
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Karansher Singh Sandhu,
Bayer Crop Science, United States

REVIEWED BY

Magdi A. A. Mousa,
King Abdulaziz University, Saudi Arabia
Mikio Kamei,
Hiroshima Prefectural Office, Japan

*CORRESPONDENCE

Peter Lootens

Peter.Lootens@ilvo.vlaanderen.be

RECEIVED 22 July 2025

ACCEPTED 20 October 2025
PUBLISHED 18 November 2025

CITATION

Laekeman B, Bonte J, Dermauw W,
Christiaens A, Gobin B, Van Huylenbroeck J,
Dhooghe E and Lootens P (2025)
Species-level detection of thrips and
whiteflies on yellow sticky traps using
YOLO-based deep learning detection models.
Front. Plant Sci. 16:1668795.
doi: 10.3389/fpls.2025.1668795

COPYRIGHT

© 2025 Laekeman, Bonte, Dermauw,
Christiaens, Gobin, Van Huylenbroeck,
Dhooghe and Lootens. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 18 November 2025

DOI 10.3389/fpls.2025.1668795
Species-level detection of thrips
and whiteflies on yellow sticky
traps using YOLO-based deep
learning detection models
Broes Laekeman1,2, Jochem Bonte1, Wannes Dermauw1,
Annelies Christiaens3, Bruno Gobin3, Johan Van Huylenbroeck1,
Emmy Dhooghe2 and Peter Lootens1*

1Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
Merelbeke-Melle, Belgium, 2Department of Plants and Crops, Faculty of Bioscience Engineering,
Ghent University (UGent), Gent, Belgium, 3Viaverda, Destelbergen, Belgium
As of today, pest insects such as thrips and whiteflies cause the loss of 20% - 40% of

the global agricultural yield. To reduce chemical pesticide use while maintaining

high-quality horticultural standards, early detection of pest infestations is essential.

Although AI-assisted pest monitoring systems using sticky trap images exist today,

none currently enable effective species-level detection of thrips and/or whiteflies.

However, early species-level identification would allow for more targeted, species-

specific control strategies, leading to reduced, localized, andmore efficient pesticide

application. Therefore, in this study, we evaluated the potential and limitations of

real-time species-level detection of thrips (Frankliniella occidentalis and

Echinothrips americanus) and whiteflies (Bemisia tabaci and Trialeurodes

vaporariorum) using non-microscopic, RGB yellow sticky trap images and recent

YOLO-based deep learning detection models. To this end, a balanced and labelled

image dataset was gathered, consisting of the studied pest species, caught on one

type of yellow sticky trap. Subsequently, various versions of the YOLO11 and YOLO-

NAS detection model architectures were trained and tested using this dataset at

various (digitally reduced) pixel resolutions. All tested high-resolution dataset (pixel

size: 5 µm) models achieved species-level detection of the studied pests on an

independent test dataset (mAP@50: 79% - 89% | F1@50: 74% - 87%). Even the

smallest model (YOLO11n) delivered feasible macro-averaged (mAP@50: 80% |

F1@50: 77%) and classwise performance scores (AP@50: 72% - 85% | F1@50: 68%

- 82%). Theminimum required pixel resolution for feasible species-level detection in

greenhouse horticulture was identified as 80 µm for both the YOLO11n and

YOLO11x models, enabling the use of modern smartphones, action cameras, or

low-cost standalone camera modules. Combined with the low complexity and

decent performance of the YOLO11nmodel, these results demonstrate the potential

of feasible, real-time, automated species-level monitoring of (yellow) sticky traps in

greenhouse horticulture. Future research should focus on extending this technology

to additional pest species, sticky trap types, and ambient light conditions.
KEYWORDS

automated pest monitoring, integrated pest management (IPM), artificial intelligence
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1 Introduction

According to the United Nations (2022), the global human

population will reach 9.7 billion by 2050, requiring an increase in

food production of approximately 30% - 60% compared to the

baseline period of 2005-2010 (Food and Agriculture Organization

of the United Nations, 2024; van Dijk et al., 2021). Considering the

annual global crop loss of 20% - 40% due to pest insects today (Food

and Agriculture Organization of the United Nations, 2024; Gula,

2023), combined with the increasing pressure on the use and

authorization of chemical pesticides, this will be a significant

challenge. The switch to a more preventive, efficient and

integrated pest management (IPM) strategy will therefore be key,

requiring fast and objective detection combined with effective local

pest control techniques.

Among all flying insects, the Thysanoptera order (better known

as thrips) and Aleyrodidae family (better known as whiteflies) are

widely distributed across the globe in both open field agriculture

and greenhouse horticulture (Fiallo-Olivé et al., 2019; Mound, 2009;

Perring et al., 2018). However, only a small fraction (< 1%) of these

thrips and whitefly species are recognized as major agricultural

pests. Thrips pests cause damage by feeding on leaf, flower and fruit

tissues, which diminishes plant vigour and aesthetic quality.

Additionally, some can act as vectors of harmful plant viruses,

such as tospoviruses (Mound and Teulon, 1995; Mound et al.,

2022). Whitefly pests, by contrast, cause damage by feeding on plant

phloem and by excreting honeydew on the leaves, promoting fungal

growth (e.g. sooty mould and powdery mildew) (Fiallo-Olivé et al.,

2019; Navas-Castillo et al., 2011). Furthermore, some whitefly pests

are well-known as vectors of various plant viruses, including

begomoviruses, criniviruses, ipomoviruses, torradoviruses and

some carlaviruses (Fiallo-Olivé et al., 2019; Navas-Castillo

et al., 2011).

As both insect types are relatively small (thrips: 0.5–2 mm |

whiteflies: 1–3 mm) and generally occur on the abaxial leaf side,

they are easily overlooked by growers (Manners and Duff, 2017;

Navas-Castillo et al., 2011). Combined with the high fecundity,

short generation times and favourable climate inside horticultural
Abbreviations: AP@50, average precision, calculated at an intersection over

union threshold of 50%; BG, background; DL, deep learning; F1@50, F1 score,

calculated at an intersection over union threshold of 50%; Grad-CAMs, gradient-

weighted class activation maps; IoU, intersection over union, Overlap between

the detection bounding box and the ground truth bounding box; IPM, integrated

pest management; IRTs, insect residence times; mAP, mean average precision;

mAP@50, mean average precision, calculated at an intersection over union

threshold of 50%; mAP@50:95, average of the mean average precisions,

calculated at various intersection over union thresholds ranging from 50% -

95% with a step size of 5%; NAS, neural architectural search; precision@50,

precision, calculated at an intersection over union threshold of 50%; recall@50,

recall, calculated at an intersection over union threshold of 50%; RH, relative

humidity; Th_Ea, Echinothrips americanus (thrips); Th_Fo, Frankliniella

occidentalis (thrips); TPS, theoretical pixel size; Wf_Bt, Bemisia tabaci

(whitefly); Wf_Tv, Trialeurodes vaporariorum (whitefly); YST, yellow sticky

trap; YSTs, yellow sticky traps.
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greenhouses, this often results in exponential pest development

(Manners and Duff, 2017; Perring et al., 2018). As of today, the

western flower thrips (Frankliniella occidentalis), silverleaf whitefly

(Bemisia tabaci) and to a lesser extent the greenhouse whitefly

(Trialeurodes vaporariorum) are considered among the most

problematic agricultural pests due to their global spread,

polyphagous nature and - most importantly - their virus-

spreading behaviour (Fiallo-Olivé et al., 2019; Kanakala and

Ghanim, 2019; Navas-Castillo et al., 2011). Another widely

distributed pest species across greenhouses is the so-called

poinsettia thrips (Echinothrips americanus). Although it is not

recognized as a plant virus vector, E. americanus is also

considered an important horticultural pest due to its polyphagous

nature, limited initial plant damage and rather low mobility, which

increases the risk for delayed detection and exponential growth

(Pijnakker et al., 2018; Pundt, 2024; Vierbergen et al., 2006).

Today, monitoring for these pests is generally carried out using

glue-covered, brightly coloured (chromotropic) paper/plastic cards

(also referred to as sticky traps), followed by frequent (e.g. daily/

weekly) manual inspection. Subsequently, all present insects are

manually identified using the key morphological traits. E.

americanus adults are dark brown with red bands between the

abdominal segments and have a unique white patch at the base of

their dark wings (Mound et al., 2025). By contrast, F. occidentalis

adults are smaller, slender, and vary in colour from pale yellow to

nearly black, with narrow, fringed wings and no distinct white

markings on the wings (Mound et al., 2025). In T. vaporariorum,

the anterior margin of the forewing is curved, while in B. tabaci it is

straight (European and Mediterranean Plant Protection

Organization, 2004). Furthermore, in resting position, the wings of

B. tabaci look more narrow and are pointed posteriorly compared to

T. vaporariorum (European and Mediterranean Plant Protection

Organization, 2004). Lastly, B. tabaci adults are generally somewhat

smaller and have a darker yellow body compared to T. vaporariorum

adults (European and Mediterranean Plant Protection

Organization, 2004).

Due to its high attractivity to a wide range of insects, the yellow

sticky trap (YST) is mostly used for monitoring. Although the

material cost is fairly limited, the human labour cost and the non-

continuous nature of this method still leave room for improvement.

In addition, most personnel are not equipped or trained for accurate

pest identification, particularly at the species level. However,

continuous species-level monitoring of harmful pests would allow

for t imely , loca l and spec ies-spec ific (non)chemica l

countermeasures, while taking into account the biology and

phenology of the targeted species. Consequently, both the

efficiency and efficacy of chemical pesticides would increase, while

reducing the dosage, cost, environmental impact and risk of

pesticide resistance. Therefore, this approach perfectly aligns with

the European Union IPM strategies (The European Parliament and

the Council of the European Union, 2009). Furthermore, more

reliable risk assessments of virus transmission and the associated

economic impact could be made using species-specific detections.

Lastly, the success of the applied pest management strategy could

also be quantified using such a system.
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In an attempt to automate and objectively standardise the

monitoring process of pests on sticky traps, various solutions

combining a sticky trap with an optical sensor, have been

proposed in the literature over the last three decades. A detailed

overview can be found in the review articles by Lima et al. (2020),

Preti et al. (2021), and Teixeira et al. (2023). Originally, this

development started as static, automated and non-specific insect

counting systems using basic optical sensors. Later, basic image

processing techniques (e.g. filters, binarisation, colour space

transformations, thresholding, etc.) were introduced and further

evolved into mobile pest differentiation systems using machine

learning techniques (e.g. k-means clustering, support vector

machines, etc.) (Lima et al., 2020; Preti et al., 2021; Teixeira et al.,

2023). During the last decade, many general (e.g. RetinaNet, Faster

R-CNN, YOLO) and custom made/adapted versions of general

deep learning (DL) model architectures [e.g. PestNet by Liu et al.

(2019), TPest-RCNN by Li et al. (2021)] have been reported in the

literature. These models allow for more specific pest detection on

sticky traps, with generally good performance (mean average

precision (mAP), calculated at an intersection over union (IoU)

threshold of 50% - mAP@50: approx. 70% - 95%) (Teixeira

et al., 2023).

When focusing on recent (2020 - present), good performing

(mAP@50: ≥ 80%) DL-based sticky trap detection systems in the

literature that specifically target thrips and/or whiteflies, the

reported models are mainly (adapted) versions of the YOLO

(Niyigena et al., 2023; Teixeira et al., 2023; Wang et al., 2021,

2024; Zhang et al., 2023) and Faster R-CNN (Li et al., 2021;

Niyigena et al., 2023; Teixeira et al., 2023; Wu et al., 2024) model

architectures. Despite the inclusion of both pest types in some

studies, surprisingly only few articles address species-level

determination of these pests. While some researchers specify the

exact thrips and whitefly species studied, they either exclude other

species from the same order/family (Espinoza et al., 2016; Sun et al.,

2017; Xia et al., 2015) or group related species under a single

detection class (Bauch and Rath, 2005), therefore avoiding the need

for species-level differentiation.

To the best of the authors’ knowledge, only Niyigena et al. (2023)

have currently reported a detection model capable of differentiating

Scirtothrips dorsalis from other thrips species (grouped as a single

class) using high-quality YST smartphone images (pixel resolution:

17 µm). Regarding whitefly species differentiation, only Böckmann

et al. (2021) described a differentiation model for B. tabaci and T.

vaporariorum on RGB sticky trap images, using a bag of visual words

approach. However, its success was rather limited (B. tabaci: recall =

72% and precision = 26% | T. vaporariorum: recall = 54% and

precision = 98%). In contrast, Gutierrez et al. (2019) reported

detection models (SDD and Faster R-CNN) for B. tabaci and T.

vaporariorum adults and eggs, but performance for adult detection

remained rather modest (precision: 27% - 74%). However, note that

the latter models were trained on close-up images of pests/eggs on

plants, not on sticky trap images. Finally, as a general remark, most

studies only report performance metrics for the originally obtained

test dataset, limiting a critical assessment of the models’

generalization properties.
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Therefore, in this research, we propose a proof-of-concept

species-level detection system for two of the currently most

occurring/damaging thrips (F. occidentalis and E. americanus)

and whitefly (B. tabaci and T. vaporariorum) species in the

Belgian and Dutch greenhouse horticultural sector, using non-

microscopic, RGB yellow sticky trap images and recent DL

models. To enable real-time detection, two state-of-the-art one-

step DL detector architectures were selected, being the recently

developed, relatively fast and good performing YOLO11 (Jocher

et al., 2025) and YOLO-NAS (Aharon et al., 2024) model families.

As a first step, the potential of DL-based species-level detection on

sticky trap images was explored. This was done by training various

versions, diverging in complexity, of the selected model

architectures on a dedicated, high-resolution dataset. Next, the

minimum required pixel resolution for feasible species-level thrips

and whitefly detection in greenhouse horticulture was determined.

This was achieved by training a selection of the proposed models on

digitally transformed reduced-resolution datasets. During both

steps, the influence of the model architecture and model size on

the performance were studied. Furthermore, also the model

generalization was studied using both an internal (subset of the

original dataset) and external (additional independent dataset) test

dataset. As a last step, the obtained theoretical minimum required

pixel resolution was translated to various potential (low-cost) sticky

trap image acquisition setups. To our knowledge, this is the first

study enabling species-level detection of both thrips and whiteflies

using RGB sticky trap images and YOLO-based detection models.
2 Materials and methods

2.1 Dataset acquisition

2.1.1 Pest insect rearing and sticky trap collection
To obtain a heterogeneous, high-quality collection of insect-

covered yellow sticky traps (YSTs) of various insect densities,

residence times and age, F. occidentalis (thrips), T. vaporariorum

(whitefly) and B. tabaci (whitefly) strains were reared inside insect-

proof cages (Vermandel, The Netherlands) in physically isolated

greenhouses/growing chambers at ILVO (Merelbeke-Melle,

Belgium). The F. occidentalis strain, previously described by De

Rouck et al. (2024), was reared on bean pods (Phaseolus vulgaris)

with addition of pollen (Nutrimite, Biobest, Belgium) inside

passively ventilated plastic containers. The T. vaporariorum strain

was collected from a natural infection in an ILVO greenhouse and

was reared on cucumber plants (Cucumis sativus). Both strains were

reared in separate cages within the same ILVO greenhouse with an

indoor temperature of 20.1 ± 1.7 °C and 55.0 ± 10.9% relative

humidity (RH). The B. tabaci strain (MED biotype), previously

described by Mocchetti et al. (2025), was reared on tobacco plants

(Nicotiana tabacum) inside a separate ILVO growing chamber at

23.5 ± 1.1 °C and 60 ± 3% RH.

Over the course of several months, individuals of all insect

populations were regularly caught on one commonly used type of

(wet glue) YST in Belgium (Horiver Wetstick, Koppert België B.V.,
frontiersin.org
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Belgium). This was done by hanging the YSTs inside the rearing

cages/containers for several days. Meanwhile, the same type of YST

containing a mix of E. americanus (thrips) and other insect species

(other than thrips or whiteflies) was collected for two weeks in the

greenhouses of Viaverda (Destelbergen, Belgium) after a natural

infestation of pot plants. The indoor temperature and RH inside the

greenhouses were, respectively, 24.9 ± 5.3 °C and 55.7 ± 16.5%. All

sticky traps were stored, protected from ambient light, inside

opaque plastic containers until image acquisition (several days to

approximately one year) and were later used to construct the so-

called internal dataset.

Lastly, to study the generalization of the models, also a smaller,

independent additional collection of four YSTs was obtained,

containing a mixture of all studied pest species and other non-

thrips/-whitefly insects. This collection was acquired at the end of

the insect rearing by moving a previously collected E. americanus

(thrips) YST across all pest cultivations. Depending on the size and

vigour of the pest populations, the YST was left inside each location

for several hours to several days until at least ten individuals per pest

species were caught on each sticky trap. The mixed YSTs were

analogously stored inside opaque plastic containers until image

acquisition (several days to months) and were later used to

construct the so-called external dataset.

2.1.2 Sticky trap image acquisition
In order to study the potential of species-level pest detection

using non-microscopic, high-resolution RGB images, all sticky traps

were photographed using a standardized and automated image

acquisition setup (see Figure 1A). This setup consisted of a 42.4 MP

high-resolution DSLR camera (Sony a7R III, Sony Group

Corporation, Japan) with macro lens (Sony FE 50mm F2.8 macro,

Sony Group Corporation, Japan), a repro photography stand

(Hama, Germany), a circular LED light (LED Ringlamp LR-480,

StudioKing, The Netherlands) and a motorized xy gantry (XPlotter,

PineconeRobotics, China) with a 3D printed sticky trap mount. The

LED light was adjusted to 5500 K (built-in driver) and 2170 Lux

(Testo 545 digital Lux meter, Testo AG, Germany), measured in the

center of the YST. The camera height was adjusted to the minimum

focus distance of the lens (16 cm) after which it was focussed on a
Frontiers in Plant Science 04
paper black/white block pattern. This resulted in a field of view of

roughly 3.7 cm x 2.5 cm (7968 x 5320 pixels) per image with a pixel

size of roughly 5 µm (see Figure 1B).

All images were taken in manual mode (aperture: f/11 | shutter

speed: 1” | ISO: 100) using the corresponding Imaging Edge

Desktop - Remote software (v1.2.00.02130 | Sony Group

Corporation, Japan) and saved in RAW format (*.ARW). The

YST was automatically moved between images by the xy gantry,

resulting in 30 images per sticky trap without image overlap. This

was needed to avoid any potential data leakage between the training,

validation and test datasets. Both sides of the YSTs (A: side with

printed grid | B: non-printed side) were photographed using the

same protocol. Image acquisition was spread over multiple days and

grey card (Control-card, Novoflex, Germany) images for white

balance correction were taken at the start and end of each

acquisition day.

2.1.3 Image processing and dataset labelling
2.1.3.1 High-resolution datasets

All original images (*.ARW format) were corrected (white

balance and lens correction) using the open source Darktable

software (v4.4.1) and saved as 8-bit *.jpg images. Subsequently, all

images were cropped to a central region of interest of 90% of the

original image size to fully exclude any potential image overlap and

data-leakage during training/testing. Next, bounding box labels (four

classes: one for each studied thrips/whitefly species) were generated

using a dedicated Python script based on colour space conversion and

image thresholding or an early version of the trained detection model

in a later phase. All bounding box labels were later manually verified

using the free browser version of CVAT (v2.30.0 | CVAT.ai

Corporation, Palo Alto, CA, USA) after which the images were

split into smaller image patches, matching the neural network’s

image input dimensions (640 x 640 pixels | 3.2 x 3.2 mm). Other

insects (mainly originating from the E. americanus greenhouse), not

belonging to any of the four studied pest species were left unlabelled

in the dataset. The described process is visualized in Supplementary

Figure S1 in the Supplementary Material File.

Next, all useful pest image patches were separated from the

background (without insect labels) and blurry/dubious image patches
FIGURE 1

(A) Overview of the automated, high-resolution (pixel size: 5 µm) image acquisition setup and (B) a zoomed example image for F. occidentalis.
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using CVAT. Background patches (BG) were subsequently further

divided into five subclasses (yellow background, printed grid, light

reflections, identification sticker and sticky trap mount) per original

pest species dataset. In order to prevent misclassification of other,

non-studied insects, an additional image patch dataset (without

labels) of all other present insects was also gathered (see Figure 2).

The high-resolution dataset was subsequently obtained by

homogeneous sampling of 1,000 labels (+ the corresponding

image patches) of each studied pest class, 1,000 patches of non-

studied insects and 20% BG patches, spread over each background

type according to its relevance (25% yellow background | 25%

printed grid | 25% reflections | 10% identification sticker | 15%

sticky trap mount). Finally, this dataset was randomly split into the

training (60%), validation (20%) and test (20%) subsets and is

further referenced to in this document as the internal dataset.

The additional collection of mixed insects YST images was

processed analogously, but now only a test dataset was gathered

consisting of 54 homogeneously sampled insect labels (+ the

corresponding image patches) per studied class (maximum

available balanced dataset size), combined with 54 image patches

of other non-studied insects (mainly originating from the E.

americanus greenhouse) and 20% BG patches. This dataset is

further referenced to in this research as the external dataset.

2.1.3.2 Reduced-resolution datasets

In order to study the effect of the image (pixel) resolution on the

model’s performance/generalization, both the internal and external

high-resolution datasets were digitally transformed into reduced-

resolution datasets (theoretical pixel size - TPS: 10 µm, 20 µm, 40

µm, 80 µm, 160 µm, 320 µm and 640 µm | see Supplementary Figure

S2 in the Supplementary Material File). This was done by resizing
Frontiers in Plant Science 05
the original image patch (640 x 640 pixels) to a smaller dimension

(factor 1/2n | n ∈ N) using bilinear interpolation, followed by

resizing it back to the original image patch dimension, also using

bilinear interpolation. This way, the original dimension (640 x 640

pixels) and field of view (3.2 x 3.2 mm) were maintained in all image

patches, while the included pixel information/detail originated from

a (theoretical) lower original image resolution (= larger TPS). In

order to avoid any potential influence of the resolution downscaling

process, a dataset of the original resolution (TPS: 5 µm) was also

obtained using the same method.

2.1.3.3 Python environment

All image and dataset processing steps were performed in

Python (v3.8.19) using the following main libraries: plantcv

(v4.3.1), opencv-python (v4.10.0.82) and pillow (v10.2.0).
2.2 Detection model training and testing

2.2.1 High-resolution dataset models
Various pretrained versions of two state-of-the-art one-stage

object detection model families [YOLO11 by Jocher et al. (2025)

and YOLO-NAS by Aharon et al. (2024)] were retrained (fine-

tuning) in Python until model convergence using the internal high-

resolution (pixel size: 5 µm) training and validation datasets. An

overview of the studied model versions and corresponding Python

libraries is shown in Table 1. To improve the overall generalization

of each model, all default data augmentation techniques of both

Python libraries were used during training. Considering the proof-

of-concept purpose of this study, only the main model

hyperparameters (e.g. number of epochs, batch size, initial/warm-
FIGURE 2

Overview of the defined image patch types in both the internal and external high-resolution (pixel size: 5 µm) image datasets. The dimensions of
each image patch were 640 x 640 pixels, corresponding to 3.2 x 3.2 mm.
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up learning rate and epochs, etc.) were adjusted in between (re)

training iterations in order to obtain the best configuration per

model version (see Supplementary Table S1 and Supplementary

Table S2 in the Supplementary Material File). Subsequently, all best

model versions were tested on both the internal and external high-

resolution test datasets in order to compare both the performance

and generalization, relative to the other model versions.

The following test performance metrics (macro-averaged and/

or classwise) were extracted for each model version. The

corresponding formula to calculate each of these metrics were

added to the Supplementary Material File (Equations S1–S6):
Fron
• precision@50: The correctness of the model detections,

calculated at an IoU threshold of 50%.

• recall@50: The ability to detect all present objects,

calculated at an IoU threshold of 50%.

• F1@50: The harmonic mean of the detection precision and

recall, calculated at an IoU threshold of 50%.

• AP@50: The average precision or the area under the

precision-recall curve for a given detection class,

calculated at an IoU threshold of 50%.

• mAP@50: The mean average precision (mAP) or average

AP@50 over all detection classes, calculated at an IoU

threshold of 50%.

• mAP@50:95: The average of the mAP scores, calculated at

various IoU thresholds ranging from 50% to 95%, with a

step size of 5%.
All models were tested using the built-in Python package

functions or dedicated code if needed. The optimal overall test

confidence threshold was obtained from the (smoothed) macro-

averaged F1@50 confidence curve, by taking the (lowest) confidence

score resulting in the maximum F1@50 value. An overview of all

other hyperparameter values that were used during model testing

can be found in Supplementary Table S3 and Supplementary Table

S4 in the Supplementary Material File. Considering the intended

application (automated species-level monitoring in greenhouse

horticulture), the authors arbitrarily defined a minimum practical

feasibility threshold of 70% for the macro-averaged mAP@50, F1@

50, precision@50 and recall@50. However, as this threshold will be

highly crop and grower-specific, readers/future users are

encouraged to adjust it according to their specific requirements.
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To support the interpretation of the model performances, the

confusion matrices were also generated. Furthermore, the Gradient-

weighted Class Activation Maps (Grad-CAMs) of the last C3k2

model block were created for the smallest, yet practically feasible

YOLO11 model version. This was done for the complete external

test dataset and an additional mosaic patch containing all four

studied pest species (originating from the external test dataset)

using the same hyperparameters as during model testing. The

obtained Grad-CAMs allowed for a superficial comparison

between the most decisive pest features/regions used by the

model and the key morphological species characteristics that are

listed in the literature (European and Mediterranean Plant

Protection Organization, 2004; Mound et al., 2025).
2.2.2 Minimum resolution research
To study the influence of the image (pixel) resolution and model

complexity on the model’s performance and generalization, both a

small (YOLO11n) and big (YOLO11x) detection model were

retrained (see Supplementary Table S9 and Supplementary Table

S10 in the Supplementary Material File) and tested (see

Supplementary Table S11 and Supplementary Table S12 in the

Supplementary Material File) on each of the reduced-resolution

datasets. The YOLO11 model type (Jocher et al., 2025) was used for

this research due to the faster training/testing process and user-

friendly Python library.

Based on the earlier defined practical feasibility threshold of

70% (or other value chosen by the reader/future user) and the

obtained test metrics of each reduced-resolution model, the

corresponding minimum required image resolution/maximum

pixel size for species-level detection could subsequently be

determined. Finally, to study the practical feasibility of stand-

alone automated species-level detection traps, this value was

translated into various potential minimum required photography

setups. This was done using the technical specifications of the

selected cameras/lenses (see Supplementary Table S17) and

Equations S7–S9 in the Supplementary Material File. As the

horizontal and vertical angles of view were not listed in the

official data sheets of the iPhone 16 Pro and the Sony a7R III,

these values were manually calculated using the diagonal angles of

view, aspect ratios (width:height) of respectively 4:3 and 3:2, and

Equations S10, S11 in the Supplementary Material File.
TABLE 1 Overview of the studied detection model versions (Aharon et al., 2024; Jocher et al., 2025) that were trained on the high-resolution (pixel
size: 5 µm) internal dataset.

Model type Version Size (M parameters) Developer (year) Python package (version)

YOLO11

YOLO11n
YOLO11s
YOLO11m
YOLO11l
YOLO11x

2.6
9.4
20.1
25.3
56.9

Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)
Ultralytics (2025)

ultralytics (v8.3.58)
ultralytics (v8.3.58)
ultralytics (v8.3.58)
ultralytics (v8.3.58)
ultralytics (v8.3.58)

YOLO-NAS
YOLO-NAS-S
YOLO-NAS-M
YOLO-NAS-L

19.0
51.1
66.9

Deci AI, Inc. (2024)
Deci AI, Inc. (2024)
Deci AI, Inc. (2024)

super-gradients (v3.6.1)
super-gradients (v3.6.1)
super-gradients (v3.6.1)
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2.2.3 Technical specifications
Model training, validation and testing were locally executed on

a workstation in Python (v3.8.19) using the following main

libraries: ultralytics (v8.3.58), super-gradients (v3.6.1) and

tensorboard (v2.18.0). The workstation consisted of one NVIDIA

RTX A5000 GPU (NVIDIA Corporation, Santa Clara, CA, USA |

CUDA version: v12.2.140) and two Intel Xeon Gold T CPUs (Intel

Corporation, Santa Clara, CA, USA).
3 Results

3.1 Dataset acquisition

3.1.1 High-resolution datasets
Over the course of several months, dozens of YSTs were

collected, photographed, processed and labelled for each pest

type, resulting in a heterogeneous internal dataset of 5105 image

patches (see Table 2) and an external test dataset of 246 image

patches (see Table 3). Due to a limited contamination of the T.

vaporariorum cultivation with F. occidentalis individuals, some of

the prior image patches contained both insect species. Because of

this, the sum of the individual image patches per patch type does

not equal the listed total (sub)dataset sizes of the training set, test set

and total dataset in Table 2. This also counts for the external dataset

(Table 3) as often multiple pest species occurred on the same image
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patch. However, for the latter dataset this was intended (mixed test

dataset). Lastly, as all background images originated from the same

sticky traps as the four studied pest species and ‘other insects’

datasets, also the listed total amount of unique sticky trap sides per

(sub)dataset does not equal the sum of the individual unique trap

sides per image patch type, in both tables.

3.1.2 Reduced-resolution datasets
The resolution downscaling process successfully resulted in

eight different reduced-resolution versions (theoretical pixel size -

TPS: 5 µm up to 640 µm) of both the internal and external datasets

(see Supplementary Figure S2 in the Supplementary Material File).
3.2 Detection model training and testing

3.2.1 High-resolution dataset models
All studied model versions provided comparable general

performance scores (mAP@50 and F1@50) for the high-resolution

(pixel size: 5 µm) internal test dataset of ≥ 90%, no matter the used

model type, version or general complexity (Figure 3A). However, the

mAP@50:95 performance score for the internal test dataset was

consistently lower for the YOLO-NAS models compared to the

YOLO11 models (DmAP@50:95 = 8% - 11%).

All models clearly performed worse on the external test dataset

(Figure 3B), but did show an increasing performance towards
TABLE 2 Detailed composition of the high-resolution (pixel size: 5 µm) internal dataset, consisting of yellow sticky trap image patches.

Image/label type
Training set (60%)

Validation set
(20%)

Test set (20%) Total dataset (100%)

Labels
Image
patches

Labels
Image
patches

Labels
Image
patches

Labels
Image
patches

Unique sticky trap
sides (A+B)

F. occidentalis (class 1) 548 450 215 155 237 182 1,000 787 23 (11 + 12)

E. americanus (class 2) 600 567 192 188 208 202 1,000 957 15 (8 + 7)

B. tabaci (class 3) 626 529 189 168 185 153 1,000 850 10 (5 + 5)

T. vaporariorum (class 4) 587 297 247 113 166 85 1,000 495 16 (7 + 9)

other insects (no class) – 621 – 194 – 185 – 1,000 34 (29 + 5)

yellow background (BG -
no class)

– 146 – 50 – 59 – 255 64 (38 + 26)

printed grid (BG - no
class)

– 149 – 50 – 53 – 252 41 (41 + 0)

reflections (BG - no
class)

– 158 – 45 – 53 – 256 63 (36 + 27)

identification sticker (BG
- no class)

– 62 – 22 – 21 – 105 35 (18 + 17)

sticky trap mount (BG -
no class)

– 90 – 35 – 33 – 158 58 (31 + 27)

TOTAL 2,361 3,062a 843 1,020 796 1,023a 4,000 5,105a 88 (56 + 32)b
The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.
aDue to a limited contamination of the T. vaporariorum cultivation with F. occidentalis individuals, some of the prior image patches contained both insect species. Because of this, the sum of the
individual image patches per patch/label type does not equal the listed total (sub)dataset sizes of the training set, test set and total dataset.
bAs all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the
sum of the individual unique sticky trap sides per image/label type.
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higher model complexities. Furthermore, the YOLO-NAS models

tended to better generalize to the unseen external test dataset

(mAP@50: 85% - 89% | F1@50: 83% - 87%) compared to the

YOLO11 models (mAP@50: 79% - 84% | F1@50: 74% - 81%). In

general, a performance drop between both test datasets of

approximately 10% - 20% and < 10% was observed, respectively,

for the YOLO11 and YOLO-NAS model architectures for all

performance metrics with an IoU ≥ 50% (mAP@50, precision@

50, recall@50 and F1@50). However, the drop in mAP@50:95 scores

between both test datasets was less pronounced for the YOLO11

models (approx. 10%), while almost non-existing for the YOLO-

NAS models.

When studying the classwise model performances on the high-

resolution internal test dataset, all model versions generally

performed better (highest mAP@50 and F1@50) for the detection

of thrips (E. americanus and F. occidentalis) compared to the

detection of both whitefly species (T. vaporariorum and B. tabaci)

(Figures 4A, B). However, it should be noted that the absolute

differences between the best and worst performing classes were

rather limited for all tested model versions (DAP@50: 4% - 7% |

DF1@50: 4% - 10%). The corresponding precision@50 and recall@

50 plots for each tested model were visualized, respectively, in

Supplementary Figure S4C and Supplementary Figure S4D in the

Supplementary Material File.

However, considering the external test dataset (Figures 4C and

4D), the overall order of the best performing classes was different

for the YOLO11 models, compared to the equivalent model

versions, tested on the internal dataset. The general performance

drop was largest for the smallest YOLO11 models (YOLO11n and

YOLO11s), now performing best on B. tabaci (DAP@50: -7% and

-5% | DF1@50: -10% and -8% | relative to the internal test dataset

performance) and worst on F. occidentalis (DAP@50: -23% and
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-25% | DF1@50: -25% and -30% | relative to the internal test dataset

performance). However, this effect was reduced when using more

complex model versions. Apart from a performance drop compared

to the internal test dataset, the order of best performing pest classes

did not really change for the YOLO-NAS models. The

corresponding general performance drop was clearly most

significant for both whitefly species (DAP@50: -9% to -14% |

DF1@50: -4% to -14% | relative to the internal test dataset

performance). Once again, the precision@50 and recall@50 plots

were added to the Supplementary Material File (Supplementary

Figure S5C, Supplementary Figure S5D).

Within the YOLO-NAS model series, the YOLO-NAS-L model

performed best on the external test dataset, resulting in macro-

averaged and classwise performance scores (IoU ≥ 50%) of

respectively > 85% and ≥ 75%. For the YOLO11 model series, the

largest YOLO11x version performed best on the external test

dataset, resulting in 5% - 6% lower macro-averaged performance

scores (IoU ≥ 50%) compared to the best YOLO-NAS model

(YOLO-NAS-L).

The previously described similar performance of all model

versions on the internal test dataset and better generalization to

the external test dataset by the YOLO-NAS models are also clearly

visible in the confusion matrices (IoU ≥ 50%) of the smallest

(YOLO11n) and largest (YOLO-NAS-L) tested model versions

(see Figure 5). Although most distinct for the smallest YOLO11n

model, the proportion of complete misses (pest insect predicted as

background) was in both models higher for the thrips classes in the

external test dataset, compared to the internal test dataset. However,

regarding the whitefly detections, the percentage of complete misses

generally dropped while species-level misclassifications (B. tabaci

<=> T. vaporariorum) significantly increased in the external dataset.

Lastly, the proportion of false detections (background detected as
TABLE 3 Detailed composition of the high-resolution (pixel size: 5 µm) external dataset, consisting of yellow sticky trap image patches.

Image/label type Test set (100%) Total dataset (100%)

Labels Image patches Labels Image patches Unique sticky trap sides (A+B)

F. occidentalis (class 1) 54 47 54 47 8 (4 + 4)

E. americanus (class 2) 54 54 54 54 7 (4 + 3)

B. tabaci (class 3) 54 51 54 51 4 (2 + 2)

T. vaporariorum (class 4) 54 36 54 36 4 (2 + 2)

other insects (no class) – 54 – 54 8 (4 + 4)

yellow background (BG - no class) – 12 – 12 8 (4 + 4)

printed grid (BG - no class) – 12 – 12 4 (4 + 0)

reflections (BG - no class) – 12 – 12 8 (4 + 4)

identification sticker (BG - no
class)

– 5 – 5 5 (3 + 2)

sticky trap mount (BG - no class) – 8 – 8 7 (3 + 4)

TOTAL 216 246a 216 246a 8 (4 + 4)b
The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.
aAs some image patches contained multiple thrips/whitefly individuals, the sum of the individual patches per image/label type does not equal the listed total (sub)dataset size.
bAs all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the
sum of the individual unique sticky trap sides per image/label type.
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pest insect) was also higher in the external test dataset for both

model versions, while being most pronounced for the

YOLO11n model.

The Grad-CAMs of the smallest, yet practically feasible, high-

resolution model version (YOLO11n), indicated that the model

mainly focused on the (upper part) of the abdomen of both thrips

species, when visible. When occluded, the model also focused on the

head and antennae. Regarding the studied whitefly species, the

model generally focused on the yellow body and darker white/

transparent zones of the wings. An exemplary overview of the

classwise YOLO11n Grad-CAMs was added in Supplementary

Figure S3 of the Supplementary Material File.

3.2.2 Minimum resolution research
Due to the rather time-consuming neural architectural search

(NAS) process during the YOLO-NAS model training and the user-

friendly ultralytics Python library, in the end the YOLO11 model

architecture was used for the minimum resolution research.

Once again, all tested models performed worse on the external

test dataset, compared to the internal test dataset (Figure 6).

Furthermore, the differences were generally larger for lower image

resolutions (= larger pixel sizes). Both model types showed similar

macro-averaged performance (mAP@50, F1@50, precision@50 and

recall@50) on the internal test dataset. The model performance

dropped almost linearly with increasing pixel sizes. When tested on

the external dataset, both model types also performed quite

similarly for the smaller (theoretical) pixel size datasets, while for

larger pixel size datasets, the YOLO11n models performed generally

better. Both the mAP@50, F1@50 and precision@50 scores showed

a noticeable, non-linear drop at pixel sizes > 80 µm. In general, none

of the reported macro-averaged performance measures (IoU ≥ 50%)
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dropped below 50% for the full range of studied (theoretical) pixel

sizes and model architectures.

Although the macro-averaged performances of both model

types were quite comparable for the external test dataset

(Figure 6), the classwise external dataset performances of the

YOLO11x models were generally inferior across all dataset

resolutions (Figure 7, Supplementary Figures S8, S9). In general,

the classwise detection performances (AP@50 and F1@50) on the

external dataset were for thrips, and in particular F. occidentalis,

strongly affected by the image resolution, showing a steep

performance drop for pixel sizes > 80 µm for both model types.

The performance for both whitefly species (B. tabaci and T.

vaporariorum) on the other hand remained much more stable

with increasing pixel sizes. The classwise external test dataset

precision@50 and recall@50 were plotted in the Supplementary

Material File for each of the reduced-resolution YOLO11n

(Supplementary Figure S8C, Supplementary Figure S8D) and the

YOLO11x models (Supplementary Figure S9C, Supplementary

Figure S9D). For completeness, also the classwise performance

(IoU ≥ 50%) on the internal test dataset of all tested model

versions/image resolutions were visualized in the Supplementary

Material File (Supplementary Figure S6, Supplementary Figure S7).

The internal test dataset performances of both the 5 µm reduced-

resolution YOLO11n (Supplementary Table S13) and YOLO11x

models (Supplementary Table S14) were almost identical to those

of the corresponding high-resolution dataset models (DmAP@50: 0%

- 1% | DF1@50: 1% | Dmaxclasswise@50: 3% | Supplementary Table S5).

However, when tested on the external test dataset, the reduced-

resolution 5 µm YOLO11n model (Supplementary Table S15)

performed better than the high-resolution dataset YOLO11n model

(DmAP@50: 5% | DF1@50: 5% | Dmaxclasswise@50: 17% |
FIGURE 3

Macro-averaged high-resolution (pixel size: 5 µm) internal (A) and external (B) test dataset performance scores for each of the studied model
versions, trained on the internal high-resolution image dataset.
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Supplementary Table S7). Meanwhile, the opposite behaviour was

observed for the YOLO11x model version (Supplementary Table S7,

Supplementary Table S16 | DmAP@50: 4% and DF1@50: 3% |

Dmaxclasswise@50: 13%).

Considering the (arbitrarily defined) minimummacro-averaged

practical feasibility threshold of 70% (IoU ≥ 50%), the minimum

required (theoretical) pixel resolution for species-level detection

was identified as 80 µm (theoretical pixel size - TPS: ≤ 80 µm) for

both the YOLO11n and YOLO11x models (Figure 6). Furthermore,

almost all classwise AP@50 and F1@50 scores also exceeded this

threshold at TPS ≤ 80 µm (Figure 7). By contrast, classwise

precision@50 and recall@50 scores did not always comply with

the 70% threshold (see Supplementary Figures S8, S9) for TPS ≤

80 µm.

In Table 4, various alternative sticky trap photography setups,

corresponding to the minimum (theoretical) required pixel resolution

for the YOLO11n and YOLO11x model versions (TPS: 80 µm), were

compared with the camera system used in this research.
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4 Discussion

4.1 Dataset acquisition

4.1.1 High-resolution datasets
The image acquisition and processing methods resulted in a

standardized and balanced high-resolution (pixel size: 5 µm)

internal dataset, consisting of 1,000 labels per studied pest species

on wet glue YSTs and relevant background images. Although the

standardized light conditions and high-quality DSLR camera setup

are not practically/economically feasible for standalone smart traps

in greenhouse horticulture, our standardized dataset did allow an

objective evaluation of the species-level monitoring concept.

Furthermore, our dataset can be easily converted to various other,

more realistic scenarios such as fluctuating light conditions/spectra

and camera quality/type using various image processing techniques.

As the morphology (shape, size and colour) of body structures

can vary within pest species depending on local environmental
FIGURE 4

Classwise (A) AP@50 and (B) F1@50 performance scores on the high-resolution (pixel size: 5 µm) internal test dataset and classwise (C) AP@50 and
(D) F1@50 performance scores on the high-resolution external test dataset for each of the studied model versions. All models were trained on the
internal high-resolution image dataset.
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conditions, population densities and species genetics (Higgins and

Myers, 1992; Mound, 2005; Riley et al., 2011), future datasets should

incorporate as much of these variables in order to increase the

model generalization. Furthermore, the dataset in this study was

limited to one brand of wet glue YSTs, while in practice various

manufacturers, trap colours and glue types (wet and dry) are used,

depending on the targeted pest insect and farming conditions/

location. As suggested by Ong and Høye (2025), to further enhance

model generalization across different trap colours without

significant performance loss, the training dataset should ideally

comprise insect images captured on transparent sticky traps. To

overcome the limited chromotropic attraction and lack of

background contrast of these traps, the addition of a coloured

background behind the transparent trap is suggested to collect the

training dataset.

Although theoretically possible by altering the standardized,

high-resolution dataset, extending the training dataset with real

images taken by various sensor types (e.g. DSLR camera,

smartphone camera, action camera, stand-alone camera module,

etc.) and lighting conditions could also help the model to better

generalize to real-world conditions and mixed imaging setups (Ong
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and Høye, 2025). Finally, the practical implementation and image

acquisition protocol using smaller, standalone camera sensors will

most likely also be more feasible compared to the standardized

DSLR camera setup that was used in this research.

4.1.2 Reduced-resolution datasets
The high-resolution dataset (pixel size: 5 µm) and the proposed

digital resolution downscaling process allowed for a fast and easy

creation of various reduced-resolution datasets (TPS: 5 µm - 640

µm). However, the main limitation of this method was the fact that

this only resulted in digitally reduced resolution datasets which will

to some extend differ (e.g. presence/absence of specific artifacts,

distortions, noise, etc.) from images originally taken at lower

resolutions. The latter effect is expected to be more significant for

lower resolutions (see Supplementary Figure S2 - TPS: 320 µm and

640 µm) as the difference in pixel resolutions is larger compared to

the original high-resolution dataset. Furthermore, DSLR camera

images provide the best image quality, where other camera systems

with reduced sensor sizes (e.g. smartphones and low-cost camera

modules) suffer from more noise in the images taken. The latter

images are also often digitally optimized to provide better results,
FIGURE 5

Exemplary confusion matrices (IoU ≥ 50%) after testing the smallest (YOLO11n) and biggest (YOLO-NAS-L) model versions on both the internal and
external high-resolution (pixel size: 5 µm) datasets. Both model versions were trained on the high-resolution internal dataset. Both the absolute
(center value) and normalized (top left: ground-truth normalized | bottom right: prediction normalized) values are added to each cell. The following
model version-test dataset combinations are plotted: (A) YOLO11n - internal test dataset; (B) YOLO11n - external test dataset; (C) YOLO-NAS-L -
internal test dataset and (D) YOLO-NAS-L - external test dataset. Hereby the following label abbreviations were used: Th_Fo: F. occidentalis (thrips);
Th_Ea: E. americanus (thrips); Wf_Bt: B. tabaci (whitefly); Wf_Tv: T. vaporariorum (whitefly) and BG: background/other insects.
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increasing the number of artifacts that become visible when zoomed

in. Therefore, in future research, lower-resolution datasets should

ideally be obtained using lower-resolution camera systems and

compared to the reduced-resolution datasets of this research.
4.2 Detection model training and testing

4.2.1 High-resolution dataset models
4.2.1.1 Model performance and generalization

Considering the (arbitrarily defined) minimummacro-averaged

practical feasibility threshold of 70% at IoU ≥ 50%, species-level

thrips and whitefly detection could be considered as feasible for

each of the tested high-resolution dataset (pixel size: 5 µm) models

and both test datasets. The reduced, yet still feasible generalization

to the external test dataset of all tested models was most likely

caused by the rather limited size (1,000 labels/pest species) and

heterogeneity (unique sticky trap sides) of the obtained internal

high-resolution dataset. Extending the training dataset with more
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unique image patches could potentially further improve the models’

generalizations. Furthermore, small differences in dataset quality/

composition and the limited external test dataset size (246 image

patches <=> 1023 image patches) could also have played a role.

The observed better generalization to the external test dataset of

more complex model versions supports the findings of Hu et al.

(2021), Neyshabur et al. (2014) and Novak et al. (2018). The reason

why this relative advantage of more complex models could not be

observed for the internal test dataset performances, was most likely

due to the more similar image patches during training and testing

(same original sticky traps | same acquisition dates), compared to

the external test dataset (independent dataset | different acquisition

date). As the models do not need to handle (subtle) differences in

acquisition settings and dataset quality, the benefit of using more

complex models will therefore be limited compared to the increased

risk of overfitting.

The lower observed mAP@50:95 scores of the YOLO-NAS

models on the internal test dataset were most likely caused by the

best model selection method of the super-gradients Python library.
FIGURE 6

Macro-averaged internal/external test dataset (A) mAP@50, (B) F1@50, (C) precision@50 and (D) recall@50 performance scores for each of the
YOLO11n and YOLO11x model versions, trained on the corresponding reduced-resolution internal datasets (theoretical pixel size: 5 µm - 640 µm).
The black dotted line represents the arbitrarily defined minimum required practical feasibility threshold of 70% for greenhouse horticultural
applications.
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For the YOLO-NAS models, this selection was based on the mAP@

50:75 validation metric, while for the YOLO11 models (ultralytics

Python package) the model fitness (weighted average: mAP@50 =

10% and mAP@50:95 = 90%) parameter was used. Furthermore, Ali

and Zhang (2024) reported general YOLO-NAS detection struggles

for occluded objects which could also have played a role. The better

generalization of the YOLO-NAS models to the external test dataset

could be linked to the intrinsic training process. During YOLO-

NAS training, both the model architecture and weights are

optimized in terms of computational resources and inference

time, while limiting the impact on model accuracy (Ali and

Zhang, 2024; Terven et al., 2023). As this optimization process

generally results in less complex models, the finally obtained

YOLO-NAS models might be less prone to overfitting to the

original dataset, therefore boosting their generalization.

Regarding the classwise general performance on the internal

high-resolution dataset, all models scored best for the detection of

thrips (in particular E. americanus) and worst for the detection of

whiteflies (mostly B. tabaci), although the absolute differences
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between the best and worst performing classes were limited.

However, when testing on the external dataset, the smallest

YOLO11 models (YOLO11n and YOLO11s) performed best for

the detection of B. tabaci and worst for the detection of F.

occidentalis. Based on the reported confusion matrices, this drop

in thrips performance was caused by an increase in complete misses

(thrips detected as background). As this effect was reduced when

using more complex YOLO11 model versions, we suggest that

(subtle) differences in the image acquisition method and lower

image quality (less focussed) of the external dataset might have

caused this. All YOLO-NAS models performed best for the

detection of thrips on the external dataset and resulted in lower

general classwise performance drops between the internal and

external datasets compared to the YOLO11 models. The increased

ratio of YOLO-NAS-L whitefly misclassifications in the external test

dataset, as seen in the reported confusion matrices, can most likely

also be attributed to differences in dataset composition, especially

insect residence times (IRTs), and lower image quality

(less focused).
FIGURE 7

Classwise external dataset (A) AP@50 and (B) F1@50 performance scores for each of the YOLO11n models and classwise external dataset (C) AP@50
and (D) F1@50 performance scores for the YOLO11x models. All models were trained on the corresponding internal reduced-resolution image
datasets (theoretical pixel size: 5 µm - 640 µm). The black dotted line represents the arbitrarily defined minimum required practical feasibility
threshold of 70% for greenhouse horticultural applications.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1668795
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Laekeman et al. 10.3389/fpls.2025.1668795
As almost all tested high-resolution models output both macro-

averaged and classwise performance metrics (IoU ≥ 50%) of

respectively > 70% and > 60% on the external dataset, species-level

detection using the proposed high-resolution (pixel size: 5 µm)

imaging setup seemed to be possible for the studied pest species.

Furthermore, although model performance increased with model

complexity, species-level detection also seemed to be possible using

the smallest tested model version (YOLO11n), resulting in overall/

classwise performance metrics of > 65% (IoU ≥ 50%) for the external

test dataset. Furthermore, the Grad-CAMs of this model showed

overlap between the class-specific focus regions of the model and the

key morphological characteristics of each species, described in the

literature (European and Mediterranean Plant Protection

Organization, 2004; Mound et al., 2025). Thrips focus areas were

mainly concentrated on the abdomen, containing the differently

coloured striping pattern and abdominal colour. Key focus areas of

the studied whitefly species were the body and dark white/transparent

zones of the wings. Differences in species body colour were also

described in the literature (European and Mediterranean Plant

Protection Organization, 2004). The fact that the model seemed to

focus on the transparency of the wings, could be explained by the fast

(IRTs: less than seven days) decaying wings of B. tabaci, as described

by Böckmann et al. (2021). This observation was also shared by the

authors while handling the datasets (data not shown). As the whitefly

pests in our datasets had IRTs of several days up to several months, the

trained models might possibly fail when applied to YSTs containing

fresh whiteflies. However, this issue can most likely be tackled by

extending the training datasets with image patches of fresh individuals.
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Furthermore, since none of the high-resolution models

performed consistently worse for the detection of E. americanus

(IRTs: approx. one year) in the external dataset compared to the other

detection classes (IRTs: several days to several months), this

showcases the potential of species-level detection, even when using

older YSTs. However, it should be noted that the decay of E.

americanus over time was rather limited in our dataset (data not

shown), which could explain this observation. Differences in IRTs

between the training and testing datasets are namely known to

negatively impact the detection performance, as well as insect decay

in general (Böckmann et al., 2021). Enriching the dataset with images

featuring a wide range of IRTs and varying stages of decay would

likely enhance the models’ generalization/robustness to these factors.

4.2.1.2 Comparison with existing research

The best overall detection results (in this study) for the high-

resolution (pixel size: 5 µm) external dataset were obtained using

the YOLO-NAS-L model version (mAP@50: 89% | F1@50: 87%)

and YOLO11x model version (mAP@50: 84% | F1@50: 81%),

clearly complying with the earlier defined macro-averaged

practical feasibility threshold of 70% (IoU ≥ 50%). Compared to

the only reported species-level detection models on sticky trap

images in the literature - developed by Niyigena et al. (2023) using

17 µm pixel resolution and achieving macro-averaged mAP@50

scores of 91% (reflectance dataset) up to 97% (transmittance

dataset) for detecting S. dorsalis and other thrips species

(included as one class) - all high-resolution models (pixel

resolution: 5 µm) that were tested in this study performed
TABLE 4 Theoretical minimum required photography setups suited for species-level detection of the studied thrips and whitefly species (theoretical
pixel size - TPS: 80 µm) for the used high-resolution DSLR camera (bold font), recent smartphone cameras, recent action camera, and some widely
used low-budget camera modules.

Sensor type + lens
Sensor
quality

Minimum
focus

distance

Angle of view
(hor. and ver.)

Max. effectivea

working distance (TPS:
80 µm)

Images per
sticky trap

Approximate
unit costb

Raspberry Pi camera module 2 8 MP 10 cm
H: 62.2°
V: 48.8°

21 cm 1 < € 50

Raspberry Pi camera module 3 11.9 MP 10 cm
H: 66°
V: 41°

28 cm 1 < € 50

Arducam Pi Hawk-eye 64 MP 8 cm
H: 72°
V: 54.6°

52 cm 1 < € 100

Samsung Galaxy A16 LTE
(main camera)

50 MP 10 cm
H: 67.6°
V: 53.8°

48 cm 1 < € 150

GoPro HERO13 Black + macro
lens module (16:9 - linear
mode)

27.13 MP 11 cm
H: 87°
V: 56°

29 cm 1 < € 500

iPhone 16 Pro
(ultra wide camera)

48 MP 2 cm
H: 108°
V: 92°

23 cm 1 < € 1,250

Sony a7R III + FE 50mm
F2.8 macro lens

42.4 MP 16 cm
H: 40°
V: 27°

87 cm 1 < € 2,250
All listed cameras are equipped with auto-focus.
aRounded down to the nearest cm.
bApproximate unit cost (rounded up to the closest multiple of €50) at the time of submission of the manuscript.
The used equations and references to the technical specifications/prices can be found in Supplementary Equations S7-S11 and Supplementary Table S17, respectively, of the Supplementary
Material File.
The bold values correspond to the imaging setup that was used in this research.
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similarly on the internal test dataset, with mAP@50 scores ranging

from 94% to 95%. However, as Niyigena et al. (2023) focused on

different pest species, detected only one species at the species level,

and lacked an external test dataset, a more profound comparison

could not be made. In addition, as the models of Niyigena et al.

(2023) were trained and tested using images, pre-annotated with

differently coloured markers per class prior to image acquisition,

one could question the generalization of the reported models. Insect

detection could, to some extent, rely on the presence or absence of

these coloured circles rather than on the insect features themselves.

Compared to the best overall performing T. vaporariorum and B.

tabaci adult detection model of Gutierrez et al. (2019) on internal

test dataset plant images (precision: B. tabaci = 34% and T.

vaporariorum = 72%), all high-resolution models in this research

performed better on the internal test dataset (precision: B. tabaci =

88% - 96% and T. vaporariorum = 80% - 96%). However,

considering the different type/resolution of input images and

dataset size, no further comparison could be made.

4.2.1.3 Future directions

To our knowledge, this is the first reported thrips/whitefly species-

level detection system using standard RGB (yellow) sticky trap images

and YOLO-based detectionmodels. Furthermore, the results indicated

that it was very successful to discriminate at the species level (mAP@

50: 79% - 89% | F1@50: 74% - 87%). Future research should therefore

extend this technology to additional types of pest species, sticky traps,

model architectures and ambient light conditions (e.g. light intensity

and spectral composition). To accelerate progress and support the

development of a universal species-level pest monitoring system based

on RGB sticky trap images, the creation and use of an open-access

database is recommended by the authors.

4.2.2 Minimum resolution research
4.2.2.1 Model performance and generalization

The macro-averaged and classwise performance metrics of all

YOLO11n (smallest) and YOLO11x (largest) models were comparable

for the internal test dataset and decreased linearly with increasing pixel

size. However, when tested on the external datasets, a clear general

(mAP@50 and F1@50) performance drop at pixel sizes > 80 µm was

observed for both model versions. This performance drop was mainly

caused by a reduction in thrips species detection performance

(particularly for F. occidentalis), relative to a slower decaying

whitefly species detection performance at lower image resolutions.

Despite the larger morphological differences (e.g. colour, body shape,

etc.) between the studied thrips species compared to the studied

whitefly species, the general lower performance for thrips at lower

image resolutions was most likely caused by their relatively smaller

body size compared to the studied whitefly species. As a consequence,

the number of pixels per individual was lower for these insects,

resulting in less cues for the model to base its decision on.

Extending the training dataset with more unique image patches and

insect morphologies could potentially increase both the classwise

thrips and macro-averaged model performances.

In general, the YOLO11n models performed better on the

external test dataset at lower pixel resolutions (= larger TPS),
Frontiers in Plant Science 15
compared to the heavily complex YOLO11x models. This

showcases that increasing the model’s complexity will not

always result in better performance and may even lead to poorer

generalization due to overfitting, especially when the size of the

training dataset is limited (Jegham et al., 2024). More striking was

the fact that none of the macro-averaged performance metrics

(IoU ≥ 50%) dropped below 50% for both test datasets, even for

the very blurry and pixelated 320 µm and 640 µm theoretical pixel

size datasets. However, this was not the case for the classwise

performances on the external test dataset (IoU ≥ 50%), which

quickly dropped below 50% for F. occidentalis at pixel sizes >

80 µm.

Considering the resolution downscaling process, the 5 µm

reduced-resolution dataset images were not altered compared to

the original high-resolution images (see source code of the

PIL.Image.resize Python package). Consequently, the observed,

though very small, differences in internal test dataset performance

scores of the 5 µm reduced-resolution and high-resolution dataset

YOLO11n and YOLO11x models were probably caused by the

different hyperparameters used during training. This could also

explain the better generalization to the external test dataset by the 5

µm reduced-resolution YOLO11n and original high-resolution

dataset YOLO11x models.

4.2.2.2 Minimum required pixel resolution

Based on the (arbitrarily defined) minimum macro-averaged

practical feasibility threshold of 70% (IoU ≥ 50%), a minimum

required theoretical pixel resolution of 80 µm (TPS: ≤ 80 µm) could

be defined for species-level detection using both the YOLO11n and

YOLO11x models. Although the corresponding classwise

precision@50 and recall@50 scores did not always exceed this

threshold, however, the classwise AP@50 and F1@50 scores

generally did. Furthermore, the classwise precision and recall

scores can be tweaked by altering the (overall or classwise)

detection confidence threshold(s). Consequently, the authors do

believe that by further model tweaking, both models’ precision@50

and recall@50 could potentially also exceed/closely approach the

defined 70% threshold.

Taking into account this minimum required resolution (TPS: ≤

80 µm), sticky trap species-level detection was subsequently found

to be feasible using various alternative imaging setups, such as

recent smartphones, action cameras, or even low-cost (< €50 -

€100), standalone camera modules such as the Raspberry Pi camera

module 2/3 or Arducam Pi Hawk-eye. Moreover, all listed

photography setups (see Table 4) were able to capture a complete

sticky trap in a single image with sufficient resolution and feasible

working distances for practical implementation. Furthermore, Ong

and Høye (2025) found no significant differences in insect detection

model performances when their models were trained on high-

quality DSLR, webcam or smartphone camera images of similar

resolution, showcasing the potential of low-budget, standalone

camera modules for species-level detection. Combined with the

limited size and good performance of the YOLO11n model, this

really paves the way towards feasible, real-time, automated species-

level monitoring of sticky traps for use in greenhouse horticulture.
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4.2.2.3 Future directions

Lastly, as the reported reduced-resolution model performances

were only theoretically defined, future research should empirically

validate these results. Furthermore, also the reported minimum

required pixel resolution (80 µm) for the YOLO11n and YOLO11x

models, should be validated using the proposed (low-cost)

camera setups.
5 Conclusions

This study demonstrated that species-level detection of two

globally distributed thrips species (F. occidentalis and E.

americanus) and two whitefly species (B. tabaci and T.

vaporariorum) is achievable using high-resolution (pixel size: 5

µm) RGB images of yellow sticky traps and various YOLO11 and

YOLO-NAS detection model versions. Although the model

performance increased with higher model complexity, even the

smallest studied model version (YOLO11n) resulted in acceptable

macro-averaged and classwise performance scores. Considering the

arbitrarily defined minimum macro-averaged practical feasibility

threshold (IoU ≥ 50%) of 70% for greenhouse horticultural

applications, the minimum required pixel resolution allowing

species-level detection was found to be 80 µm for both the

YOLO11n and YOLO11x models. This image resolution should,

in theory, allow the use of various recent smartphones, action

cameras, or even low-budget, standalone camera modules, while

still requiring only a single image per sticky trap at feasible working

distances. Combined with the low complexity and decent

performance of the YOLO11n model, this really paves the way

towards feasible, real-time, automated species-level monitoring of

(yellow) sticky traps in greenhouse horticulture. Future research

should further validate the feasibility/adoption in commercial IPM

programs and expand this technology to more pest species, sticky

trap types, and ambient light conditions.
Life Science Identifiers (LSIDs) in
ZOOBANK

• F. occidentalis: urn:lsid:zoobank.org:act:2EA5A102-FC8B-

427F-B574-8D69155C1D2F

• E. americanus: urn:lsid:zoobank.org:act:5BE86D34-19DD-

4321-8AAD-E53BFAA7EE34

• B. tabaci: urn:lsid:zoobank.org:act:30E31918-A380-44F9-

9D97-708E74556A9D

• T. vaporariorum: /
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Combination of image processing and artificial neural networks as a novel approach for
the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in
greenhouse agriculture. Comput. Electron. Agric. 127, 495–505. doi: 10.1016/
J.COMPAG.2016.07.008

European and Mediterranean Plant Protection Organization (2004). Bemisia tabaci.
EPPO Bull. 34, 281–288. doi: 10.1111/j.1365-2338.2004.00729.x
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