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The precise identification of plant pests and diseases plays a crucial role in
preserving crop health and optimizing agricultural productivity. In practice,
however, farmers frequently report symptoms in informal, everyday language.
Traditional intelligent farming assistants are built upon domain-specific
classification frameworks that depend on formal terminologies and structured
symptom inputs, leading to subpar performance when faced with natural,
unstructured farmer descriptions. To address this issue, we propose an
innovative approach that classifies plant pests and diseases from colloquial
symptom reports by leveraging soft prompt-tuning. Initially, we utilize
Pretrained Language Models (PLMs) to conduct named entity recognition and
retrieve domain-specific knowledge to enrich the input. Notably, this knowledge
enrichment process introduces a kind of semantic alignment between the
colloquial input and the acquired knowledge, enabling the model to better
align informal expressions with formal agricultural concepts. Next, we apply a
soft prompt-tuning strategy coupled with an external knowledge enhanced
verbalizer for the classification task. The experimental results demonstrate that
the proposed method outperforms baseline approaches, including state-of-the-
art(SOTA) large language models (LLMs), in classifying plant pests and diseases
from informal farmer descriptions. These results highlight the potential of
prompt-tuning methods in bridging the gap between informal descriptions and
expert knowledge, offering practical implications for the development of more
accessible and intelligent agricultural support systems.

KEYWORDS

plant pests and diseases classification, colloquial descriptions, soft prompt-tuning,
verbalizer, natural language processing

1 Introduction

Plant pests and diseases are among the most pressing challenges in modern agriculture,
threatening crop health, reducing yields, and causing substantial economic losses
worldwide (Donatelli et al., 2017; Liu and Wang, 2021). Effective diagnosis and timely
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intervention are essential to mitigate these threats, particularly in
rural and smallholder farming communities where expert support is
often limited (Nayagam et al., 2023).

In these real-world agricultural settings, farmers typically report
plant symptoms based on their direct observations and personal
experiences rather than using standardized scientific terminology
(Rodriguez-Garcia et al, 2021). These descriptions are highly
colloquial, reflecting local linguistic habits and intuitive
interpretations of visible symptoms. For instance, a farmer might
describe an infection as “The leaves are yellow and have red dots,
with spider-web-like threads on the back”, whereas a technical
expert would label the condition as “yellowing with red spider mite
infestation.” Similarly, the phrase “The rice has grown white fuzz”
might correspond to “powdery mildew” in agronomic terms. Such
linguistic mismatches create a substantial barrier between user-
reported information and formal agricultural knowledge systems.

Despite the rise of intelligent agricultural assistants powered by
natural language processing and image classification technologies,
most of these systems are designed around structured, expert-level
inputs and rely heavily on terminological consistency (Toscano-
Miranda et al., 2022). Current approaches typically require users to
select symptoms from predefined categories or input disease names
and signs that align closely with entries in agricultural knowledge
bases (Wang et al., 2024a). While this design performs adequately in
controlled environments or when operated by trained personnel, it
fails to accommodate the informal, diverse, and highly variable
language used by farmers in natural dialogue (Li and Wang, 2024).
As a result, these systems often misclassify or fail to recognize pests
and diseases when presented with unstructured, colloquial input.
Moreover, the colloquial descriptions are often very short and
ambiguous, which exacerbates the challenge of accurate
classification. Some recent studies in short text classification have
attempted to tackle similar issues of data sparsity and semantic
ambiguity by using character-level attention mechanisms combined
with feature selection (Zhu et al., 2020), or by leveraging prompt-
learning with external knowledge expansion (Zhu et al, 2024).
However, these methods generally do not explicitly integrate
agricultural domain knowledge nor address the unique linguistic
patterns of farmer-reported symptoms, limiting their applicability
in this context.

To bridge this gap between colloquial farmer descriptions and
formal pest and disease classification, in this paper, we introduce an
innovative approach for plant pest and disease classification based
on colloquial descriptions by leveraging soft prompt-tuning. Unlike
conventional fine-tuning methods that require extensive re-training
of model parameters on domain-specific datasets, soft prompt-
tuning introduces lightweight, continuous prompt vectors that
guide the model’s attention toward relevant linguistic patterns
without modifying the core model architecture. Specifically, our
method first leverages the AgriBERT based on PLMs for named
entity recognition to extract key agricultural entities from the
obfuscated text, and the agricultural knowledge graph is
introduced to query domain-specific knowledge related to the
entities. Then, the user-provided fuzzy description and the
retrieved knowledge are concatenated to the soft prompt-tuning
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model. The external verbalizer further enriches the model’s
understanding by mapping informal expressions to corresponding
technical terms using structured agricultural knowledge, allowing
the model to interpret and classify colloquial symptom descriptions
more accurately. By leveraging the generalization capabilities of
PLMs and integrating domain knowledge through the constructed
verbalizer, our method effectively aligns natural language
descriptions with standardized pest and disease categories.
Comprehensive experiments conducted on two datasets
demonstrate that our method outperforms the SOTA baselines
including LLMs. In summary, the primary contributions of our
work are outlined below:

1. We identify and address a critical gap in plant pest and
disease classification by focusing on the challenge of
interpreting colloquial, non-standard symptom
descriptions provided in real-world scenarios, which are
often overlooked by existing intelligent agricultural systems
designed around formal terminology.

2. We introduce an innovative classification approach based
on soft prompt-tuning, enhanced with an external
knowledge extension verbalizer, which effectively bridges
informal linguistic input and domain-specific agricultural
knowledge without requiring extra fine-tuning.

3. We construct and evaluate our method on two datasets of
real-world, demonstrating superior classification accuracy
and robustness compared to the SOTA baselines including
LLMs, thus highlighting the practical potential of our
method for improving intelligent agricultural diagnostics
in real-world scenarios.

2 Related work
2.1 Plant pests and diseases classification

Plant diseases and pests are significant factors determining both
the yield and quality of crops, which can be addressed by means of
artificial intelligence (Spence et al., 2020). These diseases and pests
represent a form of natural disasters that disrupt the healthy growth
of plants, potentially leading to plant mortality throughout the
entire development stage, from seed formation to seedling growth
(Liu and Wang, 2021).

Traditional approaches to plant pest and disease classification
have predominantly relied on manual inspections and specialized
knowledge, which are labor-intensive, time-consuming, and prone
to human mistakes and biases (Xing and Lee, 2022). With the rise of
machine learning and computer vision, automated image-based
classification methods have gained widespread attention for their
potential to improve efficiency and accuracy (Domingues et al.,
2022). For example, Shoaib et al. proposed advanced deep learning
models for plant disease detection, highlighting the effectiveness of
Convolutional Neural 85 Networks (CNNs) in learning hierarchical
features from images (Shoaib et al, 2023). Some classical 86
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architectures such as AlexNet, VGGNet, ResNet, and Inception
have been employed to classify diseases in various crops, including
tomato, rice, maize, and citrus (Sumaya et al., 2024). For instance,
Yueteng et al. demonstrated that an improved ResNet architecture
enhances recognition accuracy in complex plant disease datasets
(Yueteng et al., 2021). Furthermore, traditional machine learning
models like Support Vector Machines (SVM), k-Nearest Neighbors
(k-NN), and Random Forests have been deployed, often in
conjunction with manually extracted features such as color,
texture, and shape descriptors. For example, Kale et al. analyzed
crop disease detection using these classifiers and found that while
effective under certain conditions, they often struggle with
generalizability across diverse environmental conditions and are
limited when dealing with visually similar symptoms among
different diseases (Kale and Shitole, 2021). However, these
methods often struggle with generalizability across diverse
environmental conditions and are limited when dealing with
visually similar symptoms among different diseases.

Recently, to overcome the limitations of single-modal
approaches, there have already been some efforts on exploring
multi-modal learning frameworks for plant pest and disease
classification, which integrate heterogeneous data sources, such as
images, textual descriptions, sensor data, and environmental
metadata (Yang et al., 2021). This paradigm aims to enhance the
robustness and contextual awareness of classification systems (Liu
et al., 2025a). For example, Wei et al. proposed a multi-modal
transformer architecture for citrus pests and diseases classification,
where both image and text features are encoded and aligned
through a cross-attention mechanism, enabling improved retrieval
and identification performance (Wei et al., 2023). Similarly, Duan
et al. introduced a multimodal system combining RGB images, text
data, and environmental cues to facilitate pest detection and
classification, demonstrating superior performance over image-
only models, especially in complex agricultural scenarios (Duan
et al., 2023). Wang et al. proposed Agri-LLaVA, an advanced
multimodal assistant enriched with domain knowledge, designed
specifically for managing 108 agricultural pests and diseases. Agri-
LLaVA is trained on an extensive multimodal dataset, containing
more than 221 varieties of pests and diseases, amounting to roughly
400,000 data samples. By integrating domain-specific knowledge
into its training process, Agri-LLaVA demonstrates superior
performance in both multimodal agricultural dialogue and visual
comprehension, offering innovative solutions to tackle pest and
disease challenges in agriculture (Wang et al., 2024b). These
approaches leverage the complementarity of modalities, while
images provide morphological cues, textual and contextual data
supply semantic and environmental understanding, which proves to
be useful for fine-grained and field-based classification tasks.

Recently, to overcome the limitations of single-modal
approaches, there have already been some efforts on exploring
multi-modal learning frameworks for plant pest and disease
classification, which integrate heterogeneous data sources, such as
images, textual descriptions, sensor data, and environmental
metadata (Yang et al., 2021). This paradigm aims to enhance the
robustness and contextual awareness of classification systems (Liu
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et al., 2025a). For example, Wei et al. proposed a multi-modal
transformer architecture for citrus pests and diseases classification,
where both image and text features are encoded and aligned
through a cross-attention mechanism, enabling improved retrieval
and identification performance (Wei et al., 2023). Similarly, Duan
et al. introduced a multimodal system combining RGB images, text
data, and environmental cues to facilitate pest detection and
classification, demonstrating superior performance over image-
only models, especially in complex agricultural scenarios (Duan
et al,, 2023). Wang et al. proposed Agri-LLaVA, an advanced
multimodal assistant enriched with domain knowledge, designed
specifically for managing 127 agricultural pests and diseases. Agri-
LLaVA is trained on an extensive multimodal dataset, containing
more than 221 varieties of pests and diseases, amounting to roughly
400,000 data samples. By integrating domain-specific knowledge
into its training process, Agri-LLaVA demonstrates superior
performance in both multimodal agricultural dialogue and visual
comprehension, offering innovative solutions to tackle pest and
disease challenges in agriculture (Wang et al., 2024b). In addition,
Zhao et al. introduced PlanText, a gradually masked guidance
framework to align image phenotypes with trait descriptions for
plant disease texts, further highlighting the potential of integrating
visual and textual modalities in plant health analysis (Zhao et al,
2024). Meanwhile, Dong et al. developed PlantPAD, a large-scale
image phenomics platform for plant science, which provides high-
quality resources for training and validating plant disease
classification systems (Dong et al,, 2024). These approaches
leverage the complementarity of modalities, while images provide
morphological cues, textual and contextual data supply semantic
and environmental understanding, which proves to be useful for
fine-grained and field-based classification tasks.

Although the above-mentioned multi-modal approaches have
shown promise in plant pests and diseases classification, most
existing methods primarily treat non-visual modalities as
auxiliary inputs to enhance image-based features. This image-
centric design often overlooks the independent value and
discriminative power of other modalities, particularly textual data.
In real-world agricultural scenarios, textual descriptions are
typically colloquial, non-standard, and context-dependent, posing
significant challenges to conventional multi-modal fusion strategies.
While some studies have explored robust textual encoding
techniques to handle noisy or weakly structured inputs (Zhu
et al.,, 2023), these characteristics nevertheless result in a
persistent semantic gap that current models struggle to bridge,
thereby limiting their robustness and generalizability. These
characteristics lead to a semantic gap that current models struggle
to bridge, limiting their robustness and generalizability. To address
these limitations, in this paper, we propose a novel approach to
improve the model’s capacity to understand and utilize natural
language expressions effectively for more accurate and practical
plant disease classification.

While multimodal and text-based approaches have achieved
progress, existing models still face significant challenges when
processing colloquial, non-standard user inputs. Farmers’ symptom
descriptions are often short, vague, and expressed in everyday
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language, which are inconsistent with the professional terminologies
used in agricultural knowledge bases. For example, models trained on
standardized datasets struggle to align colloquial expressions with
technical disease terms, leading to misclassification or failure to
recognize symptoms. Moreover, the semantic ambiguity and
variability of colloquial text introduce additional noise, weakening
the model’s ability to capture fine-grained distinctions across different
disease categories. These limitations further underscore the necessity
of developing methods that can effectively bridge colloquial language
with domain-specific knowledge, which is precisely the problem our
study seeks to address.

2.2 Prompt-tuning

Prompt-tuning has surfaced as an efficient and effective method
for adjusting Pre-trained Language Models (PLMs) to downstream
tasks without requiring full model fine-tuning (Liu et al., 2021). This
paradigm transferred downstream tasks through cloze-style
objectives, which is particularly attractive in resource-constrained
settings due to its efficiency and ability to preserve general language
knowledge encoded in PLMs. The evolution of prompt-tuning
includes both discrete and soft prompt methods. Early work in
manual prompt design relied on human intuition to craft natural
language prompts that could guide PLMs toward the desired
behavior, including relation extraction (Han et al., 2021),
2019), and text classification
(Hu et al,, 2021). For example, Han et al. introduced a prompt-

knowledge probing (Petroni et al,

tuning model with rules for many-class classification tasks,
encoding prior knowledge into prompt-tuning via logic rules and
proposing manually designed sub-prompts to construct task-
specific prompts (Han et al., 2021).

10.3389/fpls.2025.1668642

However, the manually created prompt proved to be inflexible
and suboptimal, leading to the development of automated prompt
generation strategies (Li and Liang, 2021). In the soft prompt-
tuning, continuous embeddings are served as prompts and
optimized while keeping the PLM’s weights frozen. For instance,
Shin et al. developed the AUTOPROMPT method for generating
prompts across various NLP downstream tasks (Shin et al., 2020).
In the method, an auto-prompt consisted of the input sentence and
the set of trigger tokens. These tokens remain consistent across all
inputs and are determined via a gradient-based search mechanism.
Wau et al. proposed an information-theoretic approach that framed
soft prompt-tuning as optimizing the mutual information between
the prompts and other model parameters (Wu et al., 2023). The
technique involved two loss functions to achieve proper prompt
initialization and extract relevant task-specific information from
downstream tasks. Zhu et al. proposed a soft prompt-tuning
2025),
which builds the verbalizer using internal knowledge rather than

method for short text stream classification (Zhu et al,

retrieving from external knowledge bases, further optimizing it
through additional tailored strategies. Considering the advantages
of soft prompt in contrast to manually crafted prompts, in this
paper, we introduce the soft prompt-tuning method for colloquial
descriptions in plant pest and disease classification.

3 Methodology
3.1 Overall architecture
As shown in Figure 1, the proposed method first leverages the

AgriBERT (Chen et al., 2024) for named entity recognition model to
extract key agricultural entities from the obfuscated text, with relevant
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FIGURE 1

[llustration of the proposed method combining AgriBERT-based entity recognition and AgriKG retrieval, enhanced by prompt learning with soft
templates and extended verbalizers for improved pest and disease prediction.
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attribute information retrieved from the AgriKG (Chen et al,, 2019)
agricultural knowledge graph to effectively supplement domain
knowledge. Then, the user-provided fuzzy description and the
retrieved knowledge are concatenated to the soft prompt-tuning
model. For the prompt-tuning method, the external verbalizer
further enriches the model’s understanding by mapping informal
expressions to corresponding technical terms using structured
agricultural knowledge, allowing the model to interpret and classify
colloquial symptom descriptions more accurately. By leveraging the
generalization capabilities of PLMs and integrating domain knowledge
through the constructed verbalizer, our approach notably enhanced
both the precision and interpretability of pest and disease predictions.

3.2 Knowledge enhancement

First, we utilize the AgriBERT named entity recognition model,
specifically trained for agricultural texts, to extract relevant entities
from the input fuzzy agricultural text. This model captures
contextual information through a multi-layer bidirectional self-
attention mechanism and incorporates a global pointer
mechanism for entity localization.

For the input fuzzy text T, = (f1,f,....1,), where t;
represents the i-th word in the text, the AgriBERT model outputs
a set of entity labels E = {e}, e,, ..., e, }, where each entity e;includes
the entity type and its position within the text. However, this
positional information is still relatively coarse and cannot
guarantee precise boundary detection. We use the global pointer
mechanism P(e;) to represent the specific position of entity e; in the
text, as described by the following formula (Equation 1):

P(e;) = (start;, end;) (1)

where start; and end; represent the start and end positions of
entity e;, respectively. Thus, e; provides the semantic label, while P
(e;) precisely anchors the boundary, thereby enhancing the model’s
robustness in handling overlapping or ambiguous entities.

After extracting the entities, we leverage AgriKG, a publicly
available agricultural knowledge graph, to query domain-specific
knowledge related to the entities. By querying AgriKG, we obtain
the corresponding relevant knowledge Kfor each entity e;, which
contains various attributes related to the entity. Let K; represent the
set of knowledge fragments obtained from AgriKG. We organize
these knowledge fragments as follows (Equation 2):

10.3389/fpls.2025.1668642

Ki = {knky o ky ) (2)

where each knowledge fragment k; provides specific
information relevant to entity e; and contains domain related
knowledge in agriculture.

Next, we concatenate the user-provided fuzzy description Tj,.,
= (t,ty,..., ;) and the relevant knowledge fragments K; retrieved
from AgriKG. The fuzzy text Tj,.,, represents the words in the non-
expert language provided by the user. We concatenate the user’s
description Tj,.,, with the knowledge fragments from AgriKG in
the following format (Equation 3):

Enhanced Description = Tj,.,, + [SEP] + K; (3)

where [SEP] is a separator used to distinguish the original
description from the knowledge fragments. The concatenated text
contains both the user’s non-expert description and the
supplemental domain knowledge, thereby enhancing the
professionalism and completeness of the text.

To further illustrate this process, we provide two running
examples in Table 1. Each input is first parsed by AgriBERT-
NER to extract entities, then enriched with compact
knowledge snippets from AgriKG, and finally concatenated
into the enhanced description. As shown in the table, the
pipeline effectively aligns colloquial farmer expressions with
formal agronomic terminology, leading to accurate
classification results.

3.3 Soft template construction

We adopt AgriBERT as the backbone PLM. This model is
specifically trained on agricultural text tasks, enabling strong
capabilities in agricultural terminology recognition and semantic
representation. Essentially, AgriBERT follows the BERT
architecture, consisting of 12 Transformer encoder layers, each
with a 768-dimensional hidden representation and 12 self-
attention heads.

In contrast to prompt-tuning methods relying on manually
crafted templates, our method utilizes soft templates learned within
a continuously optimized prompt space. When integrated with the
enhanced description x,,, described earlier, this approach enables
more adaptive text recognition by the model, and can be formulated
as (Equation 4):

TABLE 1 Running examples illustrating how the proposed framework processes colloquial farmer descriptions.

Colloquial Input

The whole field can look like it’s been burned from far away

because so many leaves have turned brown and died. brown, died

The spots on the leaves are a dry, tan, or light brown color and are
always surrounded by a bright yellow ring.

NER (Entities)

field, burned, leaves,

spots, leaves, dry, tan/light
brown, yellow ring

KG Snippets Enhanced Description

Colloquial input followed by [SEP]
leaf necrosis, burnt and knowledge snippets:
appearance, rice blast lesion “leaf necrosis; burnt appearance;

rice blast lesion”

Colloquial input followed by [SEP]
leaf spot symptom, necrotic and knowledge snippets:
lesion, halo chlorosis “leaf spot symptom; necrotic lesion;

halo chlorosis”

Each input is first parsed by AgriBERT-NER to extract entities, then enriched with knowledge snippets from the agricultural KG, and finally transformed into an enhanced description.
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T,

ot = 48] s X 1), [MASK]} @)

where x,, represents the enhanced description obtained by
concatenating the fuzzy text with the knowledge fragments
introduced in Section 3.2, u; denotes the i" learnable token, the
prompt T is subsequently passed through the encoder of aPLM to
generate hidden states hi,...,hxm,...,hn,hMAsK. Accordingly, the

soft prompt is formulated as (Equation 5):

Tprompf = {[hl}’ R hxc,, EERRE [hn]’ [hmask} } (5)

To further enhance the model’s ability to capture temporal and
contextual information in non-standard expressions, we integrate a
two-layer bidirectional LSTM encoder head into the prompt-
learning framework. The input size, hidden size, and embedding
size are all set to 768 to maintain consistency between forward and
backward information flows. During inter-layer representation
transfer, each LSTM layer employs the standard hidden-state
propagation mechanism to preserve information progression. The
final output is obtained by concatenating the hidden states from
both directions, which is then fed into the classifier for prediction.
This process can be visualized as (Equation 6):

o= (h, ) =(LSTM(hyh ),  LSTM(hyhy,))  (6)

where h; denotes the hidden state input at the i-th position of
the input sequence, derived from the encoder of AgriBERT.
Specifically, it represents the contextualized embedding obtained
by feeding the soft prompt together with the textual input into the
Transformer architecture. The final fused representation ; is
formed by concatenating the hidden states from the forward and
backward directions of the BiLSTM, thereby capturing bidirectional
contextual information.

Ultimately, the model improves its performance and output
quality by determining the optimal values of variables via the loss
function, as illustrated in (Equation 7).

h = arg min L(M (x,,,, MASK)) (7)

To adjust the model parameters, we adopt the cross-entropy

loss, which quantifies the divergence between predicted outputs and

ground-truth labels. The objective function is formulated as
(Equation 8):

1 .
EZ_NlogP()’ |xen)+a‘0|2 (8)

where N denotes the number of training instances, y* is the gold
label, and | 6|* represents the L2 penalty on parameters 6. The
penalty term helps alleviate overfitting by restricting parameter
magnitudes, and the coefficient o balances the impact of
regularization in the overall loss.

3.4 Verbalizer construction

Prompt-tuning studies (Schick and Schutze, 2020) have shown
that aligning label words with their target categories y helps reduce
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the mismatch between textual input and label representation. This
process, referred to as automatic label word selection (Gao et al.,
2020) or verbalization (Schick et al, 2020), can be formally
expressed as (Equation 9):
Vv v ...,VN}M@ngy 9)
where v; represented a word in the verbalizer. In our method,
we build the verbalizer by leveraging words extracted from an
external knowledge graph. This method expands semantic diversity
while promoting greater robustness and generalizability of
the verbalizer.

To retrieve mapping words associated with the target categories
from a knowledge graph, we employ Related Words' as our external
source. This knowledge graph aggregates multiple resources, such
as word vectors, ConceptNet (Speer et al., 2017), and WordNet
(Pedersen et al., 2004), allowing us to extract an initial set of words v
for each category label y, thereby constructing the base verbalizer.
Given the vast amount of text and the possibility of noise or
irrelevant content, we implement three optimization strategies to
refine the extracted words. These strategies are designed to capture
various facets of the expanded word characteristics, aiming to
uncover the underlying intent of the original text. The specific
methods are outlined below:

FastText Similarity: A commonly employed method for
improving verbalizer construction consists of evaluating the
semantic similarity between category labels and their extended
label terms. This approach uses the FastText embedding model to
generate vector representations and calculate the cosine similarity
between category label terms and their expanded equivalents. Let E,
and E, denote the embeddings of a category label y and an extended
label term v, respectively. The cosine similarity is expressed as
(Equation 10):

. L EE,
VLB <S5 E?

where g refers to the dimension of the word embedding, while

(10)

cos (Ey, E

EJ’, indicates the i component of the vector E,.

Notably, to ensure relevance, only the top N expanded words
with the highest cosine similarity to the category label are preserved,
while those with low similarity are excluded.

Probability Prediction: Leveraging contextual cues and prompt
templates to estimate the likelihood of masked tokens is a crucial
technique in refining the verbalizer. This is achieved using a PLM
(e.g., BERT), which outputs the probability distribution over
potential words filling the [MASK] position.

More concretely, given a prompt template T, the model masks
certain words in the input and computes p(T[MASK]), the
probability distribution over possible replacements. This
distribution reflects the strength of association between each
candidate word and the target category.

We apply BERT to obtain this distribution and select the top N
most probable terms to expand the label word set.

1 https://relatedwords.org
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Context Information: In order to enrich the label word set and
effectively utilize the surrounding context of masked tokens, we
propose an expansion strategy based on context windows. Rather
than relying on conventional N-gram models, our approach
leverages non-autoregressive PLMs like BERT to capture
contextual dependencies. Given that BERT cannot directly
estimate full-sentence generation probabilities, we address this
constraint through the application of a symmetric sliding
window approach.

Assuming a window size of c, the context centered around the
[MASK] token can be represented as (Equation 11):

} (1mn

Within this framework, each word w; in the window is sequentially
masked and input into the BERT model for calculating the loss
associated with predicting the masked word (Equation 12):

W={.w_ . .w, WW,..W,...

Liw) == 1{v; = w;} xlogp(v; = w; | W,,,) (12)

vev
where V denotes the vocabulary set, 1 is the indicator function,

and p(v; =w;|W,,) represents the predicted probability

distribution of BERT conditioned on W with w; excluded.

In the experiments, label word candidates are sorted according
to their sequence loss L(W), and those with higher loss values are
discarded. Only the words with the lowest losses are preserved. A
fixed window size of ¢ = 5 is used, and for consistency, the N = 15
identified by each of the three strategies are selected to construct the
expanded label word set.

The combination of FastText Similarity, Probability Prediction,
and Context Information enables a multi311 faceted enhancement
of the verbalizer, thereby substantially improving the model’s
semantic understanding of category labels.

3.5 Final detection

Once the external knowledge-based verbalizer has been refined
using the three proposed strategies, we compute the prediction
score using a weighted average of the label word scores. In
particular, the final prediction y is obtained by aggregating the
scores of all candidate categories according to their respective word
weights. These weights are calculated based on the contribution of
each word, as formulated below (Equation 13):

arg %a;(‘—‘zvgvp([MASK] =v|x,) (13)

Here, V refers to the collection of label words linked to the
category y, while |Vy‘ indicates the size of this set. The probability
function p([MASK] = v|x,,) evaluates how likely the label word v
is, conditioned on the enhanced description x,,,.
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4 Experiments

4.1 Data setting

In this study, we use two benchmark English datasets: the
PlantWild dataset and the GojiPest dataset.

PlantWild: PlantWild is a large-scale dataset for wild plant
disease recognition, covering multiple healthy plant categories and
plant disease categories. It contains over 50,000 images, with each
plant disease category accompanied by rich textual descriptions. In
this study, we primarily use the textual descriptions from this
dataset, which provide detailed explanations of the fine-grained
features of various plant diseases, helping the model identify subtle
differences between them.

GojiPest: GojiPest is a cross-modal image-text dataset focused
on goji plant pests and diseases. It supports tasks such as image
collection, text creation, data augmentation, classification, and
image-text pairing. The dataset includes images and textual
descriptions for various common goji pests and diseases. Similar
to the PlantWild dataset, we only use the textual descriptions from
this dataset in our study, focusing on utilizing the descriptive
information for enhancing the understanding and classification of
goji plant pests and diseases.

4.2 Baseline methods

In order to assess the effectiveness of our approach, we
conducted comparisons with SOTA methods.

Stacked Denoising Autoencoders (SDA) (Zhu et al., 2019): SDA is
a conventional unsupervised deep learning model that generates
detailed feature representations for both the training and test datasets
via an autoencoder. Subsequently, a classifier is trained on labeled data
from the training set to carry out classification tasks on the test data.

TextCNN (Kim, 2014): A deep learning network that
incorporates a convolutional layer to extract contextual features
from labeled training data. Once trained, the model is applied to
execute classification tasks on the test set.

BERT (Devlin et al, 2018): BERT (Bidirectional Encoder
Representations from Transformers) is based on the Transformer
framework. It reformulates tasks into cloze-style (fill-in-the-blank)
questions, making it a robust baseline approach for a variety of
NLP tasks.

AgriBERT (Chen et al., 2024): AgriBERT is a pre-trained
language model specifically designed for agricultural domain
texts. It is trained on a large corpus of agricultural literature and
technical reports, making it more adept at understanding
agricultural terminologies and contexts compared to general-
domain PLMs like BERT.
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Prompt Learning (PL) (Liu et al., 2021): This method integrates
input data from each chunk into a pre-designed template, using
only the category name to build the verbalizer in regular prompt-
tuning. For consistency, the templates in PL align with those used in
our experiments.

P-tuning (Liu et al, 2022): P-tuning is a method for soft
prompt-tuning that involves learning continuous prompts by
embedding trainable variables into the input representations,
instead of using hand-crafted templates.

Mistral (Jiang et al., 2023): Mistral is an emerging large-scale
language model created by the Mistral AI team. It is particularly
known for its high computational efficiency and robust generative
capabilities, outperforming similar models, especially in
multimodal tasks.

LLaMA3 (Touvron et al., 2023): LLaMA3 is an efficient, large-
scale language model developed by Meta, designed to function well
in low-resource environments. It reduces the number of parameters
to minimize computational costs while maintaining solid
performance in natural language reasoning and generation tasks.

SimSTC (Liu et al., 2025b): A straightforward framework for
graph contrastive learning applied to short text classification. The
method performs graph learning on various component graphs
related to text, generating multi-view text embeddings, upon which
contrastive learning is directly applied.

4.3 Experiment settings

In this experiment, to generate vague descriptions, we
constructed an “expert-non-expert” parallel corpus and fine-tuned
a large language model using LoRA technology, enabling it to
convert specialized terms into more accessible expressions.
Specifically, we first collected approximately 1,200 expert-level
symptom descriptions from agricultural manuals and online
agricultural knowledge bases. Each description was then
paraphrased by GPT-4 into a farmer-style colloquial version,
resulting in an expert-non-expert pair. Based on this corpus, we
fine-tuned LLaMA-8B with LoRA, using a configuration of rank =
8, a = 16, learning rate = 2e-4, and 5 training epochs on dual
NVIDIA A6000 GPUs. To ensure quality, we manually filtered the
generated sentences to remove incomplete or duplicate expressions.
Furthermore, three agricultural experts validated a random sample
of 300 pairs, achieving an agreement rate above 90%. This process
ensured that the constructed parallel corpus is reliable and suitable
for subsequent fuzzification.

We then used the fine-tuned model to apply fuzzification to the
text in the dataset. Next, we applied our method to enhance the
fuzzified text, resulting in the final dataset for subsequent
experiments. The dataset was separated into subsets for training,
testing, and validation, with 70% of the data assigned to training,
20% designated for testing, and the remaining 10% kept
for validation.

For methods based on deep neural networks and fine-tuned
pre-trained language models (e.g., SDA, TextCNN, SimSTC, BERT
and AgriBERT), the full training dataset was utilized, as these
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models necessitate large quantities of data for effective learning.
Furthermore, we applied the hyperparameters specified in the
original papers to maintain consistency and achieve optimal
performance. For the prompt-tuning approaches (PL and P-
tuning), a 20-shot configuration was implemented for both
methods. To ensure fairness, we kept the parameter settings
identical across these approaches: dropout rate was set to 0.5,
learning rate to 3e-5, batch size to 32, and weight decay to le-5.
The hyperparameters, including batch size and learning rate, were
determined through repeated empirical experiments to achieve
optimal performance. The models were trained for 5 epochs to
guarantee thorough training and stable outcomes, with the Adam
optimizer employed for parameter tuning. For large language
models (e.g., LLaMA3 and Mistral), classification was performed
directly by formulating prompts in a question-answer format.
Unlike traditional models, these systems do not rely on
conventional training techniques but instead fine-tune the
prompts specifically for classification tasks.

The effectiveness of our methods is evaluated using the
following four key metrics: As Equations 14-17 is shown below.

Accuracy (Acc): The proportion of correctly predicted samples
compared to the total number of samples.

TP + TN

A - 14
Sy = TP TN + FP+ FN (14)

Precision (Pre): The ratio of positive samples among the
predicted positive samples.

TP

Precision = ——
TP + FP

(15)

Recall (Rec): The ratio of correctly predicted positive samples to
the total number of actual positive samples.

TP

Recall = ——
= TIPLEN

(16)

F1 Score (F1-S): The harmonic mean of Precision and Recall,
used as a comprehensive measure of classification performance. A
higher FI score indicates better overall performance.

2 - Precision - Recall

F1 Score = — (17)
Precision + Recall

All experiments were conducted on a server equipped with an
NVIDIA A100 GPU, a 64-core AMD EPYC 7763 processor, and
512 GB of memory. The experiments were performed using Python
3.9.16 and PyTorch 1.12.0 with CUDA support.

4.4 Main results

Table 2 presents the performance results of our method and
baseline models across two datasets (PlantWild and GojiPest).
Based on these experimental results, the following insights have

been observed:

1. Our approach consistently surpasses all baseline models
across various evaluation metrics. Specifically, for the Apple
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TABLE 2 The experimental results on three datasets using four different evaluation metrics.

Methods
Datasets Metrics
SDA TextCNN BERT AgriBERT PL P-tuning Mistral LLaMA3 SimSTC
Acc 66.67 71.15 60.79 82.69 80.25 81.73 81.73 82.69 87.89 95.19
Pre 65.02 59.92 63.17 83.81 79.63 81.25 87.85 82.72 87.65 95.97
Apple
Rec 66.67 71.15 60.79 84.81 80.79 81.43 73.97 76.80 87.89 95.20
F1 65.83 63.16 60.80 81.76 80.04 80.70 80.31 79.65 87.31 95.32
Acc 68.91 65.55 55.21 74.79 59.49 61.35 67.23 71.43 80.00 80.67
Pre 69.04 52.32 56.95 77.26 59.30 60.01 80.26 79.45 79.26 82.78
Corn
Rec 68.91 65.55 55.21 74.89 60.98 61.67 67.50 71.67 78.00 80.83
F1 68.97 57.33 55.27 75.11 50.67 59.50 73.32 75.36 76.29 80.66
PlantWild
Acc 66.95 79.66 58.34 68.64 63.28 66.95 88.14 84.75 78.87 83.05
Pre 68.44 88.15 61.38 81.01 62.97 66.20 91.64 90.63 78.83 82.82
Cucumber
Rec 66.95 79.66 58.34 68.33 65.39 67.13 87.93 84.48 79.87 82.99
F1 67.69 75.96 60.97 66.50 63.47 65.95 89.75 87.45 80.60 82.66
Acc 65.55 7227 53.53 70.59 58.95 61.26 68.91 57.98 72.50 73.11
Pre 67.64 81.80 51.93 72.13 58.21 67.27 67.05 72.69 75.00 73.06
Tomato
Rec 65.55 7227 53.53 70.57 60.09 61.15 68.99 57.70 72.50 73.30
F1 66.57 64.01 52.82 68.60 58.14 64.06 68.01 64.34 71.33 72.74
Acc 71.91 75.26 59.36 75.11 82.44 90.08 64.96 60.23 81.90 95.11
Pre 79.14 75.53 60.12 73.88 82.58 84.91 73.94 65.78 71.20 90.61
Insectl
Rec 7191 75.26 59.36 79.31 85.71 89.71 66.15 68.32 81.90 96.14
F1 75.35 74.68 59.87 75.64 82.45 86.12 70.03 67.03 71.02 91.31
GojiPest
Acc 74.83 74.50 55.82 72.28 84.05 90.65 66.78 67.02 92.01 94.95
Pre 75.45 75.46 59.65 73.46 84.50 90.44 59.86 67.52 92.65 93.94
Insect2
Rec 74.83 74.50 55.82 74.31 85.29 91.04 54.05 68.30 92.01 94.96
F1 75.14 74.67 57.36 73.88 83.94 89.78 56.81 67.91 91.41 92.95

The bolder ones mean better.
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subtask, it attains much higher accuracy and F1 score,
showcasing the effectiveness of our method in few-shot
learning scenarios. This result suggests that our method is
highly effective at leveraging limited labeled data to achieve
superior classification performance compared to
other models.

. Although we used a 15-shot learning setup, which

inherently limits the model’s performance due to the
small number of training samples, our results show that
prompt-based learning significantly improves performance
in few-shot scenarios. When compared to traditional deep
learning methods like TextCNN and SDA, our approach
achieves higher accuracy and F1 scores across multiple
subtasks, thus confirming the advantages of prompt
learning in handling few-shot tasks.

. Pre-trained language models like BERT and AgriBERT

perform well on agricultural texts but face real-world
limitations. Our soft prompt-tuning with a knowledge-
enhanced verbalizer outperforms them on colloquial
datasets. It effectively handles non-standardized farmer
descriptions. Unlike full fine tuning, it updates fewer
parameters. This yields higher efficiency and better
transferability in few-shot or resource-limited settings.

. While LLMs such as LLaMA3 and Mistral are powerful,

their performance is less stable when applied to short-text
tasks, such as plant disease and pest description
classification. These models show variability when
handling noisy or perturbed inputs, leading to
fluctuations in performance metrics. In contrast, our
method demonstrates consistent and robust performance,
particularly in tasks involving ambiguous or noisy
descriptions, underscoring the stability and reliability of
our approach.

. When compared to traditional deep learning models,

prompt-based learning models outperform them,
especially in the Cucumber subtask, where our method

GojiPest_Insectl
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FIGURE 2
(A) shows the confusion matrix for the GojiPest Insectl dataset and (B) shows the confusion matrix for the PlantWild Apple dataset.
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significantly surpassed TextCNN. This suggests that
prompt-based learning is better suited to the challenges
posed by few-shot learning, allowing the model to more
effectively process short-text descriptions and achieve
higher classification accuracy.

6. The observed performance differences across the various
tasks indicate that prompt-based learning models are
adaptable to a range of task characteristics. In particular,
our method excels in tasks that involve more complex or
detailed descriptions, further demonstrating its ability to
generalize effectively across diverse inputs.

7. Visualized confusion matrices from representative subsets
further corroborate our method’s effectiveness. On GojiPest
Insectl, the model achieved relatively high per-class
accuracy, with “chihuo” and “daqingyechan” reaching
96.4% and 95.6%, respectively. On PlantWild Apple, the
model cleanly separates disease types with all classes above
93% (e.g., “black rot” 93.3%, “mosaic virus” 96.7%). These
results confirm that our approach achieves uniformly high
discrimination and robust generalization across categories,
as shown in the Figure 2.

In conclusion, our method consistently outperforms baseline
models across all subtasks, especially in few-shot learning and in
handling noisy short-text descriptions. This highlights the
advantages of prompt-based learning and knowledge expansion.
Future work could explore integrating domain-specific knowledge
to optimize prompt templates further and improve the model’s
generalization abilities for real-world applications.

4.5 The comparative study of large models
To comprehensively evaluate the robustness of our proposed

method, we conducted additional experiments along three
dimensions: comparisons with fine-tuned large language models,

PlantWild_Apple

1 1 0
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i 0 29 1 0
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1 0 26 ]
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0 0 1 16
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TABLE 3 Performance comparison of five large language model methods across six tasks.

Methods
DEIEN Metrics
QwenCoT Qwen-SC LLaMALoRA
Acc 92.23 85.44 75.96 77.12 95.19
Pre 75.85 71.20 73.70 76.89 95.97
Apple
Rec 72.97 66.29 75.96 76.77 95.20
F1 74.38 68.66 74.66 76.83 95.32
Acc 74.58 74.75 72.44 77.82 80.67
Pre 86.26 75.21 72.94 66.51 82.78
Corn
Rec 75.00 75.00 72.44 62.66 80.83
PlantWild F1 80.24 75.11 72.38 64.52 80.66
Acc 79.49 88.03 73.90 77.29 83.05
Pre 64.29 72.88 76.99 80.58 82.82
Cucumber

Rec 63.47 70.34 73.90 77.07 82.99
F1 63.87 71.59 70.84 78.79 82.66
Acc 66.27 69.66 70.67 66.39 73.11
Pre 76.48 60.89 79.06 69.80 73.06

Tomato
Rec 66.61 53.95 70.67 66.26 73.30
F1 71.25 57.24 67.34 67.99 72.74
Acc 73.44 74.39 70.44 62.52 95.11
Pre 83.14 58.19 65.61 63.36 90.61

Insectl
Rec 74.20 63.16 70.44 62.42 96.14
GojiPest F1 78.41 60.57 64.52 62.88 91.31
Acc 72.88 77.91 74.93 62.94 94.95
Pre 73.81 75.21 74.47 68.00 93.94

Insect2
Rec 53.00 46.24 74.93 60.99 94.96
F1 61.70 57.27 68.99 69.42 92.95

Accuracy (%), Precision (%), Recall (%), and F1 (%) are reported.

parameter-efficient fine-tuning, and advanced prompting strategies.
Specifically, we systematically compared our text-based approach
with fine-tuned Qwen, LLaMA with LoRA-based fine-tuning, and
Qwen variants equipped with Chain-of-Thought (CoT) reasoning
and Self-Consistency (SC) voting under the same few-shot setting.

The experimental results, as shown in Table 3, reveal three
major findings: (1) Directly using LLMs to analyze agricultural text
lacks in-depth reasoning, resulting in performance inferior to
methods that incorporate CoT and SC; (2) In scenarios with
limited data, LoRA struggles to fully capture the diversity and
complexity of the task, making it difficult to generalize effectively
to different agricultural text scenarios. This lack of sufficient data
support during fine-tuning leads to unstable model performance,
with significant drops in certain tasks. (3) Advanced prompting
strategies (CoT + SC) bring improvements in some scenarios, but
their overall performance is unstable and remains lower than the
experimental results of our method.
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In addition, an in-depth error analysis shows that LLMs tend to
underperform on datasets containing short, ambiguous, and highly
colloquial expressions, such as the Tomato dataset. This inconsistency
can be attributed to its sensitivity to informal expressions and its
limited ability to generalize across heterogeneous agricultural data. In
contrast, our method leverages knowledge-enhanced soft prompt-
tuning to explicitly bridge colloquial farmer descriptions with formal
agricultural terminology, thereby achieving more stable and reliable
performance even under noisy and diverse input conditions.

4.6 Ablation study

4.6.1 Ablation study on the verbalizer

To accurately evaluate the contribution of the external knowledge-
enhanced verbalizer, we conducted ablation experiments to
systematically analyze the impact of different construction strategies
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TABLE 4 The ablation study results across two datasets using four different evaluation metrics.

Methods
Datasets Metrics
Label. Synonym -Prob. -FastText.  -Context.  Full(Ours)
Acc 71.15 81.73 86.54 85.58 88.46 95.19
Pre 69.84 82.63 85.54 84.53 87.66 95.97
Apple
Rec 70.33 81.69 86.41 84.86 88.54 95.20
F1 69.18 80.13 85.71 84.27 87.99 95.32
Acc 7143 7227 75.63 73.11 78.15 80.67
Pre 72.69 76.19 75.52 72.54 78.02 82.78
Corn
Rec 71.61 72.47 75.80 73.25 78.30 80.83
F1 71.70 68.28 74.43 71.75 77.90 80.66
PlantWild
Acc 74.58 77.12 77.97 80.51 78.81 83.05
Pre 75.67 7831 78.41 80.40 79.55 82.82
Cucumber
Rec 74.43 76.87 77.82 80.37 78.59 82.99
F1 74.59 75.32 77.67 79.92 78.59 82.66
Acc 61.34 65.55 71.43 70.59 66.39 73.11
Pre 59.68 65.27 73.15 72.00 67.79 73.06
Tomato
Rec 61.47 65.66 71.52 70.78 66.64 73.30
F1 59.90 64.09 71.70 70.70 63.16 72.74
Acc 61.45 71.68 83.89 80.69 81.83 95.11
Pre 56.41 67.39 79.26 75.68 76.72 90.61
Insectl
Rec 58.07 72.97 85.25 81.69 82.12 96.14
F1 55.42 68.00 81.21 76.94 78.30 91.31
Insect Pest
Acc 63.98 72.32 80.67 80.47 83.94 94.95
Pre 64.08 75.52 81.54 80.90 84.25 93.94
Insect2
Rec 62.98 73.61 81.08 81.23 83.66 94.96
F1 62.62 72.69 80.75 80.58 83.80 92.95

Bold values indicate the best performance. Label. (Original Label Words), Synonym (Synonym Expansion), -Prob. (without Probability Prediction), -FastText. (without FastText Similarity),

-Context. (without Context Information).

on model performance. The experiment compared four configurations:
a baseline model using only category names as label words, a simple
knowledge enhancement method based on synonym expansion,
ablated variants employing knowledge graph retrieval but with one
of the optimization strategies removed (including FastText similarity
filtering, context information ranking, or probability prediction), and
the full model integrating all three optimization strategies.

The experimental results, as shown in Table 4, demonstrate three
key findings: (1) External knowledge is essential, with our full method
significantly outperforming the category-name-only baseline (e.g.,
improving accuracy from 71.15% to 95.19% in the Apple task); (2)
Structured knowledge from knowledge graphs proves substantially
more effective than simple synonym expansion, which often
introduces noise; (3) All three optimization strategies—FastText
similarity, probability prediction, and context information—are
necessary, as ablating any consistently degrades performance,
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confirming their joint role in noise filtering and high-quality label
word selection.

To further illustrate the effectiveness of the knowledge-
enhanced verbalizer, we provide a visualization of the label word
sets associated with different categories under the proposed
optimization strategies. Figure 3 presents representative results
from two datasets (PlantWild Apple and GojiPest Insectl). Each
row corresponds to a category label, and the words in the row
denote the candidate verbalizers. The symbols, which are denoted as
square, circle, and star, represent filtering decisions made by
removing one of the strategies, namely probability prediction
(-Prob.), FastText similarity (-FastText.), and context information
(-Context.), respectively. Since we take the union of the three
strategies, a word is filtered out only when it is removed by all
three, which results in the light-colored blocks, while the dark-
colored blocks indicate the retained high-quality label words. As
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shown in the figure, the full model effectively preserves more
informative and semantically relevant label words, while noisy or
irrelevant words are gradually removed through the joint
optimization strategies. This visualization provides clear evidence
of how the proposed verbalizer construction improves both the
richness and quality of label word sets, thereby enhancing the
overall model performance.

4.6.2 Influence of input data description types

To complement the architectural ablation study and to validate
the practical motivation of our work, we further compare the
impact of different types of input data on model performance,
specifically examining “Original”, “Vague”, and “Expand” (our
method) datasets. The “Original” refers to the accurate and
detailed descriptions from the dataset, while the “Vague” consists
of intentionally blurred text, simulating descriptions that might be
provided by non-experts. The “Expand” represents the vague
descriptions that 501 are further processed using our method,
which leverages prompt-based learning to enhance and refine the
502 textual information, improving its accuracy and specificity.

The experimental results, as presented in Table 5, demonstrate
that the model exhibits a general decline in performance across all
tasks when vague descriptions are used. For instance, in the Corn
task, the accuracy drops from 79.83% (Original) to 69.75% (Vague),
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reflecting the negative impact of vague descriptions on model
performance. Similarly, in the Apple and Tomato tasks, the use of
vague descriptions results in a noticeable decline in performance.
This suggests that vague text introduces additional uncertainty,
limiting the model’s ability to classify accurately.

However, when “Expand” data is used, where vague descriptions
are further processed, the model performance improves significantly.
For example, in the Apple task, accuracy increases from 88.08
(Original) to 95.19 (Expand). Similarly, for the Corn, Cucumber,
and Tomato tasks, applying our method leads to significant
improvements in accuracy. This demonstrates that our expansion
method eftectively recovers and enhances the information in vague
descriptions, improving the model’s handling of such inputs. In some
tasks, the performance even surpasses that of the original data. This
highlights the efficacy of our approach in enhancing classification
performance, particularly in tasks such as pest detection, where
ambiguous descriptions pose extra difficulties.

4.7 Influence of the templates
In this experiment, the design of templates was pivotal in

influencing the model’s performance. To evaluate the effect of
various hand-crafted and soft templates on classification tasks
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TABLE 5 The results for different types of data across two datasets.

10.3389/fpls.2025.1668642

Methods
Datasets Metrics
Original Vague Expand(Ours)
Acc 88.08 80.46 95.19
Pre 88.44 89.69 95.97
Apple
Rec 87.06 87.90 95.20
F1 87.74 88.43 95.32
Acc 79.83 69.75 80.67
Pre 81.99 71.60 82.78
Corn
Rec 80.00 69.68 80.83
F1 78.47 69.72 80.66
PlantWild
Acc 79.62 74.58 83.05
Pre 78.64 74.55 82.82
Cucumber

Rec 80.09 74.60 82.99
F1 79.36 74.28 82.66
Acc 70.67 67.23 73.11
Pre 71.08 71.79 73.06

Tomato
Rec 70.83 67.44 73.30
F1 70.95 67.58 72.74
Acc 87.86 72.44 95.11
Pre 85.77 72.69 90.61

Insectl
Rec 88.31 74.84 96.14
F1 87.02 73.75 91.31

Insect Pest

Acc 86.08 72.97 94.95
Pre 84.76 72.55 93.94

Insect2
Rec 85.92 73.06 94.96
F1 85.34 72.80 92.95

The bolder ones mean better.

related to plant diseaseand pest descriptions, we created and tested
several templates, the specifics of which are outlined in Table 6.
These tasks involve complex short-text descriptions, requiring the
model to extract meaningful features and information based on the
guidance provided by the templates.

TABLE 6 The different templates on two datasets.

The experimental results, displayed in Table 7, demonstrate that
specific hand-crafted templates successfully direct the model in
grasping the essential elements of the tasks, especially in tasks like
Insect2, where the model effectively identifies the key features of
pest descriptions. However, as the complexity of the tasks and the

Hard/Soft id Template
0 A {"'mask"} condition: {"placeholder": "text-a"}
1 {"placeholder": "text a"} The type is {"mask"}
Manual
2 {"placeholder": "text-a"} The issue is classified as {"'mask"}
3 {"placeholder™: "text a"} A {"mask"} disease
Soft 0 "soft": "< soft>"H "mask": "< mask >"H "soft": "< soft>"}{ "placeholder": "text-a"}

“Hard” refers to hand-crafted templates.
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TABLE 7 The 15-shot results of accuracy with different templates on two datasets.

Template
Datasets
2
Apple 88.46 75.00 89.42 76.92 82.45 95.19
Corn 73.11 66.39 74.79 68.91 70.80 80.67
PlantWild
Cucumber 78.81 72.88 79.66 72.03 75.85 83.05
Tomato 70.59 54.62 63.03 57.98 61.56 73.11
Insectl 92.17 89.54 91.22 84.43 89.34 95.11
Insect Pest
Insect2 91.50 85.40 87.02 80.71 86.16 91.31
The bold values indicate the highest accuracy achieved for each task.
A B
~#— Insectl —#— Apple —#— Cucumber —#— Tomato ~#— Insectl —#— Apple —#- Cucumber —#— Tomato
—#— Insect2 —#@— Corn —#— Insect2 —#— Corn
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FIGURE 4

Analysis of model parameter sensitivity on three datasets. (A) Effects of different learning rates on the accuracy across three datasets (Insectl,
Insect2, Apple, Corn, Cucumber, Tomato). (B) Effects of different batch sizes on the accuracy across the same three datasets. Different colors
represent different categories: orange for Insectl, green for Insect2, blue for Apple, red for Corn, purple for Cucumber, and brown for Tomato.
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diversity of the datasets increase, the limitations of using a single,
fixed template become evident. For instance, vague or incomplete
descriptions may hinder hand-crafted templates from fully
leveraging the potential of the data. Consequently, we introduced
soft template generation in our approach to improve the model’s
ability to process uncertain and ambiguous text. The experimental
results demonstrate that, even with limited training data, soft
templates can be precisely adapted to the data, thereby creating
an optimal theoretical prompt that considerably boosts
classification accuracy.

4.8 Parameter sensitivity

We conducted further experiments to evaluate the effect of
different hyperparameters, such as learning rate and batch size, on
the experimental results. The findings are presented in Figure 4. The
learning rate governs the magnitude of parameter adjustments
during model training. Based on the experimental results, the best
performance across most tasks was obtained with a learning rate of
3e-5. This indicates that, within a specific range, a higher learning
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rate can expedite model convergence and assist the model in
adapting to variations in the data. However, for some tasks,
setting the learning rate too high can lead to instability during
training, emphasizing the importance of fine-tuning the learning
rate based on the specific requirements of each task.

TABLE 8 The effect of different training epochs on the accuracy of two
datasets.

Datasets

Apple 90.38 93.27 95.19 94.23
Corn 68.07 71.43 80.67 78.99

PlantWild
Cucumber 73.73 75.42 83.05 75.42
Tomato 66.39 71.43 73.11 72.27
Insectl 88.40 92.06 95.11 90.08

Insect Pest
Insect2 86.43 91.37 94.95 88.32
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TABLE 9 Performance of different methods on the newly constructed
colloquial dataset.

Metrics =~ Agribert PL P-Tuning Qwen Ours
Acc ‘ 75.50 63.00 ‘ 66.00 64.00 79.50
Pre ‘ 76.22 56.28 ‘ 59.21 67.13 80.16
Rec ‘ 75.50 63.00 ‘ 66.00 64.00 79.50
Fl1 ‘ 7517 58.56 ‘ 61.25 63.62 79.70

In addition to learning rate, batch size is another critical hyper-
parameters that influences training dynamics, memory usage, and
model convergence. Our findings show that the model performed
optimally with a batch size of 32. This suggests that, within an
appropriate range, smaller batch sizes can facilitate faster
convergence, helping the model adapt quickly to training data,
especially for tasks with more complex patterns. On the other hand,
larger batch sizes contribute to more stable training and enhanced
performance in certain tasks. These results indicate that different
datasets and tasks may require distinct batch sizes to achieve the
best performance.

Furthermore, we assessed the impact of training epochs on
model performance, as shown in Table 8.

The results indicate that while model performance improves
with more epochs, excessive training can lead to diminishing
returns. Specifically, in the Apple task from the PlantWild
dataset, the model achieved an optimal accuracy of 95.19% after
15 epochs, with a slight decrease to 94.23% at 20 epochs. Similar
trends were observed for the Corn and Cucumber tasks, where the
best performance was also achieved at 15 epochs, with no significant
gain at 20 epochs. These findings suggest that a moderate number of
epochs promotes model convergence and generalization, while too
many epochs may lead to overfitting. This pattern was further
confirmed in the Insect Pest dataset, where 15 epochs also yielded
the best results in both Insectl and Insect2 tasks. In conclusion,
selecting an appropriate number of epochs is crucial for optimizing
model performance, with 15 epochs proving to be ideal for
most tasks.

4.9 Validation on a colloquial description
dataset

In this section, we constructed a small-sample colloquial
description dataset by collecting Q&A pairs from the agricultural

>

platform “Ask Extension® and carefully curating them through
filtering and grained annotation. The dataset contains 1,000
samples, covering five categories of plant diseases and pests:
Maize Leaf Spot, Rice Blast, Rice Planthopper, and Wheat
Powdery Mildew.

On this dataset, we conducted validation experiments using fine-
tuned PLMs (AgriBERT), prompt-based learning methods (PL and P-

Tuning), the LLM Qwen, as well as our proposed method. The

2 https://ask.extension.org/
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experimental settings and parameters were kept consistent with
those in the main experiments. The results are reported in Table 9.
It can be observed that our method outperforms all other approaches
across Accuracy, Precision, Recall, and F1, achieving an F1 Score of
79.70%, which is significantly higher than the second-best method,
AgriBERT. In contrast, PL and P-Tuning perform poorly on this
small-sample colloquial dataset, indicating the limited generalization
capability of traditional prompt-based learning. Although Qwen
performs better than the prompt-based learning methods, its
adaptation to colloquial data is still insufficient without fine-tuning.
Overall, our method demonstrates clear advantages in handling
colloquial and standard expressions in classification tasks, providing
more accurate and stable predictions across all sample categories.

5 Conclusions and future work

In this paper, we proposed a plant pest and disease classification
based on colloquial descriptions by leveraging soft prompt-tuning,
which combined AgriBERT-based entity recognition and AgriKG
retrieval for knowledge enhancement of input. Then, a soft prompt-
tuning method with an external knowledge extension verbalizer is
employed for detection. The experimental findings validate that our
method outperforms baseline models, including state-of-the-art
large language models (LLMs), in detection performance.

In future work, we plan to expand our research in two main
directions. Firstly, we will investigate more effective strategies for
verbalizer construction, including advanced approaches for
generation, filtering, and integration. Secondly, we intend to explore
multi-model methods, including computer vision, to derive more robust
representations, which can further advance the performance of plant
pests and diseases classification. In particular, integrating our model
with image description models such as PlanText and leveraging
databases like PlantPAD could enable an end-to-end agricultural
assistance system that combines descriptive queries with visual
observations for more reliable diagnostic recommendations.
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