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Introduction: Current research on sugarcane disease identification primarily
focuses on a limited number of typical diseases, often constrained by specific
target groups or conditions. To address this, we propose an enhanced ADQ-
YOLOv8m model based on the YOLOv8m framework, enabling precise
detection of sugarcane diseases.

Methods: The detection head is modified to a Dynamic Head to enhance feature
representation capabilities. Following the Detect module, we introduce the ATSS
dynamic label assignment strategy and the QFocalloss loss function to address
issues such as class imbalance, thereby bolstering the model's feature
representation capabilities.

Results: Experimental results demonstrate that ADQ-YOLOv8m outperforms
nine other mainstream object detection models, achieving precision, recall,
mAP50, mAP50-95, and F1 scores of 86.90%, 85.40%, 90.00%, 77.40%, and
86.00%, respectively.

Discussion: Finally, comprehensive evaluation of the ADQ-YOLOv8m model's
performance is conducted using visual analysis of image predictions and cross-
scenario adaptability testing. The experimental results indicate that the proposed
model excels in multi-objective processing and demonstrates strong
generalization capabilities, suitable for scenarios involving multiple objectives,
multiple categories, and class imbalance. The detection method proposed
exhibits excellent detection performance and potential, providing robust
support for the development of intelligent sugarcane cultivation and
disease control.
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1 Introduction

Sugarcane, as an important economic crop, plays a pivotal role
in agricultural production. During its growth cycle, it demands a
large amount of fertilizer, along with sufficient arable land resources,
irrigation water sources, and abundant nutrient supply. In China,
the production of sugarcane directly affects the total sugar output,
with over 90% of sugar coming from this crop (Liu et al.,, 2024).

However, in the process of sugarcane cultivation, disease issues
have become a significant factor constraining its industrial
development. Existing research has shown that plant diseases are
one of the key factors threatening crop productivity and quality.
Globally, 20%-40% of agricultural productivity losses are caused by
plant diseases (Qaadan et al., 2025). Specifically in sugarcane
cultivation, the occurrence of diseases can have severe negative
impacts on the sugarcane industry (Rott et al, 2015). Infected
sugarcane plants often exhibit symptoms such as slow growth,
wilted leaves, softened stems, and decreased yields. These
symptoms not only significantly reduce the yield and quality of
sugarcane but may even lead to plant death, causing huge economic
losses to growers (Huang et al, 2018). Therefore, accurately
identifying sugarcane diseases is of utmost importance. Efficient
and precise disease identification can provide farmers with scientific
evidence, enabling them to take effective prevention and control
measures, thereby reducing economic losses, curbing the further
spread of diseases, and ensuring the sustainable development of the
sugarcane industry.

Deep learning and image processing technologies (LeCun et al.,
2015; Demilie, 2024; Ritharson et al., 2024; Li et al., 2024) have become
indispensable tools in the agricultural sector, particularly in the
identification and classification of crop leaf diseases (Hang et al,
2019). Researchers have been exploring various methods to enhance
plant disease recognition. Yuzhi Wang et al. proposed a new model
combining a masked autoencoder (MAE) and a convolutional block
attention module (CBAM). Through experiments on 21 leaf diseases of
five crops, namely potatoes, corn, tomatoes, cashews, and cassava, this
model achieved accurate and rapid detection of plant dis-ease
categories (Wang et al,, 2024). Jianping Yao et al. introduced a new
model called Generalized Stacked Multi-Output CNN (GSMo-CNN)
and proposed the hypothesis that using a single model for two tasks can
be comparable to or better than using two models for each task (Yao
etal, 2024). C. Ashwini et al. proposed a hybrid 3DCNN-RNN model
optimized by the Joint Search Whale Optimization Algorithm
(JSWOA). Simulation results showed that the proposed hybrid
model achieved a performance of over 90% in predicting various
corn leaf categories on two datasets (Ashwini and Sellam, 2024). Imane
Bouacida et al. addressed the issue of deep learning models lacking
robustness and generalization ability when faced with new crops and
disease types not included in the training dataset. They proposed a
novel system based on deep learning, emphasizing the core goal of
focusing on identifying the disease itself rather than solely relying on
the appearance of diseased leaves (Bouacida et al., 2025). Lobna M.
Abouelmagd et al. utilized an optimized Capsule Neural Network
(CapsNet) to detect and classify ten tomato leaf diseases using standard
dataset images. The research results highlighted the potential of
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CapsNet as an alternative to CNNs (Abouelmagd et al, 2024).
Marriam Nawaz et al. introduced a novel and effective deep learning
model called CoffeeNet to overcome the challenges of various image
distortions and the similarity between healthy and diseased parts of
inspection samples in coffee disease recognition (Nawaz et al,, 2024).
Anuja Bhargava et al. emphasized the importance of computer vision
and artificial intelligence for automatic monitoring of plant leaf health
and disease detection, highlighting the role of molecular diagnostic
tools and segmentation algorithms in improving agricultural processes
(A et al., 2024).

Crop disease target detection has always been an important field
in agricultural research, with various studies focusing on utilizing
advanced technologies to improve detection accuracy and efficiency.
Xuewei Wang et al. proposed YOLOv8n-vegetable, which made
multiple improvements and optimizations to the YOLOv8n model
to enhance its effectiveness, better preserve the fused feature
information, and thus enhance vegetable disease detection in
greenhouse environments. This improvement resulted in a 6.46%
increase in mean average precision (mAP) compared to the original
model when applied to a self-built vegetable disease detection dataset
under green-house conditions (Wang and Liu, 2024). Dong Cong
Trinh et al. proposed an improved YOLOv8 model based on EIoU
loss and a-IoU loss to enhance the performance of the rice leaf
disease detection system (Trinh et al, 2024). Sasikala Vallabhajosyula
et al. introduced a novel hierarchical residual visual transformer,
utilizing an improved Vision Transformer and ResNet9 model to aid
in the early detection of leaf diseases (Vallabhajosyula et al., 2024).
Meng Lv et al. innovatively incorporated attention mechanisms and
modules containing transformer encoders into YOLOVS5, resulting in
YOLOV5-CBAM-C3TR for apple leaf disease detection. When
applied to the detection of two very similar diseases (including
Alternaria leaf spot and gray leaf spot), it achieved accuracies of
93.1% and 89.6%, respectively (Lv and Su, 2023). Mazin Abed
Mohammed et al. addressed the challenge of collecting plant
disease data from land distributed across different regions by
utilizing a deep neural network with transfer learning to propose
plant disease detection based on edge cloud remote sens-ing data (M
et al, 2024). Abudukelimu Abulizi et al. introduced an improved
tomato leaf disease detection method, DM-YOLO, based on the
YOLOVY algorithm. When evaluated on the tomato leaf disease
dataset, the model achieved a precision (P) of 92.5%, with average
precision (AP) and mean average precision (mAP) of 95.1% and
86.4%, respectively (Abulizi et al, 2024). Jianlong Wang et al.
proposed a lightweight method, LCGSC-YOLO, to address issues
such as the large number of learning parameters and complex
scenarios in apple leaf disease detection, aiming to improve the
detection accuracy decline caused by model lightweighting (Wang
et al, 2024). Arun Kumar Sangaiah et al. proposed a deep learning
architecture, UAV T-YOLO-RICE, suitable for application in aerial
computing dronemounted intelligence, achieving a test average
precision (mAP) of 86% (A et al., 2024).

In the field of sugarcane disease identification and detection,
researchers have explored deep learning methods, particularly
convolutional neural networks (CNNs), for accurate and timely
detection of sugarcane diseases (Srinivasan et al, 2025; Bala and
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Bansal, 2024; Bao et al,, 2024). These methods involve utilizing high-
resolution images of affected sugarcane parts, which undergo meticu-
lous preprocessing to enhance key features and minimize noise
interference. Furthermore, indepth research has been conducted on
developing and evaluating deep learning-based methods using the
EfficientNet model to robustly detect diseases in sugarcane leaves
(Kunduracioglu and Pacal, 2024). Sakshi Srivastava et al. proposed a
novel deep learning frame-work method that detects the presence of
diseases in sugarcane plants by analyzing their leaves, stems, and colors.
Using VGG-16 as the feature extractor and SVM as the classifier, they
achieved an AUC of 90.2% (Srivastava et al., 2020). Dong Bao et al.
utilized hyperspectral imaging and a spectral-spatial attention deep
neural network to detect early signs of smut and mosaic diseases in
sugarcane. Experimental results showed that the deep neural network
model effectively extracted hyperspectral images containing features
useful for early detection of the two target sugarcane diseases. The
detection accuracy for both diseases was over 90% before visible
symptoms appeared (Bao et al, 2024). Abirami Kuppusamy et al.
integrated the Vision Transformer architecture with Hybrid Shifted
Windows to propose a novel automatic classification method for
sugarcane leaf diseases, achieving a disease detection accuracy of up
to 98.5% (Kuppusamy et al., 2024a). Jihong Sun et al. optimized the
YOLOV8 model by adding an EMA attention mechanism and Focal
loss function based on the YOLOvS framework, addressing the
complex background and imbalance between positive and negative
samples in the sugarcane dataset. This approach enabled computer
vision technology to solve the challenges of sugarcane growth
monitoring and disease detection in complex environments (Sun
et al,, 2024). Some researchers also processed the extracted features
during the disease detection stage by introducing a hybrid classifier to
obtain better prediction results. This method achieved the highest
accuracy in 80% of the learning process (Mangrule and Afreen, 2024).
Ong et al. (2023) used visible near infrared spectroscopy (380~1400
nm) in combination with a new wavelength selection method, namely
the improved flower pollination algorithm (MFPA), to identify
sugarcane diseases. The experimental results show that the simplified
SVM model based on MFPA wavelength selection method has the best
performance and is superior to the results of other wavelength selection
methods, including selectivity ratio, the importance of variables in
projection and the baseline method of flower pollination algorithm. O
rek ¢ 1S i leyman et al. (Ogrekei et al.,, 2023). The experimental results
show that the accuracy is 92.87%, 93.34% and 87.37% respectively. Ajay
Chakravarty et al. (2024) proposed an application based on smart
phones, which loads a convolutional neural network model to identify
sugarcane plant diseases from images. Kuppusamy et al. (2024b)
proposed a new hybrid shift vision converter method for automatic
classification of sugarcane leaf diseases. The model integrates the vision
converter architecture with the hybrid shift window to effectively
capture local and global features. The experimental results show that
the hybrid shift converter is superior to the traditional model and
achieves a higher accuracy of 98.5% in disease detection. Rajput et al.
(2025) proposed a multi-layer Transformer based sugarcane disease
classifier (MLTSDC) model to solve this problem. The model uses two
levels of classification: the first level identifies the existence of abnormal
features, and the second level maps abnormal features to corresponding
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diseases. The classification accuracy of the proposed model for different
diseases affecting sugarcane leaves in the real world reached 98.8%.

In summary, the current literature review reveals a strong
interest in the academic community in utilizing deep learning,
machine learning, and biosensing technologies to achieve accurate
and timely diagnosis of sugarcane diseases. However, precise
identification of sugarcane diseases in natural planting
environments remains a highly challenging task. This challenge
primarily stems from the following aspects:

1. Noise interference in complex environments: Sugarcane
plants typically thrive in wild settings, characterized by
intricate backgrounds and variable lighting conditions.
These factors significantly disrupt the extraction of
disease characteristics, rendering existing methods
inadequate for accurately identifying disease targets.

2. The Synergistic Challenges of Small Sample Size and
Interclass Imbalance: Current research on sugarcane
disease recognition predominantly focuses on a limited
number of typical diseases (such as rust and yellow leaf
diseases), often confined to specific target populations or
conditions. These methodologies exhibit suboptimal
performance in complex scenarios involving multiple
objectives, multiple categories, and class imbalance,
making it difficult to meet the demands of practical
agricultural production.

3. Inadequate Regional Adaptability: Existing methodologies
exhibit significant deficiencies in cross-scenario
adaptability, particularly when confronted with diverse
crop disease detection tasks. The robustness and
generalizability of the models are suboptimal, rendering
them challenging to directly apply to disease identification
in other crops.

Therefore, this study utilizes public datasets of sugarcane
images from various regions, encompassing eight disease
categories, including healthy conditions (brown spot disease, eye
spot disease, red rot disease, rust disease, yellow leaf disease, mosaic
disease, bacterial stripe disease), aiming to construct a more
universally applicable and precise sugarcane disease recognition
model. This is intended to provide robust technical support for early
warning and precise prevention and control of sugarcane diseases.
The main contributions are as follows:

1. A trinity improvement framework consisting of “Dynamic
Detection Head + Adaptive Label Assignment + Quality
Focal Loss” is proposed. Initially, the head of YOLOV8M is
modified to DynamicHead, enabling the model to employ
attention mechanisms in three dimensions: scale
perception, spatial perception, and task perception,
significantly enhancing the representational power of the
object detection head. Subsequently, the ATSS dynamic
label assignment strategy and QFocalLoss loss function are
introduced after the Detect module to address issues such
as class imbalance, thereby augmenting the model’s feature

frontiersin.org


https://doi.org/10.3389/fpls.2025.1669825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

representation capacity and improving its predictive
accuracy and robustness.

2. Verify the model’s generalization capability across crop
scenarios. Through the generalization experiments of the
ADQ-YOLOv8m model proposed in this study on tomato
disease datasets and corn disease datasets, it is confirmed
that the proposed model exhibits strong generalization
capabilities. The improvement methods outlined in this
research can serve as a reference for enhancing crop disease
recognition models belonging to the same grass family and
sharing similar disease characteristics.

2 Materials and methods
2.1 Dataset preparation

The dataset for this study comprises three datasets: Dataset 1
and Dataset 2 from the Kaggle dataset portal, and a third dataset of
sugarcane disease images collected through web scraping. The
dataset encompasses eight categories, namely brown spot disease,
eye spot disease, healthy, red rot disease, rust disease, yellow leaf
disease, mosaic disease, and bacterial stripe disease, with a total of
6,871 images, as illustrated in Figure 1. The data set is summarized
in Table 1.

Dataset 1: A manually collected dataset of sugarcane leaf
disease images. It primarily comprises five major
categories: healthy, mosaic disease, red rot disease, rust
disease, and yellow leaf disease. The dataset has been
captured using smartphones of various configurations to
maintain diversity. It encompasses a total of 2569 images,
encompassing all categories. The database has been
collected in the state of Maharashtra, India. The database
is balanced and exhibits a good diversity. The image sizes
are not uniform, as they originate from various capture
devices. All images are in RGB format. This study utilized
the entire set of images from Dataset 1. Source: https://
www.kaggle.com/datasets/nirmalsankalana/sugarcane-leaf-
disease-dataset.

Dataset 2: This dataset comprises 19,926 images of sugarcane
leaves, categorized into six distinct classes. Each class
represents a specific condition of the sugarcane leaves,
encompassing healthy specimens as well as varieties
afflicted with various diseases. The dataset has undergone
data augmentation techniques, including rotation, flipping,
scaling, resizing, and cropping, to enhance model training.
The detailed classification of the dataset is as follows: 4,800
images of bacterial wilt disease, 3,132 images of healthy
leaves, 2,772 images of mosaic disease, 3,108 images of red
rot disease, 3,084 images of rust disease, and 3,030 images
of yellow disease. All images are in PNG format. In order to
ensure the pertinence and data balance of the experiment,
we selected three categories of bacterial wilt, mosaic leaf
disease and yellow disease, and selected a total of 1564
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original images according to the number of samples, image
quality and representativeness of the categories, which will
be uniformly enhanced by me later. The selection criteria
mainly include: ©® ensure that the number of samples in
each category is statistically representative in training; @
High image definition without serious noise or occlusion; ®
It covers the diversity of different leaf growth states and
disease manifestations. Source: https://www.kaggle.com/
datasets/akilesh253/sugarcane-plant-diseases-dataset.

Dataset 3: A web crawler was designed in Python, targeting
major search engines, specialized agricultural image
databases, and publicly available plant disease dataset
sharing platforms. A total of 2738 images, encompassing
brown spot disease, eye spot disease, mosaic disease, and
additional categories, were retrieved. The crawled images are
subject to a strict data cleaning process, including: @ de
duplication: automatic removal of duplicate or highly
similar images using perceptual hash method; @ Definition
screening: eliminate blurred, overexposed or incompletely
cropped images; ® Consistency of annotation: all images are
annotated by two agronomic experts. If there are differences,
the third expert will arbitrate to ensure the accuracy and
consistency of category annotation.

2.2 Data enhancement

Gamma correction is a nonlinear transformation used to
correct brightness deviations and contrast in images, helping to
make the brightness distribution more uniform and improve visual
quality. Hue adjustment can change the overall color tendency of an
image, making it more aligned with detection requirements. In pest
and disease detection, images are sourced from different
environments and conditions.

By adjusting the image’s Gamma value and hue, the brightness
and contrast of the image can be optimized, enhancing image
quality to adapt to different environmental conditions, thereby
improving detection accuracy. Building a sugarcane disease
detection model requires establishing an image dataset based on
image data and performing data augmentation on this dataset. For
this experiment, preprocessing methods such as random
horizontal/vertical flipping, adjusting brightness/contrast, gamma
value, and adding random noise were used to expand the dataset
threefold, forming a data resource library, as shown in Figure 2 and
Table 2. After expansion, there were a total of 18,810 images. The
Labellmg software was used to annotate the target for these 18,810
sugarcane leaf disease images. The dataset was then divided into
training, testing, and validation sets in an 8:2 ratio, forming a
complete dataset for training and testing.

2.3 Technology roadmap
The technical approach outlined in this paper is depicted

in Figure 3.
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FIGURE 1
Examples of eight typical categories of sugarcane diseases.

healthy

mosaic bacterialblight

2.3.1 Data acquisition and data preprocessing
Initially, we endeavor to gather a comprehensive array of

sugarcane disease categories from both public datasets and the

internet. Following this, we embark on data cleansing and employ a

TABLE 1 Dataset summary.

Dataset Source

range of data augmentation techniques, including rotation, flipping,
and adjustments to brightness, contrast, and saturation, to augment
the dataset and enhance the model’s generalization capabilities
across diverse scenarios. The preprocessed and augmented data

Number of

Category

Public dataset: https://www.kaggle.com/datasets/nirmalsankalana/

images

5 categories:healthy, mosaic disease, red rot disease, rust

Dataset 1 2569
sugarcane-leaf-disease-dataset disease, and yellow leaf disease
Public dataset: https:// .kaggle.com/datasets/akilesh253/
Dataset 2 " psifwww ai’g ceomydatasesaiies 3 categories:bacterialblight, mosaic leaf disease and yellow leaf 1564
sugarcane-plant-diseases-dataset
Dataset 3 Network crawling 3 categories:cercospora, eye spot disease, mosaic disease 2738
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Original image

Brightness adjustment

FIGURE 2
Illustration of data augmentation methods.

are then amalgamated into a comprehensive training dataset, which
is subsequently split into training and validation sets to pave the
way for model training.

2.3.2 Modeling and data analytics

Conduct a comprehensive analysis of the training dataset,
encompassing the quantity of instances across various categories,
the spatial distribution of bounding boxes predicted by the model
within the images, and the positional distribution of these predicted

Frontiers in Plant Science

Random invert

Gamma value adjustment

Add random noise

Gaussian blur

bounding boxes. This analysis aims to comprehend the
characteristics of the data, thereby furnishing a solid foundation
for model selection and enhancement. Based on the insights gleaned
from the data analysis, strategize for model improvement, such as
implementing specific sampling techniques or adjusting the loss
function to address category imbalance issues.

Conduct a comprehensive study on the YOLOV8 series of
models (YOLOv8n, YOLOv8s, YOLOv8m, YOLOVSI), analyzing
the structural characteristics, parameter counts, computational
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TABLE 2 Label distribution of sugarcane disease image dataset.

Disease = Category label Enhanced label Total
name quantity quantity quantity
cercospora 7189 21567 28756
eyespot 344 1032 1376
healthy 1247 3741 4988
redrot 275 825 1100
wheat rust 778 2334 3112
yellow leaf 1512 4536 6048
mosaic 2258 6774 9032
bacterialblight 2511 7533 10044
Total 16114 48342 64456

complexity, and performance on various datasets. Aligning with
project requirements and data characteristics, a holistic evaluation
is conducted in terms of accuracy, speed, and model size to
determine the optimal foundational model.

2.3.3 Model training and refinement optimization

The YOLOvV8s model, which strikes a balance between speed
and accuracy, has been selected for enhancements in label
assignment strategy, loss function, and detection head. These
improvements aim to address issues such as class imbalance,
bolster the model’s feature representation capabilities, and elevate
its predictive accuracy and robustness.

2.3.4 Model evaluation and generalization studies

Utilizing standard metrics such as mAP, Precision, Recall, and
Fl-score, a comprehensive evaluation was conducted on the
enhanced model, ADV-YOLOVS, to compare its performance
with that of the baseline model and nine other leading object
detection models, including YOLOv5n, YOLOv7, YOLOV9,
YOLOvI1n, YOLOvlls, YOLOvllm, and Retinanet, thereby
verifying the model’s performance enhancement. By visualizing
the model’s predictions on images, the detection outcomes for
various targets were displayed, providing an intuitive assessment
of the model’s detection efficacy and feature learning capabilities for
further optimization. Simultaneously, the evaluated and optimized
ADV-YOLOvV8 model underwent cross-scenario adaptability
testing to analyze its effectiveness and stability in different crop
disease scenarios.

2.4 Model overview

2.4.1 YOLOvV5

YOLOV5, released by Glenn Jocher in 2020, stands out notably
for its incorporation of the Focus and CSPDarknet-53 structures
within its backbone network. The Focus structure, a pivotal
component of YOLOVS5, is designed to extract high-resolution
features. It employs a lightweight convolutional operation,
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enabling the model to maintain a large receptive field while
reducing computational demands. CSP (Cross Stage Partial)
Darknet-53, the backbone network structure in YOLOV5,
introduces the concept of cross-stage partial connections. By
dividing the feature map into two parts along the channel
dimension, it maintains high feature representation capabilities,
thereby enhancing the accuracy and speed of object detection.
YOLOV5 is available in five versions: YOLOv5n, YOLOV5s,
YOLOv5m, YOLOV5], and YOLOv5x. Notably, YOLOv5n boasts
the shallowest depth and the narrowest feature map width within
the series (Yao et al., 2021).

2.4.2 YOLOv7

YOLOvV7 has achieved a dual breakthrough in detection speed
and accuracy within the field of object detection. Its core innovations
include the Extended Efficient Layer Aggregation Network (E-
ELAN) and the trainable “Bag of Freebies” training strategy. E-
ELAN enhances gradient propagation efficiency through grouped
convolution and feature rearrangement, while dynamic label
assignment optimizes the target matching issue across multiple
output layers. YOLOvV7 employs model reparameterization
technology, which consolidates the multi-branch structure during
training into a single branch, thereby reducing the number of
parameters and computational load during inference (Nikarika
et al., 2024).

2.4.3YOLOVS

YOLOVS, an object detection model open-sourced by ultralytics
in January 2023, is an updated version based on YOLOV5. It
maintains high accuracy and enhances inference speed while
further reducing model weight. YOLOV8 is available in various
versions, with model parameters ranging from YOLOvV8n to
YOLOV8x, representing increasing sizes. Yolov8n is an extremely
lightweight model with high computational efficiency, but its feature
extraction ability is weak, so it is difficult to detect crops with complex
background; Yolov8s has both efficiency and performance, but it is
insufficient to detect small targets and rare diseases; Yolov8m has both
high precision and computational cost, and has strong feature
extraction ability; Yolov8l has high detection performance, but it
has high computational complexity and low efficiency, which is not
conducive to the environment with limited resources; Yolov8x has the
strongest performance and the best feature expression ability, but it is
difficult to apply because of its high computational cost and complex
model; Compared with yoov8n and yoov8s, yoov8m can significantly
improve performance and efficiency, and can cope with small targets
and unbalanced data. Compared with yoov8l and yoov8x, yoov8m
has similar performance, but significantly reduces the computational
cost, which is more suitable for agricultural applications. The model
structure primarily consists of four components: the input, backbone
network, neck network, and detection head (Yaseen, 2024). The
network architecture is illustrated in Figure 4.

2.4.4 YOLOV9

YOLOVY, a newer iteration of the YOLO series, has undergone
further refinement in its model architecture and training strategies.
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Technical roadmap for sugarcane disease detection.

The backbone network incorporates an enhanced C2F module,
replacing the C3 module from YOLOVS. This integration utilizes
depthwise separable convolution to minimize computational
overhead and employs the o-CloU loss function to expedite
convergence and elevate localization precision. Moreover,
YOLOV9 introduces the Dynamic Feature Pyramid Network
(DFPN), bolstering the detection capabilities across multiple
scales, particularly excelling in intricate backgrounds and
scenarios involving small targets. Additionally, YOLOvV9 facilitates
anchor-free detection, simplifying the model structure and
diminishing reliance on hyperparameters (Wang et al., 2024).
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2.4.5 RetinaNet

RetinaNet, a single-stage object detection model, was
introduced by Facebook AI Research (FAIR) in 2017. It employs
Focal Loss as its loss function, effectively addressing the challenge of
single-stage detectors dealing with extreme imbalances in
foreground and background class data (Wang et al., 2019).
RetinaNet integrates the Feature Pyramid Network (FPN) with
the anchor box mechanism, utilizing ResNet as the backbone
network to extract multi-scale features and generate pyramid
feature maps through the FPN, thereby enhancing the detection
capability for targets of varying sizes. Compared to traditional two-

frontiersin.org


https://doi.org/10.3389/fpls.2025.1669825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

10.3389/fpls.2025.1669825

Conv G [PF

Backbone

BackbN

ICSPlaye[Z(arw]-—[ Concat ]-—[ Upsample HCSPLayer}Conv H Concat H Upsample ]-—

4-[ Conv ]—-[ Concat Hcsvmyer,zcw\/}—'[ Conv }—-{ Concat ]—-[CSPLayeLZCerW
Neck T I

BatchNorm2d

FIGURE 4
Overview of the YOLOV8 network architecture.

stage detectors such as Faster R-CNN, RetinaNet offers both high
detection accuracy and inference speed. On the COCO dataset, it
achieves accuracy comparable to that of two-stage detectors while
maintaining the efficiency of a single-stage model.

2.4.6 Libra R-CNN

Libra R-CNN is an enhanced object detection model, built upon
the Faster R-CNN architecture, specifically designed to address the
issue of sample imbalance and enhance detection accuracy. Its core
philosophy lies in optimizing the training process through the
integration of three strategies: Balanced Sampling, Balanced L1
Loss, and IoU-balanced Sampling. This approach mitigates the
impact of high-quality target factors on lower-quality ones,
thereby improving detection precision (Pang et al., 2019).

In Libra R-CNN, the Focal Sampling Assignment (FSA)
mechanism is employed for balanced sampling, mitigating the
imbalance between positive and negative samples during the Region
Proposal Network (RPN) phase. The balanced L1 loss equalizes the
impact of difficult and easy samples on the loss by adjusting gradient
contributions. Additionally, the IoU balancing mechanism optimizes
the Region of Interest (Rol) selection process, enhancing the
utilization of high IoU samples. These enhancements position Libra
R-CNN to outperform the standard Faster R-CNN on datasets such as
COCO, particularly in detecting small targets and targets within the
low IoU range, where significant improvements are observed.

2.5 Dynamic Tagging Strategy System
ATSS (Adaptive Training Sample Selection) is a dynamic label

assignment strategy based on prior information, specifically tailored
for object detection tasks. It enhances model performance and
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efficiency by adaptively selecting positive and negative samples
(Zhang et al., 2022). The underlying principle involves generating
a series of candidate samples at each feature level based on preset
anchor boxes. For each ground truth (GT) label, the Intersection
Over Union (IoU) values between all candidate samples and the GT
are computed. Subsequently, thresholds for positive and negative
samples are dynamically set based on the mean and standard
deviation of the IoU values. Candidate samples are then
categorized as positive or negative according to these thresholds.
This approach effectively reduces interference from redundant
samples by dynamically selecting high-quality samples, thereby
enhancing detection performance.

2.6 Dynamic Detection Head

The DynamicHead architecture primarily encompasses three
distinct attention mechanisms, the characteristics of its structure
and the functions of each attention mechanism are as follows (Dai
et al,, 2021):

Overall Architecture: Initially, various backbone networks are
employed to extract feature pyramids, which are then adjusted to
the same scale, forming a 3-dimensional tensor that is subsequently
input into the DynamicHead. Subsequently, multiple DyHead
blocks, encompassing scale-aware, spatial-aware, and task-aware
attention, are sequentially stacked. Their outputs can be utilized for
diverse tasks and representations in object detection, such as
classification, center/box regression, among others.

Scale-aware Attention: Deployed exclusively at the feature
hierarchy dimension, it enhances features at appropriate levels
based on object scales by learning the relative importance of
different semantic hierarchies. As shown in Equation (1):
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m(F) - F=0f( g5 SF) - F (1)
S,C

In this context, f(-) represents a linear function approximated by
a 1x1 convolutional layer, while o(x) = max(0, min(1, % )) denotes
the hard sigmoid function.

Where m; (F) is the scale aware attention function, which is
used to weight the attention of the input feature F in the scale
dimension, F is the input feature pyramid tensor, f (-) is a linear
function approximated by 1 x 1 convolution layer, SC is the product
of the spatial size of the feature and the number of channels, is the
global summation of the feature in the spatial dimension (s) and the
channel dimension (c), and aggregates the multi-scale feature
information, o(-) is a hard sigmoid function. The formula is o(x
) = max(0, min(1,%tL)) is a hard sigmoid function.

Spatial-aware Attention: Deployed in the spatial dimension
(height x width), it first learns sparse attention through
deformable convolution, and then aggregates cross-level features
at the same spatial location to focus on discriminative regions that
consistently exist across spatial locations and feature levels. As
shown in Equation (2):

L K
T5(F) - F =1 > > Wiy - Flb pi + Apys €) - Amy (2)
it

7s(F) denotes the spatial-aware attention function, where L
represents the number of levels in the feature pyramid, K indicates
the number of sampled key points per spatial location, wy) denotes
the weighting coefficient at the k-th sampled position in the I-th
level features, and F(l; py + Apy; ) represents the feature value at
position py +Ap, and channel ¢ in the I-th level features.
Specifically: py refers to the pre-defined initial sampling position
coordinates, Apy represents the self-learned spatial offset for
dynamic adjustment of sampling positions, focusing on
discriminative regions, c indicates the feature channel index, Amy
corresponds to the importance scalar at the k-th sampled position,
and %EIL:I performs average aggregation across all levels to
integrate multi-scale spatial information.

Task-aware Attention: Deployed on the channel, it dynamically
switches feature channels based on the responses of different
convolutional kernels for objects, supporting various tasks such as
classification, bounding box regression, center/keypoint learning,
etc. As shown in Equation (3):

c(F) - F = max(0(F) - Fe + B1(F), &2 (F) - Fe+ BAF) (3)

Where 7¢ is the task perceived attention function, and F, is the
feature slice of the c-th channel in feature F, [al,az,ﬂl,ﬂz]T =
6(-), Where o', o is the channel weight coefficient, B, B is the
offset term, 6( -) is a network composed of global average pooling,
two full connection layers, normalization layer and shift sigmoid
function, which is used to learn task related attention parameters,
dynamically adapt to the needs of classification or regression tasks,
and max( ) is the maximum value of the weighted results of the
two channels to strengthen the channel characteristics that are more
important to the task.

Frontiers in Plant Science

10.3389/fpls.2025.1669825

2.7 QFocallLoss loss function

Focal Loss addresses the class imbalance issue by introducing a
modulation coefficient (1 — p;)? and a balancing parameter o, which
enables the model to focus more on difficult-to-classify samples.
However, its reliance on discrete labels (such as 0/1 labels indicating
the presence or absence of an object in the target) precludes it from
handling label smoothing or probability mass distributions (such as
continuous labels in IoU-aware classification tasks)

QFocal Loss (Quality Focal Loss) is an extended version of Focal
Loss, designed to address the limitation of traditional Focal Loss,
which only supports discrete labels (0/1 binary labels). It is
particularly suitable for scenarios requiring label smoothing or
probability distribution handling (Li et al., 2020).

The modulation coefficient of traditional Focal Loss is (1 — p;)7,
where p, represents the degree of alignment between the predicted
probability and the true label. QFocal Loss, however, substitutes it
with |y — o|” (where y denotes the true label and o represents the
predicted probability), thereby facilitating continuous labels.

As shown in Equation (4):

QFL(0) = -0, - [y — o|"-[(1 - y)log(1 — 0) + ylog(c)]  (4)
04: The weight balancing positive and negative samples (for
oy =y-o+(1-y)-(1-a); |y—-o|": Dynamically
adjust the weights of difficult and easy samples, with higher

instance:

weights assigned when there is a significant discrepancy between
the predicted and actual labels.

2.8 Construction of the ADQ-YOLOvV8m
model

Addressing the imbalances in instance quantity and
foreground-background categories within the sugarcane disease
dataset of this study, we employed YOLOvV8M as the foundational
model and implemented three enhancements to the network:

1. Incorporate a Dynamic Head detection system into the
Head section;

2. ATSS necessitates the dynamic allocation of positive and
negative sample labels based on the model’s predictive
outcomes (preliminary detection results). The choice of these
labels has a direct impact on the computation of the loss
function. Consequently, the dynamic label assignment strategy
for ATSS ought to be integrated post the Detect module within
the Head section, prior to the loss computation process;

3. The model is optimized using the QFocal loss function and
the IoU loss function, with the improvement locations
depicted in Figure 5.

2.9 Evaluation metrics

mAP_0.5: mAP_0.5 represents the average of the mean
accuracy across all categories when the IoU threshold is set at 0.5.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1669825
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

10.3389/fpls.2025.1669825

=

CsPLayer
@y 2Conv

]

[PF

Backbone

Backbone

ICSF\AyEIﬁZCDnV H Concat H Upsample H(SPlayer}Conv]-—{ Concat H Upsample I-f

—-I Conv }—-I Concat }—-Icsptayev,zc:mv}—-l Conv ]—-I Concat }—-ICSPLayeLZCch

|| Neck

Conv2d

MaxPool2d
MaxPool2d
MaxPool2d

DynamicHead

BatchNorm2d

QFocalloss

DynamicHead DynamicHead
ATSS ATSS
QFocalloss QFocalloss

FIGURE 5
Schematic diagram of the ADQ-YOLOv8m model architecture.

The mean Average Precision (mAP) is a metric that quantifies the
average precision (AP) across all detected target categories. The
average precision (AP) is used to assess the efficacy of detection for
a specific category, specifically, the recognition accuracy in the
detection of sugarcane diseases. Meanwhile, the mean mAP serves
as a measure of detection performance across multiple categories,
reflecting the overall recognition effectiveness for all types of
sugarcane diseases. As shown in Equation (5):

n—1
AP =D(ry - 1)

i=0

@)

In this context, rl, r2...rn represent the Recall values
corresponding to the first interpolation point of the Precison
interpolation segments, arranged in ascending order. Pi denotes
the precision of the ith detection. As shown in Equation (6):

AP

mAP = N(classes)

(6)

Precision: The ratio of the number of instances of a particular
feature detected to the total number of features detected, serving as
an indicator of the model’s accuracy in identifying the target. As
shown in Equation (7):

True Positive TP

Precision = True Positive+False Positive . TP+FP

™

In this context, True Positive represents the positive samples
that the network model correctly identifies as disease, False Positive
denotes the negative samples that the network model incorrectly
identifies as disease, and False Negative signifies the positive
samples that the network model fails to detect as disease,
essentially representing false negatives.

Recall: The ratio of the number of features detected as belonging
to a specific class to the total number of features of that class in the
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dataset. It measures the completeness of the model’s detection
system. As shown in Equation (8):

True_Positive P

Recall = True Positive+False Negative = TP+FN

(8)

In this context, True Positive refers to the positive samples that
the network model correctly identifies as disease-affected, while
False Positive denotes the negative samples that the model
erroneously classifies as diseased. False Negative, on the other
hand, signifies the positive samples that the model fails to detect
as disease-affected, essentially representing a false negative.

FI: The harmonic mean of precision and recall. F1 integrates
the considerations of both precision and recall. As shown in
Equation (9):

_ _2PR
F= o(P+R)

)

In this context, P denotes Precision, R stands for Recall, and o
represents a weighting factor. When o equals 1, it signifies that the
precision and recall are given equal weight, resulting in F being
equivalent to F1. As shown in Equation (10):

2PR

Fl =57

(10)

Generally, a higher F1 score indicates a more effective model.

Gradient: In machine learning models, the gradient refers to the
partial derivative of the objective function with respect to the model
parameters. It signifies the rate of change and direction of the
objective function at the current point.

FLOPs: A metric used to assess the computational complexity of
a model. FLOPs, which stands for floating-point operations,
represents the number of floating-point operations required for a
single forward pass through the model. In assessing computational
complexity, a higher FLOPS indicates greater computational cost
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and longer inference time. The convolution layer is shown in
Equation (11):

FLOPs = Mo oulGo2IC-1) (1)

Hout and Wout respectively denote the height and width of the
output from the convolutional layer, Cin represents the number of
input channels, K stands for the size of the convolution kernel, Cout
signifies the number of output channels, g is the number of groups
in grouped convolution, and the addition of +1 accounts for
convolutions with bias. The fully connected layer is shown in
Equation (12):

FLOPs = ((2C;, - 1) + 1)C,,; = 2C;,C,,¢ (12)

3 Experimental results and analysis
3.1 Experimental apparatus

The hardware configuration for this experiment includes a
central processing unit (CPU) of 16 vCPU Intel(R) Xeon(R) Gold
6430, with 120GB of operational memory, a graphics processing
unit (GPU) of NVIDIA GeForce RTX 4090 (24GB), and a 1TB
solid-state drive. The software system is based on the Ubuntu
20.04.5 LTS operating system. All programs are executed under
the Python 3.8.10 environment and the deep learning framework
Pytorch 2.0.0, utilizing the NVIDIA CUDA 11.8 parallel computing
driver to accelerate training. The model training parameters are set
as follows: image size 640*640, batch_size 64, epochs 500, optimizer
SGD, label smoothness 0.5, initial learning rate 0.01, final learning
rate 0.0001, optimizer momentum 0.937, and optimizer weight
decay 0.0005.

3.2 Selection of fundamental models for
sugarcane disease recognition

Comparative experiments were conducted on the sugarcane
disease dataset using YOLOv8n, YOLOv8s, YOLOv8m, and
YOLOWSI, respectively. Metrics such as accuracy, recall, mAP_0.5,
F1 score, depth, parameter count, gradient, and FLOPS (G) were
selected to assess the training accuracy and loss function values of
the models on the test set, aiming to identify the optimal
base model.

10.3389/fpls.2025.1669825

The experimental results, as presented in Table 3, indicate a
significant enhancement in training performance with the increase
in the number of model parameters and complexity. Specifically, the
mAP50 score rose from 65.70% for YOLOv8n to 88.70% for
YOLOvS8I. While the YOLOv8] model boasts the highest training
performance, its improvement in model performance is relatively
modest, increasing by only 3.2% compared to 8m. In terms of
precision, recall, mAP50, mAP50-95, and F1 score, YOLOv8m
slightly trails behind 81, with values of 85.2%, 81.4%, 85.90%,
74.20%, and 84%, respectively. However, YOLOv8m strikes a
good balance between precision and recall, offering both accurate
and comprehensive disease detection. Its comprehensive
performance is robust, demonstrating superior recognition rates
and generalization capabilities in sugarcane disease detection tasks.
Therefore, YOLOvV8m is selected as the foundational model for
this study.

Figure 6 illustrates the distribution of the dataset in this study.
The composite chart, as evident from the figure, presents the
distribution characteristics of the sample data from multiple
perspectives through various sub-charts. The dataset exhibits an
imbalance in the number of instances across different categories,
and the samples are densely distributed in space, with certain
intersections and overlaps. Consequently, subsequent model
improvements will primarily address this issue.

3.3 Enhancing strategy selection

3.3.1 Comparison of dynamic label allocation
strategies

ATSS is an adaptive strategy for positive and negative sample
allocation, employed in label assignment for object detection. It
operates by identifying the k closest candidate anchor boxes to the
Ground Truth (GT) box at each feature level. Subsequently, it
computes the Intersection Over Union (IoU) between these
candidate boxes and the GT, and determines the IoU threshold
by calculating the mean and standard deviation of these IoUs. Boxes
with an IoU exceeding this threshold are selected as the final
positive samples.

Dynamic ATSS represents an enhanced label assignment
strategy, building upon ATSS and incorporating both the
Intersection over Union (IoU) of prediction outcomes and the
IoU of anchor points to more precisely select positive and negative
samples. During the initial stages of training, due to the inaccuracies
in prediction results, it primarily relies on the IoU of anchor points

TABLE 3 Performance analysis table of four sugarcane disease detection models utilizing YOLOvS.

Precision Recall mAP50 mAP50-95
YOLOv8n 65.70% 61.00% 65.70% 35.90%
YOLOVSs ‘ 73.60% 71.90% 76.40% ‘ 47.30%
YOLOv8m ‘ 85.20% 81.40% 85.90% ‘ 74.20%
YOLOVSL ‘ 90.00% 82.50% 88.70% ‘ 79.10%
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F1 Depths Total parameters =~ FLOPS (G)
63.00% 225 3012408 8.2
73.00% 225 ‘ 11138696 28.7
84.00% 295 ‘ 25860952 79.1
86.00% 365 ‘ 43636008 165.4
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as the primary criterion for label definition. As training progresses,
the prediction outcomes increasingly dominate the combined IoU,
thereby guiding the label assignment during the training phase
(Zhang et al., 2022b).

During the training phase of the selected YOLOv8m model’s
detection head, two distinct label assignment strategies were
integrated to assess their comparative performance.

TABLE 4 Comparison of the performance of two label allocation strategies.

Table 4 shows the performance comparison of the two tag
allocation strategies. Yoov8m ATSs and yoov8m are better than
yoov8m dynamic ATSs in accuracy, recall rate, map50, map50-95
and F1 score. Yoov8m ATSs performs best, indicating that they
perform best in prediction accuracy and generalization ability; The
introduction of dynamic ATSs reduces the performance of the
original model, indicating that the dynamic adjustment strategy

Model Precision Recall mAP50 mAP50-95 F1
YOLOV8m 85.20% 81.40% 85.90% 74.20% 84.00%
YOLOv8m-Dynamic ATSS 83.90% 80.00% 85.30% 65.60% 82.00%
YOLOv8m-ATSS 88.10% 79.80% 87.70% 72.10% 84.00%
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may introduce instability. By comparing the performance indicators
of the three models, the accuracy of yoov8m ATSs is 88.10%, the
recall rate is 79.80%, the map50 is 87.70%, the map50-95 is 72.10%,
and the F1 score is 84.00%, which is better than yoov8m and
yoov8m dynamic ATSs in accuracy and map50. It can be seen that
the ATSs strategy significantly improves the detection performance
and generalization ability of the model in complex scenes. This
improved strategy solves the limitations of the traditional fixed
threshold method by optimizing the label allocation mechanism,
and shows stronger generalization ability in complex scenes.
Therefore, it is reasonable and effective to choose ATSs as the
improvement strategy.

3.3.2 Selection of detection head

In the task of object detection, the detection head serves as a
pivotal component of the model, directly impacting its ability to
locate and classify targets. To enhance the performance of the
sugarcane disease recognition model, we intend to employ a
comparative analysis of various detection head structures,
including DynamicHead, ShareSepHead, ImplicitHead,
LiteShiftHead, and TransHead. DynamicHead is capable of
adaptively allocating attention, ShareSepHead facilitates the
sharing of feature extraction parameters to reduce computational
demands, ImplicitHead utilizes implicit representations to model
target features, LiteShiftHead employs lightweight shift operations
to minimize computational complexity, and TransHead
incorporates a Transformer structure to bolster global feature
modeling capabilities. Consequently, by replacing the original
detection head of YOLOV8-ATSS with the aforementioned five
detection head structures, we have constructed five distinct model
variants. By comparing the performance of these detection heads in
the task of sugarcane disease recognition, we aim to select or design
a detection head structure more suitable for the task, thereby
enhancing the model’s detection accuracy and efficiency.

Table 5 presents a comparative analysis of the recognition
performance of five detection heads, revealing distinct differences
in their capabilities for sugarcane disease identification. Among
them, DynamicHead exhibits the best performance in terms of
recall, mAP50, mAP50-95, and F1 scores, with values of 84.30%,
88.40%, 77.20%, and 86.00%, respectively. This indicates that it
achieves an optimal balance between precision and recall, accurately
detecting disease targets while minimizing the omission of disease
instances. In terms of precision, ImplicitHead and LiteShiftHead

10.3389/fpls.2025.1669825

demonstrate the best performance, with values of 90.30% and
90.40%. Although dynamiehead ranks fourth in accuracy, which
is lower than 90.30% of implicithead, 90.40% of liteshifthead and
89.90% of transhead, it performs well in the other four indicators,
which are 84.30%, 88.40%, 77.20% and 86.00% respectively,
indicating that it can detect disease targets more comprehensively
and reduce omissions, which is suitable for sugarcane disease
recognition in complex scenes. Therefore, based on a
comprehensive comparison of the performance metrics of the five
detection heads, we conclude that DynamicHead exhibits the most
comprehensive and excellent performance in sugarcane disease
identification, making it the optimal choice among the five
detection heads.

3.3.3 Selection of classification loss functions

In the task of object detection, the classification loss function is
one of the key components in the model training process, directly
impacting the model’s ability to classify objects and distinguish
between positive and negative samples. Different classification loss
functions possess distinct characteristics and applicable scenarios.
Focal Loss effectively addresses the issue of class imbalance, while
VariFocal Loss further optimizes the focus on positive samples.
QFocal Loss and PolyLoss, respectively, enhance the model’s
classification performance by introducing new loss calculation
methods or combining polynomial functions. To further enhance
the detection performance of the sugarcane disease recognition
model under the ATSS and DynamicHead detection heads, we
conducted a comparative analysis of these four classification loss
functions to determine the most suitable loss function for the
current task.

The experimental results, as presented in Table 6, demonstrate
notable performance disparities among four classification loss
functions in the task of sugarcane disease recognition. Notably, all
four loss functions exhibited consistent performance in terms of F1
score. QFocalLoss emerged as the top performer across precision,
recall, mAP50, and mAP50-95 metrics, achieving values of 86.90%,
85.40%, 90.00%, and 77.40%, respectively. This indicates that, under
the current model architecture and task, QFocalLoss effectively
balances the classification of positive and negative samples,
thereby enhancing the model’s detection precision and recall
capabilities for disease targets. VariFocalLoss demonstrated
comparable performance to QFocalLoss in terms of recall,
mAP50, and mAP50-95. Although PolyLoss and FocalLoss also

TABLE 5 Comparison of recognition performance among five different detection heads.

Model Precision Recall
DynamicHead 88.50% 84.30%
ShareSepHead 88.30% 81.10%
ImplicitHead 90.30% 79.50%
LiteShiftHead 90.40% 80.20%

TransHead 89.90% 80.10%
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mAP50 mAP50-95 F1
88.40% 77.20% 86.00%
87.50% 75.10% 84.00%
87.30% 75.00% 85.00%
87.70% 75.30% 85.00%
87.70% 75.20% 85.00%
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TABLE 6 Comparison of the performance of four classification loss functions.

Model Precision Recall mAP50 mAP50-95 F1
QFocalLoss 86.90% 85.40% 90.00% 77.40% 86.00%
VariFocalLoss 87.40% 84.70% 89.20% 77.20% 86.00%
PolyLoss 86.50% 84.60% 89.50% 76.90% 86.00%
FocalLoss 87.60% 84.50% 89.70% 76.70% 86.00%

provided satisfactory classification performance, they slightly lagged
behind the former two in overall metrics. In summary, it can be
concluded that QFocalLoss, when combined with ATSS and
DynamicHead, offers the optimal choice of classification loss
function for sugarcane disease recognition tasks, contributing to
further enhancement of the model’s detection performance and
practical application effectiveness.

3.4 Model comparison

Following the optimization of key components such as the
detection head and classification loss function, the YOLOv8m-
ATSS-DynamicHead-QFocalLoss (ADQ-YOLOv8m) model
structure was derived. To validate the superior detection
performance of this enhanced model on the sugarcane disease
dataset, a comprehensive comparative analysis was conducted
with nine prevalent object detection algorithms. These ten
algorithms encompass object detection models with diverse
architectures and characteristics, including various versions of the
YOLO series (YOLOv8n, YOLOv8s, YOLOv7, YOLOVY, etc.),
anchor-based RetinaNet, and region proposal-based Libra R-
CNN. During the training process, all models were trained on the

same sugarcane disease dataset using identical training parameters
to ensure experimental fairness.

The experimental results, as presented in Table 7, demonstrate
that the ADQ-YOLOv8m model exhibits significant advantages
over nine other mainstream object detection algorithms. In terms of
detection accuracy, the ADQ-YOLOv8m model outperforms others
in precision, recall, mAP50, mAP50-95, and F1 metrics, achieving
values of 86.90%, 85.40%, 90.00%, 77.40%, and 86.00%, respectively.
This indicates that the ADQ-YOLOv8m model possesses the best
comprehensive performance, capable of accurately locating and
classifying disease targets while maintaining a consistently high
detection accuracy across various detection difficulties. Compared
with the latest models yorovl2n and yorovl3n, adq-yorov8m is
superior in all key indicators, especially map50-95, which has
increased by 43.7% and 16.0% respectively, showing the excellent
detection ability of the model in complex scenes Compared to
RetinaNet and Libra R-CNN models, it also demonstrates clear
advantages: RetinaNet’s recall value is 1.36% higher than that of the
ADQ-YOLOvV8m model, yet its mAP50 and mAP50-95 values are
both over 20% lower, and its precision is only 19.51%. This suggests
that among samples predicted as disease targets, the proportion of
true positives is the lowest, and the false alarm rate is the highest.
The Libra R-CNN model also performs relatively poorly in various

TABLE 7 Comparison of ADQ-YOLOv8m's performance with other leading object detection algorithms.

Model Precision Recall mAP50 | mAP50-95 F1 Depths  Total parameters FLOPS (G)
ADQ- 86.90% 85.40% 90.00% 77.40% 86.00% 218 25844392 78.7
YOLOv8m
YOLOv5n 59.60% 51.50% 54.80% 26.50% 55.00% 262 2510024 7.2
YOLOVSs 66.60% 63.80% 67.60% 36.70% 65.00% 262 9125288 24.1
YOLOv7 63.10% 69.30% 65.10% 29.60% 64.00% 407 37232405 105.2
YOLOV9 76.70% 70.50% 77.20% 48.30% 73.00% 962 51015760 238.9
YOLO11n 65.70% 58.00% 60.90% 33.40% 61.00% 238 2583712 6.3
YOLOL11s 78.30% 71.30% 77.70% 51.20% 75.00% 238 9415896 213
YOLO11m 82.90% 76.80% 83.50% 61.40% 80.00% 303 20036200 67.7
YOLOvI2n 80.18% 76.18% 81.82% 53.85% 78.00% 376 2509904 5.8
YOLOV13n 84.95% 82.04% 87.24% 66.71% 84.00% 535 2449455 6.2
RetinaNet 19.51% 86.76% 77.70% 57.40% 31.85% 50 32314 257.71
Libra R-CNN 30.20% 85.19% 75.90% 49.70% 44.59% 83 41335 133.96
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metrics, with precision being over 10% higher than RetinaNet, but
sharing similar issues with RetinaNet.

In terms of model complexity and efficiency, ADQ-YOLOv8m
boasts a depth of 218, with a parameter count of 25,844,392 and a
FLOPS of 78.7G. Despite its relatively large parameter count and
computational demands, ADQ-YOLOv8m maintains high
performance while exhibiting a more reasonable model
complexity compared to sophisticated models such as YOLOv9
(parameter count 51,015,760, FLOPS 238.9G), making it more
suitable for deployment and use in practical applications.
Compared with the lightweight models yorovl2n and yorovl3n,
the parameters of adq-yorov8m are slightly higher, but its
performance is significantly improved. In terms of map50-95, it is
about 43.7% and 16.0% higher than yorovi2n and yorovl3n,
respectively, indicating that it is worth increasing the complexity
of the model in order to improve the performance in the task of

10.3389/fpls.2025.1669825

sugarcane disease identification. In addition, compared with some
lightweight models such as yorov5n (parameter 2510024, flops
7.2g), the map50-95 of adq-yov8m is significantly ahead, which
further verifies its performance. A reasonable balance between
advantages and complexity.

Addressing the issue of sugarcane disease detection, a
systematic evaluation and comparison of the performance of 12
different models were conducted in Table 8. In terms of detection
accuracy, the ADQ-YOLOv8m model demonstrated exceptional
performance across most disease categories. Taking Cercospora as
an example, its precision reached 86.70%, recall was 84.00%, and
mAP50 and mAP50-95 were as high as 89.60% and 76.70%.
Compared with YOLOvI2n (precision 81.60%, recall 79.30%,
map50 84.70%, map50-95 58.60%) and YOLOvV13n(precision
86.80%, recall 82.00%, mAP50 89.50%, mAP50-95 68.40%),
ADQ-YOLOv8m It increased by 30.89% and 12.13% on map50-

TABLE 8 Performance analysis of eleven models across eight detection categories in the fields of artificial intelligence and smart agriculture.

Model Disease Precision Recall mAP50 mA50-95
cercospora 86.70% 84.00% 89.60% 76.70%
eyespot 90.60% 86.90% 91.60% 83.50%
healthy 89.40% 88.90% 93.70% 80.70%
redrot 80.30% 86.10% 86.60% 56.90%
ADQ-YOLOvV8m

wheat rust 84.10% 81.10% 86.80% 78.70%
yellow leaf 88.10% 87.90% 91.70% 84.30%
mosaic 86.70% 80.50% 87.60% 76.60%
bacterialblights 89.40% 87.50% 92.80% 81.70%
cercospora 62.30% 48.70% 56.30% 28.70%
eyespot 56.80% 46.90% 48.90% 23.10%
healthy 63.20% 42.00% 53.10% 29.00%
redrot 60.30% 68.90% 59.80% 22.90%

YOLOV5n
wheat rust 60.80% 55.30% 58.40% 28.40%
yellow leaf 55.80% 56.70% 56.40% 29.90%
mosaic 56.20% 41.20% 46.30% 21.00%
bacterialblights 61.70% 52.70% 59.00% 29.00%
cercospora 73.30% 70.30% 75.60% 44.70%
eyespot 63.30% 58.30% 60.10% 33.50%
healthy 68.70% 52.90% 64.70% 37.20%
redrot 68.40% 68.30% 67.70% 29.00%

YOLOV5s
wheat rust 64.80% 71.20% 74.00% 40.30%
yellow leaf 65.10% 71.00% 71.20% 42.00%
mosaic 60.90% 55.40% 59.20% 30.80%
bacterialblights 67.90% 63.40% 68.40% 36.20%

(Continued)
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TABLE 8 Continued

10.3389/fpls.2025.1669825

Model Disease Precision Recall mAP50 mA50-95
cercospora 69.30% 67.80% 71.60% 34.90%
eyespot 54.20% 58.30% 56.20% 25.10%
healthy 62.60% 58.70% 63.50% 29.90%
redrot 67.20% 72.80% 65.90% 25.40%
YOLOvV7
wheat rust 64.80% 71.40% 68.70% 30.40%
yellow leaf 64.60% 69.60% 69.50% 36.10%
mosaic 57.40% 53.90% 55.70% 24.40%
bacterialblights 64.70% 67.30% 69.70% 30.90%
cercospora 80.60% 79.00% 84.60% 58.90%
eyespot 67.00% 63.80% 69.20% 44.10%
healthy 79.20% 63.60% 75.50% 48.00%
redrot 77.40% 72.80% 77.40% 35.30%
YOLOV9
wheat rust 78.30% 77.40% 82.40% 54.70%
yellow leaf 79.20% 74.20% 80.30% 54.30%
mosaic 76.70% 59.80% 68.50% 41.00%
bacterialblights 75.00% 73.40% 79.80% 49.70%
cercospora 65.30% 55.00% 60.00% 32.80%
eyespot 60.00% 47.20% 47.30% 25.00%
healthy 65.30% 51.40% 60.20% 34.00%
redrot 61.60% 68.30% 61.20% 26.60%
YOLOl1n
wheat rust 65.30% 59.80% 62.80% 31.60%
yellow leaf 71.00% 72.00% 74.70% 52.90%
mosaic 67.60% 45.50% 52.00% 26.40%
bacterialblights 69.90% 64.70% 69.20% 37.80%
cercospora 76.70% 73.70% 77.60% 53.60%
eyespot 80.60% 67.80% 77.90% 51.20%
healthy 80.60% 69.20% 79.10% 53.50%
redrot 75.80% 68.00% 73.00% 33.20%
YOLO11s
wheat rust 79.50% 75.30% 79.00% 52.40%
yellow leaf 78.80% 77.90% 83.10% 66.80%
mosaic 77.10% 62.60% 71.10% 47.50%
bacterialblights 77.00% 75.90% 80.70% 51.20%
cercospora 81.60% 77.60% 82.80% 63.20%
eyespot 86.30% 79.10% 87.00% 67.90%
healthy 84.50% 75.60% 84.80% 63.80%
YOLO11m
redrot 78.20% 75.60% 78.40% 42.20%
wheat rust 80.20% 79.20% 84.10% 62.90%
yellow leaf 83.70% 79.20% 85.30% 69.00%
(Continued)
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TABLE 8 Continued

10.3389/fpls.2025.1669825

Model Disease Precision Recall mAP50 mA50-95

mosaic 85.50% 68.90% 79.70% 59.70%
bacterialblights 83.40% 79.30% 86.20% 62.20%
cercospora 81.60% 79.30% 84.70% 58.60%
eyespot 81.20% 75.70% 82.10% 51.80%
healthy 83.70% 71.20% 82.10% 52.50%
redrot 83.90% 79.70% 84.20% 39.60%

YOLOvI2n
wheat rust 77.70% 75.80% 78.50% 50.40%
yellow leaf 80.30% 80.10% 84.50% 58.40%
mosaic 78.10% 70.10% 76.80% 48.60%
bacterialblights 75.10% 77.50% 81.70% 49.40%
cercospora 86.80% 82.00% 89.50% 68.40%
eyespot 82.80% 86.00% 86.80% 60.70%
healthy 89.20% 82.60% 90.00% 67.00%
redrot 83.40% 82.80% 88.50% 47.70%

YOLOv13n
wheat rust 83.50% 77.40% 83.50% 63.20%
yellow leaf 86.60% 85.50% 89.10% 69.50%
mosaic 83.70% 77.40% 82.50% 59.50%
bacterialblights 83.10% 82.60% 88.20% 61.00%
cercospora 24.42% 86.40% 55.41% 38.79%
eyespot 5.97% 89.45% 47.71% 33.39%
healthy 10.15% 89.17% 49.66% 34.76%
redrot 8.71% 85.00% 46.85% 32.80%

RetinaNet
wheat rust 14.94% 88.60% 51.77% 36.23%
yellow leaf 22.48% 90.20% 56.34% 39.44%
mosaic 14.14% 77.65% 45.90% 32.13%
bacterialblights 36.52% 90.19% 63.36% 44.35%
cercospora 31.55% 85.16% 73.49% 46.98%
eyespot 18.43% 87.44% 79.27% 55.22%
healthy 25.52% 87.04% 75.55% 45.89%
redrot 34.19% 88.33% 81.41% 48.37%

Libra R-CNN

wheat rust 32.19% 87.10% 80.34% 57.61%
yellow leaf 26.17% 89.12% 76.17% 50.01%
mosaic 19.49% 76.86% 61.04% 38.71%
bacterialblights 53.33% 86.81% 79.91% 54.85%

95, respectively. In the eyespot category, the precision and recall of
adq-YOLOv8m are as high as 90.60% and 86.90%, respectively,
while the corresponding indicators of YOLOv5s are 63.30% and
58.30%. Even in the face of diseases such as redrot, which are
difficult to detect, the map50 and map50-95 of adq-YOLOv8m still
reach 86.60% and 56.90%, which are better than YOLOv12n and
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YOLOvV13n. According to the PR diagram of the model (Figure 7),
the model shows high precision and recall in all categories, and
achieves a good balance. The difference between the highest and
lowest accuracy categories is only 7.1%, which further proves
the stability and reliability of the model in multi category
detection tasks.
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Precision-Recall Curve
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Precision-Recall curves of the ADQ-YOLOv8m model for sugarcane disease detection.

In terms of comprehensive performance evaluation, the ADQ-
YOLOv8m model exhibits an mAP50 exceeding 86% across various
categories, with the mAP50-95 metric surpassing 76% for all
categories except redrot. Taking yellow leaf as an example, the
ADQ-YOLOvV8m achieves an mAP50 of 91.70% and an mAP50-95
of 84.30%, whereas YOLOV7 only attains an mAP50 and mAP50-
95 of 69.50% and 36.10% for this category. For the diseases such as
bacterialblights that have an important impact on the actual
agricultural production, the map50 and map50-95 of adq-
yorov8m reached 92.80% and 81.70% respectively, while the
corresponding indicators of yorov9 were 75.90% and 49.70%,
which were 13.59% and 33.93% higher than yorov12n, and 5.22%
and 48.95% higher than yorov13n, respectively.

Through detailed comparative analysis with other models, it is
evident that ADQ-YOLOv8m exhibits significant advantages in
crop disease detection tasks. Not only does it perform
exceptionally well in key metrics such as precision and recall, but
it also demonstrates high performance stability across different
disease categories. This superior performance is primarily
attributed to the improvement of the model’s DynamicHead.
Additionally, the model incorporates an ATSS label dynamic
allocation strategy and a QFocalLoss loss function in its structure,
better accommodating issues such as diverse target sizes and
complex morphologies in crop disease detection.

To sum up, the adq-YOLOv8m model performs well in terms of
accuracy, recall, detection accuracy and comprehensive performance
indicators when compared with other 12 mainstream target
detection algorithms. In particular, it shows significant advantages
in comparison with YOLOvI2n and YOLOvI13n, and is the best
choice for sugarcane disease identification.
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4 Discussion

4.1 ADQ-YOLOvV8m prediction visualization
analysis

We conducted a comparative analysis of the performance in
sugarcane disease detection between the ADQ-YOLOv8m model
and other YOLO series models that have demonstrated promising
training outcomes. We selected images from eight categories and
employed YOLOv8m, YOLOVY9, YOLO1IN, YOLO11S,
YOLO11M, and ADQ-YOLOv8m for predictive analysis. The
results are presented in Figure 8.

As shown in Table 9, ADQ-YOLOv8m shows significant
comprehensive advantages, with an average accuracy of 0.915,
higher than 0.853 of YOLOl1lm, and significantly higher than
0.674 of YOLOVY, 0.773 of YOLOv12n, and 0.831 of YOLOv13n.
ADQ-YOLOvV8m performed stably in most tasks, and the detection
accuracy of “healthy” and “red rot” remained stable at 0.95 and 0.97,
with stable effects; However, in the multi-target complex scenes,
such as “eyespot” and “mosaic”, their accuracy rates are 0.84 and
0.83 - 0.92, respectively, better than YOLOv9’s 0.57-0.7 and 0.62 —
0.7, indicating that they have better effects in multi-target scenes. In
contrast, YOLOV9’s accuracy rate in the “when trust” task ranges
from 0.51 to 0.62, and the model lacks generalization ability for
dense small targets. The accuracy rate of YOLOvI2n in the “when
trust” task is 0.58 — 0.72 (mean 0.65), slightly better than YOLOV9,
but still lower than 0.90 of ADQ-YOLOv8m. The accuracy of
YOLOV13n in this task is 0.75 — 0.87 (mean 0.81), but it still does
not reach the level of ADQ-YOLOv8m. YOLOv11m’s accuracy rate
0f 0.92 in the “yellow leaf” task is slightly lower than that of 0.95 in
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Comparison of detection results among YOLO series models for sugarcane disease detection.
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ADQ-YOLOV8m, while YOLOv12n (0.88) and YOLOv13n (0.93)  YOLOvI2n and YOLOv13n all reach or close to 0.94, indicating
perform stably in this task, but not exceed that of ADQ-YOLOv8m.  that lightweight models are competitive in low complexity
In a single target detection task (such as “health”), the differences  scenarios. The accuracy of YOLOvI3n in the “mosaic” task is
between models are small. ADQ-YOLOv8m, YOLO11lm, 0.55 - 0.85 (mean 0.70), lower than 0.83 - 0.92 (mean 0.875) of

TABLE 9 Table of detection accuracy of each model.

Cercospora  Eyespot Healthy @ Redrot Wheat rust Yellow leaf Mosaic Bacterialblights

YOLOv8m 0.88 0.85 0.94 0.99 0.9 0.96 0.83-0.92 0.89-0.91
YOLOV9 0.86 0.57-0.7 0.88 0.8 0.51-0.62 0.85 0.62-0.7 0.31-0.74
YOLO11n 0.87 0.79-0.88 0.94 0.90 0.78-0.95 0.92 0.66-0.94 0.51-0.88
YOLOLl1s 0.84 0.63-0.83 0.90 0.79 0.58-0.72 0.88 0.53-0.83 0.63-0.80
YOLOl1lm 0.91 0.78-0.84 0.94 0.93 0.75-0.87 0.93 0.55-0.85 0.51-0.79
ADQ-YOLOvV8m 0.90 0.84 0.95 0.97 0.90 0.95 0.83-0.92 0.91-0.94
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ADQ-YOLOv8m. ADQ-YOLOv8m is significantly superior to
other models in “eyespot” and “bactrialblights” tasks, which
further verifies its performance advantages in multi-objective
processing and the reasonable balance between performance
and complexity.

4.2 Cross-scenario adaptability testing of
ADQ-YOLOv8m

This section aims to explore the generalization capabilities of
the ADQ-YOLOv8m model proposed in this study, ensuring its
effectiveness and stability across various crop disease scenarios. On
the Roboflow website, we selected two datasets similar to the crop
disease recognition task of this study: the Corn Leaf Disease
Dataset and the Tomato Disease Dataset. The Corn Leaf Disease
Dataset comprises two disease categories, totaling 10,000 images,
while the Tomato Disease Dataset includes 15 disease categories,
with a total of 3,867 images. Neither dataset underwent image
augmentation to ensure that the experimental results accurately
reflect the model’s generalization capabilities. The proposed ADQ-
YOLOvV8m model was employed for generalization experiments,
comparing the original and post-training results of the two
datasets to analyze their generalization abilities. The training
parameters for the generalization experiments were set as
follows: image size of 640x640, batch_size of 64, epochs of 500,
optimizer of SGD, label smoothness of 0.5, initial learning rate of
0.01, final learning rate of 0.0001, optimizer momentum of 0.937,
and optimizer weight decay of 0.0005. The training results are
presented in Table 10.

Table 10 presents the original and post-training results for two
datasets. Specifically, following further training on the corn leaf
disease dataset, the model’s precision rose to 99.60%, recall reached
99.80%, and mAP50 stood at 99.40%. These metrics represent
improvements of 4.6%, 3.6%, and 1.2% respectively from the
original results, indicating the model’s remarkable adaptability
and learning capacity in detecting corn leaf diseases. It can
further optimize parameters through training to enhance
detection accuracy. The tomato disease dataset encompasses a
broader range of disease categories, with more intricate feature
differences among them, thereby increasing the difficulty of
detection. After training, the precision increased to 52.40%, recall
reached 47.80%, and mAP50 stood at 47.50%. These metrics
represent improvements of 5.7%, 3.9%, and 3.9% respectively

TABLE 10 Table of training results for corn and tomato disease datasets.

Dataset Result Precision Recall mAP50
Original results 95.00% 96.20% 98.20%
Corn
Training results 99.60% 99.80% 99.40%
Original results 46.70% 43.90% 43.60%
Tomato
Training results 52.40% 47.80% 47.50%
Frontiers in Plant Science
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from the original results, with a more significant increase
compared to the corn leaf disease dataset.

Based on the experimental results above, the ADQ-YOLOv8m
model proposed in this study has demonstrated strong
generalization capabilities in cross-scenario adaptability tests,
making it suitable for applications involving multiple objectives,
various categories, and imbalanced categories.

Future research directions are planned to proceed from the
following aspects: Firstly, for complex multi-category datasets, we
aim to further optimize the model structure to enhance its feature
extraction and classification capabilities. Secondly, we intend to
explore more effective data augmentation strategies and training
methods to improve the model’s adaptability and robustness across
different datasets. Thirdly, by integrating prior knowledge and
domain-specific information, we will design more targeted model
training schemes to address the specific requirements of various
crop disease detection tasks.

5 Conclusions

In this study, an intelligent model, ADQ-YOLOV8m, for precise
detection of sugarcane diseases in complex environments is proposed.
A raw dataset containing 6,871 images of sugarcane diseases was
constructed based on publicly available datasets. Multiple data
augmentation techniques were applied to the data to enhance its
diver-sity. By comparing two label assignment strategies, five detection
heads, and four classification loss functions, it was concluded that the
combination of ATSS with QFocal-Loss and DynamicHead achieved
the best performance in sugarcane disease detection. Experimental
results indicated that ADQ-YOLOv8m achieved precision, recall,
mAP50, mAP50-95, and F1 scores of 86.90%, 85.40%, 90.00%,
77.40%, and 86.00%, respectively, significantly outperforming
RetinaNet, Libra R-CNN, and other models in the YOLO series.

Further visual analysis of image prediction and cross-scenario
adaptability testing have validated the superior performance of ADQ-
YOLOv8m. In image detection, the model achieved an average
accuracy of 91.5%, demonstrating significant comprehensive
advantages. Meanwhile, through training on datasets of corn leaf
diseases and tomato diseases, the model’s precision, recall, and
mAP50 metrics improved by 4.6%, 3.6%, and 1.2% (corn dataset)
and 5.7%, 3.9%, and 3.9% (tomato dataset) respectively compared to
the original results, proving the model’s robust generalization
capabilities across different crop disease detection tasks.

This study contributes not only by introducing an efficient,
precise, and broadly applicable model for detecting sugarcane
diseases, but also by offering a significant technical reference for
the identification of diseases in crops belonging to the Poaceae
family and sharing similar disease characteristics. The successful
application of the ADQ-YOLOv8m model provides robust
technical support for intelligent disease monitoring and precise
prevention and control in agriculture, promising to significantly
mitigate the impact of diseases on crop yield and quality, thereby
ensuring the sustainable development of agricultural production.
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