysis

6.1 Experimental environment
configuration

To comprehensively assess cotton pest and disease monitoring
and diagnostic methods, this research developed a real-time
monitoring platform that emphasizes both efficiency and
interactivity. The platform integrates deep learning-based object
detection with knowledge graph reasoning, enabling accurate
identification and real-time feedback for cotton pest and disease
cases. Initial model training and optimization were performed on a
system equipped with a GeForce RTX 4090 GPU and running
Ubuntu 18.04 LTS. The development environment consisted of
PyCharm 2020.3, Python 3.7.0, PyTorch 1.7.1 for deep learning,
and OpenCV 3.4.6 for image preprocessing.
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To meet the deployment demands of resource-limited
agricultural environments, this study employed LAMP pruning
and a teacher-assistant-student knowledge distillation framework,
making the YOLOv11n model both efficient and lightweight, and
greatly reducing requirements for computation and storage. The
resulting optimized model was successfully implemented on the
NVIDIA Jetson Xavier NX platform, striking a favorable balance
between power efficiency and performance Kortli et al. (2022).
Meanwhile, the system’s knowledge graph reasoning module, built
with Neo4j, encompasses information on cotton pest and disease
categories, pathogens, transmission factors, symptoms, and
prevention strategies, enhancing the accuracy and intelligence of
reasoning. The graph contains over 5,000 nodes and relationships,
supporting multi-dimensional associations for comprehensive
diagnosis in complex conditions.

To improve user interaction and system usability, the platform
features a real-time interactive interface where users can directly
view pest and disease detection results along with relevant
knowledge graph data. The interface presents details such as
disease type, confidence score, transmission routes, and
prevention recommendations. Users are also able to give
immediate feedback and log their actions as needed. An example
of the interface is shown in Figure 11.

6.2 Model training parameter settings

In this work, stochastic gradient descent (SGD) is adopted as
the optimizer, with the momentum parameter set at 0.937 to
improve optimization stability and efficiency Gower et al. (2019).
The initial training phase consists of 200 epochs with a learning rate
of 0.01, allowing the model to rapidly converge toward a viable
solution. As training progresses and the model nears its optimal
state, the learning rate is reduced to 0.0001 over the subsequent 150
epochs for performance fine-tuning. To guard against overfitting, a
weight decay (L2 regularization) of 0.0005 is incorporated.
Additionally, to address potential instability caused by weight
initialization, a warm-up strategy is used, where the learning rate
starts lower for the first three epochs and gradually increases to the
preset value, helping mitigate early-stage training difficulties.

6.3 Experimental results and analysis

To thoroughly assess the real-world performance of the proposed
intelligent cotton pest and disease recognition and voice interaction
system, we deployed the trained and optimized YOLOv11 model—
after applying LAMP pruning and hierarchical knowledge distillation
—on the Jetson Xavier NX edge platform. The system was then tested
and demonstrated in an actual agricultural field setting to evaluate its
effectiveness and operational performance.

To further evaluate the real-time performance of the system
across various image resolutions and concurrent input streams,
additional experiments were conducted. On the Jetson Xavier NX
platform, increasing the input resolution from 640x640 to
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Detection system interface.

1280x1280 reduced inference speed from 52 FPS to 24 FPS,
illustrating a clear balance between image quality and processing
speed. When handling two image streams at once, the per-stream
frame rate dropped by about half, primarily due to limitations in
GPU memory and bandwidth. These findings show that, while the
system can achieve real-time detection with single high-resolution
inputs, performance is affected in multi-stream or ultra-high-
resolution settings—factors that must be considered for
deployment. Future efforts will focus on optimizing parallelism
and resource management to improve performance in multi-
stream scenarios.

To further address the reviewer’s feedback, we benchmarked the
system on several representative edge devices: NVIDIA Jetson
Nano, Jetson Xavier NX, and a desktop PC (Intel i7-12700 + RTX
4060). Table 6 shows the inference speeds (FPS) for the optimized
YOLOv1ln model with 640x640 single-stream input on each
platform. The Jetson Xavier NX delivered real-time results at 52
FPS, Jetson Nano achieved 12 FPS, and the desktop PC exceeded
120 FPS. These outcomes demonstrate the method’s scalability,
while also indicating that further model compression and
acceleration are needed for deployment on more limited devices
like Jetson Nano or Raspberry Pi. Future work will expand
evaluations to other platforms and explore ultra-lightweight
deployment options.

Further examination of the training process reveals, as depicted
by the mAPs5, curve in Figure 12, that model accuracy improved
swiftly during the initial training phase, reflecting effective
acquisition of fundamental pest and disease features. After about
100 epochs, mAPs5, plateaued near 85%, indicating that the model
had successfully captured the essential patterns in complex cotton
pest and disease scenarios and had entered a stable, optimal training
state in the later stages.
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The DFL loss curve in Figure 13 provides additional evidence
supporting this trend. During the early stages of training, the loss
dropped sharply, indicating rapid improvement in the model’s
ability to localize and classify pest and disease targets. After 50
epochs, the rate of loss reduction slowed but continued to decline
steadily, demonstrating that the model was still optimizing its
detailed recognition abilities. Ultimately, the loss reached a
relatively low value, confirming the model’s solid convergence
and effective optimization throughout training.

To further verify the performance of the proposed YOLOv11n
model, we compared multiple model variations and state-of-the-art
benchmarks, including SSD Liu et al. (2016b), YOLOv8n Jocher
etal. (2023),and RT-DETR Zhang et al. (2023). Table 7 presents the
results: the YOLOv11n model delivers the highest values for average
accuracy (87.42%), recall (85.19%), and mAPs (85.14%), while also
offering the smallest model size (5.3 MB) and the fastest inference
time (0.022 s). These findings indicate that, relative to other leading
frameworks, YOLOv11n achieves a strong balance of efficiency and
precision, making it especially suitable for real-time use in resource-
limited agricultural settings. In Table 7, “YOLOv11n (Ours)” refers

TABLE 6 Inference speed of YOLOv11n on different devices (640x640,
single stream).

FPS (frames per

Device Notes
second)

Jetson Xavier NX 52 Real-time

Jetson Nano 12 Acceptable, lower power

Desktop PC 2120 High-end, reference

(i7+RTX4060) only
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to the original baseline model (5.3 MB), whereas in Table 8,  strong recognition accuracy and reliability in real-world settings. By
“YOLOv11n (70% pruned+distilled)” is the final optimized model =~ employing model pruning and knowledge distillation, the system
(1.3 MB) used for system deployment. achieved an effective balance between real-time performance and

In conclusion, the cotton pest and disease intelligent recognition  resource utilization. These strengths provide robust intelligent
and voice interaction system developed in this study demonstrated  decision support for agricultural production and highlight
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TABLE 7 Comparison of indicators of different models.

Average accuracy (%)

Average recall (%)

10.3389/fpls.2025.1671755

mMAPsq (%) Weight file size (MB) Recognition time (s)

SSD 77.97 74.37 76.86 90.3 0.078
YOLOv8n 85.88 82.35 83.54 6.2 0.026
RT-DETR 86.76 84.11 84.20 64.9 0.085
YOLOvl11n (Ours) 87.42 85.19 85.14 5.3 0.022

Bold values denote the best performance in each column (higher is better for Average accuracy, Average recall, and mAP; lower is better for weight file size and recognition time). Ties, if any, are

all shown in bold.

the system’s significant potential for broader application and
dissemination.

6.4 Pruning ablation study

To thoroughly assess the effects of various pruning strategies on
model performance, we conducted a comparative analysis of LAMP
pruning and channel pruning at compression rates of 30% and 70%.
As detailed in Table 8, all models were evaluated on the tea pest and
disease detection dataset, utilizing the same YOLOv11n backbone
and identical experimental conditions.

The findings indicate that LAMP pruning consistently outperforms
channel pruning in terms of average accuracy, recall, and mAP at both
30% and 70% pruning levels. Notably, as the pruning rate increases to
70%, the advantage of LAMP becomes even more significant. This
approach better preserves essential network connections and key
features, leading to greater detection accuracy and stability, especially
when models are highly compressed. These results suggest that LAMP
pruning is particularly well-suited for lightweight detection model
deployment in resource-constrained agricultural settings.

Overall, these results indicate that LAMP pruning provides
superior performance under both moderate and aggressive
compression rates, making it a robust and practical solution for
lightweight deployment of tea pest and disease detection models in
edge computing scenarios.

6.5 Knowledge distillation ablation study

On top of model pruning, we further investigated the effect of
different knowledge distillation strategies on the performance of

compact models. Specifically, we compared the conventional direct
knowledge distillation approach with the Teacher-Assistant-Student
(TAS) three-stage distillation method, both applied to the 70% pruned
YOLOv11n model. The results are summarized in Table 9.

The TAS distillation framework incorporates an assistant model
between the teacher and student, allowing knowledge to be
transferred incrementally through multiple stages. Experimental
results demonstrate that this approach markedly improves average
accuracy, recall, and mAP compared to direct distillation, and
effectively compensates for performance drops due to heavy
pruning. These findings confirm that the three-stage distillation
process boosts the generalization and detection abilities of pruned
lightweight models, offering a robust solution for agricultural
scenarios where both compactness and accuracy are required.

6.6 Model detection effects

To assess the practical effectiveness of the cotton pest and disease
intelligent recognition and voice interaction system, we deployed the
improved YOLOv11-LDNet model on the Jetson Xavier NX edge
platform and carried out real-time detection in actual cotton fields.
Figure 14 illustrates the system’s detection results across various
categories of cotton pests and diseases in real-world field settings.

During field testing, the system reliably identified and classified
different cotton pests and diseases. For leaf spot, the model precisely
pinpointed lesion areas and assigned high confidence scores,
indicating strong feature sensitivity and localization accuracy. For
small insect pests like aphids and armyworms, the system
maintained accurate detection and high confidence even in
cluttered backgrounds. The platform also performed well with
gray mold, Fusarium wilt, leaf blight, and leaf curl, highlighting

TABLE 8 Performance comparison of different YOLOv11n models on wheat pest and disease detection.

Avg. accuracy (%)

Avg. recall (%)

YOLOv1In (no pruning) 87.42 85.19
YOLOv11n (30% pruned) ‘ 86.37 81.42
YOLOv11n (70% pruned) ‘ 82.45 77.68
YOLOv1In (70% pruned+distilled) 87.05 84.20

ETEIS Weight Inference
mMAPs, (%) GFLOPs size .
(M) (MB) time (s)
85.14 2.5 6.3 53 0.022
84.76 1.0 ‘ 36 4.0 0.021
81.13 0.4 ‘ 1.8 1.3 0.019
86.10 0.4 1.8 1.3 0.019

Bold values denote the best performance in each column (higher is better for Average accuracy, Average recall, and mAP50; lower is better for Params, GFLOPs, weight size, and inference time).

Ties, if any, are all shown in bold.
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TABLE 9 Performance comparison of different knowledge distillation strategies applied to the 70% pruned YOLOv11n model.

Avg. accuracy Avg. recall mAPsq ETET GFLOPs Weight size Inference

(%) (73] (%) (M) (MB) time (s)

70% Pruned YOLOv11n + Direct

P 85.82 82.11 84.73 0.3 1.5 1.1 0.019
Distillation

70% Pruned YOLOvlln + TAS

L 88.96 83.58 85.31 0.3 1.5 1.1 0.019
Distillation

that the improved YOLOv11-LDNet, combined with LAMP  to provide detailed explanations of identified diseases and targeted
pruning and knowledge distillation, sustains robust detection  prevention advice. This workflow demonstrates the practical benefits
performance while enabling efficient deployment. and efficiency of the solution in real agricultural production, further

Detection outcomes are delivered to farmers in real time via  validating the system’s effectiveness and feasibility for intelligent pest
Bluetooth speakers, with the system leveraging the knowledge graph  and disease recognition and management.

FIGURE 14
Detection results for different object categories.
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Both demonstration results and measured performance data
confirm that the proposed cotton pest and disease intelligent
recognition and voice interaction system offers strong prospects for
field application. The system helps lower the barrier of professional
expertise and reduces manual labor costs, significantly enhancing the
speed and efficiency of disease prevention and control in
agricultural operations.

7 Cotton pest and disease intelligent
Q&A system

To improve interactivity and user experience, this research
developed a knowledge graph-based intelligent Q&A system for
cotton pests and diseases. Leveraging the Neo4;j-stored knowledge
graph as the core data source, the system utilizes natural language
processing to deliver real-time semantic understanding and
accurate answers to pest and disease queries Yu et al. (2024). In
experimental testing, a range of representative farmer questions—
such as “How should brown spots on cotton leaves be managed?”
and “What pesticides are recommended for leaf blight?”—were
randomly selected. The Q&A system rapidly provided diagnostic
details and prevention advice, with immediate feedback delivered
through voice devices. The experiments showed an accurate
response rate exceeding 95%, and average response times under 2
seconds. These results indicate that the Q&A system not only raises
the professionalism and convenience of pest and disease diagnosis,
but also reduces the operational barrier for farmers, demonstrating
considerable potential for widespread agricultural application.
Figure 15 presents the experimental results.

7.1 Experimental evaluation of the voice
interaction module

To rigorously evaluate the voice interaction feature, a series of
controlled experiments were conducted in both laboratory and real
field environments.

Test Setup: The system was deployed on the Jetson Xavier NX
with a Bluetooth-connected portable speaker. Test queries were
derived from a curated set of 50 representative farmer questions
covering pest identification, symptom description, and management
advice. Both single-turn and multi-turn interactions were tested.

Evaluation Metrics: The module was assessed along four
dimensions: (1) Speech synthesis clarity (mean opinion score rated by
15 participants on a 1-5 scale), (2) Information accuracy (percentage of
voice output matching the correct textual answer from the Q&A
system), (3) Response latency (time from query submission to voice
output start), and (4) Field intelligibility (recognition rate by farmers in
outdoor conditions with background noise).

Results: In indoor tests, the mean opinion score reached 4.6/5,
with 98% information accuracy and an average latency of 1.92 s. In
outdoor field trials under wind speeds up to 5 m/s and ambient
noise levels of 60-70 dB, intelligibility remained above 93%. The
Bluetooth range exceeded 10 m without noticeable signal loss.
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User Feedback: Farmers reported that the voice output reduced
the need to check device screens during field operations, improving
convenience and operational efficiency.

In conclusion, the cotton pest and disease intelligent
identification and voice interaction system developed in this work
not only achieved high recognition accuracy and reliability in real-
world settings, but also maintained a favorable balance between
real-time performance and resource efficiency through the use of
model pruning and knowledge distillation. This provides robust
intelligent decision support for agricultural production and
demonstrates significant potential for widespread adoption
and application.

7.2 Migration and performance verification
of the wheat pest and disease detection
system

To comprehensively evaluate the generalizability of the
intelligent detection and Q&A system across different crops, we
extended our validated approach from cotton pest and disease
detection to wheat, addressing 15 common wheat pest and
disease categories. A dedicated knowledge graph for wheat was
constructed, integrating authoritative publications, expert insights,
and major agricultural databases. This structured representation
greatly enhanced the accuracy and depth of semantic reasoning for
wheat pest and disease scenarios.

We continued to adopt YOLOv11n as the backbone detection
model, employing LAMP pruning and knowledge distillation
strategies for lightweight deployment. To rigorously evaluate the
model’s generalization capabilities and performance, we compared
multiple model variations and state-of-the-art benchmarks under
realistic conditions. The models were deployed and accelerated via
TensorRT on Jetson Xavier NX edge devices.

Table 10 presents detailed performance comparisons. Our
optimized YOLOvlln model (70% pruned and distilled) maintains
high accuracy and recall rates while significantly reducing computational
complexity and inference latency, demonstrating superior performance
compared to baseline and other lightweight models.

Additionally, to benchmark our model against other state-of-
the-art detection frameworks under identical conditions, Table 11
compares our optimized YOLOv11n model with widely recognized
models including SSD, YOLOv8n, and RT-DETR. The results show
that our proposed model achieves superior balance in accuracy,
speed, and model compactness, proving its suitability for practical
agricultural deployment.

Furthermore, Figure 16 shows example visualizations of wheat
pest and disease detection in complex field conditions, including
situations with changing lighting, heavy occlusion, and cluttered
backgrounds. The system consistently delivers high-confidence,
accurate multi-class detection results under these challenging
circumstances, highlighting its robustness and practical suitability
for deployment in a variety of real-world environments.

To further improve the system’s interactivity and user
experience, a knowledge graph-based intelligent Q&A module for
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¢ Cotton Pest & Disease QA System

Try these questions:

’ What cotton disease is caused by poor ventilation and spreads through soil?

Answer: The system identifies Leaf Spot as the most probable disease based on poor ventilation
and soil transmission. Symptoms include yellow spots, leaf curling, and aphid clusters. The
knowledge graph recommends improving ventilation, using resistant varieties, and applying
biological agents.

History:

@ Q: There are yellow spots and leaf curling on my cotton leaves. Could this be leaf spot
disease? How should | treat it?

@ A: Leaf spot is commonly induced by poor ventilation and high humidity. In regions like Gansu
and Xinjiang, it's often transmitted via water and insect vectors. Recommended treatments include
crop rotation, resistant cotton varieties, and biological agents. According to the knowledge graph,
symptoms such as yellow spots and leaf curling are early indicators.

@ Q: Which pest occurs in Gansu during warm temperature and can be controlled by neem oil?
@ A: Aphid infestation is frequently observed in Gansu and Shandong. It causes yellow spots and
black mold due to honeydew secretion. The knowledge graph links it with high humidity and
nitrogen overuse. Control measures include neem oil, physical barriers, and introduction of natural
predators like ladybugs.

@ Q: What cotton disease is caused by poor ventilation and spreads through soil?

@ A: The system identifies Leaf Spot as the most probable disease based on poor ventilation and
soil transmission. Symptoms include yellow spots, leaf curling, and aphid clusters. The knowledge
graph recommends improving ventilation, using resistant varieties, and applying biological agents.

FIGURE 15
Cotton pests and diseases knowledge graph driven question-answering interface.

wheat pest and disease management was developed. Figure 17
shows a representative system interface where users can inquire
about symptoms, management approaches, and preventive
measures, receiving timely and accurate feedback through both
text and voice channels. The Q&A system is designed to support
multi-turn conversations and handle complex query types, making
it more accessible for farmers and agricultural technicians.

These results and visualization analyses jointly confirm the
robust generalization, high accuracy, and practical value of the
proposed system for multi-crop, real-world agricultural scenarios.

8 Discussion

This research developed an intelligent diagnosis system for cotton
pests and diseases, integrating deep learning-based object detection,
knowledge graph reasoning, and voice interaction. By refining the
YOLOv11-LDNet model and applying LAMP pruning along with
knowledge distillation, the system achieves substantial parameter
reduction while preserving high detection accuracy and speed,
meeting the requirements of limited-resource settings. The
knowledge graph captures agricultural knowledge in a structured

TABLE 10 Performance comparison of different YOLOv11n models on wheat pest and disease detection.

Avg. accuracy  Avg. recall mAPsg Params GFLOPs Weight size  Inference time
(%) (%) (V] (M) (MB) (s)

YOLOv11n 88.16 83.05 86.29 25 6.3 53 0.023
YOLOv11n (30% pruned) 86.37 81.42 84.76 1.0 3.6 4.0 0.021
YOLOv11n (70% pruned) 82.45 77.68 81.13 0.4 1.8 13 0.019
YOLOv11n (70% pruned

o 87.05 84.20 86.10 0.4 1.8 13 0.019
+distilled)
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Visualization results of wheat pest and disease detection in complex field scenarios (placeholder).

way and leverages Neo4j for fast reasoning and querying, supporting
timely and precise responses to complex and ambiguous issues. The
system is suitable for edge deployment and provides 823 immediate
user feedback via voice output, greatly enhancing both efficiency and
user experience.

A central usability observation from our study is that multi-label
or ambiguous diagnoses (e.g., simultaneous detection of leaf spot and
Fusarium wilt) can confuse users if delivered as a single message. To
address this, we now prioritize this finding in our design implications
and added sequential message delivery with clear summaries,
structured pauses, and explicit uncertainty cues for low-confidence
results to improve user understanding. The system also tackled real-
world issues like reduced intelligibility from field noise by introducing
adaptive volume adjustment and software-based noise reduction. In
addition, we exposed user controls for broadcast speed and
implemented a roadmap for dialect support to reflect user
preferences surfaced in the study. These updates, based on user and
expert input, improved the clarity and reliability of the voice
interaction; nevertheless, broader field studies are needed to fully
confirm its utility across diverse agricultural contexts.

To improve usability and accessibility, particularly for users
with limited literacy, a preliminary user study was conducted.

Four participants—three front-line cotton farmers with different
literacy backgrounds and one plant protection specialist—took part
in a structured evaluation under typical field conditions. Each was
instructed to use the system independently, relying solely on the
voice guidance, and then completed a short questionnaire and semi-
structured interview. The survey used a 5-point Likert scale to assess
usability, clarity of the voice output, and operational simplicity.
Results showed an average usability score of 4.3/5 overall and 4.1/5
for low-literacy users. We explicitly acknowledge that this pilot
sample (n = 4) is too small to support generalizable claims; the
results should be interpreted as formative evidence guiding design
iteration rather than definitive validation.

To provide robust evidence of practical utility, we plan a larger,
randomized multi-site field study across major cotton-growing
regions (e.g., southern Xinjiang, Yellow River Basin, and Hubei).
The study will use stratified recruitment by region and literacy level,
with random assignment to interface variants (e.g., baseline vs.
enhanced multi-label narration). Primary outcomes will include
task success rate and the System Usability Scale (SUS); secondary
outcomes will include voice intelligibility (MOS), error/clarification
rates, and time-to-completion. We will preregister the protocol,
conduct an a priori power analysis (targeting 60-120 participants),

TABLE 11 Benchmarking YOLOv11n against other state-of-the-art models for wheat pest and disease detection (15 categories).

Average accuracy Average recall mMAPsq Weight file size Recognition time
(%) (%) (VA (%12)] (s)
SSD 78.54 75.21 77.42 90.3 0.080
YOLOvV8n 86.72 83.89 85.20 6.2 0.027
RT-DETR 87.43 84.10 85.95 64.9 0.087
YOLOv11n (Ours, 70% pruned
e 87.05 84.20 86.10 1.3 0.019
+distilled)
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% Wheat Pest & Disease Detection & QA System
Upload a wheat leaf image for disease detection:
EFZ3C# | Brown-Rust-1...100b3624a.jpg
Analyzing image... (Demo: detected Brown Rust with 92% confidence)
Try these questions:
3
| see yellow stripes on my wheat leaves, what should | do?
Answer: These are typical signs of Yellow Rust (Stripe Rust). Control involves planting resistant
varieties, removing volunteer wheat, monitoring crops closely, and applying fungicides if rust develops
early in the season.
History:
@ Q: My wheat leaves have brown pustules on the surface. What is this and how can | control it?
@ A: This is likely Brown Rust. Brown Rust causes small, oval, orange-brown pustules on wheat
leaves. Management includes using resistant varieties, practicing crop rotation, and applying
recommended fungicides during the early stages of infection.
@ Q: Some wheat ears show black powdery masses. What disease is this and how to prevent it?
@ A: The symptoms indicate Loose Smut. Loose Smut appears as black, powdery masses
replacing the kernels in wheat heads. Use certified disease-free seed and treat seeds with systemic
fungicides before sowing to prevent infection.
@ Q: | see yellow stripes on my wheat leaves, what should | do?
@ A: These are typical signs of Yellow Rust (Stripe Rust). Control involves planting resistant
FIGURE 17

User interface of the wheat pest and disease knowledge graph-based question-answering system (placeholder).

and analyze results using mixed-effects models to account for site-
and user-level variability. This design directly targets the two critical
issues raised by users and the reviewer: multi-label confusion and
the need for dialect support and broadcast-speed control.
Nonetheless, this study has several limitations. First, the current
training dataset is limited in both size and variety, which may
hinder accurate detection of less common or newly emerging cotton
diseases and pests. Second, the knowledge graph lacks a real-time
incremental update mechanism, so new disease cases or evolving
farming practices may not be captured promptly. Third, language
support in the voice module is currently restricted, and advanced

Frontiers in Plant Science

customization options are not available, which may limit the
system’s 857 use among multilingual and diverse user groups.

For future development, it will be important to further expand and
diversify the training dataset, strengthen the model’s generalization and
its ability to recognize rare diseases, and implement an automated
incremental update mechanism for the knowledge graph. On the
interaction side, we will further refine multi-label narration via
hierarchical summarization, calibrated confidence disclosures, and
interactive clarification turns (e.g., “Did you mean A or B?”), while
broadening dialect coverage through lexicon expansion and lightweight
on-device TTS/ASR adaptation. In addition, extending multi-language
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capabilities and offering more personalized options in the voice module
will be a priority, so the system can better adapt to various agricultural
contexts and the needs of different users.

Moreover, soil properties and precise irrigation practices are key
factors in the development and management of crop diseases and pests.
With advances in Internet of Things (IoT) and intelligent sensing,
context-aware smart fertilization and irrigation systems are increasingly
used in agriculture. For example, IoT-enabled fertilizer recommendation
platforms can monitor soil moisture and nutrient content in real time,
adjusting fertilization plans based on crop needs. Intelligent approaches
for Reference Evapotranspiration (ETo) allow irrigation to be fine-tuned
using climate, soil, and crop water demand data, while context-aware
evapotranspiration (ETs) models support more targeted and sustainable
irrigation, especially for saline soil remediation. Integrating these IoT-
based sensing and reasoning tools with the present system in future
work is expected to further improve its capabilities and support the
development of intelligent, sustainable agriculture.

9 Conclusion

This study developed an intelligent cotton pest and disease
recognition and voice interaction system that integrates object
detection and knowledge graphs, overcoming the shortcomings of
traditional approaches in efficiency, expertise, and timely response.
The main contributions are as follows:

1. Introduced the YOLOv11-LDNet model, which uses LAMP
pruning and knowledge distillation to achieve efficient
lightweight optimization, allowing real-time inference on
edge devices even in challenging field settings.

. Built a comprehensive lifecycle knowledge graph for cotton
pests and diseases with Neo4j, covering causes, transmission
pathways, and prevention measures to support intelligent Q&A.

. Applied natural language processing and knowledge graph
reasoning for semantic, dynamic Q&A, providing
immediate diagnosis and recommendations via voice
feedback, with a Q&A accuracy rate above 95%.

. Deployed the system successfully on the Jetson Xavier NX,
utilizing a lightweight design and local reasoning to
maintain reliable offline operation.

Overall, the system delivers a closed-loop solution from
perception through cognition to action, combining high detection
accuracy, real-time operation, and improved user experience.

Future Work: The following directions are planned to further
advance this research:

1. We will work to boost real-time performance at scale by
exploring advanced model compression methods—such as
quantization-aware training and neural architecture search
—and by applying adaptive resource management. These
approaches are intended to support higher-resolution
inputs and multiple simultaneous detection tasks on
resource-limited devices.
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2. Broader field trials and participatory user studies will be
carried out across different agricultural settings to
thoroughly evaluate system usability, robustness, and
real-world impact. Feedback from these studies will
inform iterative improvements in interface design, voice
interaction accuracy, and adaptability.

. The system framework will be extended to detect pests and
diseases in other key crops, including wheat, rice, and
maize. With input from local agricultural experts, region-
specific knowledge graphs will 901 be built to assess the
transferability and scalability of the approach.

. We also plan to integrate multimodal and proactive
interaction modules—such as image-based Q&A, mobile
advisory services, and weather-linked disease forecasting—
to deliver more complete, intelligent 904 support for
agricultural decision-making.

These targeted efforts will further reinforce the scientific and
practical value of the system and support its broader application in
smart agriculture.
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