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The precise identification of plant pests and diseases plays a crucial role in

preserving crop health and optimizing agricultural productivity. In practice,

however, farmers frequently report symptoms in informal, everyday language.

Traditional intelligent farming assistants are built upon domain-specific

classification frameworks that depend on formal terminologies and structured

symptom inputs, leading to subpar performance when faced with natural,

unstructured farmer descriptions. To address this issue, we propose an

innovative approach that classifies plant pests and diseases from colloquial

symptom reports by leveraging soft prompt-tuning. Initially, we utilize

Pretrained Language Models (PLMs) to conduct named entity recognition and

retrieve domain-specific knowledge to enrich the input. Notably, this knowledge

enrichment process introduces a kind of semantic alignment between the

colloquial input and the acquired knowledge, enabling the model to better

align informal expressions with formal agricultural concepts. Next, we apply a

soft prompt-tuning strategy coupled with an external knowledge enhanced

verbalizer for the classification task. The experimental results demonstrate that

the proposed method outperforms baseline approaches, including state-of-the-

art(SOTA) large language models (LLMs), in classifying plant pests and diseases

from informal farmer descriptions. These results highlight the potential of

prompt-tuning methods in bridging the gap between informal descriptions and

expert knowledge, offering practical implications for the development of more

accessible and intelligent agricultural support systems.
KEYWORDS

plant pests and diseases classification, colloquial descriptions, soft prompt-tuning,
verbalizer, natural language processing
1 Introduction

Plant pests and diseases are among the most pressing challenges in modern agriculture,

threatening crop health, reducing yields, and causing substantial economic losses

worldwide (Donatelli et al., 2017; Liu and Wang, 2021). Effective diagnosis and timely
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intervention are essential to mitigate these threats, particularly in

rural and smallholder farming communities where expert support is

often limited (Nayagam et al., 2023).

In these real-world agricultural settings, farmers typically report

plant symptoms based on their direct observations and personal

experiences rather than using standardized scientific terminology

(Rodriguez-Garcia et al., 2021). These descriptions are highly

colloquial, reflecting local linguistic habits and intuitive

interpretations of visible symptoms. For instance, a farmer might

describe an infection as “The leaves are yellow and have red dots,

with spider-web-like threads on the back”, whereas a technical

expert would label the condition as “yellowing with red spider mite

infestation.” Similarly, the phrase “The rice has grown white fuzz”

might correspond to “powdery mildew” in agronomic terms. Such

linguistic mismatches create a substantial barrier between user-

reported information and formal agricultural knowledge systems.

Despite the rise of intelligent agricultural assistants powered by

natural language processing and image classification technologies,

most of these systems are designed around structured, expert-level

inputs and rely heavily on terminological consistency (Toscano-

Miranda et al., 2022). Current approaches typically require users to

select symptoms from predefined categories or input disease names

and signs that align closely with entries in agricultural knowledge

bases (Wang et al., 2024a). While this design performs adequately in

controlled environments or when operated by trained personnel, it

fails to accommodate the informal, diverse, and highly variable

language used by farmers in natural dialogue (Li and Wang, 2024).

As a result, these systems often misclassify or fail to recognize pests

and diseases when presented with unstructured, colloquial input.

Moreover, the colloquial descriptions are often very short and

ambiguous, which exacerbates the challenge of accurate

classification. Some recent studies in short text classification have

attempted to tackle similar issues of data sparsity and semantic

ambiguity by using character-level attention mechanisms combined

with feature selection (Zhu et al., 2020), or by leveraging prompt-

learning with external knowledge expansion (Zhu et al., 2024).

However, these methods generally do not explicitly integrate

agricultural domain knowledge nor address the unique linguistic

patterns of farmer-reported symptoms, limiting their applicability

in this context.

To bridge this gap between colloquial farmer descriptions and

formal pest and disease classification, in this paper, we introduce an

innovative approach for plant pest and disease classification based

on colloquial descriptions by leveraging soft prompt-tuning. Unlike

conventional fine-tuning methods that require extensive re-training

of model parameters on domain-specific datasets, soft prompt-

tuning introduces lightweight, continuous prompt vectors that

guide the model’s attention toward relevant linguistic patterns

without modifying the core model architecture. Specifically, our

method first leverages the AgriBERT based on PLMs for named

entity recognition to extract key agricultural entities from the

obfuscated text, and the agricultural knowledge graph is

introduced to query domain-specific knowledge related to the

entities. Then, the user-provided fuzzy description and the

retrieved knowledge are concatenated to the soft prompt-tuning
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model. The external verbalizer further enriches the model’s

understanding by mapping informal expressions to corresponding

technical terms using structured agricultural knowledge, allowing

the model to interpret and classify colloquial symptom descriptions

more accurately. By leveraging the generalization capabilities of

PLMs and integrating domain knowledge through the constructed

verbalizer, our method effectively aligns natural language

descriptions with standardized pest and disease categories.

Comprehensive experiments conducted on two datasets

demonstrate that our method outperforms the SOTA baselines

including LLMs. In summary, the primary contributions of our

work are outlined below:
1. We identify and address a critical gap in plant pest and

disease classification by focusing on the challenge of

interpreting colloquial , non-standard symptom

descriptions provided in real-world scenarios, which are

often overlooked by existing intelligent agricultural systems

designed around formal terminology.

2. We introduce an innovative classification approach based

on soft prompt-tuning, enhanced with an external

knowledge extension verbalizer, which effectively bridges

informal linguistic input and domain-specific agricultural

knowledge without requiring extra fine-tuning.

3. We construct and evaluate our method on two datasets of

real-world, demonstrating superior classification accuracy

and robustness compared to the SOTA baselines including

LLMs, thus highlighting the practical potential of our

method for improving intelligent agricultural diagnostics

in real-world scenarios.
2 Related work

2.1 Plant pests and diseases classification

Plant diseases and pests are significant factors determining both

the yield and quality of crops, which can be addressed by means of

artificial intelligence (Spence et al., 2020). These diseases and pests

represent a form of natural disasters that disrupt the healthy growth

of plants, potentially leading to plant mortality throughout the

entire development stage, from seed formation to seedling growth

(Liu and Wang, 2021).

Traditional approaches to plant pest and disease classification

have predominantly relied on manual inspections and specialized

knowledge, which are labor-intensive, time-consuming, and prone

to human mistakes and biases (Xing and Lee, 2022). With the rise of

machine learning and computer vision, automated image-based

classification methods have gained widespread attention for their

potential to improve efficiency and accuracy (Domingues et al.,

2022). For example, Shoaib et al. proposed advanced deep learning

models for plant disease detection, highlighting the effectiveness of

Convolutional Neural 85 Networks (CNNs) in learning hierarchical

features from images (Shoaib et al., 2023). Some classical 86
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architectures such as AlexNet, VGGNet, ResNet, and Inception

have been employed to classify diseases in various crops, including

tomato, rice, maize, and citrus (Sumaya et al., 2024). For instance,

Yueteng et al. demonstrated that an improved ResNet architecture

enhances recognition accuracy in complex plant disease datasets

(Yueteng et al., 2021). Furthermore, traditional machine learning

models like Support Vector Machines (SVM), k-Nearest Neighbors

(k-NN), and Random Forests have been deployed, often in

conjunction with manually extracted features such as color,

texture, and shape descriptors. For example, Kale et al. analyzed

crop disease detection using these classifiers and found that while

effective under certain conditions, they often struggle with

generalizability across diverse environmental conditions and are

limited when dealing with visually similar symptoms among

different diseases (Kale and Shitole, 2021). However, these

methods often struggle with generalizability across diverse

environmental conditions and are limited when dealing with

visually similar symptoms among different diseases.

Recently, to overcome the limitations of single-modal

approaches, there have already been some efforts on exploring

multi-modal learning frameworks for plant pest and disease

classification, which integrate heterogeneous data sources, such as

images, textual descriptions, sensor data, and environmental

metadata (Yang et al., 2021). This paradigm aims to enhance the

robustness and contextual awareness of classification systems (Liu

et al., 2025a). For example, Wei et al. proposed a multi-modal

transformer architecture for citrus pests and diseases classification,

where both image and text features are encoded and aligned

through a cross-attention mechanism, enabling improved retrieval

and identification performance (Wei et al., 2023). Similarly, Duan

et al. introduced a multimodal system combining RGB images, text

data, and environmental cues to facilitate pest detection and

classification, demonstrating superior performance over image-

only models, especially in complex agricultural scenarios (Duan

et al., 2023). Wang et al. proposed Agri-LLaVA, an advanced

multimodal assistant enriched with domain knowledge, designed

specifically for managing 108 agricultural pests and diseases. Agri-

LLaVA is trained on an extensive multimodal dataset, containing

more than 221 varieties of pests and diseases, amounting to roughly

400,000 data samples. By integrating domain-specific knowledge

into its training process, Agri-LLaVA demonstrates superior

performance in both multimodal agricultural dialogue and visual

comprehension, offering innovative solutions to tackle pest and

disease challenges in agriculture (Wang et al., 2024b). These

approaches leverage the complementarity of modalities, while

images provide morphological cues, textual and contextual data

supply semantic and environmental understanding, which proves to

be useful for fine-grained and field-based classification tasks.

Recently, to overcome the limitations of single-modal

approaches, there have already been some efforts on exploring

multi-modal learning frameworks for plant pest and disease

classification, which integrate heterogeneous data sources, such as

images, textual descriptions, sensor data, and environmental

metadata (Yang et al., 2021). This paradigm aims to enhance the

robustness and contextual awareness of classification systems (Liu
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et al., 2025a). For example, Wei et al. proposed a multi-modal

transformer architecture for citrus pests and diseases classification,

where both image and text features are encoded and aligned

through a cross-attention mechanism, enabling improved retrieval

and identification performance (Wei et al., 2023). Similarly, Duan

et al. introduced a multimodal system combining RGB images, text

data, and environmental cues to facilitate pest detection and

classification, demonstrating superior performance over image-

only models, especially in complex agricultural scenarios (Duan

et al., 2023). Wang et al. proposed Agri-LLaVA, an advanced

multimodal assistant enriched with domain knowledge, designed

specifically for managing 127 agricultural pests and diseases. Agri-

LLaVA is trained on an extensive multimodal dataset, containing

more than 221 varieties of pests and diseases, amounting to roughly

400,000 data samples. By integrating domain-specific knowledge

into its training process, Agri-LLaVA demonstrates superior

performance in both multimodal agricultural dialogue and visual

comprehension, offering innovative solutions to tackle pest and

disease challenges in agriculture (Wang et al., 2024b). In addition,

Zhao et al. introduced PlanText, a gradually masked guidance

framework to align image phenotypes with trait descriptions for

plant disease texts, further highlighting the potential of integrating

visual and textual modalities in plant health analysis (Zhao et al.,

2024). Meanwhile, Dong et al. developed PlantPAD, a large-scale

image phenomics platform for plant science, which provides high-

quality resources for training and validating plant disease

classification systems (Dong et al., 2024). These approaches

leverage the complementarity of modalities, while images provide

morphological cues, textual and contextual data supply semantic

and environmental understanding, which proves to be useful for

fine-grained and field-based classification tasks.

Although the above-mentioned multi-modal approaches have

shown promise in plant pests and diseases classification, most

existing methods primarily treat non-visual modalities as

auxiliary inputs to enhance image-based features. This image-

centric design often overlooks the independent value and

discriminative power of other modalities, particularly textual data.

In real-world agricultural scenarios, textual descriptions are

typically colloquial, non-standard, and context-dependent, posing

significant challenges to conventional multi-modal fusion strategies.

While some studies have explored robust textual encoding

techniques to handle noisy or weakly structured inputs (Zhu

et al., 2023), these characteristics nevertheless result in a

persistent semantic gap that current models struggle to bridge,

thereby limiting their robustness and generalizability. These

characteristics lead to a semantic gap that current models struggle

to bridge, limiting their robustness and generalizability. To address

these limitations, in this paper, we propose a novel approach to

improve the model’s capacity to understand and utilize natural

language expressions effectively for more accurate and practical

plant disease classification.

While multimodal and text-based approaches have achieved

progress, existing models still face significant challenges when

processing colloquial, non-standard user inputs. Farmers’ symptom

descriptions are often short, vague, and expressed in everyday
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language, which are inconsistent with the professional terminologies

used in agricultural knowledge bases. For example, models trained on

standardized datasets struggle to align colloquial expressions with

technical disease terms, leading to misclassification or failure to

recognize symptoms. Moreover, the semantic ambiguity and

variability of colloquial text introduce additional noise, weakening

the model’s ability to capture fine-grained distinctions across different

disease categories. These limitations further underscore the necessity

of developing methods that can effectively bridge colloquial language

with domain-specific knowledge, which is precisely the problem our

study seeks to address.
2.2 Prompt-tuning

Prompt-tuning has surfaced as an efficient and effective method

for adjusting Pre-trained Language Models (PLMs) to downstream

tasks without requiring full model fine-tuning (Liu et al., 2021). This

paradigm transferred downstream tasks through cloze-style

objectives, which is particularly attractive in resource-constrained

settings due to its efficiency and ability to preserve general language

knowledge encoded in PLMs. The evolution of prompt-tuning

includes both discrete and soft prompt methods. Early work in

manual prompt design relied on human intuition to craft natural

language prompts that could guide PLMs toward the desired

behavior, including relation extraction (Han et al., 2021),

knowledge probing (Petroni et al., 2019), and text classification

(Hu et al., 2021). For example, Han et al. introduced a prompt-

tuning model with rules for many-class classification tasks,

encoding prior knowledge into prompt-tuning via logic rules and

proposing manually designed sub-prompts to construct task-

specific prompts (Han et al., 2021).
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However, the manually created prompt proved to be inflexible

and suboptimal, leading to the development of automated prompt

generation strategies (Li and Liang, 2021). In the soft prompt-

tuning, continuous embeddings are served as prompts and

optimized while keeping the PLM’s weights frozen. For instance,

Shin et al. developed the AUTOPROMPT method for generating

prompts across various NLP downstream tasks (Shin et al., 2020).

In the method, an auto-prompt consisted of the input sentence and

the set of trigger tokens. These tokens remain consistent across all

inputs and are determined via a gradient-based search mechanism.

Wu et al. proposed an information-theoretic approach that framed

soft prompt-tuning as optimizing the mutual information between

the prompts and other model parameters (Wu et al., 2023). The

technique involved two loss functions to achieve proper prompt

initialization and extract relevant task-specific information from

downstream tasks. Zhu et al. proposed a soft prompt-tuning

method for short text stream classification (Zhu et al., 2025),

which builds the verbalizer using internal knowledge rather than

retrieving from external knowledge bases, further optimizing it

through additional tailored strategies. Considering the advantages

of soft prompt in contrast to manually crafted prompts, in this

paper, we introduce the soft prompt-tuning method for colloquial

descriptions in plant pest and disease classification.
3 Methodology

3.1 Overall architecture

As shown in Figure 1, the proposed method first leverages the

AgriBERT (Chen et al., 2024) for named entity recognition model to

extract key agricultural entities from the obfuscated text, with relevant
FIGURE 1

Illustration of the proposed method combining AgriBERT-based entity recognition and AgriKG retrieval, enhanced by prompt learning with soft
templates and extended verbalizers for improved pest and disease prediction.
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attribute information retrieved from the AgriKG (Chen et al., 2019)

agricultural knowledge graph to effectively supplement domain

knowledge. Then, the user-provided fuzzy description and the

retrieved knowledge are concatenated to the soft prompt-tuning

model. For the prompt-tuning method, the external verbalizer

further enriches the model’s understanding by mapping informal

expressions to corresponding technical terms using structured

agricultural knowledge, allowing the model to interpret and classify

colloquial symptom descriptions more accurately. By leveraging the

generalization capabilities of PLMs and integrating domain knowledge

through the constructed verbalizer, our approach notably enhanced

both the precision and interpretability of pest and disease predictions.
3.2 Knowledge enhancement

First, we utilize the AgriBERT named entity recognition model,

specifically trained for agricultural texts, to extract relevant entities

from the input fuzzy agricultural text. This model captures

contextual information through a multi-layer bidirectional self-

attention mechanism and incorporates a global pointer

mechanism for entity localization.

For the input fuzzy text Tfuzzy = (t1, t2,…, tn), where ti
represents the i-th word in the text, the AgriBERT model outputs

a set of entity labels E = e1, e2,…, emf g, where each entity eiincludes

the entity type and its position within the text. However, this

positional information is still relatively coarse and cannot

guarantee precise boundary detection. We use the global pointer

mechanism P(ei) to represent the specific position of entity ei in the

text, as described by the following formula (Equation 1):

P(ei) = (starti, endi) (1)

where starti and endi represent the start and end positions of

entity ei, respectively. Thus, ei provides the semantic label, while P

(ei) precisely anchors the boundary, thereby enhancing the model’s

robustness in handling overlapping or ambiguous entities.

After extracting the entities, we leverage AgriKG, a publicly

available agricultural knowledge graph, to query domain-specific

knowledge related to the entities. By querying AgriKG, we obtain

the corresponding relevant knowledge Kifor each entity ei, which

contains various attributes related to the entity. Let Ki represent the

set of knowledge fragments obtained from AgriKG. We organize

these knowledge fragments as follows (Equation 2):
Frontiers in Plant Science 05
Ki = k1, k2,…, kp
� �

(2)

where each knowledge fragment kj provides specific

information relevant to entity ei and contains domain related

knowledge in agriculture.

Next, we concatenate the user-provided fuzzy description Tfuzzy

= (t1, t2,…, tk) and the relevant knowledge fragments Ki retrieved

from AgriKG. The fuzzy text Tfuzzy represents the words in the non-

expert language provided by the user. We concatenate the user’s

description Tfuzzy with the knowledge fragments from AgriKG in

the following format (Equation 3):

Enhanced Description = Tfuzzy + ½SEP� + Ki (3)

where [SEP] is a separator used to distinguish the original

description from the knowledge fragments. The concatenated text

contains both the user’s non-expert description and the

supplemental domain knowledge, thereby enhancing the

professionalism and completeness of the text.

To further illustrate this process, we provide two running

examples in Table 1. Each input is first parsed by AgriBERT-

NER to extract entit ies , then enriched with compact

knowledge snippets from AgriKG, and finally concatenated

into the enhanced description. As shown in the table, the

pipeline effectively aligns colloquial farmer expressions with

formal agronomic te rmino logy , l ead ing to accura te

classification results.
3.3 Soft template construction

We adopt AgriBERT as the backbone PLM. This model is

specifically trained on agricultural text tasks, enabling strong

capabilities in agricultural terminology recognition and semantic

representation. Essentially, AgriBERT follows the BERT

architecture, consisting of 12 Transformer encoder layers, each

with a 768-dimensional hidden representation and 12 self-

attention heads.

In contrast to prompt-tuning methods relying on manually

crafted templates, our method utilizes soft templates learned within

a continuously optimized prompt space. When integrated with the

enhanced description xen described earlier, this approach enables

more adaptive text recognition by the model, and can be formulated

as (Equation 4):
TABLE 1 Running examples illustrating how the proposed framework processes colloquial farmer descriptions.

Colloquial Input NER (Entities) KG Snippets Enhanced Description

The whole field can look like it’s been burned from far away
because so many leaves have turned brown and died.

field, burned, leaves,
brown, died

leaf necrosis, burnt
appearance, rice blast lesion

Colloquial input followed by [SEP]
and knowledge snippets:
“leaf necrosis; burnt appearance;
rice blast lesion”

The spots on the leaves are a dry, tan, or light brown color and are
always surrounded by a bright yellow ring.

spots, leaves, dry, tan/light
brown, yellow ring

leaf spot symptom, necrotic
lesion, halo chlorosis

Colloquial input followed by [SEP]
and knowledge snippets:
“leaf spot symptom; necrotic lesion;
halo chlorosis”
Each input is first parsed by AgriBERT-NER to extract entities, then enriched with knowledge snippets from the agricultural KG, and finally transformed into an enhanced description.
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Tprompt = ½ui�,…, xen,…, ½un�, ½MASK�f g (4)

where xen represents the enhanced description obtained by

concatenating the fuzzy text with the knowledge fragments

introduced in Section 3.2, ui denotes the ith learnable token, the

prompt T is subsequently passed through the encoder of aPLM to

generate hidden states hi,…, hxen ,…, hn, hMASK. Accordingly, the

soft prompt is formulated as (Equation 5):

Tprompt = ½hi�,…, hxen ,…, ½hn�, ½hmask�
� �

(5)

To further enhance the model’s ability to capture temporal and

contextual information in non-standard expressions, we integrate a

two-layer bidirectional LSTM encoder head into the prompt-

learning framework. The input size, hidden size, and embedding

size are all set to 768 to maintain consistency between forward and

backward information flows. During inter-layer representation

transfer, each LSTM layer employs the standard hidden-state

propagation mechanism to preserve information progression. The

final output is obtained by concatenating the hidden states from

both directions, which is then fed into the classifier for prediction.

This process can be visualized as (Equation 6):

h
0
i = ( hi

→
 ,   hi

←
) = ( LSTM

→
(hi, hi−1

→
),  LSTM

←
(hi, hi+1

←
)) (6)

where hi denotes the hidden state input at the i-th position of

the input sequence, derived from the encoder of AgriBERT.

Specifically, it represents the contextualized embedding obtained

by feeding the soft prompt together with the textual input into the

Transformer architecture. The final fused representation h
0
i is

formed by concatenating the hidden states from the forward and

backward directions of the BiLSTM, thereby capturing bidirectional

contextual information.

Ultimately, the model improves its performance and output

quality by determining the optimal values of variables via the loss

function, as illustrated in (Equation 7).

h = arg min
h
0
i

 L(M(xen,MASK)) (7)

To adjust the model parameters, we adopt the cross-entropy

loss, which quantifies the divergence between predicted outputs and

ground-truth labels. The objective function is formulated as

(Equation 8):

L = −
1
N
log p(y∗ j xen) + a j q j2 (8)

where N denotes the number of training instances, y* is the gold

label, and j q j2 represents the L2 penalty on parameters q . The
penalty term helps alleviate overfitting by restricting parameter

magnitudes, and the coefficient a balances the impact of

regularization in the overall loss.
1 https://relatedwords.org
3.4 Verbalizer construction

Prompt-tuning studies (Schick and Schutze, 2020) have shown

that aligning label words with their target categories y helps reduce
Frontiers in Plant Science 06
the mismatch between textual input and label representation. This

process, referred to as automatic label word selection (Gao et al.,

2020) or verbalization (Schick et al., 2020), can be formally

expressed as (Equation 9):

v j v1,…, vi,…, vNf g →
Mapping

y (9)

where vi represented a word in the verbalizer. In our method,

we build the verbalizer by leveraging words extracted from an

external knowledge graph. This method expands semantic diversity

while promoting greater robustness and generalizability of

the verbalizer.

To retrieve mapping words associated with the target categories

from a knowledge graph, we employ Related Words1 as our external

source. This knowledge graph aggregates multiple resources, such

as word vectors, ConceptNet (Speer et al., 2017), and WordNet

(Pedersen et al., 2004), allowing us to extract an initial set of words v

for each category label y, thereby constructing the base verbalizer.

Given the vast amount of text and the possibility of noise or

irrelevant content, we implement three optimization strategies to

refine the extracted words. These strategies are designed to capture

various facets of the expanded word characteristics, aiming to

uncover the underlying intent of the original text. The specific

methods are outlined below:

FastText Similarity: A commonly employed method for

improving verbalizer construction consists of evaluating the

semantic similarity between category labels and their extended

label terms. This approach uses the FastText embedding model to

generate vector representations and calculate the cosine similarity

between category label terms and their expanded equivalents. Let Ey
and Ev denote the embeddings of a category label y and an extended

label term v, respectively. The cosine similarity is expressed as

(Equation 10):

cos (Ey , Ev) =
og

i=1E
i
yE

i
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

og
i=1(E

i
y)

2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
og

i=1(E
i
v)

2
q (10)

where g refers to the dimension of the word embedding, while

Ei
y indicates the i

th component of the vector Ey .

Notably, to ensure relevance, only the top N expanded words

with the highest cosine similarity to the category label are preserved,

while those with low similarity are excluded.

Probability Prediction: Leveraging contextual cues and prompt

templates to estimate the likelihood of masked tokens is a crucial

technique in refining the verbalizer. This is achieved using a PLM

(e.g., BERT), which outputs the probability distribution over

potential words filling the [MASK] position.

More concretely, given a prompt template T, the model masks

certain words in the input and computes p(T[MASK]), the

probability distribution over possible replacements. This

distribution reflects the strength of association between each

candidate word and the target category.

We apply BERT to obtain this distribution and select the top N

most probable terms to expand the label word set.
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Context Information: In order to enrich the label word set and

effectively utilize the surrounding context of masked tokens, we

propose an expansion strategy based on context windows. Rather

than relying on conventional N-gram models, our approach

leverages non-autoregressive PLMs like BERT to capture

contextual dependencies. Given that BERT cannot directly

estimate full-sentence generation probabilities, we address this

constraint through the application of a symmetric sliding

window approach.

Assuming a window size of c, the context centered around the

[MASK] token can be represented as (Equation 11):

W = …w−c,…w−1,W ,W1,…Wc,…f g (11)

Within this framework, each wordwi in the window is sequentially

masked and input into the BERT model for calculating the loss

associated with predicting the masked word (Equation 12):

L(wi) = −o
vi∈V

1 vi = wif g � log p(vi = wi jWwi
) (12)

where V denotes the vocabulary set, 1 is the indicator function,

and p(vi = wi jWwi
) represents the predicted probability

distribution of BERT conditioned on W with wi excluded.

In the experiments, label word candidates are sorted according

to their sequence loss L(W), and those with higher loss values are

discarded. Only the words with the lowest losses are preserved. A

fixed window size of c = 5 is used, and for consistency, the N = 15

identified by each of the three strategies are selected to construct the

expanded label word set.

The combination of FastText Similarity, Probability Prediction,

and Context Information enables a multi311 faceted enhancement

of the verbalizer, thereby substantially improving the model’s

semantic understanding of category labels.
3.5 Final detection

Once the external knowledge-based verbalizer has been refined

using the three proposed strategies, we compute the prediction

score using a weighted average of the label word scores. In

particular, the final prediction ŷ is obtained by aggregating the

scores of all candidate categories according to their respective word

weights. These weights are calculated based on the contribution of

each word, as formulated below (Equation 13):

arg max
y∈Y

1
Vj j ov∈V

p(½MASK� = v j xen) (13)

Here, V refers to the collection of label words linked to the

category y, while Vy

�� �� indicates the size of this set. The probability
function p(½MASK� = v j xen) evaluates how likely the label word v

is, conditioned on the enhanced description xen.
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4 Experiments

4.1 Data setting

In this study, we use two benchmark English datasets: the

PlantWild dataset and the GojiPest dataset.

PlantWild: PlantWild is a large-scale dataset for wild plant

disease recognition, covering multiple healthy plant categories and

plant disease categories. It contains over 50,000 images, with each

plant disease category accompanied by rich textual descriptions. In

this study, we primarily use the textual descriptions from this

dataset, which provide detailed explanations of the fine-grained

features of various plant diseases, helping the model identify subtle

differences between them.

GojiPest: GojiPest is a cross-modal image-text dataset focused

on goji plant pests and diseases. It supports tasks such as image

collection, text creation, data augmentation, classification, and

image-text pairing. The dataset includes images and textual

descriptions for various common goji pests and diseases. Similar

to the PlantWild dataset, we only use the textual descriptions from

this dataset in our study, focusing on utilizing the descriptive

information for enhancing the understanding and classification of

goji plant pests and diseases.
4.2 Baseline methods

In order to assess the effectiveness of our approach, we

conducted comparisons with SOTA methods.

Stacked Denoising Autoencoders (SDA) (Zhu et al., 2019): SDA is

a conventional unsupervised deep learning model that generates

detailed feature representations for both the training and test datasets

via an autoencoder. Subsequently, a classifier is trained on labeled data

from the training set to carry out classification tasks on the test data.

TextCNN (Kim, 2014): A deep learning network that

incorporates a convolutional layer to extract contextual features

from labeled training data. Once trained, the model is applied to

execute classification tasks on the test set.

BERT (Devlin et al., 2018): BERT (Bidirectional Encoder

Representations from Transformers) is based on the Transformer

framework. It reformulates tasks into cloze-style (fill-in-the-blank)

questions, making it a robust baseline approach for a variety of

NLP tasks.

AgriBERT (Chen et al., 2024): AgriBERT is a pre-trained

language model specifically designed for agricultural domain

texts. It is trained on a large corpus of agricultural literature and

technical reports, making it more adept at understanding

agricultural terminologies and contexts compared to general-

domain PLMs like BERT.
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Prompt Learning (PL) (Liu et al., 2021): This method integrates

input data from each chunk into a pre-designed template, using

only the category name to build the verbalizer in regular prompt-

tuning. For consistency, the templates in PL align with those used in

our experiments.

P-tuning (Liu et al., 2022): P-tuning is a method for soft

prompt-tuning that involves learning continuous prompts by

embedding trainable variables into the input representations,

instead of using hand-crafted templates.

Mistral (Jiang et al., 2023): Mistral is an emerging large-scale

language model created by the Mistral AI team. It is particularly

known for its high computational efficiency and robust generative

capabilities, outperforming similar models, especially in

multimodal tasks.

LLaMA3 (Touvron et al., 2023): LLaMA3 is an efficient, large-

scale language model developed by Meta, designed to function well

in low-resource environments. It reduces the number of parameters

to minimize computational costs while maintaining solid

performance in natural language reasoning and generation tasks.

SimSTC (Liu et al., 2025b): A straightforward framework for

graph contrastive learning applied to short text classification. The

method performs graph learning on various component graphs

related to text, generating multi-view text embeddings, upon which

contrastive learning is directly applied.
4.3 Experiment settings

In this experiment, to generate vague descriptions, we

constructed an “expert-non-expert” parallel corpus and fine-tuned

a large language model using LoRA technology, enabling it to

convert specialized terms into more accessible expressions.

Specifically, we first collected approximately 1,200 expert-level

symptom descriptions from agricultural manuals and online

agricultural knowledge bases. Each description was then

paraphrased by GPT-4 into a farmer-style colloquial version,

resulting in an expert–non-expert pair. Based on this corpus, we

fine-tuned LLaMA-8B with LoRA, using a configuration of rank =

8, a = 16, learning rate = 2e-4, and 5 training epochs on dual

NVIDIA A6000 GPUs. To ensure quality, we manually filtered the

generated sentences to remove incomplete or duplicate expressions.

Furthermore, three agricultural experts validated a random sample

of 300 pairs, achieving an agreement rate above 90%. This process

ensured that the constructed parallel corpus is reliable and suitable

for subsequent fuzzification.

We then used the fine-tuned model to apply fuzzification to the

text in the dataset. Next, we applied our method to enhance the

fuzzified text, resulting in the final dataset for subsequent

experiments. The dataset was separated into subsets for training,

testing, and validation, with 70% of the data assigned to training,

20% designated for testing, and the remaining 10% kept

for validation.

For methods based on deep neural networks and fine-tuned

pre-trained language models (e.g., SDA, TextCNN, SimSTC, BERT

and AgriBERT), the full training dataset was utilized, as these
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models necessitate large quantities of data for effective learning.

Furthermore, we applied the hyperparameters specified in the

original papers to maintain consistency and achieve optimal

performance. For the prompt-tuning approaches (PL and P-

tuning), a 20-shot configuration was implemented for both

methods. To ensure fairness, we kept the parameter settings

identical across these approaches: dropout rate was set to 0.5,

learning rate to 3e-5, batch size to 32, and weight decay to 1e-5.

The hyperparameters, including batch size and learning rate, were

determined through repeated empirical experiments to achieve

optimal performance. The models were trained for 5 epochs to

guarantee thorough training and stable outcomes, with the Adam

optimizer employed for parameter tuning. For large language

models (e.g., LLaMA3 and Mistral), classification was performed

directly by formulating prompts in a question-answer format.

Unlike traditional models, these systems do not rely on

conventional training techniques but instead fine-tune the

prompts specifically for classification tasks.

The effectiveness of our methods is evaluated using the

following four key metrics: As Equations 14–17 is shown below.

Accuracy (Acc): The proportion of correctly predicted samples

compared to the total number of samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision (Pre): The ratio of positive samples among the

predicted positive samples.

Precision =
TP

TP + FP
(15)

Recall (Rec): The ratio of correctly predicted positive samples to

the total number of actual positive samples.

Recall =
TP

TP + FN
(16)

F1 Score (F1-S): The harmonic mean of Precision and Recall,

used as a comprehensive measure of classification performance. A

higher F1 score indicates better overall performance.

F1 Score =
2 · Precision · Recall
Precision + Recall

(17)

All experiments were conducted on a server equipped with an

NVIDIA A100 GPU, a 64-core AMD EPYC 7763 processor, and

512 GB of memory. The experiments were performed using Python

3.9.16 and PyTorch 1.12.0 with CUDA support.
4.4 Main results

Table 2 presents the performance results of our method and

baseline models across two datasets (PlantWild and GojiPest).

Based on these experimental results, the following insights have

been observed:
1. Our approach consistently surpasses all baseline models

across various evaluation metrics. Specifically, for the Apple
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TABLE 2 The experimental results on three datasets using four different evaluation metrics.

Methods

P-tuning Mistral LLaMA3 SimSTC Ours

81.73 81.73 82.69 87.89 95.19

81.25 87.85 82.72 87.65 95.97

81.43 73.97 76.80 87.89 95.20

80.70 80.31 79.65 87.31 95.32

61.35 67.23 71.43 80.00 80.67

60.01 80.26 79.45 79.26 82.78

61.67 67.50 71.67 78.00 80.83

59.50 73.32 75.36 76.29 80.66

66.95 88.14 84.75 78.87 83.05

66.20 91.64 90.63 78.83 82.82

67.13 87.93 84.48 79.87 82.99

65.95 89.75 87.45 80.60 82.66

61.26 68.91 57.98 72.50 73.11

67.27 67.05 72.69 75.00 73.06

61.15 68.99 57.70 72.50 73.30

64.06 68.01 64.34 71.33 72.74

90.08 64.96 60.23 81.90 95.11

84.91 73.94 65.78 71.20 90.61

89.71 66.15 68.32 81.90 96.14

86.12 70.03 67.03 71.02 91.31

90.65 66.78 67.02 92.01 94.95

90.44 59.86 67.52 92.65 93.94

91.04 54.05 68.30 92.01 94.96

89.78 56.81 67.91 91.41 92.95
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Datasets Task Metrics
SDA TextCNN BERT AgriBERT PL

PlantWild

Apple

Acc 66.67 71.15 60.79 82.69 80.25

Pre 65.02 59.92 63.17 83.81 79.63

Rec 66.67 71.15 60.79 84.81 80.79

F1 65.83 63.16 60.80 81.76 80.04

Corn

Acc 68.91 65.55 55.21 74.79 59.49

Pre 69.04 52.32 56.95 77.26 59.30

Rec 68.91 65.55 55.21 74.89 60.98

F1 68.97 57.33 55.27 75.11 50.67

Cucumber

Acc 66.95 79.66 58.34 68.64 63.28

Pre 68.44 88.15 61.38 81.01 62.97

Rec 66.95 79.66 58.34 68.33 65.39

F1 67.69 75.96 60.97 66.50 63.47

Tomato

Acc 65.55 72.27 53.53 70.59 58.95

Pre 67.64 81.80 51.93 72.13 58.21

Rec 65.55 72.27 53.53 70.57 60.09

F1 66.57 64.01 52.82 68.60 58.14

GojiPest

Insect1

Acc 71.91 75.26 59.36 75.11 82.44

Pre 79.14 75.53 60.12 73.88 82.58

Rec 71.91 75.26 59.36 79.31 85.71

F1 75.35 74.68 59.87 75.64 82.45

Insect2

Acc 74.83 74.50 55.82 72.28 84.05

Pre 75.45 75.46 59.65 73.46 84.50

Rec 74.83 74.50 55.82 74.31 85.29

F1 75.14 74.67 57.36 73.88 83.94

The bolder ones mean better.
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Fron
subtask, it attains much higher accuracy and F1 score,

showcasing the effectiveness of our method in few-shot

learning scenarios. This result suggests that our method is

highly effective at leveraging limited labeled data to achieve

superior classification performance compared to

other models.

2. Although we used a 15-shot learning setup, which

inherently limits the model’s performance due to the

small number of training samples, our results show that

prompt-based learning significantly improves performance

in few-shot scenarios. When compared to traditional deep

learning methods like TextCNN and SDA, our approach

achieves higher accuracy and F1 scores across multiple

subtasks, thus confirming the advantages of prompt

learning in handling few-shot tasks.

3. Pre-trained language models like BERT and AgriBERT

perform well on agricultural texts but face real-world

limitations. Our soft prompt-tuning with a knowledge-

enhanced verbalizer outperforms them on colloquial

datasets. It effectively handles non-standardized farmer

descriptions. Unlike full fine tuning, it updates fewer

parameters. This yields higher efficiency and better

transferability in few-shot or resource-limited settings.

4. While LLMs such as LLaMA3 and Mistral are powerful,

their performance is less stable when applied to short-text

tasks, such as plant disease and pest description

classification. These models show variability when

handling noisy or perturbed inputs, leading to

fluctuations in performance metrics. In contrast, our

method demonstrates consistent and robust performance,

particularly in tasks involving ambiguous or noisy

descriptions, underscoring the stability and reliability of

our approach.

5. When compared to traditional deep learning models,

prompt-based learning models outperform them,

especially in the Cucumber subtask, where our method
tiers in Plant Science 10
significantly surpassed TextCNN. This suggests that

prompt-based learning is better suited to the challenges

posed by few-shot learning, allowing the model to more

effectively process short-text descriptions and achieve

higher classification accuracy.

6. The observed performance differences across the various

tasks indicate that prompt-based learning models are

adaptable to a range of task characteristics. In particular,

our method excels in tasks that involve more complex or

detailed descriptions, further demonstrating its ability to

generalize effectively across diverse inputs.

7. Visualized confusion matrices from representative subsets

further corroborate our method’s effectiveness. On GojiPest

Insect1, the model achieved relatively high per-class

accuracy, with “chihuo” and “daqingyechan” reaching

96.4% and 95.6%, respectively. On PlantWild Apple, the

model cleanly separates disease types with all classes above

93% (e.g., “black rot” 93.3%, “mosaic virus” 96.7%). These

results confirm that our approach achieves uniformly high

discrimination and robust generalization across categories,

as shown in the Figure 2.
In conclusion, our method consistently outperforms baseline

models across all subtasks, especially in few-shot learning and in

handling noisy short-text descriptions. This highlights the

advantages of prompt-based learning and knowledge expansion.

Future work could explore integrating domain-specific knowledge

to optimize prompt templates further and improve the model’s

generalization abilities for real-world applications.
4.5 The comparative study of large models

To comprehensively evaluate the robustness of our proposed

method, we conducted additional experiments along three

dimensions: comparisons with fine-tuned large language models,
FIGURE 2

(A) shows the confusion matrix for the GojiPest Insect1 dataset and (B) shows the confusion matrix for the PlantWild Apple dataset.
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parameter-efficient fine-tuning, and advanced prompting strategies.

Specifically, we systematically compared our text-based approach

with fine-tuned Qwen, LLaMA with LoRA-based fine-tuning, and

Qwen variants equipped with Chain-of-Thought (CoT) reasoning

and Self-Consistency (SC) voting under the same few-shot setting.

The experimental results, as shown in Table 3, reveal three

major findings: (1) Directly using LLMs to analyze agricultural text

lacks in-depth reasoning, resulting in performance inferior to

methods that incorporate CoT and SC; (2) In scenarios with

limited data, LoRA struggles to fully capture the diversity and

complexity of the task, making it difficult to generalize effectively

to different agricultural text scenarios. This lack of sufficient data

support during fine-tuning leads to unstable model performance,

with significant drops in certain tasks. (3) Advanced prompting

strategies (CoT + SC) bring improvements in some scenarios, but

their overall performance is unstable and remains lower than the

experimental results of our method.
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In addition, an in-depth error analysis shows that LLMs tend to

underperform on datasets containing short, ambiguous, and highly

colloquial expressions, such as the Tomato dataset. This inconsistency

can be attributed to its sensitivity to informal expressions and its

limited ability to generalize across heterogeneous agricultural data. In

contrast, our method leverages knowledge-enhanced soft prompt-

tuning to explicitly bridge colloquial farmer descriptions with formal

agricultural terminology, thereby achieving more stable and reliable

performance even under noisy and diverse input conditions.
4.6 Ablation study

4.6.1 Ablation study on the verbalizer
To accurately evaluate the contribution of the external knowledge-

enhanced verbalizer, we conducted ablation experiments to

systematically analyze the impact of different construction strategies
TABLE 3 Performance comparison of five large language model methods across six tasks.

Datasets Task Metrics
Methods

Qwen QwenCoT Qwen-SC LLaMALoRA Ours

PlantWild

Apple

Acc 92.23 85.44 75.96 77.12 95.19

Pre 75.85 71.20 73.70 76.89 95.97

Rec 72.97 66.29 75.96 76.77 95.20

F1 74.38 68.66 74.66 76.83 95.32

Corn

Acc 74.58 74.75 72.44 77.82 80.67

Pre 86.26 75.21 72.94 66.51 82.78

Rec 75.00 75.00 72.44 62.66 80.83

F1 80.24 75.11 72.38 64.52 80.66

Cucumber

Acc 79.49 88.03 73.90 77.29 83.05

Pre 64.29 72.88 76.99 80.58 82.82

Rec 63.47 70.34 73.90 77.07 82.99

F1 63.87 71.59 70.84 78.79 82.66

Tomato

Acc 66.27 69.66 70.67 66.39 73.11

Pre 76.48 60.89 79.06 69.80 73.06

Rec 66.61 53.95 70.67 66.26 73.30

GojiPest

F1 71.25 57.24 67.34 67.99 72.74

Insect1

Acc 73.44 74.39 70.44 62.52 95.11

Pre 83.14 58.19 65.61 63.36 90.61

Rec 74.20 63.16 70.44 62.42 96.14

F1 78.41 60.57 64.52 62.88 91.31

Insect2

Acc 72.88 77.91 74.93 62.94 94.95

Pre 73.81 75.21 74.47 68.00 93.94

Rec 53.00 46.24 74.93 60.99 94.96

F1 61.70 57.27 68.99 69.42 92.95
Accuracy (%), Precision (%), Recall (%), and F1 (%) are reported.
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onmodel performance. The experiment compared four configurations:

a baseline model using only category names as label words, a simple

knowledge enhancement method based on synonym expansion,

ablated variants employing knowledge graph retrieval but with one

of the optimization strategies removed (including FastText similarity

filtering, context information ranking, or probability prediction), and

the full model integrating all three optimization strategies.

The experimental results, as shown in Table 4, demonstrate three

key findings: (1) External knowledge is essential, with our full method

significantly outperforming the category-name-only baseline (e.g.,

improving accuracy from 71.15% to 95.19% in the Apple task); (2)

Structured knowledge from knowledge graphs proves substantially

more effective than simple synonym expansion, which often

introduces noise; (3) All three optimization strategies—FastText

similarity, probability prediction, and context information—are

necessary, as ablating any consistently degrades performance,
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confirming their joint role in noise filtering and high-quality label

word selection.

To further illustrate the effectiveness of the knowledge-

enhanced verbalizer, we provide a visualization of the label word

sets associated with different categories under the proposed

optimization strategies. Figure 3 presents representative results

from two datasets (PlantWild Apple and GojiPest Insect1). Each

row corresponds to a category label, and the words in the row

denote the candidate verbalizers. The symbols, which are denoted as

square, circle, and star, represent filtering decisions made by

removing one of the strategies, namely probability prediction

(-Prob.), FastText similarity (-FastText.), and context information

(-Context.), respectively. Since we take the union of the three

strategies, a word is filtered out only when it is removed by all

three, which results in the light-colored blocks, while the dark-

colored blocks indicate the retained high-quality label words. As
TABLE 4 The ablation study results across two datasets using four different evaluation metrics.

Datasets Task Metrics
Methods

Label. Synonym -Prob. -FastText. -Context. Full(Ours)

PlantWild

Apple

Acc 71.15 81.73 86.54 85.58 88.46 95.19

Pre 69.84 82.63 85.54 84.53 87.66 95.97

Rec 70.33 81.69 86.41 84.86 88.54 95.20

F1 69.18 80.13 85.71 84.27 87.99 95.32

Corn

Acc 71.43 72.27 75.63 73.11 78.15 80.67

Pre 72.69 76.19 75.52 72.54 78.02 82.78

Rec 71.61 72.47 75.80 73.25 78.30 80.83

F1 71.70 68.28 74.43 71.75 77.90 80.66

Cucumber

Acc 74.58 77.12 77.97 80.51 78.81 83.05

Pre 75.67 78.31 78.41 80.40 79.55 82.82

Rec 74.43 76.87 77.82 80.37 78.59 82.99

F1 74.59 75.32 77.67 79.92 78.59 82.66

Tomato

Acc 61.34 65.55 71.43 70.59 66.39 73.11

Pre 59.68 65.27 73.15 72.00 67.79 73.06

Rec 61.47 65.66 71.52 70.78 66.64 73.30

F1 59.90 64.09 71.70 70.70 63.16 72.74

Insect Pest

Insect1

Acc 61.45 71.68 83.89 80.69 81.83 95.11

Pre 56.41 67.39 79.26 75.68 76.72 90.61

Rec 58.07 72.97 85.25 81.69 82.12 96.14

F1 55.42 68.00 81.21 76.94 78.30 91.31

Insect2

Acc 63.98 72.32 80.67 80.47 83.94 94.95

Pre 64.08 75.52 81.54 80.90 84.25 93.94

Rec 62.98 73.61 81.08 81.23 83.66 94.96

F1 62.62 72.69 80.75 80.58 83.80 92.95
Bold values indicate the best performance. Label. (Original Label Words), Synonym (Synonym Expansion), -Prob. (without Probability Prediction), -FastText. (without FastText Similarity),
-Context. (without Context Information).
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shown in the figure, the full model effectively preserves more

informative and semantically relevant label words, while noisy or

irrelevant words are gradually removed through the joint

optimization strategies. This visualization provides clear evidence

of how the proposed verbalizer construction improves both the

richness and quality of label word sets, thereby enhancing the

overall model performance.

4.6.2 Influence of input data description types
To complement the architectural ablation study and to validate

the practical motivation of our work, we further compare the

impact of different types of input data on model performance,

specifically examining “Original”, “Vague”, and “Expand” (our

method) datasets. The “Original” refers to the accurate and

detailed descriptions from the dataset, while the “Vague” consists

of intentionally blurred text, simulating descriptions that might be

provided by non-experts. The “Expand” represents the vague

descriptions that 501 are further processed using our method,

which leverages prompt-based learning to enhance and refine the

502 textual information, improving its accuracy and specificity.

The experimental results, as presented in Table 5, demonstrate

that the model exhibits a general decline in performance across all

tasks when vague descriptions are used. For instance, in the Corn

task, the accuracy drops from 79.83% (Original) to 69.75% (Vague),
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reflecting the negative impact of vague descriptions on model

performance. Similarly, in the Apple and Tomato tasks, the use of

vague descriptions results in a noticeable decline in performance.

This suggests that vague text introduces additional uncertainty,

limiting the model’s ability to classify accurately.

However, when “Expand” data is used, where vague descriptions

are further processed, the model performance improves significantly.

For example, in the Apple task, accuracy increases from 88.08

(Original) to 95.19 (Expand). Similarly, for the Corn, Cucumber,

and Tomato tasks, applying our method leads to significant

improvements in accuracy. This demonstrates that our expansion

method effectively recovers and enhances the information in vague

descriptions, improving the model’s handling of such inputs. In some

tasks, the performance even surpasses that of the original data. This

highlights the efficacy of our approach in enhancing classification

performance, particularly in tasks such as pest detection, where

ambiguous descriptions pose extra difficulties.
4.7 Influence of the templates

In this experiment, the design of templates was pivotal in

influencing the model’s performance. To evaluate the effect of

various hand-crafted and soft templates on classification tasks
FIGURE 3

Visualization of the knowledge-enhanced verbalizer on PlantWild Apple and GojiPest Insect1.
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related to plant diseaseand pest descriptions, we created and tested

several templates, the specifics of which are outlined in Table 6.

These tasks involve complex short-text descriptions, requiring the

model to extract meaningful features and information based on the

guidance provided by the templates.
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The experimental results, displayed in Table 7, demonstrate that

specific hand-crafted templates successfully direct the model in

grasping the essential elements of the tasks, especially in tasks like

Insect2, where the model effectively identifies the key features of

pest descriptions. However, as the complexity of the tasks and the
TABLE 5 The results for different types of data across two datasets.

Datasets Task Metrics
Methods

Original Vague Expand(Ours)

PlantWild

Apple

Acc 88.08 80.46 95.19

Pre 88.44 89.69 95.97

Rec 87.06 87.90 95.20

F1 87.74 88.43 95.32

Corn

Acc 79.83 69.75 80.67

Pre 81.99 71.60 82.78

Rec 80.00 69.68 80.83

F1 78.47 69.72 80.66

Cucumber

Acc 79.62 74.58 83.05

Pre 78.64 74.55 82.82

Rec 80.09 74.60 82.99

F1 79.36 74.28 82.66

Tomato

Acc 70.67 67.23 73.11

Pre 71.08 71.79 73.06

Rec 70.83 67.44 73.30

F1 70.95 67.58 72.74

Insect Pest

Insect1

Acc 87.86 72.44 95.11

Pre 85.77 72.69 90.61

Rec 88.31 74.84 96.14

F1 87.02 73.75 91.31

Insect2

Acc 86.08 72.97 94.95

Pre 84.76 72.55 93.94

Rec 85.92 73.06 94.96

F1 85.34 72.80 92.95
The bolder ones mean better.
TABLE 6 The different templates on two datasets.

Hard/Soft id Template

Manual

0 A {"mask"} condition: {"placeholder": "text-a"}

1 {"placeholder": "text a"} The type is {"mask"}

2 {"placeholder": "text-a"} The issue is classified as {"mask"}

3 {"placeholder": "text a"} A {"mask"} disease

Soft 0 {"soft": "< soft>"}{ "mask": "< mask >"}{ "soft": "< soft>"}{ "placeholder": "text-a"}
“Hard” refers to hand-crafted templates.
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diversity of the datasets increase, the limitations of using a single,

fixed template become evident. For instance, vague or incomplete

descriptions may hinder hand-crafted templates from fully

leveraging the potential of the data. Consequently, we introduced

soft template generation in our approach to improve the model’s

ability to process uncertain and ambiguous text. The experimental

results demonstrate that, even with limited training data, soft

templates can be precisely adapted to the data, thereby creating

an optimal theoretical prompt that considerably boosts

classification accuracy.
4.8 Parameter sensitivity

We conducted further experiments to evaluate the effect of

different hyperparameters, such as learning rate and batch size, on

the experimental results. The findings are presented in Figure 4. The

learning rate governs the magnitude of parameter adjustments

during model training. Based on the experimental results, the best

performance across most tasks was obtained with a learning rate of

3e-5. This indicates that, within a specific range, a higher learning
Frontiers in Plant Science 15
rate can expedite model convergence and assist the model in

adapting to variations in the data. However, for some tasks,

setting the learning rate too high can lead to instability during

training, emphasizing the importance of fine-tuning the learning

rate based on the specific requirements of each task.
TABLE 7 The 15-shot results of accuracy with different templates on two datasets.

Datasets Task
Template

Ours
0 1 2 3 Avg

PlantWild

Apple 88.46 75.00 89.42 76.92 82.45 95.19

Corn 73.11 66.39 74.79 68.91 70.80 80.67

Cucumber 78.81 72.88 79.66 72.03 75.85 83.05

Tomato 70.59 54.62 63.03 57.98 61.56 73.11

Insect Pest
Insect1 92.17 89.54 91.22 84.43 89.34 95.11

Insect2 91.50 85.40 87.02 80.71 86.16 91.31
The bold values indicate the highest accuracy achieved for each task.
FIGURE 4

Analysis of model parameter sensitivity on three datasets. (A) Effects of different learning rates on the accuracy across three datasets (Insect1,
Insect2, Apple, Corn, Cucumber, Tomato). (B) Effects of different batch sizes on the accuracy across the same three datasets. Different colors
represent different categories: orange for Insect1, green for Insect2, blue for Apple, red for Corn, purple for Cucumber, and brown for Tomato.
TABLE 8 The effect of different training epochs on the accuracy of two
datasets.

Datasets Task
Epochs

5 10 15 20

PlantWild

Apple 90.38 93.27 95.19 94.23

Corn 68.07 71.43 80.67 78.99

Cucumber 73.73 75.42 83.05 75.42

Tomato 66.39 71.43 73.11 72.27

Insect Pest
Insect1 88.40 92.06 95.11 90.08

Insect2 86.43 91.37 94.95 88.32
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In addition to learning rate, batch size is another critical hyper-

parameters that influences training dynamics, memory usage, and

model convergence. Our findings show that the model performed

optimally with a batch size of 32. This suggests that, within an

appropriate range, smaller batch sizes can facilitate faster

convergence, helping the model adapt quickly to training data,

especially for tasks with more complex patterns. On the other hand,

larger batch sizes contribute to more stable training and enhanced

performance in certain tasks. These results indicate that different

datasets and tasks may require distinct batch sizes to achieve the

best performance.

Furthermore, we assessed the impact of training epochs on

model performance, as shown in Table 8.

The results indicate that while model performance improves

with more epochs, excessive training can lead to diminishing

returns. Specifically, in the Apple task from the PlantWild

dataset, the model achieved an optimal accuracy of 95.19% after

15 epochs, with a slight decrease to 94.23% at 20 epochs. Similar

trends were observed for the Corn and Cucumber tasks, where the

best performance was also achieved at 15 epochs, with no significant

gain at 20 epochs. These findings suggest that a moderate number of

epochs promotes model convergence and generalization, while too

many epochs may lead to overfitting. This pattern was further

confirmed in the Insect Pest dataset, where 15 epochs also yielded

the best results in both Insect1 and Insect2 tasks. In conclusion,

selecting an appropriate number of epochs is crucial for optimizing

model performance, with 15 epochs proving to be ideal for

most tasks.
4.9 Validation on a colloquial description
dataset

In this section, we constructed a small-sample colloquial

description dataset by collecting Q&A pairs from the agricultural

platform “Ask Extension2” and carefully curating them through

filtering and grained annotation. The dataset contains 1,000

samples, covering five categories of plant diseases and pests:

Maize Leaf Spot, Rice Blast, Rice Planthopper, and Wheat

Powdery Mildew.

On this dataset, we conducted validation experiments using fine-

tuned PLMs (AgriBERT), prompt-based learning methods (PL and P-

Tuning), the LLM Qwen, as well as our proposed method. The
2 https://ask.extension.org/
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experimental settings and parameters were kept consistent with

those in the main experiments. The results are reported in Table 9.

It can be observed that our method outperforms all other approaches

across Accuracy, Precision, Recall, and F1, achieving an F1 Score of

79.70%, which is significantly higher than the second-best method,

AgriBERT. In contrast, PL and P-Tuning perform poorly on this

small-sample colloquial dataset, indicating the limited generalization

capability of traditional prompt-based learning. Although Qwen

performs better than the prompt-based learning methods, its

adaptation to colloquial data is still insufficient without fine-tuning.

Overall, our method demonstrates clear advantages in handling

colloquial and standard expressions in classification tasks, providing

more accurate and stable predictions across all sample categories.
5 Conclusions and future work

In this paper, we proposed a plant pest and disease classification

based on colloquial descriptions by leveraging soft prompt-tuning,

which combined AgriBERT-based entity recognition and AgriKG

retrieval for knowledge enhancement of input. Then, a soft prompt-

tuning method with an external knowledge extension verbalizer is

employed for detection. The experimental findings validate that our

method outperforms baseline models, including state-of-the-art

large language models (LLMs), in detection performance.

In future work, we plan to expand our research in two main

directions. Firstly, we will investigate more effective strategies for

verbalizer construction, including advanced approaches for

generation, filtering, and integration. Secondly, we intend to explore

multi-model methods, including computer vision, to derivemore robust

representations, which can further advance the performance of plant

pests and diseases classification. In particular, integrating our model

with image description models such as PlanText and leveraging

databases like PlantPAD could enable an end-to-end agricultural

assistance system that combines descriptive queries with visual

observations for more reliable diagnostic recommendations.
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