

OPEN ACCESS

EDITED AND REVIEWED BY Anna N. Stepanova, North Carolina State University, United States

*correspondence
Takuya Yoshida

☑ tyoshida@nibb.ac.jp

RECEIVED 17 July 2025 ACCEPTED 29 July 2025 PUBLISHED 08 August 2025

CITATION

Yoshida T (2025) Editorial: From pathways to networks: integration of phytohormones and environmental signals. *Front. Plant Sci.* 16:1667710. doi: 10.3389/fpls.2025.1667710

COPYRIGHT

© 2025 Yoshida. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: From pathways to networks: integration of phytohormones and environmental signals

Takuya Yoshida 1,2*

¹Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan, ²Basic Biology Program, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan

KEYWORDS

phytohormone signaling, cytokinin (CK), auxin, abscisic acid (ABA), phosphatidic acid (PA), brassinosteroid (BR), sulfated peptide, HPLC-MS/MS

Editorial on the Research Topic

From pathways to networks: integration of phytohormones and environmental signals

Plants possess a sophisticated capacity to perceive and integrate diverse environmental cues, such as light, temperature, and water availability, allowing them to finely control their growth and metabolism (Gupta et al., 2020; Li et al., 2022). These external signals are integrated with endogenous regulators, particularly phytohormones (Li et al., 2022; Waadt et al., 2022). Whilst major components of individual hormone and environmental signaling pathways have been identified through genetic and molecular studies (Vanstraelen and Benkova, 2012; Kim et al., 2024), growing evidence highlights the extensive cross-talk between these systems. This Research Topic aimed to advance our understanding of the phytohormone signaling network—governed by multiple phytohormones and environmental cues—and featured three original research articles and one review article, covering different aspects of phytohormones derived from studies on several species.

Trifunović-Momčilov et al. investigated the hormonal and metabolic changes during spontaneous shoot regeneration in common centaury, Centaurium erythraea. Their findings highlight a critical time window where shifts in cytokinin, auxin, and carbohydrate balance appear to drive regeneration, offering new insight into the physiological basis of in vitro morphogenesis. Ndathe and Kato addressed the role of phosphatidic acid (PA) in abscisic acid (ABA)-induced gene expression in Arabidopsis thaliana in association with stress responses. A specific subfamily of protein phosphatases 2C functions as ABA coreceptors, but this study shows that only a subset of this group is selectively inhibited by PA, emphasizing the importance of experimental validation when integrating signaling components into ABA response models. Tong et al. developed a novel method using ultra-high performance liquid chromatographytandem mass spectrometry (UHPLC-MS/MS), combined with solid-phase extraction and chemical derivatization, to improve the detection of brassinosteroids (BRs) in plants. Applying this approach to Brassica napus, they quantified three BR types across different organs and revealed that BR levels are highest in flowers and decline with tissue maturation. Moreover, Zhang et al. provided a comprehensive overview of sulfated peptide hormones in plants, highlighting their roles in plant development, growth, and stress responses. The review details

Yoshida 10.3389/fpls.2025.1667710

the production and modification of key peptide families, explores their signaling pathways and receptor interactions, and discusses the crosstalk between sulfated peptides and major phytohormones.

This Research Topic emphasizes the significance of the interactions among phytohormones and associated metabolites, including PA and sulfated peptides, as well as the importance of technical advances in measuring these compounds. Future research along these lines will deepen our understanding of how phytohormones function in dynamic environmental contexts.

Author contributions

TY: Writing - original draft, Writing - review & editing.

Conflict of interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Gupta, A., Rico-Medina, A., and Cano-Delgado, A. I. (2020). The physiology of plant responses to drought. *Science* 368, 266–269. doi: 10.1126/science.aaz7614

Kim, J. S., Kidokoro, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2024). Regulatory networks in plant responses to drought and cold stress. *Plant Physiol.* 195, 170–189. doi: 10.1093/plphys/kiae105

Li, X., Liang, T., and Liu, H. (2022). How plants coordinate their development in response to light and temperature signals. Plant Cell 34, 955-966. doi: 10.1093/plcell/koab302

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Vanstraelen, M., and Benkova, E. (2012). Hormonal interactions in the regulation of plant development. *Annu. Rev. Cell Dev. Biol.* 28, 463–487. doi: 10.1146/annurev-cellbio-101011-155741

Waadt, R., Seller, C. A., Hsu, P. K., Takahashi, Y., Munemasa, S., and Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. *Nat. Rev. Mol. Cell Biol.* 23, 680–694. doi: 10.1038/s41580-022-00479-6