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Species-level detection of thrips
and whiteflies on yellow sticky
traps using YOLO-based deep
learning detection models

Broes Laekeman™?, Jochem Bonte®, Wannes Dermauw’,
Annelies Christiaens?®, Bruno Gobin®, Johan Van Huylenbroeck?,
Emmy Dhooghe? and Peter Lootens™

Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
Merelbeke-Melle, Belgium, 2Department of Plants and Crops, Faculty of Bioscience Engineering,
Ghent University (UGent), Gent, Belgium, *Viaverda, Destelbergen, Belgium

As of today, pest insects such as thrips and whiteflies cause the loss of 20% - 40% of
the global agricultural yield. To reduce chemical pesticide use while maintaining
high-quality horticultural standards, early detection of pest infestations is essential.
Although Al-assisted pest monitoring systems using sticky trap images exist today,
none currently enable effective species-level detection of thrips and/or whiteflies.
However, early species-level identification would allow for more targeted, species-
specific control strategies, leading to reduced, localized, and more efficient pesticide
application. Therefore, in this study, we evaluated the potential and limitations of
real-time species-level detection of thrips (Frankliniella occidentalis and
Echinothrips americanus) and whiteflies (Bemisia tabaci and Trialeurodes
vaporariorum) using non-microscopic, RGB yellow sticky trap images and recent
YOLO-based deep learning detection models. To this end, a balanced and labelled
image dataset was gathered, consisting of the studied pest species, caught on one
type of yellow sticky trap. Subsequently, various versions of the YOLO11 and YOLO-
NAS detection model architectures were trained and tested using this dataset at
various (digitally reduced) pixel resolutions. All tested high-resolution dataset (pixel
size: 5 um) models achieved species-level detection of the studied pests on an
independent test dataset (MAP@50: 79% - 89% | F1@50: 74% - 87%). Even the
smallest model (YOLO11n) delivered feasible macro-averaged (mAP@50: 80% |
F1@50: 77%) and classwise performance scores (AP@50: 72% - 85% | F1@50: 68%
- 82%). The minimum required pixel resolution for feasible species-level detection in
greenhouse horticulture was identified as 80 um for both the YOLOlln and
YOLO11x models, enabling the use of modern smartphones, action cameras, or
low-cost standalone camera modules. Combined with the low complexity and
decent performance of the YOLO11n model, these results demonstrate the potential
of feasible, real-time, automated species-level monitoring of (yellow) sticky traps in
greenhouse horticulture. Future research should focus on extending this technology
to additional pest species, sticky trap types, and ambient light conditions.
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automated pest monitoring, integrated pest management (IPM), artificial intelligence
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1 Introduction

According to the United Nations (2022), the global human
population will reach 9.7 billion by 2050, requiring an increase in
food production of approximately 30% - 60% compared to the
baseline period of 2005-2010 (Food and Agriculture Organization
of the United Nations, 2024; van Dijk et al., 2021). Considering the
annual global crop loss of 20% - 40% due to pest insects today (Food
and Agriculture Organization of the United Nations, 2024; Gula,
2023), combined with the increasing pressure on the use and
authorization of chemical pesticides, this will be a significant
challenge. The switch to a more preventive, efficient and
integrated pest management (IPM) strategy will therefore be key,
requiring fast and objective detection combined with effective local
pest control techniques.

Among all flying insects, the Thysanoptera order (better known
as thrips) and Aleyrodidae family (better known as whiteflies) are
widely distributed across the globe in both open field agriculture
and greenhouse horticulture (Fiallo-Olive et al., 2019; Mound, 2009;
Perring et al., 2018). However, only a small fraction (< 1%) of these
thrips and whitefly species are recognized as major agricultural
pests. Thrips pests cause damage by feeding on leaf, flower and fruit
tissues, which diminishes plant vigour and aesthetic quality.
Additionally, some can act as vectors of harmful plant viruses,
such as tospoviruses (Mound and Teulon, 1995; Mound et al.,
2022). Whitefly pests, by contrast, cause damage by feeding on plant
phloem and by excreting honeydew on the leaves, promoting fungal
growth (e.g. sooty mould and powdery mildew) (Fiallo-Olive et al.,
2019; Navas-Castillo et al., 2011). Furthermore, some whitefly pests
are well-known as vectors of various plant viruses, including
begomoviruses, criniviruses, ipomoviruses, torradoviruses and
some carlaviruses (Fiallo-Olive et al.,, 2019; Navas-Castillo
et al., 2011).

As both insect types are relatively small (thrips: 0.5-2 mm |
whiteflies: 1-3 mm) and generally occur on the abaxial leaf side,
they are easily overlooked by growers (Manners and Duff, 2017;
Navas-Castillo et al., 2011). Combined with the high fecundity,
short generation times and favourable climate inside horticultural

Abbreviations: AP@50, average precision, calculated at an intersection over
union threshold of 50%; BG, background; DL, deep learning; F1@50, F1 score,
calculated at an intersection over union threshold of 50%; Grad-CAMs, gradient-
weighted class activation maps; IoU, intersection over union, Overlap between
the detection bounding box and the ground truth bounding box; IPM, integrated
pest management; IRTs, insect residence times; mAP, mean average precision;
mAP@50, mean average precision, calculated at an intersection over union
threshold of 50%; mAP@50:95, average of the mean average precisions,
calculated at various intersection over union thresholds ranging from 50% -
95% with a step size of 5%; NAS, neural architectural search; precision@50,
precision, calculated at an intersection over union threshold of 50%; recall@50,
recall, calculated at an intersection over union threshold of 50%; RH, relative
humidity; Th_Ea, Echinothrips americanus (thrips); Th_Fo, Frankliniella
occidentalis (thrips); TPS, theoretical pixel size; Wf_Bt, Bemisia tabaci
(whitefly); WE_Tv, Trialeurodes vaporariorum (whitefly); YST, yellow sticky
trap; YSTs, yellow sticky traps.
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greenhouses, this often results in exponential pest development
(Manners and Duff, 2017; Perring et al., 2018). As of today, the
western flower thrips (Frankliniella occidentalis), silverleaf whitefly
(Bemisia tabaci) and to a lesser extent the greenhouse whitefly
(Trialeurodes vaporariorum) are considered among the most
problematic agricultural pests due to their global spread,
polyphagous nature and - most importantly - their virus-
spreading behaviour (Fiallo-Olive et al., 2019; Kanakala and
Ghanim, 2019; Navas-Castillo et al., 2011). Another widely
distributed pest species across greenhouses is the so-called
poinsettia thrips (Echinothrips americanus). Although it is not
recognized as a plant virus vector, E. americanus is also
considered an important horticultural pest due to its polyphagous
nature, limited initial plant damage and rather low mobility, which
increases the risk for delayed detection and exponential growth
(Pijnakker et al., 2018; Pundt, 2024; Vierbergen et al., 2006).

Today, monitoring for these pests is generally carried out using
glue-covered, brightly coloured (chromotropic) paper/plastic cards
(also referred to as sticky traps), followed by frequent (e.g. daily/
weekly) manual inspection. Subsequently, all present insects are
manually identified using the key morphological traits. E.
americanus adults are dark brown with red bands between the
abdominal segments and have a unique white patch at the base of
their dark wings (Mound et al., 2025). By contrast, F. occidentalis
adults are smaller, slender, and vary in colour from pale yellow to
nearly black, with narrow, fringed wings and no distinct white
markings on the wings (Mound et al., 2025). In T. vaporariorum,
the anterior margin of the forewing is curved, while in B. tabaci it is
straight (European and Mediterranean Plant Protection
Organization, 2004). Furthermore, in resting position, the wings of
B. tabaci look more narrow and are pointed posteriorly compared to
T. vaporariorum (European and Mediterranean Plant Protection
Organization, 2004). Lastly, B. tabaci adults are generally somewhat
smaller and have a darker yellow body compared to T. vaporariorum
adults (European and Mediterranean Plant Protection
Organization, 2004).

Due to its high attractivity to a wide range of insects, the yellow
sticky trap (YST) is mostly used for monitoring. Although the
material cost is fairly limited, the human labour cost and the non-
continuous nature of this method still leave room for improvement.
In addition, most personnel are not equipped or trained for accurate
pest identification, particularly at the species level. However,
continuous species-level monitoring of harmful pests would allow
for timely, local and species-specific (non)chemical
countermeasures, while taking into account the biology and
phenology of the targeted species. Consequently, both the
efficiency and efficacy of chemical pesticides would increase, while
reducing the dosage, cost, environmental impact and risk of
pesticide resistance. Therefore, this approach perfectly aligns with
the European Union IPM strategies (The European Parliament and
the Council of the European Union, 2009). Furthermore, more
reliable risk assessments of virus transmission and the associated
economic impact could be made using species-specific detections.
Lastly, the success of the applied pest management strategy could
also be quantified using such a system.
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In an attempt to automate and objectively standardise the
monitoring process of pests on sticky traps, various solutions
combining a sticky trap with an optical sensor, have been
proposed in the literature over the last three decades. A detailed
overview can be found in the review articles by Lima et al. (2020),
Preti et al. (2021), and Teixeira et al. (2023). Originally, this
development started as static, automated and non-specific insect
counting systems using basic optical sensors. Later, basic image
processing techniques (e.g. filters, binarisation, colour space
transformations, thresholding, etc.) were introduced and further
evolved into mobile pest differentiation systems using machine
learning techniques (e.g. k-means clustering, support vector
machines, etc.) (Lima et al., 2020; Preti et al., 2021; Teixeira et al.,
2023). During the last decade, many general (e.g. RetinaNet, Faster
R-CNN, YOLO) and custom made/adapted versions of general
deep learning (DL) model architectures [e.g. PestNet by Liu et al.
(2019), TPest-RCNN by Li et al. (2021)] have been reported in the
literature. These models allow for more specific pest detection on
sticky traps, with generally good performance (mean average
precision (mAP), calculated at an intersection over union (IoU)
threshold of 50% - mAP@50: approx. 70% - 95%) (Teixeira
et al., 2023).

When focusing on recent (2020 - present), good performing
(mAP@50: > 80%) DL-based sticky trap detection systems in the
literature that specifically target thrips and/or whiteflies, the
reported models are mainly (adapted) versions of the YOLO
(Niyigena et al., 2023; Teixeira et al., 2023; Wang et al.,, 2021,
2024; Zhang et al., 2023) and Faster R-CNN (Li et al., 2021;
Niyigena et al., 2023; Teixeira et al., 2023; Wu et al., 2024) model
architectures. Despite the inclusion of both pest types in some
studies, surprisingly only few articles address species-level
determination of these pests. While some researchers specify the
exact thrips and whitefly species studied, they either exclude other
species from the same order/family (Espinoza et al., 2016; Sun et al.,
2017; Xia et al, 2015) or group related species under a single
detection class (Bauch and Rath, 2005), therefore avoiding the need
for species-level differentiation.

To the best of the authors” knowledge, only Niyigena et al. (2023)
have currently reported a detection model capable of differentiating
Scirtothrips dorsalis from other thrips species (grouped as a single
class) using high-quality YST smartphone images (pixel resolution:
17 pum). Regarding whitefly species differentiation, only Bockmann
et al. (2021) described a differentiation model for B. tabaci and T.
vaporariorum on RGB sticky trap images, using a bag of visual words
approach. However, its success was rather limited (B. tabaci: recall =
72% and precision = 26% | T. vaporariorum: recall = 54% and
precision = 98%). In contrast, Gutierrez et al. (2019) reported
detection models (SDD and Faster R-CNN) for B. tabaci and T.
vaporariorum adults and eggs, but performance for adult detection
remained rather modest (precision: 27% - 74%). However, note that
the latter models were trained on close-up images of pests/eggs on
plants, not on sticky trap images. Finally, as a general remark, most
studies only report performance metrics for the originally obtained
test dataset, limiting a critical assessment of the models’
generalization properties.
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Therefore, in this research, we propose a proof-of-concept
species-level detection system for two of the currently most
occurring/damaging thrips (F. occidentalis and E. americanus)
and whitefly (B. tabaci and T. vaporariorum) species in the
Belgian and Dutch greenhouse horticultural sector, using non-
microscopic, RGB yellow sticky trap images and recent DL
models. To enable real-time detection, two state-of-the-art one-
step DL detector architectures were selected, being the recently
developed, relatively fast and good performing YOLO11 (Jocher
et al.,, 2025) and YOLO-NAS (Aharon et al.,, 2024) model families.
As a first step, the potential of DL-based species-level detection on
sticky trap images was explored. This was done by training various
versions, diverging in complexity, of the selected model
architectures on a dedicated, high-resolution dataset. Next, the
minimum required pixel resolution for feasible species-level thrips
and whitefly detection in greenhouse horticulture was determined.
This was achieved by training a selection of the proposed models on
digitally transformed reduced-resolution datasets. During both
steps, the influence of the model architecture and model size on
the performance were studied. Furthermore, also the model
generalization was studied using both an internal (subset of the
original dataset) and external (additional independent dataset) test
dataset. As a last step, the obtained theoretical minimum required
pixel resolution was translated to various potential (low-cost) sticky
trap image acquisition setups. To our knowledge, this is the first
study enabling species-level detection of both thrips and whiteflies
using RGB sticky trap images and YOLO-based detection models.

2 Materials and methods
2.1 Dataset acquisition

2.1.1 Pest insect rearing and sticky trap collection

To obtain a heterogeneous, high-quality collection of insect-
covered yellow sticky traps (YSTs) of various insect densities,
residence times and age, F. occidentalis (thrips), T. vaporariorum
(whitefly) and B. tabaci (whitefly) strains were reared inside insect-
proof cages (Vermandel, The Netherlands) in physically isolated
greenhouses/growing chambers at ILVO (Merelbeke-Melle,
Belgium). The F. occidentalis strain, previously described by De
Rouck et al. (2024), was reared on bean pods (Phaseolus vulgaris)
with addition of pollen (Nutrimite, Biobest, Belgium) inside
passively ventilated plastic containers. The T. vaporariorum strain
was collected from a natural infection in an ILVO greenhouse and
was reared on cucumber plants (Cucumis sativus). Both strains were
reared in separate cages within the same ILVO greenhouse with an
indoor temperature of 20.1 + 1.7 °C and 55.0 + 10.9% relative
humidity (RH). The B. tabaci strain (MED biotype), previously
described by Mocchetti et al. (2025), was reared on tobacco plants
(Nicotiana tabacum) inside a separate ILVO growing chamber at
23.5 + 1.1 °C and 60 + 3% RH.

Over the course of several months, individuals of all insect
populations were regularly caught on one commonly used type of
(wet glue) YST in Belgium (Horiver Wetstick, Koppert Belgié B.V.,
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Belgium). This was done by hanging the YSTs inside the rearing
cages/containers for several days. Meanwhile, the same type of YST
containing a mix of E. americanus (thrips) and other insect species
(other than thrips or whiteflies) was collected for two weeks in the
greenhouses of Viaverda (Destelbergen, Belgium) after a natural
infestation of pot plants. The indoor temperature and RH inside the
greenhouses were, respectively, 24.9 + 5.3 °C and 55.7 + 16.5%. All
sticky traps were stored, protected from ambient light, inside
opaque plastic containers until image acquisition (several days to
approximately one year) and were later used to construct the so-
called internal dataset.

Lastly, to study the generalization of the models, also a smaller,
independent additional collection of four YSTs was obtained,
containing a mixture of all studied pest species and other non-
thrips/-whitefly insects. This collection was acquired at the end of
the insect rearing by moving a previously collected E. americanus
(thrips) YST across all pest cultivations. Depending on the size and
vigour of the pest populations, the YST was left inside each location
for several hours to several days until at least ten individuals per pest
species were caught on each sticky trap. The mixed YSTs were
analogously stored inside opaque plastic containers until image
acquisition (several days to months) and were later used to
construct the so-called external dataset.

2.1.2 Sticky trap image acquisition

In order to study the potential of species-level pest detection
using non-microscopic, high-resolution RGB images, all sticky traps
were photographed using a standardized and automated image
acquisition setup (see Figure 1A). This setup consisted of a 42.4 MP
high-resolution DSLR camera (Sony «7R III, Sony Group
Corporation, Japan) with macro lens (Sony FE 50mm F2.8 macro,
Sony Group Corporation, Japan), a repro photography stand
(Hama, Germany), a circular LED light (LED Ringlamp LR-480,
StudioKing, The Netherlands) and a motorized xy gantry (XPlotter,
PineconeRobotics, China) with a 3D printed sticky trap mount. The
LED light was adjusted to 5500 K (built-in driver) and 2170 Lux
(Testo 545 digital Lux meter, Testo AG, Germany), measured in the
center of the YST. The camera height was adjusted to the minimum
focus distance of the lens (16 cm) after which it was focussed on a

10.3389/fpls.2025.1668795

paper black/white block pattern. This resulted in a field of view of
roughly 3.7 cm x 2.5 cm (7968 x 5320 pixels) per image with a pixel
size of roughly 5 um (see Figure 1B).

All images were taken in manual mode (aperture: f/11 | shutter
speed: 1”7 | ISO: 100) using the corresponding Imaging Edge
Desktop - Remote software (v1.2.00.02130 | Sony Group
Corporation, Japan) and saved in RAW format (*.ARW). The
YST was automatically moved between images by the xy gantry,
resulting in 30 images per sticky trap without image overlap. This
was needed to avoid any potential data leakage between the training,
validation and test datasets. Both sides of the YSTs (A: side with
printed grid | B: non-printed side) were photographed using the
same protocol. Image acquisition was spread over multiple days and
grey card (Control-card, Novoflex, Germany) images for white
balance correction were taken at the start and end of each
acquisition day.

2.1.3 Image processing and dataset labelling
2.1.3.1 High-resolution datasets

All original images (*.ARW format) were corrected (white
balance and lens correction) using the open source Darktable
software (v4.4.1) and saved as 8-bit *,jpg images. Subsequently, all
images were cropped to a central region of interest of 90% of the
original image size to fully exclude any potential image overlap and
data-leakage during training/testing. Next, bounding box labels (four
classes: one for each studied thrips/whitefly species) were generated
using a dedicated Python script based on colour space conversion and
image thresholding or an early version of the trained detection model
in a later phase. All bounding box labels were later manually verified
using the free browser version of CVAT (v2.30.0 | CVAT.ai
Corporation, Palo Alto, CA, USA) after which the images were
split into smaller image patches, matching the neural network’s
image input dimensions (640 x 640 pixels | 3.2 x 3.2 mm). Other
insects (mainly originating from the E. americanus greenhouse), not
belonging to any of the four studied pest species were left unlabelled
in the dataset. The described process is visualized in Supplementary
Figure SI in the Supplementary Material File.

Next, all useful pest image patches were separated from the
background (without insect labels) and blurry/dubious image patches

2.5 cm (5320 pixels)

FIGURE 1

pixels)

3.7 cm (7968 2 mm
i

| Resolution: 5 um |

(B)

(A) Overview of the automated, high-resolution (pixel size: 5 um) image acquisition setup and (B) a zoomed example image for F. occidentalis.
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using CVAT. Background patches (BG) were subsequently further
divided into five subclasses (yellow background, printed grid, light
reflections, identification sticker and sticky trap mount) per original
pest species dataset. In order to prevent misclassification of other,
non-studied insects, an additional image patch dataset (without
labels) of all other present insects was also gathered (see Figure 2).
The high-resolution dataset was subsequently obtained by
homogeneous sampling of 1,000 labels (+ the corresponding
image patches) of each studied pest class, 1,000 patches of non-
studied insects and 20% BG patches, spread over each background
type according to its relevance (25% yellow background | 25%
printed grid | 25% reflections | 10% identification sticker | 15%
sticky trap mount). Finally, this dataset was randomly split into the
training (60%), validation (20%) and test (20%) subsets and is
further referenced to in this document as the internal dataset.
The additional collection of mixed insects YST images was
processed analogously, but now only a test dataset was gathered
consisting of 54 homogeneously sampled insect labels (+ the
corresponding image patches) per studied class (maximum
available balanced dataset size), combined with 54 image patches
of other non-studied insects (mainly originating from the E.
americanus greenhouse) and 20% BG patches. This dataset is
further referenced to in this research as the external dataset.

2.1.3.2 Reduced-resolution datasets

In order to study the effect of the image (pixel) resolution on the
model’s performance/generalization, both the internal and external
high-resolution datasets were digitally transformed into reduced-
resolution datasets (theoretical pixel size - TPS: 10 pm, 20 um, 40
pm, 80 um, 160 um, 320 pm and 640 um | see Supplementary Figure
S2 in the Supplementary Material File). This was done by resizing

Frankliniella occidentalis
(class 1 - Th_Fo)

Echinothrips americanus
(class 2-Th_Ea)

—
1mm

~ .

e
; -
printed grid
(background - no class)

yellow background
(background - no class)

FIGURE 2

Overview of the defined image patch types in both the internal and external high-resolution (pixel size: 5 ym) image datasets. The dimensions of

each image patch were 640 x 640 pixels, corresponding to 3.2 x 3.2 mm.
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the original image patch (640 x 640 pixels) to a smaller dimension
(factor 1/2n | n € N) using bilinear interpolation, followed by
resizing it back to the original image patch dimension, also using
bilinear interpolation. This way, the original dimension (640 x 640
pixels) and field of view (3.2 x 3.2 mm) were maintained in all image
patches, while the included pixel information/detail originated from
a (theoretical) lower original image resolution (= larger TPS). In
order to avoid any potential influence of the resolution downscaling
process, a dataset of the original resolution (TPS: 5 pm) was also
obtained using the same method.

2.1.3.3 Python environment

All image and dataset processing steps were performed in
Python (v3.8.19) using the following main libraries: plantcv
(v4.3.1), opencv-python (v4.10.0.82) and pillow (v10.2.0).

2.2 Detection model training and testing

2.2.1 High-resolution dataset models

Various pretrained versions of two state-of-the-art one-stage
object detection model families [YOLOI11 by Jocher et al. (2025)
and YOLO-NAS by Aharon et al. (2024)] were retrained (fine-
tuning) in Python until model convergence using the internal high-
resolution (pixel size: 5 ym) training and validation datasets. An
overview of the studied model versions and corresponding Python
libraries is shown in Table 1. To improve the overall generalization
of each model, all default data augmentation techniques of both
Python libraries were used during training. Considering the proof-
of-concept purpose of this study, only the main model
hyperparameters (e.g. number of epochs, batch size, initial/warm-

other insects
(no class)

Trialeurodes vaporariorum
(class 4 - Wf_Tv)

identification sticker
(background - no class)

sticky trap mount
(background - no class)
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TABLE 1 Overview of the studied detection model versions (Aharon et al., 2024; Jocher et al., 2025) that were trained on the high-resolution (pixel

size: 5 ym) internal dataset.

Model type Version
YOLO11n 26
YOLOl1s 9.4
YOLOI11 YOLOI1m 20.1
YOLO11l 253
YOLO11x 56.9
YOLO-NAS-$ 19.0
YOLO-NAS YOLO-NAS-M 511
YOLO-NAS-L 66.9

up learning rate and epochs, etc.) were adjusted in between (re)
training iterations in order to obtain the best configuration per
model version (see Supplementary Table SI and Supplementary
Table 52 in the Supplementary Material File). Subsequently, all best
model versions were tested on both the internal and external high-
resolution test datasets in order to compare both the performance
and generalization, relative to the other model versions.

The following test performance metrics (macro-averaged and/
or classwise) were extracted for each model version. The
corresponding formula to calculate each of these metrics were
added to the Supplementary Material File (Equations S1-S6):

» precision@50: The correctness of the model detections,
calculated at an IoU threshold of 50%.

e recall@50: The ability to detect all present objects,
calculated at an IoU threshold of 50%.

* F1@50: The harmonic mean of the detection precision and
recall, calculated at an IoU threshold of 50%.

* AP@50: The average precision or the area under the
precision-recall curve for a given detection class,
calculated at an IoU threshold of 50%.

* mAP@50: The mean average precision (mAP) or average
AP@50 over all detection classes, calculated at an IoU
threshold of 50%.

* mAP@50:95: The average of the mAP scores, calculated at
various IoU thresholds ranging from 50% to 95%, with a
step size of 5%.

All models were tested using the built-in Python package
functions or dedicated code if needed. The optimal overall test
confidence threshold was obtained from the (smoothed) macro-
averaged F1@50 confidence curve, by taking the (lowest) confidence
score resulting in the maximum F1@50 value. An overview of all
other hyperparameter values that were used during model testing
can be found in Supplementary Table S3 and Supplementary Table
S4 in the Supplementary Material File. Considering the intended
application (automated species-level monitoring in greenhouse
horticulture), the authors arbitrarily defined a minimum practical
feasibility threshold of 70% for the macro-averaged mAP@50, F1@
50, precision@50 and recall@50. However, as this threshold will be
highly crop and grower-specific, readers/future users are
encouraged to adjust it according to their specific requirements.
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Size (M parameters)

Developer (year) Python package (version)

Ultralytics (2025)
Ultralytics (2025)

( ultralytics (v8.3.58)
(
Ultralytics (2025)
(
(

ultralytics (v8.3.58)
ultralytics (v8.3.58)
ultralytics (v8.3.58)
ultralytics (v8.3.58)

Ultralytics (2025)
Ultralytics (2025)

Deci Al Inc. (2024)
Deci Al Inc. (2024)
Deci Al Inc. (2024)

super-gradients (v3.6.1)
super-gradients (v3.6.1)
super-gradients (v3.6.1)

To support the interpretation of the model performances, the
confusion matrices were also generated. Furthermore, the Gradient-
weighted Class Activation Maps (Grad-CAMs) of the last C3k2
model block were created for the smallest, yet practically feasible
YOLO11 model version. This was done for the complete external
test dataset and an additional mosaic patch containing all four
studied pest species (originating from the external test dataset)
using the same hyperparameters as during model testing. The
obtained Grad-CAMs allowed for a superficial comparison
between the most decisive pest features/regions used by the
model and the key morphological species characteristics that are
listed in the literature (European and Mediterranean Plant
Protection Organization, 2004; Mound et al., 2025).

2.2.2 Minimum resolution research

To study the influence of the image (pixel) resolution and model
complexity on the model’s performance and generalization, both a
small (YOLO11ln) and big (YOLOIl1x) detection model were
retrained (see Supplementary Table S9 and Supplementary Table
S10 in the Supplementary Material File) and tested (see
Supplementary Table S11 and Supplementary Table S12 in the
Supplementary Material File) on each of the reduced-resolution
datasets. The YOLO11 model type (Jocher et al., 2025) was used for
this research due to the faster training/testing process and user-
friendly Python library.

Based on the earlier defined practical feasibility threshold of
70% (or other value chosen by the reader/future user) and the
obtained test metrics of each reduced-resolution model, the
corresponding minimum required image resolution/maximum
pixel size for species-level detection could subsequently be
determined. Finally, to study the practical feasibility of stand-
alone automated species-level detection traps, this value was
translated into various potential minimum required photography
setups. This was done using the technical specifications of the
selected cameras/lenses (see Supplementary Table S17) and
Equations S7-S9 in the Supplementary Material File. As the
horizontal and vertical angles of view were not listed in the
official data sheets of the iPhone 16 Pro and the Sony 7R III,
these values were manually calculated using the diagonal angles of
view, aspect ratios (width:height) of respectively 4:3 and 3:2, and
Equations S10, S11 in the Supplementary Material File.
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2.2.3 Technical specifications

Model training, validation and testing were locally executed on
a workstation in Python (v3.8.19) using the following main
libraries: ultralytics (v8.3.58), super-gradients (v3.6.1) and
tensorboard (v2.18.0). The workstation consisted of one NVIDIA
RTX A5000 GPU (NVIDIA Corporation, Santa Clara, CA, USA |
CUDA version: v12.2.140) and two Intel Xeon Gold T CPUs (Intel
Corporation, Santa Clara, CA, USA).

3 Results
3.1 Dataset acquisition

3.1.1 High-resolution datasets

Over the course of several months, dozens of YSTs were
collected, photographed, processed and labelled for each pest
type, resulting in a heterogeneous internal dataset of 5105 image
patches (see Table 2) and an external test dataset of 246 image
patches (see Table 3). Due to a limited contamination of the T.
vaporariorum cultivation with F. occidentalis individuals, some of
the prior image patches contained both insect species. Because of
this, the sum of the individual image patches per patch type does
not equal the listed total (sub)dataset sizes of the training set, test set
and total dataset in Table 2. This also counts for the external dataset
(Table 3) as often multiple pest species occurred on the same image

10.3389/fpls.2025.1668795

patch. However, for the latter dataset this was intended (mixed test
dataset). Lastly, as all background images originated from the same
sticky traps as the four studied pest species and ‘other insects’
datasets, also the listed total amount of unique sticky trap sides per
(sub)dataset does not equal the sum of the individual unique trap
sides per image patch type, in both tables.

3.1.2 Reduced-resolution datasets

The resolution downscaling process successfully resulted in
eight different reduced-resolution versions (theoretical pixel size -
TPS: 5 um up to 640 um) of both the internal and external datasets
(see Supplementary Figure S2 in the Supplementary Material File).

3.2 Detection model training and testing

3.2.1 High-resolution dataset models

All studied model versions provided comparable general
performance scores (mAP@50 and F1@50) for the high-resolution
(pixel size: 5 ym) internal test dataset of > 90%, no matter the used
model type, version or general complexity (Figure 3A). However, the
mAP@50:95 performance score for the internal test dataset was
consistently lower for the YOLO-NAS models compared to the
YOLOI11 models (AmAP@50:95 = 8% - 11%).

All models clearly performed worse on the external test dataset
(Figure 3B), but did show an increasing performance towards

TABLE 2 Detailed composition of the high-resolution (pixel size: 5 um) internal dataset, consisting of yellow sticky trap image patches.

Validation set

Image/label type

Training set (60%)

Test set (20%) Total dataset (100%)

(20%)
Image Image Image Image  Unique sticky tra
Labels 9 Labels 9 Labels 9 Labels 9 a y trap
patches patches patches patches sides (A+B)

F. occidentalis (class 1) 548 450 215 155 237 182 1,000 787 23 (11 + 12)
E. americanus (class 2) 600 567 192 188 208 202 1,000 957 15 (8 +7)
B. tabaci (class 3) 626 529 189 168 185 153 1,000 850 10 (5 +5)
T. vaporariorum (class 4) 587 297 247 113 166 85 1,000 495 16 (7 +9)
other insects (no class) - 621 - 194 - 185 - 1,000 34 (29 + 5)
yellow background (BG -

- 146 - 50 - 59 - 255 64 (38 + 26)
no class)

. d (BG -

printed grid (BG - no - 149 - 50 - 53 - 252 41 (41 + 0)
class)
reflections (BG - no

- 158 - 45 - 53 - 256 63 (36 + 27)
class)
identification sticker (BG

- 62 - 22 - 21 - 105 35 (18 +17)
- no class)
ticky t t (BG -
sticky trap mount ( - 9 - 35 - 33 - 158 58 (31 +27)
no class)
TOTAL 2,361 3,062% 843 1,020 796 1,023* 4,000 5,105" 88 (56 + 32)b

The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.

“Due to a limited contamination of the T. vaporariorum cultivation with F. occidentalis individuals, some of the prior image patches contained both insect species. Because of this, the sum of the
individual image patches per patch/label type does not equal the listed total (sub)dataset sizes of the training set, test set and total dataset.

®As all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the

sum of the individual unique sticky trap sides per image/label type.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1668795
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Laekeman et al.

10.3389/fpls.2025.1668795

TABLE 3 Detailed composition of the high-resolution (pixel size: 5 um) external dataset, consisting of yellow sticky trap image patches.

Image/label type Test set (100%) Total dataset (100%)
Labels Image patches Labels Image patches Unique sticky trap sides (A+B)

F. occidentalis (class 1) 54 47 54 47 8 (4+4)
E. americanus (class 2) 54 54 54 54 7 (4 +3)
B. tabaci (class 3) 54 51 54 51 4(2+2)
T. vaporariorum (class 4) 54 36 54 36 4(2+2)
other insects (no class) - 54 - 54 8(4+4)
yellow background (BG - no class) - 12 - 12 8(4+4)
printed grid (BG - no class) - 12 - 12 4(4+0)
reflections (BG - no class) - 12 - 12 8(4+4)
identification sticker (BG - no

class) - 5 - 5 5(3+2)
sticky trap mount (BG - no class) - 8 - 8 7 (3 +4)
TOTAL 216 246" 216 246* 8(4+ 4)b

The following abbreviations are used: side A = printed grid front side; side B = non-printed back side; BG = background image.
*As some image patches contained multiple thrips/whitefly individuals, the sum of the individual patches per image/label type does not equal the listed total (sub)dataset size.

P As all background images originated from the same sticky traps as the four studied pest species and ‘other insects’ datasets, the listed total amount of unique sticky trap sides does not equal the

sum of the individual unique sticky trap sides per image/label type.

higher model complexities. Furthermore, the YOLO-NAS models
tended to better generalize to the unseen external test dataset
(mAP@50: 85% - 89% | F1@50: 83% - 87%) compared to the
YOLO11 models (mAP@50: 79% - 84% | F1@50: 74% - 81%). In
general, a performance drop between both test datasets of
approximately 10% - 20% and < 10% was observed, respectively,
for the YOLO11 and YOLO-NAS model architectures for all
performance metrics with an IoU > 50% (mAP@50, precision@
50, recall@50 and F1@50). However, the drop in mAP@50:95 scores
between both test datasets was less pronounced for the YOLO11
models (approx. 10%), while almost non-existing for the YOLO-
NAS models.

When studying the classwise model performances on the high-
resolution internal test dataset, all model versions generally
performed better (highest mAP@50 and F1@50) for the detection
of thrips (E. americanus and F. occidentalis) compared to the
detection of both whitefly species (T. vaporariorum and B. tabaci)
(Figures 4A, B). However, it should be noted that the absolute
differences between the best and worst performing classes were
rather limited for all tested model versions (AAP@50: 4% - 7% |
AF1@50: 4% - 10%). The corresponding precision@50 and recall@
50 plots for each tested model were visualized, respectively, in
Supplementary Figure S4C and Supplementary Figure S4D in the
Supplementary Material File.

However, considering the external test dataset (Figures 4C and
4D), the overall order of the best performing classes was different
for the YOLO11 models, compared to the equivalent model
versions, tested on the internal dataset. The general performance
drop was largest for the smallest YOLO11 models (YOLO11n and
YOLO11s), now performing best on B. tabaci (AAP@50: -7% and
-5% | AF1@50: -10% and -8% | relative to the internal test dataset
performance) and worst on F. occidentalis (AAP@50: -23% and
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-25% | AF1@50: -25% and -30% | relative to the internal test dataset
performance). However, this effect was reduced when using more
complex model versions. Apart from a performance drop compared
to the internal test dataset, the order of best performing pest classes
did not really change for the YOLO-NAS models. The
corresponding general performance drop was clearly most
significant for both whitefly species (AAP@50: -9% to -14% |
AF1@50: -4% to -14% | relative to the internal test dataset
performance). Once again, the precision@50 and recall@50 plots
were added to the Supplementary Material File (Supplementary
Figure S5C, Supplementary Figure S5D).

Within the YOLO-NAS model series, the YOLO-NAS-L model
performed best on the external test dataset, resulting in macro-
averaged and classwise performance scores (IoU = 50%) of
respectively > 85% and > 75%. For the YOLO11 model series, the
largest YOLO11x version performed best on the external test
dataset, resulting in 5% - 6% lower macro-averaged performance
scores (IoU = 50%) compared to the best YOLO-NAS model
(YOLO-NAS-L).

The previously described similar performance of all model
versions on the internal test dataset and better generalization to
the external test dataset by the YOLO-NAS models are also clearly
visible in the confusion matrices (IoU > 50%) of the smallest
(YOLO11n) and largest (YOLO-NAS-L) tested model versions
(see Figure 5). Although most distinct for the smallest YOLO11n
model, the proportion of complete misses (pest insect predicted as
background) was in both models higher for the thrips classes in the
external test dataset, compared to the internal test dataset. However,
regarding the whitefly detections, the percentage of complete misses
generally dropped while species-level misclassifications (B. tabaci
<=> T. vaporariorum) significantly increased in the external dataset.
Lastly, the proportion of false detections (background detected as
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https://doi.org/10.3389/fpls.2025.1668795
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Laekeman et al.

10.3389/fpls.2025.1668795

@ N =

S o8 g8 5 2 % ¢

- — - Zd o zZ o =z

33§ iid 5§ 3

@‘ > > ee 2 g 2 Q

g 10

?
o

g I ——— U

£ W

@ 09 .
o
S
2
[
v
5

g os

S
£
[
Q

0.7 ®

10 20 30 40 50 60 70

model complexity (M parameters)
A)

e YOLOll
—— internal test dataset

—— mMAP@50 —— mAP@50:95

FIGURE 3

@ = <
s o8 g2F 5 ¢ % 2
— - - Zd oo Z o =z
T8 F 388 38 3
g > > es £ g = <]
g 10
?
4
S
©
E
¢ 0.9 o
o 7B
a R B
o e ﬁ‘ ol N~
c e /\* _______ pots g
€ 08 em gl VT
5 [ I/ b-—e”
£ Saof
g ¢ —
0.7 O °” ©
[ B -
e 2
0 10 20 30 40 50 60 70
model complexity (M parameters)
o YOLO-NAS
--- external test dataset
precision@50 recall@50 —— F1@50

Macro-averaged high-resolution (pixel size: 5 ym) internal (A) and external (B) test dataset performance scores for each of the studied model

versions, trained on the internal high-resolution image dataset.

pest insect) was also higher in the external test dataset for both
model versions, while being most pronounced for the
YOLOI11n model.

The Grad-CAMs of the smallest, yet practically feasible, high-
resolution model version (YOLO1ln), indicated that the model
mainly focused on the (upper part) of the abdomen of both thrips
species, when visible. When occluded, the model also focused on the
head and antennae. Regarding the studied whitefly species, the
model generally focused on the yellow body and darker white/
transparent zones of the wings. An exemplary overview of the
classwise YOLO11ln Grad-CAMs was added in Supplementary
Figure S3 of the Supplementary Material File.

3.2.2 Minimum resolution research

Due to the rather time-consuming neural architectural search
(NAS) process during the YOLO-NAS model training and the user-
friendly ultralytics Python library, in the end the YOLO11 model
architecture was used for the minimum resolution research.

Once again, all tested models performed worse on the external
test dataset, compared to the internal test dataset (Figure 6).
Furthermore, the differences were generally larger for lower image
resolutions (= larger pixel sizes). Both model types showed similar
macro-averaged performance (mAP@50, F1@50, precision@50 and
recall@50) on the internal test dataset. The model performance
dropped almost linearly with increasing pixel sizes. When tested on
the external dataset, both model types also performed quite
similarly for the smaller (theoretical) pixel size datasets, while for
larger pixel size datasets, the YOLO11n models performed generally
better. Both the mAP@50, F1@50 and precision@50 scores showed
a noticeable, non-linear drop at pixel sizes > 80 ym. In general, none
of the reported macro-averaged performance measures (IoU > 50%)
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dropped below 50% for the full range of studied (theoretical) pixel
sizes and model architectures.

Although the macro-averaged performances of both model
types were quite comparable for the external test dataset
(Figure 6), the classwise external dataset performances of the
YOLOI11x models were generally inferior across all dataset
resolutions (Figure 7, Supplementary Figures S8, S9). In general,
the classwise detection performances (AP@50 and F1@50) on the
external dataset were for thrips, and in particular F. occidentalis,
strongly affected by the image resolution, showing a steep
performance drop for pixel sizes > 80 ym for both model types.
The performance for both whitefly species (B. tabaci and T.
vaporariorum) on the other hand remained much more stable
with increasing pixel sizes. The classwise external test dataset
precision@50 and recall@50 were plotted in the Supplementary
Material File for each of the reduced-resolution YOLOlln
(Supplementary Figure S8C, Supplementary Figure S8D) and the
YOLO11x models (Supplementary Figure S9C, Supplementary
Figure S9D). For completeness, also the classwise performance
(IoU = 50%) on the internal test dataset of all tested model
versions/image resolutions were visualized in the Supplementary
Material File (Supplementary Figure S6, Supplementary Figure S7).

The internal test dataset performances of both the 5 ym reduced-
resolution YOLOIIn (Supplementary Table S13) and YOLO1lx
models (Supplementary Table S14) were almost identical to those
of the corresponding high-resolution dataset models (AmAP@50: 0%
- 1% | AF1@50: 1% | AmMax jue5ise@50: 3% | Supplementary Table S5).
However, when tested on the external test dataset, the reduced-
resolution 5 ym YOLOIl1ln model (Supplementary Table S15)
performed better than the high-resolution dataset YOLO11n model
(AmAP@50: 5% | AF1@50: 5% | AmMaxcasswise@®50: 17% |
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Supplementary Table S7). Meanwhile, the opposite behaviour was
observed for the YOLOI11x model version (Supplementary Table 57,
Supplementary Table S16 | AmAP@50: 4% and AF1@50: 3% |
AMAX Jg56ise@50: 13%).

Considering the (arbitrarily defined) minimum macro-averaged
practical feasibility threshold of 70% (IoU = 50%), the minimum
required (theoretical) pixel resolution for species-level detection
was identified as 80 ym (theoretical pixel size - TPS: < 80 um) for
both the YOLO11n and YOLO11x models (Figure 6). Furthermore,
almost all classwise AP@50 and F1@50 scores also exceeded this
threshold at TPS < 80 um (Figure 7). By contrast, classwise
precision@50 and recall@50 scores did not always comply with
the 70% threshold (see Supplementary Figures S8, S9) for TPS <
80 um.

In Table 4, various alternative sticky trap photography setups,
corresponding to the minimum (theoretical) required pixel resolution
for the YOLO11n and YOLO11x model versions (TPS: 80 um), were
compared with the camera system used in this research.
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4 Discussion

4.1 Dataset acquisition

4.1.1 High-resolution datasets

The image acquisition and processing methods resulted in a
standardized and balanced high-resolution (pixel size: 5 um)
internal dataset, consisting of 1,000 labels per studied pest species
on wet glue YSTs and relevant background images. Although the
standardized light conditions and high-quality DSLR camera setup
are not practically/economically feasible for standalone smart traps
in greenhouse horticulture, our standardized dataset did allow an
objective evaluation of the species-level monitoring concept.
Furthermore, our dataset can be easily converted to various other,
more realistic scenarios such as fluctuating light conditions/spectra
and camera quality/type using various image processing techniques.

As the morphology (shape, size and colour) of body structures
can vary within pest species depending on local environmental
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Exemplary confusion matrices (loU > 50%) after testing the smallest (YOLO11n) and biggest (YOLO-NAS-L) model versions on both the internal and
external high-resolution (pixel size: 5 um) datasets. Both model versions were trained on the high-resolution internal dataset. Both the absolute
(center value) and normalized (top left: ground-truth normalized | bottom right: prediction normalized) values are added to each cell. The following
model version-test dataset combinations are plotted: (A) YOLO11n - internal test dataset; (B) YOLO11n - external test dataset; (C) YOLO-NAS-L -
internal test dataset and (D) YOLO-NAS-L - external test dataset. Hereby the following label abbreviations were used: Th_Fo: F. occidentalis (thrips);
Th_Ea: E. americanus (thrips); Wf_Bt: B. tabaci (whitefly); Wf_Tv: T. vaporariorum (whitefly) and BG: background/other insects.

conditions, population densities and species genetics (Higgins and
Myers, 1992; Mound, 2005; Riley et al., 2011), future datasets should
incorporate as much of these variables in order to increase the
model generalization. Furthermore, the dataset in this study was
limited to one brand of wet glue YSTs, while in practice various
manufacturers, trap colours and glue types (wet and dry) are used,
depending on the targeted pest insect and farming conditions/
location. As suggested by Ong and Hoye (2025), to further enhance
model generalization across different trap colours without
significant performance loss, the training dataset should ideally
comprise insect images captured on transparent sticky traps. To
overcome the limited chromotropic attraction and lack of
background contrast of these traps, the addition of a coloured
background behind the transparent trap is suggested to collect the
training dataset.

Although theoretically possible by altering the standardized,
high-resolution dataset, extending the training dataset with real
images taken by various sensor types (e.g. DSLR camera,
smartphone camera, action camera, stand-alone camera module,
etc.) and lighting conditions could also help the model to better
generalize to real-world conditions and mixed imaging setups (Ong
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and Hoye, 2025). Finally, the practical implementation and image
acquisition protocol using smaller, standalone camera sensors will
most likely also be more feasible compared to the standardized
DSLR camera setup that was used in this research.

4.1.2 Reduced-resolution datasets

The high-resolution dataset (pixel size: 5 ym) and the proposed
digital resolution downscaling process allowed for a fast and easy
creation of various reduced-resolution datasets (TPS: 5 um - 640
um). However, the main limitation of this method was the fact that
this only resulted in digitally reduced resolution datasets which will
to some extend differ (e.g. presence/absence of specific artifacts,
distortions, noise, etc.) from images originally taken at lower
resolutions. The latter effect is expected to be more significant for
lower resolutions (see Supplementary Figure S2 - TPS: 320 ym and
640 um) as the difference in pixel resolutions is larger compared to
the original high-resolution dataset. Furthermore, DSLR camera
images provide the best image quality, where other camera systems
with reduced sensor sizes (e.g. smartphones and low-cost camera
modules) suffer from more noise in the images taken. The latter
images are also often digitally optimized to provide better results,
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increasing the number of artifacts that become visible when zoomed
in. Therefore, in future research, lower-resolution datasets should
ideally be obtained using lower-resolution camera systems and
compared to the reduced-resolution datasets of this research.

4.2 Detection model training and testing

4.2.1 High-resolution dataset models
4.2.1.1 Model performance and generalization

Considering the (arbitrarily defined) minimum macro-averaged
practical feasibility threshold of 70% at IoU > 50%, species-level
thrips and whitefly detection could be considered as feasible for
each of the tested high-resolution dataset (pixel size: 5 ym) models
and both test datasets. The reduced, yet still feasible generalization
to the external test dataset of all tested models was most likely
caused by the rather limited size (1,000 labels/pest species) and
heterogeneity (unique sticky trap sides) of the obtained internal
high-resolution dataset. Extending the training dataset with more

Frontiers in Plant Science 12

unique image patches could potentially further improve the models’
generalizations. Furthermore, small differences in dataset quality/
composition and the limited external test dataset size (246 image
patches <=> 1023 image patches) could also have played a role.

The observed better generalization to the external test dataset of
more complex model versions supports the findings of Hu et al.
(2021), Neyshabur et al. (2014) and Novak et al. (2018). The reason
why this relative advantage of more complex models could not be
observed for the internal test dataset performances, was most likely
due to the more similar image patches during training and testing
(same original sticky traps | same acquisition dates), compared to
the external test dataset (independent dataset | different acquisition
date). As the models do not need to handle (subtle) differences in
acquisition settings and dataset quality, the benefit of using more
complex models will therefore be limited compared to the increased
risk of overfitting.

The lower observed mAP@50:95 scores of the YOLO-NAS
models on the internal test dataset were most likely caused by the
best model selection method of the super-gradients Python library.
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For the YOLO-NAS models, this selection was based on the mAP@
50:75 validation metric, while for the YOLO11 models (ultralytics
Python package) the model fitness (weighted average: mAP@50 =
10% and mAP@50:95 = 90%) parameter was used. Furthermore, Ali
and Zhang (2024) reported general YOLO-NAS detection struggles
for occluded objects which could also have played a role. The better
generalization of the YOLO-NAS models to the external test dataset
could be linked to the intrinsic training process. During YOLO-
NAS training, both the model architecture and weights are
optimized in terms of computational resources and inference
time, while limiting the impact on model accuracy (Ali and
Zhang, 2024; Terven et al, 2023). As this optimization process
generally results in less complex models, the finally obtained
YOLO-NAS models might be less prone to overfitting to the
original dataset, therefore boosting their generalization.

Regarding the classwise general performance on the internal
high-resolution dataset, all models scored best for the detection of
thrips (in particular E. americanus) and worst for the detection of
whiteflies (mostly B. fabaci), although the absolute differences
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between the best and worst performing classes were limited.
However, when testing on the external dataset, the smallest
YOLOI11 models (YOLO11ln and YOLOI11s) performed best for
the detection of B. tabaci and worst for the detection of F.
occidentalis. Based on the reported confusion matrices, this drop
in thrips performance was caused by an increase in complete misses
(thrips detected as background). As this effect was reduced when
using more complex YOLOI1 model versions, we suggest that
(subtle) differences in the image acquisition method and lower
image quality (less focussed) of the external dataset might have
caused this. All YOLO-NAS models performed best for the
detection of thrips on the external dataset and resulted in lower
general classwise performance drops between the internal and
external datasets compared to the YOLO11 models. The increased
ratio of YOLO-NAS-L whitefly misclassifications in the external test
dataset, as seen in the reported confusion matrices, can most likely
also be attributed to differences in dataset composition, especially
insect residence times (IRTs), and lower image quality
(less focused).
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TABLE 4 Theoretical minimum required photography setups suited for species-level detection of the studied thrips and whitefly species (theoretical
pixel size - TPS: 80 um) for the used high-resolution DSLR camera (bold font), recent smartphone cameras, recent action camera, and some widely
used low-budget camera modules.

Minimum . Max. effective® .
Sensor Angle of view . : . Images per Approximate
Sensor type + lens ualit focus Trere. 2G| e working distance (TPS: sticky tra unit cost®
a Y distance : : 80 um) y trap
i H: 62.2°
Raspberry Pi camera module 2 8 MP 10 cm V: 48.8° 21 cm 1 < €50
i H: 66°
Raspberry Pi camera module 3 11.9 MP 10 cm Vs 41° 28 cm 1 < €50
. H: 72°
Arducam Pi Hawk-eye 64 MP 8 cm 52 cm 1 < €100
V: 54.6°
Samfung Galaxy A16 LTE 50 MP 10 cm H: 67.6 48 cm 1 <€ 150
(main camera) V: 53.8°
GoPro HERO13 Black + macro H: 87°
lens module (16:9 - linear 27.13 MP 11 cm i 29 cm 1 < €500
V: 56°
mode)
iPhone 16 Pro 48 MP 2 em H: 1087 23 em 1 <€1250
(ultra wide camera) V: 92° ?
R III + FE H: 40°
Sony o7R Il + FE 50mm 2.4 MP 16 cm 0 87 cm 1 <€2,250
F2.8 macro lens V:27°

All listed cameras are equipped with auto-focus.
“Rounded down to the nearest cm.

®Approximate unit cost (rounded up to the closest multiple of €50) at the time of submission of the manuscript.
The used equations and references to the technical specifications/prices can be found in Supplementary Equations 57-511 and Supplementary Table S17, respectively, of the Supplementary

Material File.
The bold values correspond to the imaging setup that was used in this research.

As almost all tested high-resolution models output both macro-
averaged and classwise performance metrics (IoU > 50%) of
respectively > 70% and > 60% on the external dataset, species-level
detection using the proposed high-resolution (pixel size: 5 um)
imaging setup seemed to be possible for the studied pest species.
Furthermore, although model performance increased with model
complexity, species-level detection also seemed to be possible using
the smallest tested model version (YOLO11n), resulting in overall/
classwise performance metrics of > 65% (IoU > 50%) for the external
test dataset. Furthermore, the Grad-CAMs of this model showed
overlap between the class-specific focus regions of the model and the
key morphological characteristics of each species, described in the
literature (European and Mediterranean Plant Protection
Organization, 2004; Mound et al., 2025). Thrips focus areas were
mainly concentrated on the abdomen, containing the differently
coloured striping pattern and abdominal colour. Key focus areas of
the studied whitefly species were the body and dark white/transparent
zones of the wings. Differences in species body colour were also
described in the literature (European and Mediterranean Plant
Protection Organization, 2004). The fact that the model seemed to
focus on the transparency of the wings, could be explained by the fast
(IRTs: less than seven days) decaying wings of B. tabaci, as described
by Bockmann et al. (2021). This observation was also shared by the
authors while handling the datasets (data not shown). As the whitefly
pests in our datasets had IRTs of several days up to several months, the
trained models might possibly fail when applied to YSTs containing
fresh whiteflies. However, this issue can most likely be tackled by
extending the training datasets with image patches of fresh individuals.
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Furthermore, since none of the high-resolution models
performed consistently worse for the detection of E. americanus
(IRTs: approx. one year) in the external dataset compared to the other
detection classes (IRTs: several days to several months), this
showcases the potential of species-level detection, even when using
older YSTs. However, it should be noted that the decay of E.
americanus over time was rather limited in our dataset (data not
shown), which could explain this observation. Differences in IRT's
between the training and testing datasets are namely known to
negatively impact the detection performance, as well as insect decay
in general (Bockmann et al., 2021). Enriching the dataset with images
featuring a wide range of IRTs and varying stages of decay would
likely enhance the models’ generalization/robustness to these factors.

4.2.1.2 Comparison with existing research

The best overall detection results (in this study) for the high-
resolution (pixel size: 5 ym) external dataset were obtained using
the YOLO-NAS-L model version (mAP@50: 89% | F1@50: 87%)
and YOLO11x model version (mAP@50: 84% | F1@50: 81%),
clearly complying with the earlier defined macro-averaged
practical feasibility threshold of 70% (IoU = 50%). Compared to
the only reported species-level detection models on sticky trap
images in the literature - developed by Niyigena et al. (2023) using
17 um pixel resolution and achieving macro-averaged mAP@50
scores of 91% (reflectance dataset) up to 97% (transmittance
dataset) for detecting S. dorsalis and other thrips species
(included as one class) - all high-resolution models (pixel
resolution: 5 pm) that were tested in this study performed
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similarly on the internal test dataset, with mAP@50 scores ranging
from 94% to 95%. However, as Niyigena et al. (2023) focused on
different pest species, detected only one species at the species level,
and lacked an external test dataset, a more profound comparison
could not be made. In addition, as the models of Niyigena et al.
(2023) were trained and tested using images, pre-annotated with
differently coloured markers per class prior to image acquisition,
one could question the generalization of the reported models. Insect
detection could, to some extent, rely on the presence or absence of
these coloured circles rather than on the insect features themselves.
Compared to the best overall performing T. vaporariorum and B.
tabaci adult detection model of Gutierrez et al. (2019) on internal
test dataset plant images (precision: B. tabaci = 34% and T.
vaporariorum = 72%), all high-resolution models in this research
performed better on the internal test dataset (precision: B. tabaci =
88% - 96% and T. vaporariorum = 80% - 96%). However,
considering the different type/resolution of input images and
dataset size, no further comparison could be made.

4.2.1.3 Future directions

To our knowledge, this is the first reported thrips/whitefly species-
level detection system using standard RGB (yellow) sticky trap images
and YOLO-based detection models. Furthermore, the results indicated
that it was very successful to discriminate at the species level (nAP@
50: 79% - 89% | F1@50: 74% - 87%). Future research should therefore
extend this technology to additional types of pest species, sticky traps,
model architectures and ambient light conditions (e.g. light intensity
and spectral composition). To accelerate progress and support the
development of a universal species-level pest monitoring system based
on RGB sticky trap images, the creation and use of an open-access
database is recommended by the authors.

4.2.2 Minimum resolution research
4.2.2.1 Model performance and generalization

The macro-averaged and classwise performance metrics of all
YOLOL11n (smallest) and YOLO11x (largest) models were comparable
for the internal test dataset and decreased linearly with increasing pixel
size. However, when tested on the external datasets, a clear general
(mAP@50 and F1@50) performance drop at pixel sizes > 80 um was
observed for both model versions. This performance drop was mainly
caused by a reduction in thrips species detection performance
(particularly for F. occidentalis), relative to a slower decaying
whitefly species detection performance at lower image resolutions.
Despite the larger morphological differences (e.g. colour, body shape,
etc.) between the studied thrips species compared to the studied
whitefly species, the general lower performance for thrips at lower
image resolutions was most likely caused by their relatively smaller
body size compared to the studied whitefly species. As a consequence,
the number of pixels per individual was lower for these insects,
resulting in less cues for the model to base its decision on.
Extending the training dataset with more unique image patches and
insect morphologies could potentially increase both the classwise
thrips and macro-averaged model performances.

In general, the YOLO11ln models performed better on the
external test dataset at lower pixel resolutions (= larger TPS),
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compared to the heavily complex YOLO1l1x models. This
showcases that increasing the model’s complexity will not
always result in better performance and may even lead to poorer
generalization due to overfitting, especially when the size of the
training dataset is limited (Jegham et al., 2024). More striking was
the fact that none of the macro-averaged performance metrics
(IoU > 50%) dropped below 50% for both test datasets, even for
the very blurry and pixelated 320 ym and 640 ym theoretical pixel
size datasets. However, this was not the case for the classwise
performances on the external test dataset (IoU > 50%), which
quickly dropped below 50% for F. occidentalis at pixel sizes >
80 um.

Considering the resolution downscaling process, the 5 um
reduced-resolution dataset images were not altered compared to
the original high-resolution images (see source code of the
PIL.Image.resize Python package). Consequently, the observed,
though very small, differences in internal test dataset performance
scores of the 5 ym reduced-resolution and high-resolution dataset
YOLOI11n and YOLO1llx models were probably caused by the
different hyperparameters used during training. This could also
explain the better generalization to the external test dataset by the 5
um reduced-resolution YOLO11ln and original high-resolution
dataset YOLO11x models.

4.2.2.2 Minimum required pixel resolution

Based on the (arbitrarily defined) minimum macro-averaged
practical feasibility threshold of 70% (IoU = 50%), a minimum
required theoretical pixel resolution of 80 ym (TPS: < 80 um) could
be defined for species-level detection using both the YOLO11n and
YOLOI11x models. Although the corresponding classwise
precision@50 and recall@50 scores did not always exceed this
threshold, however, the classwise AP@50 and F1@50 scores
generally did. Furthermore, the classwise precision and recall
scores can be tweaked by altering the (overall or classwise)
detection confidence threshold(s). Consequently, the authors do
believe that by further model tweaking, both models’ precision@50
and recall@50 could potentially also exceed/closely approach the
defined 70% threshold.

Taking into account this minimum required resolution (TPS: <
80 um), sticky trap species-level detection was subsequently found
to be feasible using various alternative imaging setups, such as
recent smartphones, action cameras, or even low-cost (< €50 -
€100), standalone camera modules such as the Raspberry Pi camera
module 2/3 or Arducam Pi Hawk-eye. Moreover, all listed
photography setups (see Table 4) were able to capture a complete
sticky trap in a single image with sufficient resolution and feasible
working distances for practical implementation. Furthermore, Ong
and Hoye (2025) found no significant differences in insect detection
model performances when their models were trained on high-
quality DSLR, webcam or smartphone camera images of similar
resolution, showcasing the potential of low-budget, standalone
camera modules for species-level detection. Combined with the
limited size and good performance of the YOLO11n model, this
really paves the way towards feasible, real-time, automated species-
level monitoring of sticky traps for use in greenhouse horticulture.
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4.2.2.3 Future directions

Lastly, as the reported reduced-resolution model performances
were only theoretically defined, future research should empirically
validate these results. Furthermore, also the reported minimum
required pixel resolution (80 ym) for the YOLO11n and YOLO11x
models, should be validated using the proposed (low-cost)
camera setups.

5 Conclusions

This study demonstrated that species-level detection of two
globally distributed thrips species (F. occidentalis and E.
americanus) and two whitefly species (B. tabaci and T.
vaporariorum) is achievable using high-resolution (pixel size: 5
pm) RGB images of yellow sticky traps and various YOLOI11 and
YOLO-NAS detection model versions. Although the model
performance increased with higher model complexity, even the
smallest studied model version (YOLO11n) resulted in acceptable
macro-averaged and classwise performance scores. Considering the
arbitrarily defined minimum macro-averaged practical feasibility
threshold (IoU > 50%) of 70% for greenhouse horticultural
applications, the minimum required pixel resolution allowing
species-level detection was found to be 80 wm for both the
YOLOI1n and YOLOI11x models. This image resolution should,
in theory, allow the use of various recent smartphones, action
cameras, or even low-budget, standalone camera modules, while
still requiring only a single image per sticky trap at feasible working
distances. Combined with the low complexity and decent
performance of the YOLO11ln model, this really paves the way
towards feasible, real-time, automated species-level monitoring of
(yellow) sticky traps in greenhouse horticulture. Future research
should further validate the feasibility/adoption in commercial IPM
programs and expand this technology to more pest species, sticky
trap types, and ambient light conditions.

Life Science Identifiers (LSIDs) in
ZOOBANK

* F. occidentalis: urn:lsid:zoobank.org:act:2EA5A102-FC8B-
427F-B574-8D69155C1D2F

e E. americanus: urn:lsid:zoobank.org:act:5BE86D34-19DD-
4321-8AAD-E53BFAA7EE34

* B. tabaci: urn:lsid:zoobank.org:act:30E31918-A380-44F9-
9D97-708E74556A9D

e T. vaporariorum: /
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