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Macao Greater Bay Area
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and Chuanfu Zang1*

1School of Geography, South China Normal University, Guangzhou, China, 2Guangzhou Institute of
Forestry and Landscape Architecture, Guangzhou, China, 3Guangzhou Collaborative Innovation
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Ecosystem health (EH) underpins the capacity of vegetation ecosystems to

provide essential ecosystem services (ESs), which together are fundamental to

regional sustainability. In regions undergoing rapid urbanization, the

interrelationships between EH and ESs become increasingly complex, yet they

remain largely unexplored in previous studies. This study integrates the VOR and

InVEST models to quantify EH and four key ESs in the Guangdong–Hong Kong–

Macao Greater Bay Area (GBA) from 2000 to 2020 and further analyzes their

interrelationships using a bivariate spatial autocorrelation model and the

XGBoost-SHAP approach. The results indicate that: (1) From 2000 to 2020,

low-value areas of most ESs and EH expanded, regions of EH deterioration

accounted for 71.75% of the study area, indicating the profound impact of rapid

urbanization. (2) EH showed strong positive global spatial correlations with CS

and NPP, but weak negative spatial correlations with FP and WY. (3)

Interrelationships between ESs and EH can be divided into stable synergy type

and dynamic trade-off type based on their differing ecological processes; climate

factors can significantly impact the interrelationships primarily by affecting the

dynamic trade-off type. This study integrates spatial analysis and machine

learning approaches to examine the relationships between EH and ESs, thereby

advancing the understanding of ecosystem states and functions and providing a

theoretical basis for formulating ecological restoration targets.
KEYWORDS

ecosystem health, ecosystem services, interrelated characteristics, machine learning,
the Guangdong–Hong Kong–Macao Greater Bay Area
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1 Introduction

Ecosystems sustain human societies by delivering a wide range

of benefits, which are commonly understood through the concept of

ecosystem services (ES). Ecosystem services refer to the ecological

attributes, processes, and functions that underpin human well-

being, highlighting the ways in which functioning ecosystems

contribute to people’s lives (Costanza et al., 1997). Urbanization

profoundly alters natural ecosystems (Grimm et al., 2008), causing

declines in ESs and significantly affecting the well-being of humans

(Millennium Ecosystem Assessment, 2005). In this context,

enhancing ESs to sustain the well-being of humans has become a

significant issue guiding environmental conservation. However,

ecosystems are complex systems influenced by multiple factors.

To ensure the sustainable provision of ESs, ecosystem management

must focus not only on ESs but also on their mechanisms of

generation (Bennett et al., 2009), which corresponds to the

condition of ecosystems. Therefore, the ultimate goal of

ecosystem management is to ensure the provision of diverse ESs

while maintaining optimal ecosystem health (EH) (Rapport et al.,

1999). EH refers to the structural and functional integrity of an

ecosystem, encompassing its ability to remain active, organized, and

self-sustaining, while also demonstrating resilience to stress and

disturbances (Costanza, 1992; Rapport et al., 1998). In addition to

the provision of ESs, EH is also crucial, as it represents the concept

of an ideal ecosystem. Therefore, a thorough investigation of the

EH-ESs relationship in a specific region is crucial, which will serve

as a scientific foundation for effectively promoting their integrated

enhancement and coordinated improvement.

Regarding the interrelationship between ESs and EH,

widespread consensus indicates that healthy ecosystems can

provide ESs sustainably and steadily (Costanza, 2012; Hernández-

Blanco et al., 2022). However, quantitative research reveals that

relationships between the two may not always reflect strictly

synergistic characteristics (Zhu and Cai, 2024). In regions

undergoing rapid urbanization, where dramatic changes are

occurring in the structure, function, and state of ecosystems, the

complexity of interrelationship between EH and ESs may increase.

Therefore, it is imperative to test the hypothesis that a healthy

ecosystem produces high levels of ESs, especially in rapidly

urbanizing areas. However, research on the integration of ESs and

EH remains limited. Most related studies tend to examine EH and

ESs separately. In studies on EH, scholars have primarily employed

evaluation models such as PSR and VOR to quantitatively assess

ecosystem health (Das et al., 2021; Li et al., 2024). Subsequent

analyses often include investigations of driving factors and

corresponding ecological zoning (Han et al., 2024; Li et al., 2025;

Shao et al., 2025). Research on ecosystem services, which has

become a central focus in contemporary ecology, mainly

encompasses trade-off and synergy analyses based on the

quantification of ecosystem services (Feng et al., 2021; Xue et al.,

2023), cluster analysis (Dou et al., 2020; Xia et al., 2023; Su et al.,

2024), and mechanism analysis of influencing factors (Liu et al.,

2019; Jianying et al., 2020; Qi et al., 2020).
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Existing studies that combine EH and ESs mainly link ESs to the

assessment of EH (Peng et al., 2015; Pan et al., 2021; Yu et al., 2022;

Huang et al., 2024), grounded in the theory that healthy ecosystems

can provide abundant service functions. Some studies also take

them as indicators to quantitatively measure ecological indices. For

example, some scholars analyzed regional ecological risk by taking

the square root of the product of ecosystem health and service

function indicators in the Fen River basin (Wang et al., 2023a) and

the Beijing-Tianjin-Hebei urban agglomeration (Kang et al., 2018).

Other scholars have integrated EH and ESs with additional

indicators and conducted comprehensive analysis of these

indicators to measure ecological security in the Huaihe River

Basin (Zhu and Cai, 2023). However, the above studies focus

primarily on the integrated application of these two indicators

rather than investigating the underlying relationship mechanisms

between them. Given the fundamental differences between EH and

ESs in conceptual frameworks and quantification methods, they are

likely to exhibit distinct spatiotemporal patterns and response

mechanisms. Therefore, it is necessary to understand their

intrinsic relationships rather than simply integrating these

indicators. In existing research on the interrelationship between

EH and ESs, Liu et al. (2015), using correlation coefficient

calculation methods, found a generally synergistic relationship in

the forest areas of Northeast China. Similarly, Zhu et al. (2021), also

employing correlation coefficient calculation methods, discovered

that in the Pingjiang watershed, higher regional ecological quality is

associated with lower food supply services, with the trade-off

between NDVI and food supply being the most significant. In

reality, ESs and EH are the results of interactions among numerous

ecological variables, the relationship between them may exhibit

complex non-linear characteristics. Correlation coefficients

overlook the uncertainties introduced by these characteristics and

fails to reflect the complex relationship. Therefore, further

systematic analysis and research are needed to reveal the complex

characteristics and mechanisms of the interrelationship between

ESs and EH amid rapid urbanization.

As a prominent economic hub in China, the Guangdong–Hong

Kong–Macao Greater Bay Area (GBA) is one of the four leading bay

areas worldwide. By 2023, the total population of GBA had exceeded

86 million, and its economic output had surpassed 14 trillion yuan.

Taking up a fraction of one percent of China’s land area, the GBA

contributes to 1/9th of the national economic total, playing a pivotal

role in the quality-driven growth of China (Wang et al., 2023b). The

GBA boasts favorable natural geographic conditions, but rapid

urbanization has stressed the natural ecosystems. Previous research

has shown that the GBA is facing increasing environmental and

resource pressure (Wu et al., 2021), and urban carbon emissions grew

rapidly by 7% from 2000 to 2011 (Zhou et al., 2018). Therefore, the

GBA is a typical example of changes in EH and ESs driven by rapid

urbanization. Guided by the Green and Beautiful Guangdong

Campaign, the GBA plays an essential role as a model for the

development of bay areas in China and is positioned to be a pioneer

for the Beautiful China Initiative, which makes ecological construction

in the GBA extremely important. Consequently, enriching research on
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ecosystems in the GBA is important for providing the theoretical

foundation for more scientifically informed ecological management

practices. Therefore, this study integrates the InVEST model, VOR

model, bivariate Moran’s I method and machine learning techniques

to explore the interrelated characteristics between EH and ESs. This

research aims to: (1) quantify EH and ESs, exploring their

spatiotemporal distribution patterns; (2) examine the spatial

interrelationships between EH and ESs; and (3) investigate the

variable interrelated characteristics between EH and ESs. The

findings will provide deeper insights into the interactions between

EH and ESs, which will offer a valuable foundation for designing

ecological restoration strategies in regions sharing comparable

geographical characteristics.
2 Materials and methods

2.1 Study sites

The GBA spans an area of 5.6×104 km2, covering coordinates

from 21°25’ to 24°30’N and 111°12’ to 115°35’E (Figure 1A). It is

characterized by an overlap of rainfall and temperature seasonality

under a subtropical monsoon climate. It experiences warm and humid

conditions year-round, which create favorable conditions for both

heat and water. The mountains are concentrated in the northern part,

while plains are predominantly located in the central region and along
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the coast. The dominant vegetation type is subtropical evergreen

broadleaf forest. As a key economic hub of China, the GBA has

undergone rapid urbanization in the past few decades, significantly

transforming its surface landscape pattern (Figures 1B-D).
2.2 Data sources and methodology

Multivariate data were collected to quantify EH and ESs, and

the data used are summarized in Table 1, where the first column

lists the types of data employed, and the second and third columns

provide the source of each dataset along with additional details such

as spatial resolution and temporal coverage (Table 1).

To enhance the accuracy of spatial interpolation, we incorporated

meteorological station data from both the GBA and its adjacent regions

into calculation. In ArcGIS Pro 3.0.2 software, we obtained

meteorological raster data by applying the Kriging spatial interpolation

technique. We standardized all spatial datasets to the WGS 1984 UTM

Zone 49N coordinate system based on the study area’s location.
2.3 Quantification of ecosystem health

We quantified EH using the VOR framework, which is

considered to characterize ecosystem structure and function

completely (Costanza, 2012; Das et al., 2021).
FIGURE 1

Geographical location (a) and land use types (b-d) of the Guangdong–Hong Kong–Macao Greater Bay Area.
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The VOR framework includes the assessment of ecosystem

vitality, organization and resilience. We measured ecosystem

vitality using the Normalized Difference Vegetation Index

(NDVI), which is regarded as an effective way to evaluate the

vitality (Box et al., 1989; Peng et al., 2015); Using the moving

window method by Fragstats 4.2 software, we quantified ecosystem

organization thorough three landscape metrics: Shannon’s Diversity

Index (SHDI), Contagion Index (CONTAG), and Patch Cohesion

Index (COHESION) (Frondoni et al., 2011; Peng et al., 2017). Using

InVEST v3.14.1 software, we assessed ecosystem resilience through

the Habitat Quality sub-module (Ye et al., 2013; Sharp et al., 2018;

Chen et al., 2022). We used Equations 1–4 for the calculation:

irxy = 1 −
dxy
drmax

� �
, if linear (1)

irxy = exp   −
2:99
drmax

� �
dxy

� �
, if exponential (2)

Dxj =oR
r=1oYr

y=1
Wr

oR
r=1Wr

 !
ryirxybxSjr (3)

Qxj = Hj 1 −
D2
xj

D2
xj + k2

 !
(4)

where dxy represents the linear distance between raster cells x

and y; drmax denotes the maximum effective distance of threat r’s

reach across space; irxy is the impact of the threat factor r originating

from the cell x on the cell y; Dxj represents the habitat degradation

risk index of the cell x in the habitat type j; y is the cell under the

threat factor r; ry is used to determine if the cell y provides a source

of threat factor r; Wr is the threat weight of the factor r; bx denotes
the accessibility of the threat factor of the cell x; Sjr represents the

sensitivity coefficient of the land use type j to the factor r; Qxj is the
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quality of habitat of the raster x in habitat type j; and k is the half-

saturation constant, often be set to 0.05.

The TOPSIS method is a widely used evaluation technique that

identifies the best choice by calculating the distances between the

data set and both the ideal and worst solutions (Hwang and Yoon,

1981). To reduce the subjectivity of weighting decisions, we

combined the Entropy Weight method with the TOPSIS method

for the quantification of EH (Lv et al., 2023; Wu et al., 2021).
2.4 Quantification of ecosystem services

We selected four ecosystem service indicators as representatives

based on the context of the GBA, including carbon sequestration

(CS), net primary productivity (NPP), food production (FP), and

water yield (WY). (1) The dense population and advanced

economic development in the GBA make the ecosystem’s

provision of material and energy services crucial, and NPP

reflects the material production capacity of the ecosystem

(Nemani et al., 2003). (2) With the reduction in per capita

farmland area over the past few decades (Zhang et al., 2021),

research on FP is crucial for ensuring food security and

understanding the effects of urbanization on FP. (3) As economic

and population growth increases demand for clean water and

hydroelectric resources, assessing WY helps optimize water

resource management for sustainable development (Wang et al.,

2021). (4) Carbon emissions are high in the GBA, while the superior

vegetation conditions provide a basis for CS. Studying CS is

important for achieving carbon neutrality (Zhou et al., 2018).

2.4.1 Carbon sequestration
CS in a given area is determined by the size of four carbon pool:

above-ground biomass, below-ground biomass, soil carbon, and

dead organic matter. We used the Carbon Storage and
TABLE 1 Data and their sources.

Data type Data source Data description

Land use (Yang and Huang, 2021)
Five periods in 2000, 2005, 2010, 2015

and 2020; 30 m resolution

Digital Elevation
Model (DEM)

Geospatial Data Cloud
(https://www.gscloud.cn)

30m resolution

Meteorological data
China Meteorological Data Service Centre (http://data.cma.cn/en) and some

district and county meteorological bureaus of
Guangdong, Hunan, Guangxi, Fujian and Jiangxi Province

Daily scale data of
meteorological stations
from 2000 to 2020

Absolute depth to bedrock
International Soil Reference and Information Centre (ISRIC) (https://

www.isric.org/)
250m resolution

Derived available soil water capacity
(volumetric fraction) until wilting point

International Soil Reference and Information Centre (ISRIC) (https://
www.isric.org/)

250m resolution

Residential and industrial Open Street Map (https://www.openstreetmap.org/) Shapefile data

Normalized Difference Vegetation Index
Chinese Academy of Science Discipline Data Center for Ecosystem (http://

www.nesdc.org.cn/)
Five periods in 2000, 2005, 2010, 2015

and 2020; 30 m resolution

Net Primary Productivity
Analytical Insight of Earth

(https://engine-aiearth.aliyun.com/#/portal/analysis)
Five periods in 2000, 2005, 2010, 2015

and 2020; 500 m resolution
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Sequestration sub-module in InVEST v3.14.1 (Delphin et al., 2013;

Sharp et al., 2018; Chu et al., 2019) to assess CS. We calculated the

total carbon storage for each land use type using Equation 5:

Ctotali = (Cabovei + Cbelowi + Csoili + Cdeadi)� Ai (5)

where Ai represents the area of land use type i; Cabovei is the

above-ground carbon storage per unit area of land use type i; Cbelowi

is the below-ground carbon storage per unit area of land use type i;

Csoili is soil carbon storage per unit area of land use type i; Cdeadi is

dead organic carbon storage per unit area of land use type i; and

Ctotali represents the total carbon storage of land use type i.

2.4.2 Net primary productivity
NPP is the total amount of organic matter accumulated by

vegetation per unit area and per unit time, reflecting the material

supply capacity of the ecosystem (Nemani et al., 2003; Imhoff et al.,

2004). We downloaded the MOD17A3HGF006 vegetation NPP

dataset from the Analytical Insight of Earth Platform to assess NPP.

2.4.3 Water yield
The Annual Water Yield sub-module in InVEST v3.14.1 is an

estimation method using the water balance method (Redhead et al.,

2016; Sharp et al., 2018), calculated WY by Equation 6:

Y(x) = 1 −
AET(x)
P(x)

� �
· P(x) (6)

where Y(x) represents the annual water yield (mm) of the raster

cell x; AET(x) is the annual actual evapotranspiration (mm) of the

cell x; P(x) is the annual precipitation (mm) of the cell x. We

calculated evapotranspiration using the Penman-Monteith

equation. The maximum root burial depth data required by the

model was substituted with the absolute depth to bedrock data,

while the plant available water content was calculated from available

soil water capacity until wilting point data, which is recommended

in the user’s guide in InVEST software (Sharp et al., 2018). Zhang’s

coefficient is a constant that represents the seasonal characteristics

of precipitation, we adjusted it for different years to ensure the

model simulation results align with government water

resource reports.
2.4.4 Food production
Due to the significant linear correlation between grain

production and NDVI (Chen et al., 2020), we combined the

NDVI values with grain production statistics collected from the

Statistical Yearbook to better quantify the value of food production

(Huang et al., 2023). We computed FP using Equation 7:

FPi = Gsum  �
NDVIi

NDVIsum 
(7)

where FPi represents the food production value of raster cell i;

Gsum  represents the total regional production of crops; NDVIi
denotes the annual mean NDVI value of the cell whose land use

type is farmland; and NDVIsum  represents the sum of NDVI values

across all raster in the GBA. To achieve more realistic results, we
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performed calculations separately for each city based on the

respective statistical data.
2.5 Analysis of the interrelated
characteristics between EH and ESs

ESs and EH are two comprehensive indicators of ecosystems,

and the relationship between the two is likely to be complex, as they

result from the interaction of many environmental and ecological

variables. Due to spatial interactions and diffusion, spatial

autocorrelations can cause biases in the relationship between

these indicators when using methods like ordinary least squares

or geographically weighted regression model (Zhang et al., 2018). In

contrast, the bivariate Moran’s I method effectively reflects the

interrelationships of two variables spatially (Anselin, 1995; Xu et al.,

2019), making it suitable for revealing bivariate spatial correlations.

Thus, we use this method to reveal spatial interrelated

characteristics between the indicators.

Besides research on spatial correlation features, combining

methods that intuitively reveal the interrelated characteristics

between variables may further enhance the understanding of

their relationship. In recent years, machine learning models

have gained popularity in geographic and ecological analysis due

to their ability to effectively process multidimensional data and

reveal nonlinear relationships between variables without

predefined norms. The Extreme Gradient Boosting (XGBoost)

model, which adds regularization rules to reduce the risk of

overfitting, has significantly improved algorithm efficiency and

accuracy, making it highly effective in ecological studies (Yang

et al., 2021; Yuan et al., 2024). Additionally, SHAP (Shapley

Additive Explanations), based on game theory and local

interpretability, is a classic method used to explain the results of

machine learning. The partial dependence plots generated by

SHAP help in understanding the complex nonlinear

interrelationships between explanatory variables and dependent

variables (Lundberg et al., 2018). Based on this knowledge, we

employed the XGBoost-SHAP model to further analyze the

relationship between ESs and EH.

2.5.1 Spatial interrelated characteristics
We examined the spatial interrelationships between EH and ESs

via the GeoDa 1.18.0 software, employing both global and local

spatial autocorrelation methods. We applied global Moran’s I to

identify the overall spatial correlation between EH and ESs, with

values ranging from -1 to 1. We used Equation 8 to calculate the

global Moran's I.

Iabglobal =
n
S0

on
i=1on

j=1wij(Xai − �Xa)(Xbj − �Xb)

on
i=1(Xai − �Xa)

2 (8)

where n is the total number of spatial units; Xai and Xbj are the

observed values of variables a and b for spatial units i and j,

respectively; �Xa and �Xb are their mean values; wij is the spatial

weight describing the spatial relation between units i and j; S0 is the

sum of spatial weights. Iabglobal is the global bivariate Moran’s I index.
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A positive value suggests a positive spatial correlation, while a

negative value suggests a negative spatial correlation. When Iabglobal =

0, no spatial autocorrelation exists between the variables.

At the local level, we used the local Moran’s I (LISA) method to

identify spatial agglomeration patterns between EH and ESs. We

calculated local Moran's I using Equation 9:

Iabi = za,ion
j=1wijzb,j (9)

where za,i = (Xai − �Xa)=sa and zb,j = (Xbj − �Xb)=sb are the

standardized values of variables a and b; sa and sb are their

standard deviations; other symbols are as defined above. Iabi is the

local bivariate Moran’s I index. Based on the results of the bivariate

Moran’s I analysis, we categorized the study area into five types:

high-high type, indicating regions with high ESs and EH; low-low

type, where both ESs and EH are low; high-low and low-high type,

representing spatial heterogeneity; and non-significant type,

indicating no obvious spatial agglomeration. In this study, we

assessed the statistical significance of the results using a Z-test

(P< 0.05).
2.5.2 Variable interrelated characteristics
We implemented XGBoost-SHAP analysis using Python’s

scikit-learn, XGBoost, and SHAP packages for modeling and

visualization. Using ArcGIS Pro 3.0.2 software, we generated

1.0×105 random points across the study area to extract ESs and

EH data. Before modeling, we standardized all features using the

StandardScaler to ensure comparability.

For constructing the XGBoost regression model, we utilized

continuous EH values as the dependent variable, with multiple

ecosystem service indicators serving as independent variables. The

XGBoost algorithm builds predictive models through iterative

addition of decision trees, and its core objective function is

formulated as shown in Equation 10:

L =on
i=1l(yi, ŷ i) +oK

k=1W(fk) (10)

where n represents the total training samples, yi and ŷ i denote

the observed and predicted values for sample i, respectively; l(yi, ŷ i)

is the loss function; K indicates the total number of trees, fk
represents the k -th tree, and W(fk) is the regularization

component that prevents overfitting.

We divided the dataset into training (80%) and validation (20%)

sets. A grid search cross-validation (GridSearchCV) was performed

to optimize the XGBoost hyperparameters, including maximum

tree depth (3–6 nodes), learning rate (0.01-0.1), number of n

estimators (100-300), min child weight (1, 3, 5 nodes) and

subsample (0.8-1.0). We evaluated model performance by the

coefficient of determination (R2). We employed Five-fold cross-

validation to assess the model’s predictive accuracy and stability,

ensuring robust performance across different data subsets.

For interpretability analysis, we employed SHAP methodology

to quantify individual feature contributions to EH predictions. For a

given observation i and feature j, the SHAP value is mathematically

defined as shown in Equation 11:
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fj(i) =oS⊆ F ∖ jf g
Sj j ! ( Fj j − Sj j − 1) !

Fj j ! ½f (S ∪ jf g) − f (S)� (11)

where F represents the complete feature space, S denotes any

feature subset excluding j, and ½f (S ∪ jf g) − f (S)� quantifies the

marginal contribution of feature j when added to subset S. The

SHAP value fj(i) measures the contribution of feature j to the

prediction for observation i. Feature importance ranking was

determined by computing mean absolute SHAP values across all

observations, providing insights into the relative influence of

different ecosystem services on environmental health outcomes.
3 Results

3.1 Spatial-temporal variations of ESs and
EH in the GBA from 2000 to 2020

Both ESs and EH in the GBA revealed prominent spatial

heterogeneity, with the distribution of various indicators

exhibiting spatial autocorrelation and significant differences in

their spatial patterns (Figure 2). CS and NPP showed similar

spatial distribution patterns to EH (Figures 2A-I), generally

decreasing from the periphery to the center and from north to

south. The highest values were concentrated in the northern parts of

Zhaoqing, Guangzhou, and Huizhou, whereas the areas with lower

values were predominantly concentrated in the core area of the

GBA. Apart from areas such as Kowloon, Yau Tsim Mong, and

Kwun Tong, where the values of EH, CS and NPP were lower, Hong

Kong generally demonstrated exceptional EH and ESs conditions,

emerging as concentrated zone of high ecological value within the

central regions of the GBA. The high-value areas of FP

demonstrated a more balanced spatial arrangement throughout

the landscape with lower spatial autocorrelation (Figures 2J-L).

Regions with high FP mostly concentrated in suburban areas, while

regions with high WY formed a northeast-southwest corridor

through the central of the GBA (Figures 2M-O).

Over the 20-year period, the median EHI showed a gradual

increasing trend. The median EHI value rose from 0.29 in 2000 to

0.32 in 2020, while the dispersion of the data gradually increased

over the 20-year period (Figure 3A). Spatially, low-value zones

expanded, with 71.75% of the area experiencing EH degradation.

However, values in most original high-value zones increased,

resulting in an overall polarizing trend. The overall change trends

of CS and NPP values were not pronounced (Figures 3B, D), but

their spatial distribution patterns evolved similarly to EHI, with

both indicators showing increased diffusion of low-value areas over

time while surrounding areas exhibited relatively minor changes. FP

decreased most significantly, with the median value per raster cell

declining from 2.19t to 0.50t (Figure 3C). This sharp decrease in FP

occurred primarily in the core areas of the GBA. Meanwhile, the

data dispersion of FP also decreased significantly. WY exhibited the

greatest magnitude of fluctuation, varying irregularly over time,

with the median WY value changing by up to 197.77

mm (Figure 3E).
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3.2 Spatial interrelated characteristics
between ESs and EH in the GBA

Overall, the positive spatial correlations between ESs and EH

predominated (Figure 4), with distinct spatial variations across

different ES-EH combinations (Figure 5).
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Global Moran’s I values exceeded 0.65 between EH and either

CS or NPP, suggesting notable positive spatial correlation (P<0.05)

(Figures 4A-D). The spatial clustering patterns between the two

types of combination showed a high degree of overlap (Figures 5A-

D), primarily characterized by the extensive distribution of high-

high and low-low clusters. Over 30% of the area was occupied by
FIGURE 2

Quantification results and annual variations of EH (A-C) and ecosystem CS (D-F), NPP (G-I), FP (J-L), and WY (M-O) service functions from 2000 to
2020.
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high-high clusters, primarily located in the forested zones in the

outskirts of the GBA. The low-low clusters covered over 20%,

concentrated in the center of Guangzhou, Foshan, Shenzhen,

and Dongguan.

Global Moran’s I values were negative for both EH-FP and EH-

WY combinations (Figures 4E-H). The spatial clustering patterns

for FP and EH were dominated by low-high clusters, which

occupied more than 33% of the area and were located in the

outskirts of the GBA (Figures 5E, F). The low-low clusters were

predominantly located in the central regions of the GBA,

surrounded by the low-high clusters. The spatial clustering

pattern for WY and EH showed a more even distribution across

types (Figures 4G, H), with the western part mainly exhibiting low-

high and low-low clusters, and the eastern part showing high-low

and high-high clusters. Temporally, the global Moran’s I between

EH and either FP or WY decreased from 2000 to 2020. Low-low

cluster areas expanded most notably in the EH-FP correlation

pattern, with an increase of more than 8% in the GBA. The

spatial interrelated characteristics between WY and EH varied

dramatically with less discernible patterns.
3.3 Variable interrelated characteristics
between ESs and EH in the GBA

The XGBoost model performance varied over time and among

different ES and EH combinations (Table 2). The model of EH and

CS achieved the highest accuracy with an average R² of 0.68, while

the model of EH and NPP had an average R² of 0.53. The EH-WY

model showed lower prediction accuracy with substantial

temporal variability.
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Results of the XGBoost-SHAP model indicated that CS and EH

showed a positive relationship close to linear (Figure 6A). The

relationship between NPP and EH showed a clear threshold effect,

with SHAP values stabilizing and even slightly declining when NPP

reaches around 10,000 kg/m² (Figure 6B). The relationship between

FP and EH initially exhibited a positive trend before shifting to a

negative trend at lower values. When FP exceeded 10 tons, the EH

prediction curve flattened. From 2000 to 2020, the curve’s peak

point shifted rightward (Figure 6C). The relationship between WY

and EH demonstrated a negative correlation because the prediction

curves showed notable variation across years (Figure 6D).
4 Discussion

Scholarly consensus suggests that healthy ecosystems can provide

diverse ESs (Costanza, 2012). However, despite their conceptual

relationship, the empirical evidence for specific relationships between

EH and ESs within defined spatial-temporal contexts remains limited.

To address this gap, our study leverages a combination of bivariate

spatial autocorrelation modeling and the XGBoost-SHAP approach to

quantitatively examine the interrelated characteristics between EH and

ESs in the GBA, while the further understanding of the mechanisms

behind these relationships and the comprehensive interaction between

EH and ESs requires analysis of ecosystem processes.
4.1 Stable synergistic interrelated pattern
between ESs and EH

EH showed similar spatial aggregation patterns with CS and

NPP, characterized by significant positive correlations. Core areas
FIGURE 3

Boxplots of the values of EH (A) and ecosystem CS (B), FP (C), NPP (D), and WY (E) service functions from 2000 to 2020.
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with intense human activity experienced rapid urbanization over

the past two decades, leading to declines in both EH and ESs and

resulting in low-value and deteriorated zones (Gordon et al., 2009).

In contrast, the outskirts of the GBA, less affected by urbanization,

exhibited strong ecosystem vitality, organization, and resilience,

supporting more stable material cycling and energy flow, and
Frontiers in Plant Science 09
allowing rapid recovery from disturbances, thereby promoting CS

and NPP (Chen et al., 2018; Reader et al., 2023). The gradual

increase of the EH in surrounding areas can be attributed to

ecological restoration projects in nearby mountains (Feng et al.,

2021), plant growth promoted by climate change (Friend et al.,

2013), or the self-recovery capacity of the ecosystem (Liu et al.,
FIGURE 4

The bivariate Moran’s I scatter plots of EH and CS (A, B), NPP (C, D), FP (E, F), and WY (G, H) from 2000 to 2020. The x-axis represents the standardized
values of ESs, while the y-axis represents the spatially lagged EH values. Each graph includes a line of best fit and the corresponding Moran’s I value.
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2023); all of these factors may enhance EH, CS, and NPP and

reinforce their synergistic relationship.

At the process level, healthy vegetation ecosystems maintain

high NPP and CS through photosynthesis, during which carbon is

fixed and transformed into organic matter (Johnson, 2016; Walther

et al., 2019; Smith et al., 2024). This establishes the coupling
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between CS and NPP and contributes to the stability of the

ecosystem. Similar synergistic patterns have been observed

elsewhere; for instance, Zhang et al. (2022) reported a correlation

coefficient of 0.81 between habitat quality and carbon storage in the

Chengdu–Chongqing Urban Agglomeration, and Huang et al.

(2023) found a strong synergy between habitat quality and NPP
FIGURE 5

The bivariate LISA map of EH and CS (A, B), NPP (C, D), FP (E, F), and WY (G, H) from 2000 to 2020. The pie chart represents the proportion of
different clustering types in relation to the total area of the GBA
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in the Wujiang Basin. Urban land encroachment disrupts these

ecological processes, reducing associated service functions, which

has been widely observed in previous studies (Wu et al., 2024;

Yushanjiang et al., 2024). Methodologically, previous studies often

relied on correlation coefficients to assess overall relationships

between ecosystem indicators, while more detailed analyses

revealed spatial patterns of trade-offs and synergies (Xue et al.,

2023). In this study, SHAP analysis further elucidated specific

associations between EH and ESs. Notably, we identified a

threshold effect in the NPP–EH relationship: areas with high NPP

often corresponded to plantations around the GBA. Despite rapid

material production, these plantations exhibit simplified ecosystem

structures and are less capable of maintaining ecosystem health and

multiple services (Dislich et al., 2017; Guillaume et al., 2018).
4.2 Dynamic trade-off interrelated pattern
between ESs and EH

FP and WY exhibited more complex non-linear relationships

with EH. EH increased initially with FP, but after a certain point, it

decreased and then stabilized. FP is mostly enhanced by the use of

pesticides, herbicides, and monoculture (Reader et al., 2023); these

agricultural activities have resulted in simpler ecosystem structures

and lower biodiversity, despite crop growth directly corresponding to

increased ecosystem vitality on cropland. This dual effect explains the

observed non-linear relationship between FP and EH. Temporally,

from 2000 to 2020, the peak of the SHAP curve describing the

relationship between FP and EH shifted to the right. The GBA used to

be a major grain-producing region in Guangdong Province; however,

rapid urbanization has directly consumed farmland, leading to

decreased grain production (Wang et al., 2019). Consequently,

regions with low EH and high FP shifted to low-low clusters,

weakening the trade-off intensity between them, possibly

contributing to the shift of the peak of the curve. Previous studies

have indicated negative correlations between FP and other services;

for example, Xia et al. (2023) revealed this pattern while also noting

an expansion of synergy areas over time using a geographically

weighted regression model. In contrast, our analysis found

relatively few FP–EH trade-off zones, likely because the highly

urbanized GBA contains extensive areas with simultaneously low

EH and FP, weakening the observed trade-offs.

The interrelationship between EH and WY was not dominated by

any single clustering type, and WY increased overall with noticeable

fluctuations as EH decreased. The irregular clustering patterns and

sharp fluctuations observed in the curves can largely be attributed to

climatic variability, particularly precipitation. As an external driver,

precipitation exhibits high uncertainty and weak correlation with

surface conditions (Runting et al., 2017). Since WY is strongly

controlled by precipitation, it exhibited greater variability than the

relatively stable EH, leading to unstable interrelationship patterns.

High–low clustering of WY and EH was mainly concentrated on the

impervious surfaces at the urban core of the GBA, where risingWY due

to blocked infiltration was accompanied by low EH. By contrast,

forested areas showed higher EH but lower WY because of intense
Frontiers in Plant Science 11
transpiration (Sun et al., 2006). Previous studies have reported higher

WY in mountainous forests and lower WY in densely populated areas

(Darvishi et al., 2022; Mo et al., 2023). The WY distribution in the GBA

differs from these patterns, likely due to its monsoon-influenced coastal

climate and extensive impervious surfaces typical of a large urban

agglomeration. Regarding trade-offs between WY and other ecological

indicators, prior studies have documented similar phenomena. For

example, Liu et al. (2020) quantified runoff coefficients in Southwest

China, revealing trade-offs betweenWY and carbon sequestration, while

Zhang et al. (2022) found that in the Chengdu–Chongqing urban

agglomeration, WY and habitat quality were largely dominated by

trade-offs, with negative synergies exceeding positive ones. In contrast,

our results show that in the GBA, high–high EH–WY clusters are more

extensive than low–low clusters, likely reflecting abundant precipitation

supporting higher WY. Methodologically, Zhang et al. focused on

temporal trends, capturing WY declines during forest restoration,

whereas our study emphasizes spatial patterns, revealing the

coexistence of different ecological indicators across the GBA. Notably,

SHAP analysis further identified the non-linear characteristics of the

EH–WY relationship, highlighting its complexity under the combined

influence of climate variability and human activities.
4.3 Hierarchical interrelated patterns
between ESs and EH

The above analysis reveals that the interrelated patterns

between ESs and EH vary depending on the type of ESs. This

difference arises from the varying dependencies of ESs on ecosystem

structures and processes.

CS and NPP are strongly correlated with ecosystem

photosynthetic processes and serve as crucial indicators reflecting

fundamental ecosystem metabolic processes. Their stable

synergistic relationship with EH fully demonstrates the intrinsic

resilience characteristics of ecosystems (Holling, 1973). In contrast,

FP and WY are driven mainly by external factors such as human

activities and climate change, reflecting ecosystems’ sensitive

responses to external disturbances. Their dynamic trade-off

relationship with EH profoundly reflects the adaptive adjustment

processes of ecosystems within disturbance-recovery cycles (White

and Pickett, 1985). Notably, the intensity of ecosystem responses to

external disturbances tends to gradually diminish as ecosystem
TABLE 2 Model fitting accuracy values (R2).

Years
R2 of different variables

CS NPP FP WY

2000 0.7425 0.5711 0.3260 0.2817

2005 0.6589 0.5059 0.2262 0.1146

2010 0.6668 0.4980 0.2143 0.2980

2015 0.6622 0.4775 0.1835 0.2488

2020 0.7107 0.5245 0.2037 0.0469
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health status and fundamental supporting service functions

improve. For instance, photosynthetic processes enhance the

ecosystems’ buffering capacity against climate change by

efficiently absorbing carbon dioxide and promoting long-term

carbon storage. Under sustained moderate disturbance conditions,

ecosystems can continuously evolve and enhance their stability

(Holling, 1973; Walker et al., 2004). However, rapid urbanization
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has disrupted the inherent self-regulation thresholds of ecosystems

(Muradian, 2001), making the differentiation mechanism of

stability-dynamics interrelationship patterns more pronounced.

This differentiation primarily stems from profound changes in

land surface environmental characteristics induced by

urbanization. These modifications not only amplify the

fluctuation magnitude of key dynamic factors—such as
FIGURE 6

Interrelated characteristics between EH and CS (A), NPP (B), FP (C), and WY (D) indicators from 2000 to 2020.
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temperature and precipitation—but also significantly intensify both

the impact intensity and influence depth of these factors on

corresponding ecosystem services.

The identification of hierarchical interrelated patterns

represents an advancement beyond the traditional binary

cognition of synergy-trade-off relationships between ecosystem

attributes. By revealing the intrinsic hierarchical nature of

ecosystem service-health relationships under rapid urbanization,

this study provides empirical evidence. It offers novel insights into

the classical theory that healthy ecosystems can sustainably provide

abundant ESs. The stable synergistic characteristics confirm that the

healthy ecosystems can maintain fundamental ecological processes.

Meanwhile, the dynamic trade-off characteristics indicate that the

supporting role of EH in supporting ESs is not a simple linear

facilitation, but rather exhibits hierarchical differences based on the

characteristics of ecological processes.
4.4 Limitations and future perspectives

This study investigates the interrelated characteristics between ESs

and EH, advancing the understanding of their interactions. However,

there remain certain limitations. Firstly, methodological constraints,

including parameter dependencies in the InVESTmodel and subjective

evaluations in the VOR model, may introduce quantification biases

that potentially compromise regression fitting accuracy. Secondly, the

types of ESs examined in this study are limited, necessitating future

comprehensive investigations across a broader spectrum of ecosystem

service types. Finally, while this study reveals the interrelated

characteristics among indicators and provides reasonable

interpretations under specific conditions, the underlying causal

mechanisms require further investigation. This could be achieved

through multi-scale and spatial-temporal quantitative analyses to

provide more robust evidence for understanding the mechanistic

interactions between ecosystem health and ecosystem services.
5 Conclusions

This study employs a comprehensive approach combining the

InVEST model, VOR model, bivariate spatial autocorrelation

analysis, and XGBoost-SHAP model to systematically investigate

the interrelationships between ESs and EH in the Guangdong–

Hong Kong–Macao Greater Bay Area. The findings reveal three

key insights:
Fron
1. Over the past 20 years, values of EH and FP have decreased

in the urban expansion areas of the GBA, while EH has

improved in the peripheral zones. WY achieved high values

in built-up areas, and the overall distribution pattern shows a

spatial configuration of high values in the east and low values

in the west. Rapid urbanization has significantly influenced

the spatiotemporal evolution of EH and ESs in the GBA.
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2. CS and NPP, as indicators closely linked to fundamental

ecosystem metabolism, exhibit a stable synergistic

relationship with EH. In the peripheral regions of the

GBA, EH and corresponding service functions may be

synergistically enhanced, requiring attention to the

protection of natural forest lands.

3. FP and WY respond dramatically to human activities and

climate change factors, showing a dynamic trade-off

relationship with EH. Rapid urbanization has made

ecosystems more sensitive to external disturbances, thereby

intensifying the trade-off effects between EH and ESs.
By quantifying the relationship characteristics between ecosystem

health and service functions, this research, based on the analysis of

ecosystem structural and process characteristics, explores how

ecosystems respond to external disturbances such as climate change

in urban contexts, and further reveals the hierarchical differences in the

relationship characteristics between EH and ESs as well as the impact of

rapid urbanization on their relationship. This validates existing theories

while providing new insights into their real-time manifestations during

rapid urbanization. Furthermore, the results offer a theoretical basis for

ecosystemmanagement and planning in regions worldwide with similar

natural geographic characteristics and urbanization development traits.
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