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Introduction: Current research on sugarcane disease identification primarily

focuses on a limited number of typical diseases, often constrained by specific

target groups or conditions. To address this, we propose an enhanced ADQ-

YOLOv8m model based on the YOLOv8m framework, enabling precise

detection of sugarcane diseases.

Methods: The detection head is modified to a Dynamic Head to enhance feature

representation capabilities. Following the Detect module, we introduce the ATSS

dynamic label assignment strategy and the QFocalLoss loss function to address

issues such as class imbalance, thereby bolstering the model’s feature

representation capabilities.

Results: Experimental results demonstrate that ADQ-YOLOv8m outperforms

nine other mainstream object detection models, achieving precision, recall,

mAP50, mAP50-95, and F1 scores of 86.90%, 85.40%, 90.00%, 77.40%, and

86.00%, respectively.

Discussion: Finally, comprehensive evaluation of the ADQ-YOLOv8m model’s

performance is conducted using visual analysis of image predictions and cross-

scenario adaptability testing. The experimental results indicate that the proposed

model excels in multi-objective processing and demonstrates strong

generalization capabilities, suitable for scenarios involving multiple objectives,

multiple categories, and class imbalance. The detection method proposed

exhibits excellent detection performance and potential, providing robust

support for the development of intelligent sugarcane cultivation and

disease control.
KEYWORDS

complex environment, sugarcane diseases, YOLOv8, precise detection,
generalization ability
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1 Introduction

Sugarcane, as an important economic crop, plays a pivotal role

in agricultural production. During its growth cycle, it demands a

large amount of fertilizer, along with sufficient arable land resources,

irrigation water sources, and abundant nutrient supply. In China,

the production of sugarcane directly affects the total sugar output,

with over 90% of sugar coming from this crop (Liu et al., 2024).

However, in the process of sugarcane cultivation, disease issues

have become a significant factor constraining its industrial

development. Existing research has shown that plant diseases are

one of the key factors threatening crop productivity and quality.

Globally, 20%-40% of agricultural productivity losses are caused by

plant diseases (Qaadan et al., 2025). Specifically in sugarcane

cultivation, the occurrence of diseases can have severe negative

impacts on the sugarcane industry (Rott et al., 2015). Infected

sugarcane plants often exhibit symptoms such as slow growth,

wilted leaves, softened stems, and decreased yields. These

symptoms not only significantly reduce the yield and quality of

sugarcane but may even lead to plant death, causing huge economic

losses to growers (Huang et al., 2018). Therefore, accurately

identifying sugarcane diseases is of utmost importance. Efficient

and precise disease identification can provide farmers with scientific

evidence, enabling them to take effective prevention and control

measures, thereby reducing economic losses, curbing the further

spread of diseases, and ensuring the sustainable development of the

sugarcane industry.

Deep learning and image processing technologies (LeCun et al.,

2015; Demilie, 2024; Ritharson et al., 2024; Li et al., 2024) have become

indispensable tools in the agricultural sector, particularly in the

identification and classification of crop leaf diseases (Hang et al.,

2019). Researchers have been exploring various methods to enhance

plant disease recognition. Yuzhi Wang et al. proposed a new model

combining a masked autoencoder (MAE) and a convolutional block

attention module (CBAM). Through experiments on 21 leaf diseases of

five crops, namely potatoes, corn, tomatoes, cashews, and cassava, this

model achieved accurate and rapid detection of plant dis-ease

categories (Wang et al., 2024). Jianping Yao et al. introduced a new

model called Generalized Stacked Multi-Output CNN (GSMo-CNN)

and proposed the hypothesis that using a single model for two tasks can

be comparable to or better than using two models for each task (Yao

et al., 2024). C. Ashwini et al. proposed a hybrid 3DCNN-RNN model

optimized by the Joint Search Whale Optimization Algorithm

(JSWOA). Simulation results showed that the proposed hybrid

model achieved a performance of over 90% in predicting various

corn leaf categories on two datasets (Ashwini and Sellam, 2024). Imane

Bouacida et al. addressed the issue of deep learning models lacking

robustness and generalization ability when faced with new crops and

disease types not included in the training dataset. They proposed a

novel system based on deep learning, emphasizing the core goal of

focusing on identifying the disease itself rather than solely relying on

the appearance of diseased leaves (Bouacida et al., 2025). Lobna M.

Abouelmagd et al. utilized an optimized Capsule Neural Network

(CapsNet) to detect and classify ten tomato leaf diseases using standard

dataset images. The research results highlighted the potential of
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CapsNet as an alternative to CNNs (Abouelmagd et al., 2024).

Marriam Nawaz et al. introduced a novel and effective deep learning

model called CoffeeNet to overcome the challenges of various image

distortions and the similarity between healthy and diseased parts of

inspection samples in coffee disease recognition (Nawaz et al., 2024).

Anuja Bhargava et al. emphasized the importance of computer vision

and artificial intelligence for automatic monitoring of plant leaf health

and disease detection, highlighting the role of molecular diagnostic

tools and segmentation algorithms in improving agricultural processes

(A et al., 2024).

Crop disease target detection has always been an important field

in agricultural research, with various studies focusing on utilizing

advanced technologies to improve detection accuracy and efficiency.

Xuewei Wang et al. proposed YOLOv8n-vegetable, which made

multiple improvements and optimizations to the YOLOv8n model

to enhance its effectiveness, better preserve the fused feature

information, and thus enhance vegetable disease detection in

greenhouse environments. This improvement resulted in a 6.46%

increase in mean average precision (mAP) compared to the original

model when applied to a self-built vegetable disease detection dataset

under green-house conditions (Wang and Liu, 2024). Dong Cong

Trinh et al. proposed an improved YOLOv8 model based on EIoU

loss and a-IoU loss to enhance the performance of the rice leaf

disease detection system (Trinh et al., 2024). Sasikala Vallabhajosyula

et al. introduced a novel hierarchical residual visual transformer,

utilizing an improved Vision Transformer and ResNet9 model to aid

in the early detection of leaf diseases (Vallabhajosyula et al., 2024).

Meng Lv et al. innovatively incorporated attention mechanisms and

modules containing transformer encoders into YOLOV5, resulting in

YOLOV5-CBAM-C3TR for apple leaf disease detection. When

applied to the detection of two very similar diseases (including

Alternaria leaf spot and gray leaf spot), it achieved accuracies of

93.1% and 89.6%, respectively (Lv and Su, 2023). Mazin Abed

Mohammed et al. addressed the challenge of collecting plant

disease data from land distributed across different regions by

utilizing a deep neural network with transfer learning to propose

plant disease detection based on edge cloud remote sens-ing data (M

et al., 2024). Abudukelimu Abulizi et al. introduced an improved

tomato leaf disease detection method, DM-YOLO, based on the

YOLOv9 algorithm. When evaluated on the tomato leaf disease

dataset, the model achieved a precision (P) of 92.5%, with average

precision (AP) and mean average precision (mAP) of 95.1% and

86.4%, respectively (Abulizi et al., 2024). Jianlong Wang et al.

proposed a lightweight method, LCGSC-YOLO, to address issues

such as the large number of learning parameters and complex

scenarios in apple leaf disease detection, aiming to improve the

detection accuracy decline caused by model lightweighting (Wang

et al., 2024). Arun Kumar Sangaiah et al. proposed a deep learning

architecture, UAV T-YOLO-RICE, suitable for application in aerial

computing dronemounted intelligence, achieving a test average

precision (mAP) of 86% (A et al., 2024).

In the field of sugarcane disease identification and detection,

researchers have explored deep learning methods, particularly

convolutional neural networks (CNNs), for accurate and timely

detection of sugarcane diseases (Srinivasan et al., 2025; Bala and
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Bansal, 2024; Bao et al., 2024). These methods involve utilizing high-

resolution images of affected sugarcane parts, which undergo meticu-

lous preprocessing to enhance key features and minimize noise

interference. Furthermore, indepth research has been conducted on

developing and evaluating deep learning-based methods using the

EfficientNet model to robustly detect diseases in sugarcane leaves

(Kunduracıoğlu and Paçal, 2024). Sakshi Srivastava et al. proposed a

novel deep learning frame-work method that detects the presence of

diseases in sugarcane plants by analyzing their leaves, stems, and colors.

Using VGG-16 as the feature extractor and SVM as the classifier, they

achieved an AUC of 90.2% (Srivastava et al., 2020). Dong Bao et al.

utilized hyperspectral imaging and a spectral-spatial attention deep

neural network to detect early signs of smut and mosaic diseases in

sugarcane. Experimental results showed that the deep neural network

model effectively extracted hyperspectral images containing features

useful for early detection of the two target sugarcane diseases. The

detection accuracy for both diseases was over 90% before visible

symptoms appeared (Bao et al., 2024). Abirami Kuppusamy et al.

integrated the Vision Transformer architecture with Hybrid Shifted

Windows to propose a novel automatic classification method for

sugarcane leaf diseases, achieving a disease detection accuracy of up

to 98.5% (Kuppusamy et al., 2024a). Jihong Sun et al. optimized the

YOLOv8 model by adding an EMA attention mechanism and Focal

loss function based on the YOLOv8 framework, addressing the

complex background and imbalance between positive and negative

samples in the sugarcane dataset. This approach enabled computer

vision technology to solve the challenges of sugarcane growth

monitoring and disease detection in complex environments (Sun

et al., 2024). Some researchers also processed the extracted features

during the disease detection stage by introducing a hybrid classifier to

obtain better prediction results. This method achieved the highest

accuracy in 80% of the learning process (Mangrule and Afreen, 2024).

Ong et al. (2023) used visible near infrared spectroscopy (380~1400

nm) in combination with a new wavelength selection method, namely

the improved flower pollination algorithm (MFPA), to identify

sugarcane diseases. The experimental results show that the simplified

SVMmodel based onMFPA wavelength selection method has the best

performance and is superior to the results of other wavelength selection

methods, including selectivity ratio, the importance of variables in

projection and the baseline method of flower pollination algorithm. Ö

rek ç i S ü leyman et al. (Ogrekci et al., 2023). The experimental results

show that the accuracy is 92.87%, 93.34% and 87.37% respectively. Ajay

Chakravarty et al. (2024) proposed an application based on smart

phones, which loads a convolutional neural network model to identify

sugarcane plant diseases from images. Kuppusamy et al. (2024b)

proposed a new hybrid shift vision converter method for automatic

classification of sugarcane leaf diseases. The model integrates the vision

converter architecture with the hybrid shift window to effectively

capture local and global features. The experimental results show that

the hybrid shift converter is superior to the traditional model and

achieves a higher accuracy of 98.5% in disease detection. Rajput et al.

(2025) proposed a multi-layer Transformer based sugarcane disease

classifier (MLTSDC) model to solve this problem. The model uses two

levels of classification: the first level identifies the existence of abnormal

features, and the second level maps abnormal features to corresponding
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diseases. The classification accuracy of the proposedmodel for different

diseases affecting sugarcane leaves in the real world reached 98.8%.

In summary, the current literature review reveals a strong

interest in the academic community in utilizing deep learning,

machine learning, and biosensing technologies to achieve accurate

and timely diagnosis of sugarcane diseases. However, precise

identification of sugarcane diseases in natural planting

environments remains a highly challenging task. This challenge

primarily stems from the following aspects:
1. Noise interference in complex environments: Sugarcane

plants typically thrive in wild settings, characterized by

intricate backgrounds and variable lighting conditions.

These factors significantly disrupt the extraction of

disease characteristics, rendering existing methods

inadequate for accurately identifying disease targets.

2. The Synergistic Challenges of Small Sample Size and

Interclass Imbalance: Current research on sugarcane

disease recognition predominantly focuses on a limited

number of typical diseases (such as rust and yellow leaf

diseases), often confined to specific target populations or

conditions. These methodologies exhibit suboptimal

performance in complex scenarios involving multiple

objectives, multiple categories, and class imbalance,

making it difficult to meet the demands of practical

agricultural production.

3. Inadequate Regional Adaptability: Existing methodologies

exhibit significant deficiencies in cross-scenario

adaptability, particularly when confronted with diverse

crop disease detection tasks. The robustness and

generalizability of the models are suboptimal, rendering

them challenging to directly apply to disease identification

in other crops.
Therefore, this study utilizes public datasets of sugarcane

images from various regions, encompassing eight disease

categories, including healthy conditions (brown spot disease, eye

spot disease, red rot disease, rust disease, yellow leaf disease, mosaic

disease, bacterial stripe disease), aiming to construct a more

universally applicable and precise sugarcane disease recognition

model. This is intended to provide robust technical support for early

warning and precise prevention and control of sugarcane diseases.

The main contributions are as follows:
1. A trinity improvement framework consisting of “Dynamic

Detection Head + Adaptive Label Assignment + Quality

Focal Loss” is proposed. Initially, the head of YOLOv8M is

modified to DynamicHead, enabling the model to employ

attention mechanisms in three dimensions: scale

perception, spatial perception, and task perception,

significantly enhancing the representational power of the

object detection head. Subsequently, the ATSS dynamic

label assignment strategy and QFocalLoss loss function are

introduced after the Detect module to address issues such

as class imbalance, thereby augmenting the model’s feature
frontiersin.org
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representation capacity and improving its predictive

accuracy and robustness.

2. Verify the model’s generalization capability across crop

scenarios. Through the generalization experiments of the

ADQ-YOLOv8m model proposed in this study on tomato

disease datasets and corn disease datasets, it is confirmed

that the proposed model exhibits strong generalization

capabilities. The improvement methods outlined in this

research can serve as a reference for enhancing crop disease

recognition models belonging to the same grass family and

sharing similar disease characteristics.
2 Materials and methods

2.1 Dataset preparation

The dataset for this study comprises three datasets: Dataset 1

and Dataset 2 from the Kaggle dataset portal, and a third dataset of

sugarcane disease images collected through web scraping. The

dataset encompasses eight categories, namely brown spot disease,

eye spot disease, healthy, red rot disease, rust disease, yellow leaf

disease, mosaic disease, and bacterial stripe disease, with a total of

6,871 images, as illustrated in Figure 1. The data set is summarized

in Table 1.
Dataset 1: A manually collected dataset of sugarcane leaf

disease images. It primarily comprises five major

categories: healthy, mosaic disease, red rot disease, rust

disease, and yellow leaf disease. The dataset has been

captured using smartphones of various configurations to

maintain diversity. It encompasses a total of 2569 images,

encompassing all categories. The database has been

collected in the state of Maharashtra, India. The database

is balanced and exhibits a good diversity. The image sizes

are not uniform, as they originate from various capture

devices. All images are in RGB format. This study utilized

the entire set of images from Dataset 1. Source: https://

www.kaggle.com/datasets/nirmalsankalana/sugarcane-leaf-

disease-dataset.

Dataset 2: This dataset comprises 19,926 images of sugarcane

leaves, categorized into six distinct classes. Each class

represents a specific condition of the sugarcane leaves,

encompassing healthy specimens as well as varieties

afflicted with various diseases. The dataset has undergone

data augmentation techniques, including rotation, flipping,

scaling, resizing, and cropping, to enhance model training.

The detailed classification of the dataset is as follows: 4,800

images of bacterial wilt disease, 3,132 images of healthy

leaves, 2,772 images of mosaic disease, 3,108 images of red

rot disease, 3,084 images of rust disease, and 3,030 images

of yellow disease. All images are in PNG format. In order to

ensure the pertinence and data balance of the experiment,

we selected three categories of bacterial wilt, mosaic leaf

disease and yellow disease, and selected a total of 1564
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original images according to the number of samples, image

quality and representativeness of the categories, which will

be uniformly enhanced by me later. The selection criteria

mainly include: ① ensure that the number of samples in

each category is statistically representative in training; ②

High image definition without serious noise or occlusion; ③

It covers the diversity of different leaf growth states and

disease manifestations. Source: https://www.kaggle.com/

datasets/akilesh253/sugarcane-plant-diseases-dataset.

Dataset 3: A web crawler was designed in Python, targeting

major search engines, specialized agricultural image

databases, and publicly available plant disease dataset

sharing platforms. A total of 2738 images, encompassing

brown spot disease, eye spot disease, mosaic disease, and

additional categories, were retrieved. The crawled images are

subject to a strict data cleaning process, including: ① de

duplication: automatic removal of duplicate or highly

similar images using perceptual hash method; ② Definition

screening: eliminate blurred, overexposed or incompletely

cropped images; ③ Consistency of annotation: all images are

annotated by two agronomic experts. If there are differences,

the third expert will arbitrate to ensure the accuracy and

consistency of category annotation.
2.2 Data enhancement

Gamma correction is a nonlinear transformation used to

correct brightness deviations and contrast in images, helping to

make the brightness distribution more uniform and improve visual

quality. Hue adjustment can change the overall color tendency of an

image, making it more aligned with detection requirements. In pest

and disease detection, images are sourced from different

environments and conditions.

By adjusting the image’s Gamma value and hue, the brightness

and contrast of the image can be optimized, enhancing image

quality to adapt to different environmental conditions, thereby

improving detection accuracy. Building a sugarcane disease

detection model requires establishing an image dataset based on

image data and performing data augmentation on this dataset. For

this experiment, preprocessing methods such as random

horizontal/vertical flipping, adjusting brightness/contrast, gamma

value, and adding random noise were used to expand the dataset

threefold, forming a data resource library, as shown in Figure 2 and

Table 2. After expansion, there were a total of 18,810 images. The

LabelImg software was used to annotate the target for these 18,810

sugarcane leaf disease images. The dataset was then divided into

training, testing, and validation sets in an 8:2 ratio, forming a

complete dataset for training and testing.
2.3 Technology roadmap

The technical approach outlined in this paper is depicted

in Figure 3.
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2.3.1 Data acquisition and data preprocessing
Initially, we endeavor to gather a comprehensive array of

sugarcane disease categories from both public datasets and the

internet. Following this, we embark on data cleansing and employ a
Frontiers in Plant Science 05
range of data augmentation techniques, including rotation, flipping,

and adjustments to brightness, contrast, and saturation, to augment

the dataset and enhance the model’s generalization capabilities

across diverse scenarios. The preprocessed and augmented data
FIGURE 1

Examples of eight typical categories of sugarcane diseases.
TABLE 1 Dataset summary.

Dataset Source Category
Number of
images

Dataset 1
Public dataset: https://www.kaggle.com/datasets/nirmalsankalana/

sugarcane-leaf-disease-dataset
5 categories:healthy, mosaic disease, red rot disease, rust

disease, and yellow leaf disease
2569

Dataset 2
Public dataset: https://www.kaggle.com/datasets/akilesh253/

sugarcane-plant-diseases-dataset
3 categories:bacterialblight, mosaic leaf disease and yellow leaf 1564

Dataset 3 Network crawling 3 categories:cercospora, eye spot disease, mosaic disease 2738
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are then amalgamated into a comprehensive training dataset, which

is subsequently split into training and validation sets to pave the

way for model training.

2.3.2 Modeling and data analytics
Conduct a comprehensive analysis of the training dataset,

encompassing the quantity of instances across various categories,

the spatial distribution of bounding boxes predicted by the model

within the images, and the positional distribution of these predicted
Frontiers in Plant Science 06
bounding boxes. This analysis aims to comprehend the

characteristics of the data, thereby furnishing a solid foundation

for model selection and enhancement. Based on the insights gleaned

from the data analysis, strategize for model improvement, such as

implementing specific sampling techniques or adjusting the loss

function to address category imbalance issues.

Conduct a comprehensive study on the YOLOv8 series of

models (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l), analyzing

the structural characteristics, parameter counts, computational
FIGURE 2

Illustration of data augmentation methods.
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complexity, and performance on various datasets. Aligning with

project requirements and data characteristics, a holistic evaluation

is conducted in terms of accuracy, speed, and model size to

determine the optimal foundational model.

2.3.3 Model training and refinement optimization
The YOLOv8s model, which strikes a balance between speed

and accuracy, has been selected for enhancements in label

assignment strategy, loss function, and detection head. These

improvements aim to address issues such as class imbalance,

bolster the model’s feature representation capabilities, and elevate

its predictive accuracy and robustness.

2.3.4 Model evaluation and generalization studies
Utilizing standard metrics such as mAP, Precision, Recall, and

F1-score, a comprehensive evaluation was conducted on the

enhanced model, ADV-YOLOv8, to compare its performance

with that of the baseline model and nine other leading object

detection models, including YOLOv5n, YOLOv7, YOLOv9,

YOLOv11n, YOLOv11s, YOLOv11m, and Retinanet, thereby

verifying the model’s performance enhancement. By visualizing

the model’s predictions on images, the detection outcomes for

various targets were displayed, providing an intuitive assessment

of the model’s detection efficacy and feature learning capabilities for

further optimization. Simultaneously, the evaluated and optimized

ADV-YOLOv8 model underwent cross-scenario adaptability

testing to analyze its effectiveness and stability in different crop

disease scenarios.
2.4 Model overview

2.4.1 YOLOv5
YOLOv5, released by Glenn Jocher in 2020, stands out notably

for its incorporation of the Focus and CSPDarknet-53 structures

within its backbone network. The Focus structure, a pivotal

component of YOLOv5, is designed to extract high-resolution

features. It employs a lightweight convolutional operation,
Frontiers in Plant Science 07
enabling the model to maintain a large receptive field while

reducing computational demands. CSP (Cross Stage Partial)

Darknet-53, the backbone network structure in YOLOv5,

introduces the concept of cross-stage partial connections. By

dividing the feature map into two parts along the channel

dimension, it maintains high feature representation capabilities,

thereby enhancing the accuracy and speed of object detection.

YOLOv5 is available in five versions: YOLOv5n, YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x. Notably, YOLOv5n boasts

the shallowest depth and the narrowest feature map width within

the series (Yao et al., 2021).

2.4.2 YOLOv7
YOLOv7 has achieved a dual breakthrough in detection speed

and accuracy within the field of object detection. Its core innovations

include the Extended Efficient Layer Aggregation Network (E-

ELAN) and the trainable “Bag of Freebies” training strategy. E-

ELAN enhances gradient propagation efficiency through grouped

convolution and feature rearrangement, while dynamic label

assignment optimizes the target matching issue across multiple

output layers. YOLOv7 employs model reparameterization

technology, which consolidates the multi-branch structure during

training into a single branch, thereby reducing the number of

parameters and computational load during inference (Nikarika

et al., 2024).

2.4.3 YOLOv8
YOLOv8, an object detection model open-sourced by ultralytics

in January 2023, is an updated version based on YOLOv5. It

maintains high accuracy and enhances inference speed while

further reducing model weight. YOLOv8 is available in various

versions, with model parameters ranging from YOLOv8n to

YOLOv8x, representing increasing sizes. Yolov8n is an extremely

lightweight model with high computational efficiency, but its feature

extraction ability is weak, so it is difficult to detect crops with complex

background; Yolov8s has both efficiency and performance, but it is

insufficient to detect small targets and rare diseases; Yolov8m has both

high precision and computational cost, and has strong feature

extraction ability; Yolov8l has high detection performance, but it

has high computational complexity and low efficiency, which is not

conducive to the environment with limited resources; Yolov8x has the

strongest performance and the best feature expression ability, but it is

difficult to apply because of its high computational cost and complex

model; Compared with yoov8n and yoov8s, yoov8m can significantly

improve performance and efficiency, and can cope with small targets

and unbalanced data. Compared with yoov8l and yoov8x, yoov8m

has similar performance, but significantly reduces the computational

cost, which is more suitable for agricultural applications. The model

structure primarily consists of four components: the input, backbone

network, neck network, and detection head (Yaseen, 2024). The

network architecture is illustrated in Figure 4.

2.4.4 YOLOv9
YOLOv9, a newer iteration of the YOLO series, has undergone

further refinement in its model architecture and training strategies.
TABLE 2 Label distribution of sugarcane disease image dataset.

Disease
name

Category label
quantity

Enhanced label
quantity

Total
quantity

cercospora 7189 21567 28756

eyespot 344 1032 1376

healthy 1247 3741 4988

redrot 275 825 1100

wheat rust 778 2334 3112

yellow leaf 1512 4536 6048

mosaic 2258 6774 9032

bacterialblight 2511 7533 10044

Total 16114 48342 64456
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The backbone network incorporates an enhanced C2F module,

replacing the C3 module from YOLOv8. This integration utilizes

depthwise separable convolution to minimize computational

overhead and employs the a-CIoU loss function to expedite

convergence and elevate localization precision. Moreover,

YOLOv9 introduces the Dynamic Feature Pyramid Network

(DFPN), bolstering the detection capabilities across multiple

scales, particularly excelling in intricate backgrounds and

scenarios involving small targets. Additionally, YOLOv9 facilitates

anchor-free detection, simplifying the model structure and

diminishing reliance on hyperparameters (Wang et al., 2024).
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2.4.5 RetinaNet
RetinaNet, a single-stage object detection model, was

introduced by Facebook AI Research (FAIR) in 2017. It employs

Focal Loss as its loss function, effectively addressing the challenge of

single-stage detectors dealing with extreme imbalances in

foreground and background class data (Wang et al., 2019).

RetinaNet integrates the Feature Pyramid Network (FPN) with

the anchor box mechanism, utilizing ResNet as the backbone

network to extract multi-scale features and generate pyramid

feature maps through the FPN, thereby enhancing the detection

capability for targets of varying sizes. Compared to traditional two-
FIGURE 3

Technical roadmap for sugarcane disease detection.
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stage detectors such as Faster R-CNN, RetinaNet offers both high

detection accuracy and inference speed. On the COCO dataset, it

achieves accuracy comparable to that of two-stage detectors while

maintaining the efficiency of a single-stage model.

2.4.6 Libra R-CNN
Libra R-CNN is an enhanced object detection model, built upon

the Faster R-CNN architecture, specifically designed to address the

issue of sample imbalance and enhance detection accuracy. Its core

philosophy lies in optimizing the training process through the

integration of three strategies: Balanced Sampling, Balanced L1

Loss, and IoU-balanced Sampling. This approach mitigates the

impact of high-quality target factors on lower-quality ones,

thereby improving detection precision (Pang et al., 2019).

In Libra R-CNN, the Focal Sampling Assignment (FSA)

mechanism is employed for balanced sampling, mitigating the

imbalance between positive and negative samples during the Region

Proposal Network (RPN) phase. The balanced L1 loss equalizes the

impact of difficult and easy samples on the loss by adjusting gradient

contributions. Additionally, the IoU balancing mechanism optimizes

the Region of Interest (RoI) selection process, enhancing the

utilization of high IoU samples. These enhancements position Libra

R-CNN to outperform the standard Faster R-CNN on datasets such as

COCO, particularly in detecting small targets and targets within the

low IoU range, where significant improvements are observed.
2.5 Dynamic Tagging Strategy System

ATSS (Adaptive Training Sample Selection) is a dynamic label

assignment strategy based on prior information, specifically tailored

for object detection tasks. It enhances model performance and
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efficiency by adaptively selecting positive and negative samples

(Zhang et al., 2022). The underlying principle involves generating

a series of candidate samples at each feature level based on preset

anchor boxes. For each ground truth (GT) label, the Intersection

Over Union (IoU) values between all candidate samples and the GT

are computed. Subsequently, thresholds for positive and negative

samples are dynamically set based on the mean and standard

deviation of the IoU values. Candidate samples are then

categorized as positive or negative according to these thresholds.

This approach effectively reduces interference from redundant

samples by dynamically selecting high-quality samples, thereby

enhancing detection performance.
2.6 Dynamic Detection Head

The DynamicHead architecture primarily encompasses three

distinct attention mechanisms, the characteristics of its structure

and the functions of each attention mechanism are as follows (Dai

et al., 2021):

Overall Architecture: Initially, various backbone networks are

employed to extract feature pyramids, which are then adjusted to

the same scale, forming a 3-dimensional tensor that is subsequently

input into the DynamicHead. Subsequently, multiple DyHead

blocks, encompassing scale-aware, spatial-aware, and task-aware

attention, are sequentially stacked. Their outputs can be utilized for

diverse tasks and representations in object detection, such as

classification, center/box regression, among others.

Scale-aware Attention: Deployed exclusively at the feature

hierarchy dimension, it enhances features at appropriate levels

based on object scales by learning the relative importance of

different semantic hierarchies. As shown in Equation (1):
FIGURE 4

Overview of the YOLOv8 network architecture.
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pL(F ) · F = s (f (
1
SCoS,C

F )) · F (1)

In this context, f(·) represents a linear function approximated by

a 1×1 convolutional layer, while s (x) = max(0,min(1, x+12 )) denotes

the hard sigmoid function.

Where pL(F ) is the scale aware attention function, which is

used to weight the attention of the input feature F in the scale

dimension, F is the input feature pyramid tensor, f (·) is a linear

function approximated by 1 × 1 convolution layer, SC is the product

of the spatial size of the feature and the number of channels, is the

global summation of the feature in the spatial dimension (s) and the

channel dimension (c), and aggregates the multi-scale feature

information, s ( · ) is a hard sigmoid function. The formula is s (x
) = max(0,min(1, x+12 )) is a hard sigmoid function.

Spatial-aware Attention: Deployed in the spatial dimension

(height × width), it first learns sparse attention through

deformable convolution, and then aggregates cross-level features

at the same spatial location to focus on discriminative regions that

consistently exist across spatial locations and feature levels. As

shown in Equation (2):

pS(F ) · F = 1
Lo

L

l=1
o
K

k=1

wl,k · F(l; pk + Dpk ; c) · Dmk (2)

pS(F ) denotes the spatial-aware attention function, where L

represents the number of levels in the feature pyramid, K indicates

the number of sampled key points per spatial location, wl,k denotes

the weighting coefficient at the k-th sampled position in the I-th

level features, and F (l; pk + Dpk; c) represents the feature value at

position pk + Dpk and channel c in the I-th level features.

Specifically: pk refers to the pre-defined initial sampling position

coordinates, Dpk represents the self-learned spatial offset for

dynamic adjustment of sampling positions, focusing on

discriminative regions, c indicates the feature channel index, Dmk

corresponds to the importance scalar at the k-th sampled position,

and 1
LoL

l=1 performs average aggregation across all levels to

integrate multi-scale spatial information.

Task-aware Attention: Deployed on the channel, it dynamically

switches feature channels based on the responses of different

convolutional kernels for objects, supporting various tasks such as

classification, bounding box regression, center/keypoint learning,

etc. As shown in Equation (3):

pC(F ) · F = max(a1(F ) · F c + b1(F ),a2(F ) · F c + b2(F )) (3)

Where pC is the task perceived attention function, and Fc is the

feature slice of the c-th channel in feature F, ½a1,a2, b1, b2�T =

q( · ), Where a1,a2 is the channel weight coefficient, b1, b2 is the

offset term, q( · ) is a network composed of global average pooling,

two full connection layers, normalization layer and shift sigmoid

function, which is used to learn task related attention parameters,

dynamically adapt to the needs of classification or regression tasks,

and max( · ) is the maximum value of the weighted results of the

two channels to strengthen the channel characteristics that are more

important to the task.
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2.7 QFocalLoss loss function

Focal Loss addresses the class imbalance issue by introducing a

modulation coefficient (1 − pt)
g and a balancing parameter a, which

enables the model to focus more on difficult-to-classify samples.

However, its reliance on discrete labels (such as 0/1 labels indicating

the presence or absence of an object in the target) precludes it from

handling label smoothing or probability mass distributions (such as

continuous labels in IoU-aware classification tasks)

QFocal Loss (Quality Focal Loss) is an extended version of Focal

Loss, designed to address the limitation of traditional Focal Loss,

which only supports discrete labels (0/1 binary labels). It is

particularly suitable for scenarios requiring label smoothing or

probability distribution handling (Li et al., 2020).

The modulation coefficient of traditional Focal Loss is (1 − pt)
g ,

where pt represents the degree of alignment between the predicted

probability and the true label. QFocal Loss, however, substitutes it

with y − sj jg (where y denotes the true label and s represents the

predicted probability), thereby facilitating continuous labels.

As shown in Equation (4):

QFL(s) = −at · y − sj jg ·½(1 − y)log(1 − s) + ylog(s)� (4)

at : The weight balancing positive and negative samples (for

instance:  at = y · a + (1 − y) · (1 − a)); y − sj jg : Dynamically

adjust the weights of difficult and easy samples, with higher

weights assigned when there is a significant discrepancy between

the predicted and actual labels.
2.8 Construction of the ADQ-YOLOv8m
model

Addressing the imbalances in instance quantity and

foreground-background categories within the sugarcane disease

dataset of this study, we employed YOLOv8M as the foundational

model and implemented three enhancements to the network:
1. Incorporate a Dynamic Head detection system into the

Head section;

2. ATSS necessitates the dynamic allocation of positive and

negative sample labels based on the model’s predictive

outcomes (preliminary detection results). The choice of these

labels has a direct impact on the computation of the loss

function. Consequently, the dynamic label assignment strategy

for ATSS ought to be integrated post the Detect module within

the Head section, prior to the loss computation process;

3. The model is optimized using the QFocal loss function and

the IoU loss function, with the improvement locations

depicted in Figure 5.
2.9 Evaluation metrics

mAP_0.5: mAP_0.5 represents the average of the mean

accuracy across all categories when the IoU threshold is set at 0.5.
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The mean Average Precision (mAP) is a metric that quantifies the

average precision (AP) across all detected target categories. The

average precision (AP) is used to assess the efficacy of detection for

a specific category, specifically, the recognition accuracy in the

detection of sugarcane diseases. Meanwhile, the mean mAP serves

as a measure of detection performance across multiple categories,

reflecting the overall recognition effectiveness for all types of

sugarcane diseases. As shown in Equation (5):

AP = o
n−1

i=0
(ri+1 − ri) (5)

In this context, r1, r2…rn represent the Recall values

corresponding to the first interpolation point of the Precison

interpolation segments, arranged in ascending order. Pi denotes

the precision of the ith detection. As shown in Equation (6):

mAP = oAP

N(classes)
(6)

Precision: The ratio of the number of instances of a particular

feature detected to the total number of features detected, serving as

an indicator of the model’s accuracy in identifying the target. As

shown in Equation (7):

Precision = True   Positive
True   Positive+False   Positive =

TP
TP+FP (7)

In this context, True Positive represents the positive samples

that the network model correctly identifies as disease, False Positive

denotes the negative samples that the network model incorrectly

identifies as disease, and False Negative signifies the positive

samples that the network model fails to detect as disease,

essentially representing false negatives.

Recall: The ratio of the number of features detected as belonging

to a specific class to the total number of features of that class in the
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dataset. It measures the completeness of the model’s detection

system. As shown in Equation (8):

Recall = True   Positive
True   Positive+False  Negative =

TP
TP+FN (8)

In this context, True Positive refers to the positive samples that

the network model correctly identifies as disease-affected, while

False Positive denotes the negative samples that the model

erroneously classifies as diseased. False Negative, on the other

hand, signifies the positive samples that the model fails to detect

as disease-affected, essentially representing a false negative.

F1: The harmonic mean of precision and recall. F1 integrates

the considerations of both precision and recall. As shown in

Equation (9):

F = 2PR
a(P+R) (9)

In this context, P denotes Precision, R stands for Recall, and a
represents a weighting factor. When a equals 1, it signifies that the

precision and recall are given equal weight, resulting in F being

equivalent to F1. As shown in Equation (10):

F1 = 2PR
P+R (10)

Generally, a higher F1 score indicates a more effective model.

Gradient: In machine learning models, the gradient refers to the

partial derivative of the objective function with respect to the model

parameters. It signifies the rate of change and direction of the

objective function at the current point.

FLOPs: A metric used to assess the computational complexity of

a model. FLOPs, which stands for floating-point operations,

represents the number of floating-point operations required for a

single forward pass through the model. In assessing computational

complexity, a higher FLOPS indicates greater computational cost
FIGURE 5

Schematic diagram of the ADQ-YOLOv8m model architecture.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1669825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1669825
and longer inference time. The convolution layer is shown in

Equation (11):

FLOPs = HoutWout (Cin(2K
2−1)

g+1 (11)

Hout and Wout respectively denote the height and width of the

output from the convolutional layer, Cin represents the number of

input channels, K stands for the size of the convolution kernel, Cout

signifies the number of output channels, g is the number of groups

in grouped convolution, and the addition of +1 accounts for

convolutions with bias. The fully connected layer is shown in

Equation (12):

FLOPs = ((2Cin − 1) + 1)Cout = 2CinCout (12)
3 Experimental results and analysis

3.1 Experimental apparatus

The hardware configuration for this experiment includes a

central processing unit (CPU) of 16 vCPU Intel(R) Xeon(R) Gold

6430, with 120GB of operational memory, a graphics processing

unit (GPU) of NVIDIA GeForce RTX 4090 (24GB), and a 1TB

solid-state drive. The software system is based on the Ubuntu

20.04.5 LTS operating system. All programs are executed under

the Python 3.8.10 environment and the deep learning framework

Pytorch 2.0.0, utilizing the NVIDIA CUDA 11.8 parallel computing

driver to accelerate training. The model training parameters are set

as follows: image size 640*640, batch_size 64, epochs 500, optimizer

SGD, label smoothness 0.5, initial learning rate 0.01, final learning

rate 0.0001, optimizer momentum 0.937, and optimizer weight

decay 0.0005.
3.2 Selection of fundamental models for
sugarcane disease recognition

Comparative experiments were conducted on the sugarcane

disease dataset using YOLOv8n, YOLOv8s, YOLOv8m, and

YOLOv8l, respectively. Metrics such as accuracy, recall, mAP_0.5,

F1 score, depth, parameter count, gradient, and FLOPS (G) were

selected to assess the training accuracy and loss function values of

the models on the test set, aiming to identify the optimal

base model.
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The experimental results, as presented in Table 3, indicate a

significant enhancement in training performance with the increase

in the number of model parameters and complexity. Specifically, the

mAP50 score rose from 65.70% for YOLOv8n to 88.70% for

YOLOv8l. While the YOLOv8l model boasts the highest training

performance, its improvement in model performance is relatively

modest, increasing by only 3.2% compared to 8m. In terms of

precision, recall, mAP50, mAP50-95, and F1 score, YOLOv8m

slightly trails behind 8l, with values of 85.2%, 81.4%, 85.90%,

74.20%, and 84%, respectively. However, YOLOv8m strikes a

good balance between precision and recall, offering both accurate

and comprehensive disease detection. Its comprehensive

performance is robust, demonstrating superior recognition rates

and generalization capabilities in sugarcane disease detection tasks.

Therefore, YOLOv8m is selected as the foundational model for

this study.

Figure 6 illustrates the distribution of the dataset in this study.

The composite chart, as evident from the figure, presents the

distribution characteristics of the sample data from multiple

perspectives through various sub-charts. The dataset exhibits an

imbalance in the number of instances across different categories,

and the samples are densely distributed in space, with certain

intersections and overlaps. Consequently, subsequent model

improvements will primarily address this issue.
3.3 Enhancing strategy selection

3.3.1 Comparison of dynamic label allocation
strategies

ATSS is an adaptive strategy for positive and negative sample

allocation, employed in label assignment for object detection. It

operates by identifying the k closest candidate anchor boxes to the

Ground Truth (GT) box at each feature level. Subsequently, it

computes the Intersection Over Union (IoU) between these

candidate boxes and the GT, and determines the IoU threshold

by calculating the mean and standard deviation of these IoUs. Boxes

with an IoU exceeding this threshold are selected as the final

positive samples.

Dynamic ATSS represents an enhanced label assignment

strategy, building upon ATSS and incorporating both the

Intersection over Union (IoU) of prediction outcomes and the

IoU of anchor points to more precisely select positive and negative

samples. During the initial stages of training, due to the inaccuracies

in prediction results, it primarily relies on the IoU of anchor points
TABLE 3 Performance analysis table of four sugarcane disease detection models utilizing YOLOv8.

Model Precision Recall mAP50 mAP50-95 F1 Depths Total parameters FLOPS (G)

YOLOv8n 65.70% 61.00% 65.70% 35.90% 63.00% 225 3012408 8.2

YOLOv8s 73.60% 71.90% 76.40% 47.30% 73.00% 225 11138696 28.7

YOLOv8m 85.20% 81.40% 85.90% 74.20% 84.00% 295 25860952 79.1

YOLOv8l 90.00% 82.50% 88.70% 79.10% 86.00% 365 43636008 165.4
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as the primary criterion for label definition. As training progresses,

the prediction outcomes increasingly dominate the combined IoU,

thereby guiding the label assignment during the training phase

(Zhang et al., 2022b).

During the training phase of the selected YOLOv8m model’s

detection head, two distinct label assignment strategies were

integrated to assess their comparative performance.
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Table 4 shows the performance comparison of the two tag

allocation strategies. Yoov8m ATSs and yoov8m are better than

yoov8m dynamic ATSs in accuracy, recall rate, map50, map50–95

and F1 score. Yoov8m ATSs performs best, indicating that they

perform best in prediction accuracy and generalization ability; The

introduction of dynamic ATSs reduces the performance of the

original model, indicating that the dynamic adjustment strategy
TABLE 4 Comparison of the performance of two label allocation strategies.

Model Precision Recall mAP50 mAP50-95 F1

YOLOv8m 85.20% 81.40% 85.90% 74.20% 84.00%

YOLOv8m-Dynamic ATSS 83.90% 80.00% 85.30% 65.60% 82.00%

YOLOv8m-ATSS 88.10% 79.80% 87.70% 72.10% 84.00%
FIGURE 6

Analysis of the sugarcane disease dataset distribution. Top left: Number of samples in each category. Top right: Distribution of ground-truth
bounding box positions. Bottom left: Distribution of predicted bounding box positions. Bottom right: Distribution of predicted bounding box sizes
(width and height).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1669825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1669825
may introduce instability. By comparing the performance indicators

of the three models, the accuracy of yoov8m ATSs is 88.10%, the

recall rate is 79.80%, the map50 is 87.70%, the map50–95 is 72.10%,

and the F1 score is 84.00%, which is better than yoov8m and

yoov8m dynamic ATSs in accuracy and map50. It can be seen that

the ATSs strategy significantly improves the detection performance

and generalization ability of the model in complex scenes. This

improved strategy solves the limitations of the traditional fixed

threshold method by optimizing the label allocation mechanism,

and shows stronger generalization ability in complex scenes.

Therefore, it is reasonable and effective to choose ATSs as the

improvement strategy.

3.3.2 Selection of detection head
In the task of object detection, the detection head serves as a

pivotal component of the model, directly impacting its ability to

locate and classify targets. To enhance the performance of the

sugarcane disease recognition model, we intend to employ a

comparative analysis of various detection head structures,

including DynamicHead, ShareSepHead, ImplicitHead,

LiteShiftHead, and TransHead. DynamicHead is capable of

adaptively allocating attention, ShareSepHead facilitates the

sharing of feature extraction parameters to reduce computational

demands, ImplicitHead utilizes implicit representations to model

target features, LiteShiftHead employs lightweight shift operations

to minimize computational complexity, and TransHead

incorporates a Transformer structure to bolster global feature

modeling capabilities. Consequently, by replacing the original

detection head of YOLOv8-ATSS with the aforementioned five

detection head structures, we have constructed five distinct model

variants. By comparing the performance of these detection heads in

the task of sugarcane disease recognition, we aim to select or design

a detection head structure more suitable for the task, thereby

enhancing the model’s detection accuracy and efficiency.

Table 5 presents a comparative analysis of the recognition

performance of five detection heads, revealing distinct differences

in their capabilities for sugarcane disease identification. Among

them, DynamicHead exhibits the best performance in terms of

recall, mAP50, mAP50-95, and F1 scores, with values of 84.30%,

88.40%, 77.20%, and 86.00%, respectively. This indicates that it

achieves an optimal balance between precision and recall, accurately

detecting disease targets while minimizing the omission of disease

instances. In terms of precision, ImplicitHead and LiteShiftHead
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demonstrate the best performance, with values of 90.30% and

90.40%. Although dynamiehead ranks fourth in accuracy, which

is lower than 90.30% of implicithead, 90.40% of liteshifthead and

89.90% of transhead, it performs well in the other four indicators,

which are 84.30%, 88.40%, 77.20% and 86.00% respectively,

indicating that it can detect disease targets more comprehensively

and reduce omissions, which is suitable for sugarcane disease

recognition in complex scenes. Therefore, based on a

comprehensive comparison of the performance metrics of the five

detection heads, we conclude that DynamicHead exhibits the most

comprehensive and excellent performance in sugarcane disease

identification, making it the optimal choice among the five

detection heads.

3.3.3 Selection of classification loss functions
In the task of object detection, the classification loss function is

one of the key components in the model training process, directly

impacting the model’s ability to classify objects and distinguish

between positive and negative samples. Different classification loss

functions possess distinct characteristics and applicable scenarios.

Focal Loss effectively addresses the issue of class imbalance, while

VariFocal Loss further optimizes the focus on positive samples.

QFocal Loss and PolyLoss, respectively, enhance the model’s

classification performance by introducing new loss calculation

methods or combining polynomial functions. To further enhance

the detection performance of the sugarcane disease recognition

model under the ATSS and DynamicHead detection heads, we

conducted a comparative analysis of these four classification loss

functions to determine the most suitable loss function for the

current task.

The experimental results, as presented in Table 6, demonstrate

notable performance disparities among four classification loss

functions in the task of sugarcane disease recognition. Notably, all

four loss functions exhibited consistent performance in terms of F1

score. QFocalLoss emerged as the top performer across precision,

recall, mAP50, and mAP50–95 metrics, achieving values of 86.90%,

85.40%, 90.00%, and 77.40%, respectively. This indicates that, under

the current model architecture and task, QFocalLoss effectively

balances the classification of positive and negative samples,

thereby enhancing the model’s detection precision and recall

capabilities for disease targets. VariFocalLoss demonstrated

comparable performance to QFocalLoss in terms of recall,

mAP50, and mAP50-95. Although PolyLoss and FocalLoss also
TABLE 5 Comparison of recognition performance among five different detection heads.

Model Precision Recall mAP50 mAP50-95 F1

DynamicHead 88.50% 84.30% 88.40% 77.20% 86.00%

ShareSepHead 88.30% 81.10% 87.50% 75.10% 84.00%

ImplicitHead 90.30% 79.50% 87.30% 75.00% 85.00%

LiteShiftHead 90.40% 80.20% 87.70% 75.30% 85.00%

TransHead 89.90% 80.10% 87.70% 75.20% 85.00%
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provided satisfactory classification performance, they slightly lagged

behind the former two in overall metrics. In summary, it can be

concluded that QFocalLoss, when combined with ATSS and

DynamicHead, offers the optimal choice of classification loss

function for sugarcane disease recognition tasks, contributing to

further enhancement of the model’s detection performance and

practical application effectiveness.
3.4 Model comparison

Following the optimization of key components such as the

detection head and classification loss function, the YOLOv8m-

ATSS-DynamicHead-QFocalLoss (ADQ-YOLOv8m) model

structure was derived. To validate the superior detection

performance of this enhanced model on the sugarcane disease

dataset, a comprehensive comparative analysis was conducted

with nine prevalent object detection algorithms. These ten

algorithms encompass object detection models with diverse

architectures and characteristics, including various versions of the

YOLO series (YOLOv8n, YOLOv8s, YOLOv7, YOLOv9, etc.),

anchor-based RetinaNet, and region proposal-based Libra R-

CNN. During the training process, all models were trained on the
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same sugarcane disease dataset using identical training parameters

to ensure experimental fairness.

The experimental results, as presented in Table 7, demonstrate

that the ADQ-YOLOv8m model exhibits significant advantages

over nine other mainstream object detection algorithms. In terms of

detection accuracy, the ADQ-YOLOv8m model outperforms others

in precision, recall, mAP50, mAP50-95, and F1 metrics, achieving

values of 86.90%, 85.40%, 90.00%, 77.40%, and 86.00%, respectively.

This indicates that the ADQ-YOLOv8m model possesses the best

comprehensive performance, capable of accurately locating and

classifying disease targets while maintaining a consistently high

detection accuracy across various detection difficulties. Compared

with the latest models yorov12n and yorov13n, adq-yorov8m is

superior in all key indicators, especially map50-95, which has

increased by 43.7% and 16.0% respectively, showing the excellent

detection ability of the model in complex scenes Compared to

RetinaNet and Libra R-CNN models, it also demonstrates clear

advantages: RetinaNet’s recall value is 1.36% higher than that of the

ADQ-YOLOv8m model, yet its mAP50 and mAP50–95 values are

both over 20% lower, and its precision is only 19.51%. This suggests

that among samples predicted as disease targets, the proportion of

true positives is the lowest, and the false alarm rate is the highest.

The Libra R-CNN model also performs relatively poorly in various
TABLE 6 Comparison of the performance of four classification loss functions.

Model Precision Recall mAP50 mAP50-95 F1

QFocalLoss 86.90% 85.40% 90.00% 77.40% 86.00%

VariFocalLoss 87.40% 84.70% 89.20% 77.20% 86.00%

PolyLoss 86.50% 84.60% 89.50% 76.90% 86.00%

FocalLoss 87.60% 84.50% 89.70% 76.70% 86.00%
TABLE 7 Comparison of ADQ-YOLOv8m’s performance with other leading object detection algorithms.

Model Precision Recall mAP50 mAP50-95 F1 Depths Total parameters FLOPS (G)

ADQ-
YOLOv8m

86.90% 85.40% 90.00% 77.40% 86.00% 218 25844392 78.7

YOLOv5n 59.60% 51.50% 54.80% 26.50% 55.00% 262 2510024 7.2

YOLOv5s 66.60% 63.80% 67.60% 36.70% 65.00% 262 9125288 24.1

YOLOv7 63.10% 69.30% 65.10% 29.60% 64.00% 407 37232405 105.2

YOLOv9 76.70% 70.50% 77.20% 48.30% 73.00% 962 51015760 238.9

YOLO11n 65.70% 58.00% 60.90% 33.40% 61.00% 238 2583712 6.3

YOLO11s 78.30% 71.30% 77.70% 51.20% 75.00% 238 9415896 21.3

YOLO11m 82.90% 76.80% 83.50% 61.40% 80.00% 303 20036200 67.7

YOLOv12n 80.18% 76.18% 81.82% 53.85% 78.00% 376 2509904 5.8

YOLOv13n 84.95% 82.04% 87.24% 66.71% 84.00% 535 2449455 6.2

RetinaNet 19.51% 86.76% 77.70% 57.40% 31.85% 50 32314 257.71

Libra R-CNN 30.20% 85.19% 75.90% 49.70% 44.59% 83 41335 133.96
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metrics, with precision being over 10% higher than RetinaNet, but

sharing similar issues with RetinaNet.

In terms of model complexity and efficiency, ADQ-YOLOv8m

boasts a depth of 218, with a parameter count of 25,844,392 and a

FLOPS of 78.7G. Despite its relatively large parameter count and

computational demands, ADQ-YOLOv8m maintains high

performance while exhibiting a more reasonable model

complexity compared to sophisticated models such as YOLOv9

(parameter count 51,015,760, FLOPS 238.9G), making it more

suitable for deployment and use in practical applications.

Compared with the lightweight models yorov12n and yorov13n,

the parameters of adq-yorov8m are slightly higher, but its

performance is significantly improved. In terms of map50-95, it is

about 43.7% and 16.0% higher than yorov12n and yorov13n,

respectively, indicating that it is worth increasing the complexity

of the model in order to improve the performance in the task of
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sugarcane disease identification. In addition, compared with some

lightweight models such as yorov5n (parameter 2510024, flops

7.2g), the map50–95 of adq-yov8m is significantly ahead, which

further verifies its performance. A reasonable balance between

advantages and complexity.

Addressing the issue of sugarcane disease detection, a

systematic evaluation and comparison of the performance of 12

different models were conducted in Table 8. In terms of detection

accuracy, the ADQ-YOLOv8m model demonstrated exceptional

performance across most disease categories. Taking Cercospora as

an example, its precision reached 86.70%, recall was 84.00%, and

mAP50 and mAP50–95 were as high as 89.60% and 76.70%.

Compared with YOLOv12n (precision 81.60%, recall 79.30%,

map50 84.70%, map50-95 58.60%) and YOLOv13n(precision

86.80%、recall 82.00%、mAP50 89.50%、mAP50-95 68.40%),

ADQ-YOLOv8m It increased by 30.89% and 12.13% on map50-
TABLE 8 Performance analysis of eleven models across eight detection categories in the fields of artificial intelligence and smart agriculture.

Model Disease Precision Recall mAP50 mA50-95

ADQ-YOLOv8m

cercospora 86.70% 84.00% 89.60% 76.70%

eyespot 90.60% 86.90% 91.60% 83.50%

healthy 89.40% 88.90% 93.70% 80.70%

redrot 80.30% 86.10% 86.60% 56.90%

wheat rust 84.10% 81.10% 86.80% 78.70%

yellow leaf 88.10% 87.90% 91.70% 84.30%

mosaic 86.70% 80.50% 87.60% 76.60%

bacterialblights 89.40% 87.50% 92.80% 81.70%

YOLOv5n

cercospora 62.30% 48.70% 56.30% 28.70%

eyespot 56.80% 46.90% 48.90% 23.10%

healthy 63.20% 42.00% 53.10% 29.00%

redrot 60.30% 68.90% 59.80% 22.90%

wheat rust 60.80% 55.30% 58.40% 28.40%

yellow leaf 55.80% 56.70% 56.40% 29.90%

mosaic 56.20% 41.20% 46.30% 21.00%

bacterialblights 61.70% 52.70% 59.00% 29.00%

YOLOv5s

cercospora 73.30% 70.30% 75.60% 44.70%

eyespot 63.30% 58.30% 60.10% 33.50%

healthy 68.70% 52.90% 64.70% 37.20%

redrot 68.40% 68.30% 67.70% 29.00%

wheat rust 64.80% 71.20% 74.00% 40.30%

yellow leaf 65.10% 71.00% 71.20% 42.00%

mosaic 60.90% 55.40% 59.20% 30.80%

bacterialblights 67.90% 63.40% 68.40% 36.20%

(Continued)
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TABLE 8 Continued

Model Disease Precision Recall mAP50 mA50-95

YOLOv7

cercospora 69.30% 67.80% 71.60% 34.90%

eyespot 54.20% 58.30% 56.20% 25.10%

healthy 62.60% 58.70% 63.50% 29.90%

redrot 67.20% 72.80% 65.90% 25.40%

wheat rust 64.80% 71.40% 68.70% 30.40%

yellow leaf 64.60% 69.60% 69.50% 36.10%

mosaic 57.40% 53.90% 55.70% 24.40%

bacterialblights 64.70% 67.30% 69.70% 30.90%

YOLOv9

cercospora 80.60% 79.00% 84.60% 58.90%

eyespot 67.00% 63.80% 69.20% 44.10%

healthy 79.20% 63.60% 75.50% 48.00%

redrot 77.40% 72.80% 77.40% 35.30%

wheat rust 78.30% 77.40% 82.40% 54.70%

yellow leaf 79.20% 74.20% 80.30% 54.30%

mosaic 76.70% 59.80% 68.50% 41.00%

bacterialblights 75.00% 73.40% 79.80% 49.70%

YOLO11n

cercospora 65.30% 55.00% 60.00% 32.80%

eyespot 60.00% 47.20% 47.30% 25.00%

healthy 65.30% 51.40% 60.20% 34.00%

redrot 61.60% 68.30% 61.20% 26.60%

wheat rust 65.30% 59.80% 62.80% 31.60%

yellow leaf 71.00% 72.00% 74.70% 52.90%

mosaic 67.60% 45.50% 52.00% 26.40%

bacterialblights 69.90% 64.70% 69.20% 37.80%

YOLO11s

cercospora 76.70% 73.70% 77.60% 53.60%

eyespot 80.60% 67.80% 77.90% 51.20%

healthy 80.60% 69.20% 79.10% 53.50%

redrot 75.80% 68.00% 73.00% 33.20%

wheat rust 79.50% 75.30% 79.00% 52.40%

yellow leaf 78.80% 77.90% 83.10% 66.80%

mosaic 77.10% 62.60% 71.10% 47.50%

bacterialblights 77.00% 75.90% 80.70% 51.20%

YOLO11m

cercospora 81.60% 77.60% 82.80% 63.20%

eyespot 86.30% 79.10% 87.00% 67.90%

healthy 84.50% 75.60% 84.80% 63.80%

redrot 78.20% 75.60% 78.40% 42.20%

wheat rust 80.20% 79.20% 84.10% 62.90%

yellow leaf 83.70% 79.20% 85.30% 69.00%

(Continued)
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95, respectively. In the eyespot category, the precision and recall of

adq-YOLOv8m are as high as 90.60% and 86.90%, respectively,

while the corresponding indicators of YOLOv5s are 63.30% and

58.30%. Even in the face of diseases such as redrot, which are

difficult to detect, the map50 and map50–95 of adq-YOLOv8m still

reach 86.60% and 56.90%, which are better than YOLOv12n and
Frontiers in Plant Science 18
YOLOv13n. According to the PR diagram of the model (Figure 7),

the model shows high precision and recall in all categories, and

achieves a good balance. The difference between the highest and

lowest accuracy categories is only 7.1%, which further proves

the stability and reliability of the model in multi category

detection tasks.
TABLE 8 Continued

Model Disease Precision Recall mAP50 mA50-95

mosaic 85.50% 68.90% 79.70% 59.70%

bacterialblights 83.40% 79.30% 86.20% 62.20%

YOLOv12n

cercospora 81.60% 79.30% 84.70% 58.60%

eyespot 81.20% 75.70% 82.10% 51.80%

healthy 83.70% 71.20% 82.10% 52.50%

redrot 83.90% 79.70% 84.20% 39.60%

wheat rust 77.70% 75.80% 78.50% 50.40%

yellow leaf 80.30% 80.10% 84.50% 58.40%

mosaic 78.10% 70.10% 76.80% 48.60%

bacterialblights 75.10% 77.50% 81.70% 49.40%

YOLOv13n

cercospora 86.80% 82.00% 89.50% 68.40%

eyespot 82.80% 86.00% 86.80% 60.70%

healthy 89.20% 82.60% 90.00% 67.00%

redrot 83.40% 82.80% 88.50% 47.70%

wheat rust 83.50% 77.40% 83.50% 63.20%

yellow leaf 86.60% 85.50% 89.10% 69.50%

mosaic 83.70% 77.40% 82.50% 59.50%

bacterialblights 83.10% 82.60% 88.20% 61.00%

RetinaNet

cercospora 24.42% 86.40% 55.41% 38.79%

eyespot 5.97% 89.45% 47.71% 33.39%

healthy 10.15% 89.17% 49.66% 34.76%

redrot 8.71% 85.00% 46.85% 32.80%

wheat rust 14.94% 88.60% 51.77% 36.23%

yellow leaf 22.48% 90.20% 56.34% 39.44%

mosaic 14.14% 77.65% 45.90% 32.13%

bacterialblights 36.52% 90.19% 63.36% 44.35%

Libra R-CNN

cercospora 31.55% 85.16% 73.49% 46.98%

eyespot 18.43% 87.44% 79.27% 55.22%

healthy 25.52% 87.04% 75.55% 45.89%

redrot 34.19% 88.33% 81.41% 48.37%

wheat rust 32.19% 87.10% 80.34% 57.61%

yellow leaf 26.17% 89.12% 76.17% 50.01%

mosaic 19.49% 76.86% 61.04% 38.71%

bacterialblights 53.33% 86.81% 79.91% 54.85%
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In terms of comprehensive performance evaluation, the ADQ-

YOLOv8m model exhibits an mAP50 exceeding 86% across various

categories, with the mAP50–95 metric surpassing 76% for all

categories except redrot. Taking yellow leaf as an example, the

ADQ-YOLOv8m achieves an mAP50 of 91.70% and an mAP50–95

of 84.30%, whereas YOLOv7 only attains an mAP50 and mAP50–

95 of 69.50% and 36.10% for this category. For the diseases such as

bacterialblights that have an important impact on the actual

agricultural production, the map50 and map50–95 of adq-

yorov8m reached 92.80% and 81.70% respectively, while the

corresponding indicators of yorov9 were 75.90% and 49.70%,

which were 13.59% and 33.93% higher than yorov12n, and 5.22%

and 48.95% higher than yorov13n, respectively.

Through detailed comparative analysis with other models, it is

evident that ADQ-YOLOv8m exhibits significant advantages in

crop disease detection tasks. Not only does it perform

exceptionally well in key metrics such as precision and recall, but

it also demonstrates high performance stability across different

disease categories. This superior performance is primarily

attributed to the improvement of the model’s DynamicHead.

Additionally, the model incorporates an ATSS label dynamic

allocation strategy and a QFocalLoss loss function in its structure,

better accommodating issues such as diverse target sizes and

complex morphologies in crop disease detection.

To sum up, the adq-YOLOv8m model performs well in terms of

accuracy, recall, detection accuracy and comprehensive performance

indicators when compared with other 12 mainstream target

detection algorithms. In particular, it shows significant advantages

in comparison with YOLOv12n and YOLOv13n, and is the best

choice for sugarcane disease identification.
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4 Discussion

4.1 ADQ-YOLOv8m prediction visualization
analysis

We conducted a comparative analysis of the performance in

sugarcane disease detection between the ADQ-YOLOv8m model

and other YOLO series models that have demonstrated promising

training outcomes. We selected images from eight categories and

employed YOLOv8m, YOLOV9, YOLO11N, YOLO11S,

YOLO11M, and ADQ-YOLOv8m for predictive analysis. The

results are presented in Figure 8.

As shown in Table 9, ADQ-YOLOv8m shows significant

comprehensive advantages, with an average accuracy of 0.915,

higher than 0.853 of YOLO11m, and significantly higher than

0.674 of YOLOv9, 0.773 of YOLOv12n, and 0.831 of YOLOv13n.

ADQ-YOLOv8m performed stably in most tasks, and the detection

accuracy of “healthy” and “red rot” remained stable at 0.95 and 0.97,

with stable effects; However, in the multi-target complex scenes,

such as “eyespot” and “mosaic”, their accuracy rates are 0.84 and

0.83 – 0.92, respectively, better than YOLOv9’s 0.57-0.7 and 0.62 –

0.7, indicating that they have better effects in multi-target scenes. In

contrast, YOLOv9’s accuracy rate in the “when trust” task ranges

from 0.51 to 0.62, and the model lacks generalization ability for

dense small targets. The accuracy rate of YOLOv12n in the “when

trust” task is 0.58 – 0.72 (mean 0.65), slightly better than YOLOv9,

but still lower than 0.90 of ADQ-YOLOv8m. The accuracy of

YOLOv13n in this task is 0.75 – 0.87 (mean 0.81), but it still does

not reach the level of ADQ-YOLOv8m. YOLOv11m’s accuracy rate

of 0.92 in the “yellow leaf” task is slightly lower than that of 0.95 in
FIGURE 7

Precision-Recall curves of the ADQ-YOLOv8m model for sugarcane disease detection.
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ADQ-YOLOv8m, while YOLOv12n (0.88) and YOLOv13n (0.93)

perform stably in this task, but not exceed that of ADQ-YOLOv8m.

In a single target detection task (such as “health”), the differences

between models are small. ADQ-YOLOv8m, YOLO11m,
Frontiers in Plant Science 20
YOLOv12n and YOLOv13n all reach or close to 0.94, indicating

that lightweight models are competitive in low complexity

scenarios. The accuracy of YOLOv13n in the “mosaic” task is

0.55 – 0.85 (mean 0.70), lower than 0.83 – 0.92 (mean 0.875) of
TABLE 9 Table of detection accuracy of each model.

Model Cercospora Eyespot Healthy Redrot Wheat rust Yellow leaf Mosaic Bacterialblights

YOLOv8m 0.88 0.85 0.94 0.99 0.9 0.96 0.83-0.92 0.89-0.91

YOLOv9 0.86 0.57-0.7 0.88 0.8 0.51-0.62 0.85 0.62-0.7 0.31-0.74

YOLO11n 0.87 0.79-0.88 0.94 0.90 0.78-0.95 0.92 0.66-0.94 0.51-0.88

YOLO11s 0.84 0.63-0.83 0.90 0.79 0.58-0.72 0.88 0.53-0.83 0.63-0.80

YOLO11m 0.91 0.78-0.84 0.94 0.93 0.75-0.87 0.93 0.55-0.85 0.51-0.79

ADQ-YOLOv8m 0.90 0.84 0.95 0.97 0.90 0.95 0.83-0.92 0.91-0.94
FIGURE 8

Comparison of detection results among YOLO series models for sugarcane disease detection.
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ADQ-YOLOv8m. ADQ-YOLOv8m is significantly superior to

other models in “eyespot” and “bactrialblights” tasks, which

further verifies its performance advantages in multi-objective

processing and the reasonable balance between performance

and complexity.
4.2 Cross-scenario adaptability testing of
ADQ-YOLOv8m

This section aims to explore the generalization capabilities of

the ADQ-YOLOv8m model proposed in this study, ensuring its

effectiveness and stability across various crop disease scenarios. On

the Roboflow website, we selected two datasets similar to the crop

disease recognition task of this study: the Corn Leaf Disease

Dataset and the Tomato Disease Dataset. The Corn Leaf Disease

Dataset comprises two disease categories, totaling 10,000 images,

while the Tomato Disease Dataset includes 15 disease categories,

with a total of 3,867 images. Neither dataset underwent image

augmentation to ensure that the experimental results accurately

reflect the model’s generalization capabilities. The proposed ADQ-

YOLOv8m model was employed for generalization experiments,

comparing the original and post-training results of the two

datasets to analyze their generalization abilities. The training

parameters for the generalization experiments were set as

follows: image size of 640x640, batch_size of 64, epochs of 500,

optimizer of SGD, label smoothness of 0.5, initial learning rate of

0.01, final learning rate of 0.0001, optimizer momentum of 0.937,

and optimizer weight decay of 0.0005. The training results are

presented in Table 10.

Table 10 presents the original and post-training results for two

datasets. Specifically, following further training on the corn leaf

disease dataset, the model’s precision rose to 99.60%, recall reached

99.80%, and mAP50 stood at 99.40%. These metrics represent

improvements of 4.6%, 3.6%, and 1.2% respectively from the

original results, indicating the model’s remarkable adaptability

and learning capacity in detecting corn leaf diseases. It can

further optimize parameters through training to enhance

detection accuracy. The tomato disease dataset encompasses a

broader range of disease categories, with more intricate feature

differences among them, thereby increasing the difficulty of

detection. After training, the precision increased to 52.40%, recall

reached 47.80%, and mAP50 stood at 47.50%. These metrics

represent improvements of 5.7%, 3.9%, and 3.9% respectively
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from the original results, with a more significant increase

compared to the corn leaf disease dataset.

Based on the experimental results above, the ADQ-YOLOv8m

model proposed in this study has demonstrated strong

generalization capabilities in cross-scenario adaptability tests,

making it suitable for applications involving multiple objectives,

various categories, and imbalanced categories.

Future research directions are planned to proceed from the

following aspects: Firstly, for complex multi-category datasets, we

aim to further optimize the model structure to enhance its feature

extraction and classification capabilities. Secondly, we intend to

explore more effective data augmentation strategies and training

methods to improve the model’s adaptability and robustness across

different datasets. Thirdly, by integrating prior knowledge and

domain-specific information, we will design more targeted model

training schemes to address the specific requirements of various

crop disease detection tasks.
5 Conclusions

In this study, an intelligent model, ADQ-YOLOv8m, for precise

detection of sugarcane diseases in complex environments is proposed.

A raw dataset containing 6,871 images of sugarcane diseases was

constructed based on publicly available datasets. Multiple data

augmentation techniques were applied to the data to enhance its

diver-sity. By comparing two label assignment strategies, five detection

heads, and four classification loss functions, it was concluded that the

combination of ATSS with QFocal-Loss and DynamicHead achieved

the best performance in sugarcane disease detection. Experimental

results indicated that ADQ-YOLOv8m achieved precision, recall,

mAP50, mAP50-95, and F1 scores of 86.90%, 85.40%, 90.00%,

77.40%, and 86.00%, respectively, significantly outperforming

RetinaNet, Libra R-CNN, and other models in the YOLO series.

Further visual analysis of image prediction and cross-scenario

adaptability testing have validated the superior performance of ADQ-

YOLOv8m. In image detection, the model achieved an average

accuracy of 91.5%, demonstrating significant comprehensive

advantages. Meanwhile, through training on datasets of corn leaf

diseases and tomato diseases, the model’s precision, recall, and

mAP50 metrics improved by 4.6%, 3.6%, and 1.2% (corn dataset)

and 5.7%, 3.9%, and 3.9% (tomato dataset) respectively compared to

the original results, proving the model’s robust generalization

capabilities across different crop disease detection tasks.

This study contributes not only by introducing an efficient,

precise, and broadly applicable model for detecting sugarcane

diseases, but also by offering a significant technical reference for

the identification of diseases in crops belonging to the Poaceae

family and sharing similar disease characteristics. The successful

application of the ADQ-YOLOv8m model provides robust

technical support for intelligent disease monitoring and precise

prevention and control in agriculture, promising to significantly

mitigate the impact of diseases on crop yield and quality, thereby

ensuring the sustainable development of agricultural production.
TABLE 10 Table of training results for corn and tomato disease datasets.

Dataset Result Precision Recall mAP50

Corn
Original results 95.00% 96.20% 98.20%

Training results 99.60% 99.80% 99.40%

Tomato
Original results 46.70% 43.90% 43.60%

Training results 52.40% 47.80% 47.50%
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