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Željana Grbović,
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remote sensing imagery
Mengting Dong, Hao Cao*, Tian Zhao and Xu Zhao

College of Information and Network Engineering, Anhui Science and Technology University, Bengbu,
Anhui, China
Introduction: Beekeepers often face challenges in accurately determining the

spatial distribution of nectar-producing plants, which is crucial for informed

decision-making and efficient beekeeping.

Methods: In this study, we present an efficient approach for automatically

identifying nectar-producing plants using remote sensing imagery. High-

resolution satellite images were collected and preprocessed, and an improved

segmentation model based on the SegFormer architecture was developed. The

model integrates the CBAM attentionmechanism, deep residual structures, and a

spatial feature enhancement module to improve segmentation accuracy.

Results: Experimental results on rapeseed flower images from Wuyuan County

demonstrate that the improved model outperforms the baseline SegFormer

model. The mean Intersection over Union (mIoU) increased from 89.31% to

91.05%, mean Pixel Accuracy (mPA) improved from 94.15% to 95.02%, and both

mean Precision and mean Recall reached 95.40% and 95.02%, respectively.

Discussion: The proposed method significantly enhances the efficiency and

accuracy of nectar plant identification, providing real-time and reliable

technical support for precision beekeeping management, smart agriculture,

and ecological monitoring. It plays a key role in optimizing bee colony

migration, improving collection efficiency, and regulating honey quality.
KEYWORDS

remote sensing, SegFormer, nectar-producing plants, bees, semantic segmentation,
deep learning
1 Introduction

Nectar-producing plants serve as the foundational ecological resource for the

beekeeping industry, directly influencing honey yield and quality through their species

composition, distribution density, and phenological characteristics (Khan and Khan, 2018).

Precisely analyzing the spatial distribution patterns of nectar-producing vegetation is

crucial for optimizing bee colony migration routes, improving honey collection efficiency,

and regulating honey’s nutritional quality (Ma and Yang, 2024). The sustainable

development and utilization of nectar-producing resources are critical issues for the

high-quality advancement of the beekeeping industry (Hunde, 2025). This study uses
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Wuyuan County, Jiangxi Province, as a representative area for

nectar-producing plant research. Its favorable ecological

conditions, including a warm, humid climate and abundant water

resources, support the growth of various nectarproducing plants,

particularly rapeseed flowers, which serve as a primary nectar

source for bees (Abrol et al., 2007). The extensive cultivation of

rapeseed flowers has not only contributed significantly to the 3 local

agricultural economy but has also provided a vital resource for the

beekeeping industry, attracting numerous tourists and fostering the

diversified growth of the regional economy (Jiang et al., 2016). As

shown in Figure 1, the specific location of Wuyuan County is an

ideal site for nectar source research, particularly given its unique

geographical features and abundant nectar-producing

plant resources.

However, the complex terrain of Wuyuan and its seasonal

variations, which include fluctuations in climate, temperature, and

precipitation, pose significant challenges for the remote sensing

identification of nectar-producing plants, as these changes directly

affect the growth cycles of the plants (Barahona et al., 2024).

Traditional methods for identifying nectar-producing plants

primarily rely on human expertise and typically require field

surveys to ascertain the location and extent of nectar sources

(Langlois et al., 2020). While effective on a small scale, this method

becomes time-consuming and labor-intensive when applied to

large areas or mobile beekeepers. It is also vulnerable to

environmental changes, hindering real-time monitoring of the

growth and distribution of nectar-producing plants (Zheng et al.,

2018). These methods depend on predictable environmental

patterns, such as temperature and rainfall , which are

increasingly disrupted by climate change. These methods rely on

predictable environmental patterns, such as temperature and

rainfall, which are becoming increasingly erratic due to climate
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change (Vercelli et al., 2021). Furthermore, traditional methods

are ill-equipped to handle seasonal variations and are unable to

quickly adjust recognition models to accommodate dynamic

environmental changes, particularly when beekeeping sites

migrate seasonally, making fixed monitoring methods even

more limited. In contrast, remote sensing technology,

particularly when combined with deep learning algorithms, has

been widely applied in agriculture (Khanal et al., 2020). Especially

when combined with deep learning algorithms, remote sensing

technology can rapidly and accurately extract and identify the

spatial distribution information of nectar-producing plants over a

large area, making it of significant importance in the large-scale

monitoring of nectar-producing plant distributions (Barnsley

et al., 2022). Through drone or satellite remote sensing imagery,

remote sensing technology can efficiently and precisely extract

spatial distribution information from nectar-producing plants,

addressing the limitations of traditional methods (Namdeo

Aiwale et al., 2025). Nevertheless, complex terrain backgrounds

and variations in the size of nectar-producing plants make remote

sensing image processing more challenging, especially when

environmental conditions are complex and plant growth states

vary significantly. Existing remote sensing identification methods

often face low accuracy and segmentation precision under

such conditions.

To address issues such as multifaceted backgrounds and varying

target scales encountered during the segmentation of nectar-

producing plants in remote sensing images, this paper proposes a

segmentation method based on an improved SegFormer model. This

method fully leverages the SegFormer model’s advantages in multi-

scale feature extraction and self-attention mechanisms, enabling

efficient processing of diverse plant distribution scenarios and

making it suitable for the automatic identification of

nectarproducing plants. To further enhance the segmentation

accuracy of the model, this paper introduces the Convolutional

Block Attention Module mechanism and Spatial Attention

mechanism into the SegFormer architecture, combined with deep

residual technology. CBAM effectively uncovers correlations between

different channels, enhancing the model’s ability to represent plant

regions (Zhang et al., 2023); the Spatial Attention mechanism helps

the model focus on key areas in the image, thereby improving

segmentation accuracy (Zhu et al., 2019). Additionally, through the

deep residual structure, the model effectively enhances feature

expression capabilities and gradient propagation, improving

segmentation performance for nectar-producing plants of various

sizes and shapes (Fang et al., 2021). Whether in densely populated

rapeseed flower areas or in dispersed vegetation regions, the model

achieves high-precision segmentation.

The application of remote sensing image segmentation

technology in the large-scale monitoring of nectar plant

distribution is of great significance (Adgaba et al., 2017). With the

development of the beekeeping industry, mobile beekeeping has

gradually become a common farming method. Beekeepers need to

quickly and accurately understand the distribution of nectar-

producing plants in different regions to make scientific honey

harvesting decisions and flexibly adjust beekeeping strategies
FIGURE 1

Basic information of the dataset selection area.
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(Harianja et al., 2023). This helps beekeepers adjust their honey

harvesting plans in real time, thereby improving honey production

and quality. With technological advancements, the application of

remote sensing technology and deep learning methods in nectar-

producing plant monitoring has become increasingly precise and

efficient (Hicks et al., 2021). This enables beekeepers not only to

obtain real-time spatial distribution information but also to conduct

rapid monitoring across large areas, achieving more flexible and

scientific honey harvesting decisions. Through this technology,

beekeepers can promptly understand the distribution of nectar-

producing plants in different regions, adjust beekeeping strategies

and honey harvesting plans, and maximize honey production and

quality. This not only helps the beekeeping industry improve

production efficiency but also provides strong technical support

and theoretical foundations for the development of precision

agriculture.The remainder of this paper is structured as follows.

Section 1 introduces the experimental materials, including the

methods for data acquisition, preprocessing, and dataset

construction. Section 2 elaborates on the remote sensing image

honey source segmentation model based on the improved

SegFormer, detailing the fundamental SegFormer architecture and

the introduced enhancements: the CBAM attention mechanism,

deep residual structure, and spatial feature enhancement module.

The novelty of this work lies in the integration of these well-

established techniques to address the unique challenges in nectar

plant segmentation in remote sensing imagery. Although CBAM,

spatial attention, and residual blocks are widely known in the

computer vision domain, their combination and application to

nectar plant segmentation is a key contribution of this study. This

integrated approach enables more effective segmentation in

intricate environments, enhancing model robustness and

accuracy. Section 3 describes the model training environment,

evaluation metrics, and validates the effectiveness of the improved

model through ablation studies and comparative experiments.

Finally, Section 4 summarizes the main conclusions of this study

and discusses potential future research directions.
2 Experimental materials

2.1 Image acquisition and processing

In this study, 621 remote sensing images were obtained from

the Jilin-1 satellite via the Aokang Interactive Map Platform. The

images cover Wuyuan County in northeastern Jiangxi Province,

with acquisition dates from March 2022 to May 2025. The satellite

imagery includes various resolutions (500 meters, 100 meters, and

50 meters), with the 50-meter resolution images serving as the

primary data source. The 50-meter resolution images, which

represent the highest precision obtained from the platform under

current conditions, strike a balance between spatial resolution and

coverage, making them particularly suitable for large-scale

environmental monitoring and agricultural research. This

resolution allows for monitoring vast areas, such as agricultural

land or natural ecosystems, providing sufficient detail to study plant
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distribution, vegetation health, and land use changes. The Jilin-1

satellite can acquire various types of remote sensing images,

including optical and multispectral images, providing valuable

data support for the identification of nectar-producing plants (Li

et al., 2021). To ensure the images meet the input requirements of

deep learning models, all images underwent a series of

preprocessing and enhancement steps.

During image preprocessing, the original remote sensing images

were first randomly cropped to extract different regions of interest,

with the crop size ranging from 80% to 100% of the original image.

This random cropping helps increase the diversity of the dataset

and allows the model to learn from various parts of the image,

improving its robustness. The cropped images were then

normalized, and their size and aspect ratio were standardized to

meet the input requirements of the deep learning model. The image

size was adjusted to 512×512 pixels to reduce computational

resource consumption during training while ensuring that

important image details were preserved. Subsequently, various

random image enhancement techniques were applied to further

augment the dataset, including brightness and contrast adjustments

(random values between -20% and +20%), random rotation

(between -30° and +30°), random translation (with a maximum

offset of 10% of the image size), mirror flipping, and noise addition

(with a variance of 0.01).

Through the above processing and enhancement steps, the

original 621 remote sensing images underwent seven rounds of

enhancement processing, resulting in a total of 4,337 images used

for model training. These enhanced images not only expanded the

scale of the dataset but also improved the model’s generalization

ability, enabling it to better handle the task of identifying nectar-

producing plants under complex environmental conditions and

seasonal changes.
2.2 Dataset creation

The images were annotated using Labelme annotation software.

Based on the typical color characteristics of rapeseed flowers in

remote sensing images, the areas containing rapeseed flowers were

initially preselected using color values in the range of RGB (200–

255, 200–255, 0–100). All nectarproducing plant regions were

precisely labeled, and corresponding annotation files in JSON

format were generated. After annotation, the dataset was

randomly divided into training, validation, and test sets with a

ratio of 8:1:1. This ratio helps balance the adequacy of training data

with the effectiveness of model evaluation. Subsequently, all

annotated JSON files were converted into mask images for use in

training deep learning models. Each mask image was a binary

image, with the same size as the original image, where annotated

areas were assigned a value of 1 and the background was assigned a

value of 0. This conversion process was automated through a script

to ensure accurate generation of the corresponding mask images

from the annotations, providing high-quality labeled data for

subsequent image segmentation tasks. The images and their

corresponding masks are shown in Figure 2.
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3 Methods

3.1 SegFormer model

SegFormer is an efficient image segmentation model based on

the Transformer architecture, particularly suited for handling

semantic segmentation in complex backgrounds and large-scale

regions (Xie et al., 2021). Unlike traditional convolutional neural

networks (CNNs), SegFormer leverages selfattention mechanisms

and multi-scale feature extraction to effectively capture long-range

dependencies in images, making it highly suitable for scenarios in

remote sensing images where target sizes and scales vary

significantly (Huang et al., 2023). The model employs a novel

hierarchical Transformer encoder that outputs multi-scale

features, extracting information from different levels through

progressive downsampling to fully preserve spatial and contextual

features (Wang et al., 2022). Additionally, SegFormer does not use

positional encoding, avoiding performance degradation caused by

interpolation when resolution changes (Huang et al., 2021). The

model also simplifies the decoding stage by using a lightweight MLP

decoder, which effectively aggregates features from different layers

to fuse local and global information (Shi et al., 2022). This design
Frontiers in Plant Science 04
improves model inference efficiency while maintaining

segmentation accuracy.

Overall, SegFormer demonstrates exceptional multi-scale

feature fusion and representation capabilities, effectively

addressing challenges such as complicated terrain features, diverse

targets, and inconsistent scales in remote sensing image

segmentation tasks. Leveraging the powerful modeling capabilities

and efficient architecture of the Transformer framework.In remote

sensing image segmentation tasks, it is often necessary to

distinguish between different types of land cover (such as

vegetation, water bodies, buildings, etc.), with objects exhibiting

diverse shapes and sizes (Blaschke et al., 2004). SegFormer’s multi-

scale feature fusion module can simultaneously focus on fine-

grained local information and global contextual relationships,

significantly improving segmentation performance for small

objects and boundaries (Chen et al., 2024). Therefore, the

selection of SegFormer primarily considers its ability to

demonstrate higher segmentation accuracy and robustness when

processing remote sensing images with complex backgrounds,

multi-scale targets, and diverse land cover types. It is particularly

suitable for semantic segmentation tasks involving large-scale, high-

resolution remote sensing images, such as urban building areas,
FIGURE 2

Nectar plant segmentation: original image vs. segmentation mask.
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farmland distribution, and mixed forest and water bodies. Its

structural diagram is shown in Figure 3. C is the number of

channels, and Decoder fuses these features through MLP.
3.2 Improved SegFormer remote sensing
image nectar source segmentation model

To improve the performance of the SegFormer model in the

task of segmenting nectar-producing plants in remote sensing

images, this paper proposes targeted structural improvements to

the model. The overall improvement framework is shown in

Figure 4. While retaining the original encoder-decoder backbone

structure, this paper sequentially introduces the CBAM attention

mechanism, deep residual structure, and spatial attention module

during the feature fusion stage. This approach not only effectively

extracts key information from multi-scale features but also

significantly enhances the model’s segmentation capabilities for

multifaceted scenes and fine-grained targets.
3.2.1 CBAM attention
To further enhance the model’s feature extraction capabilities,

this paper introduces the CBAM (Convolutional Block Attention

Module) attention mechanism into the feature fusion module of

SegFormer. CBAM is a lightweight, pluggable attention mechanism

proposed by Sanghyun Woo et al. in their 2018 ECCV paper titled

“CBAM: Convolutional Block Attention Module.” (Woo et al.,

2018) CBAM can adaptively adjust feature responses in both the
Frontiers in Plant Science 05
channel and spatial dimensions, thereby enhancing the network’s

ability to express key information. In this study, we integrate the

CBAM module into the SegFormer framework to enhance the

model’s feature extraction and fine-grained object discrimination

capabilities in the task of honey plant segmentation in remote

sensing images. CBAM primarily consists of a channel attention

module and a spatial attention module, which are used in series

(Wang et al., 2021), as shown in Figure 5.

Channel attention applies global average and max pooling to

input features, generating two vectors, which are summed and

passed through a Sigmoid function to obtain attention weights.

These weights adjust the contribution of each channel, emphasizing

important information. The spatial attention module pools along

the spatial dimension, concatenates results, and applies a

convolutional layer followed by a Sigmoid function to get spatial

attention weights. Equations 1 and 2. Compared to SENet, BAM,

and ECA, enhances both spatial and channel focus, making it

especially effective for complex remote sensing images in nectar

plant segmentation tasks. The formulas are given in Equation.

Mc(F) = s (MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = s (f 7�7(½AvgPool(F);  MaxPool(F)�)) (2)

Mc(F) is the channel attention weight. An adaptive coefficient

between 0 and 1 is assigned to each channel. F represents the input

features or image data. AvgPool(F) is global average pooling,

MaxPool(F) is global maximum pooling, and s refers to the

Sigmoid activation function.
FIGURE 3

SegFormer architecture with enhanced channel attention for nectar plant segmentation.
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3.2.2 Depth residual
To enhance the model’s adaptability and feature representation

capabilities in complex scenarios, this paper introduces a deep

residual structure into the feature fusion stage of SegFormer (as

shown in Figure 6). The deep residual structure was first proposed

by He et al. and has since become a core module in modern deep

neural networks (He et al., 2016). Its fundamental idea is to add a

shortcut path with an identity mapping alongside the main branch,

enabling direct feature transmission and superposition, thereby
Frontiers in Plant Science 06
improving the efficiency of information flow within the network.

Compared to traditional structures, residual structures not only

effectively preserve input features, but also significantly enhance the

network’s ability to model complex targets and fine-grained

features, providing a robust foundation for improving

segmentation accuracy and robustness (Lin et al., 2017).

The deep residual structure uses shortcuts through identity

mappings to directly add input features to output features that have

undergone several convolutions, normalizations, and activations
frontiersin.or
FIGURE 4

Structural diagram of the improved SegFormer remote sensing image nectar source segmentation model.
FIGURE 5

CBAM structure diagram.
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(He et al., 2016; Yu et al., 2018). This not only deepens the number

of network layers but also effectively alleviates the problems of

gradient disappearance and network degradation. The

mathematical expression is as follows Equation 3.

Y = Ms(F)⊗ F (3)

x is the input feature, F(x) represents the residual mapping to be

learned, and y represents the desired original mapping.
3.2.3 Spatial attention
In this study, although the CBAM module has integrated

channel attention and spatial attention mechanisms, enabling

adaptive enhancement of feature representation in different

dimensions, the complex background information and multi-

dimensional distribution of fine-grained targets in remote sensing

images still pose substantial challenges for spatial feature modeling.

To further enhance the model’s sensitivity to key spatial regions,

this paper introduces an independent spatial attention mechanism

based on the CBAM module.

The spatial attention mechanism primarily targets the spatial

position dimension of feature maps, guiding the model to focus on

key regions related to the segmentation target by adaptively learning

response weights for different positions (Gu et al., 2020).

Specifically, spatial attention first performs global average pooling

and global max pooling on the input features in the channel

dimension, yielding two two-dimensional maps representing

spatial distribution features. These two maps are then

concatenated along the channel dimension, followed by feature

fusion through a convolutional layer (Chen et al., 2017). A Sigmoid

activation function is used to generate the spatial attention weight

map. This weight map applies element-wise weighting to the

original features, significantly enhancing important spatial regions

while effectively suppressing irrelevant regions. The structural

diagram is shown in Figure 7 below.
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4 Results

4.1 Experiment running platform

This study was conducted on theWindows 11 operating system,

equipped with a 12th-generation Intel Core i7 processor, an

NVIDIA GeForce RTX 3090 graphics card, and using Python 3.8

with PyTorch 1.11.0 and CUDA version 11.3. The study utilized

software packages including NumPy, Pandas, Matplotlib, Seaborn,

OpenCV, and torchvision, along with the SegFormer model to

perform remote sensing image segmentation tasks. CUDA provides

GPU acceleration, ensuring efficient model training and evaluation.
4.2 Evaluation indicators

To comprehensively evaluate the performance of the improved

SegFormer model in the task of segmenting nectar-producing

plants in remote sensing images, this article selected four

evaluation metrics: mean intersection over union (mIoU), mean

pixel accuracy (mPA), mean precision (mPrecision) and mean

recall (mRecall). Their mathematical expressions are as follows

Equations 4–7.

mIoU =
1
K o

K

k=1

TPk
TPk + FPk + FNk

(4)

mPA =
1
K o

K

k=1

TPk
TPk + FNk

(5)

mPrecision =
1
K o

K

k=1

TPk
TPk + FPk

(6)

mRecall =
1
K o

K

k=1

TPk
TPk + FNk

(7)
FIGURE 6

Diagram of the deep residual structure with identity shortcut and convolutional layers.
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Where K denotes the total number of categories, TPk denotes

the true positives of category k, FPk denotes the false positives of

category k, and FNk denotes the false negatives of category k.
4.3 Ablation experiments

To validate the role of each module in the improved SegFormer

model for segmentation tasks on remote sensing images, this paper

designed multiple ablation experiments and compared and

evaluated each model under the condition of 100 training

iterations. The specific results are shown in Table 1. As shown in

the table, the baseline model (ID 0) without any modules achieved

an mIoU of 89.31%, an mPA of 94.15%, and both mPrecision and

mRecall at 94.15%. By introducing the CBAM attention mechanism

(ID 1), the deep residual module (ID 2), and the spatial feature

module (ID 3), the model performance improved. Specifically, after

adding CBAM, mIoU improved to 90.43% and mPA to 94.64%;

after introducing the deep residual module, mIoU and mPA

reached 90.80% and 95.00%, respectively; while introducing only
Frontiers in Plant Science 08
the spatial module resulted in an mIoU of 89.88%, with

limited improvement.

Next, by combining the various modules, it can be observed that

when CBAM and the deep residual module (item 4) are added

together, the mIoU improves to 90.76% and the mPA improves to

94.90%; When CBAM and the spatial module (item 5) are combined,

mIoU is 90.68%; when both the deep residual and spatial modules

(item 6) are added, mIoU is 90.68%, and mPA is 94.75%. Finally,

when all three modules are combined (item 7), the model achieves

optimal performance after 100 training rounds, with mIoU reaching

91.05%, mPA improving to 95.02%, and mPrecision and mRecall

reaching 95.40% and 95.02%, respectively. Additionally, as shown in

Figure 8, the seventh model converged faster in terms ofmIoU during

training and achieved a higher final value than the baseline model,

further validating the improvement of segmentation performance by

the enhanced modules. The combined use of CBAM, deep residuals,

and spatial modules can greatly improve the segmentation

performance of the model. Each module has a positive effect on the

model, and the combined effect of all modules achieves

optimal results.
TABLE 1 Ablation experiment comparison table.

Serial number CBAM attention Depth residual Spatial attention mIoU/% mPA/% mPrecision/% mRecall/%

0 89.31 94.15 94.25 94.15

1 ✓ 90.43 94.64 95.07 94.64

2 ✓ 90.80 95.00 95.14 95.00

3 ✓ 89.88 94.62 94.43 94.62

4 ✓ ✓ 90.76 94.90 95.18 94.90

5 ✓ ✓ 90.53 94.85 94.97 94.85

6 ✓ ✓ 90.68 94.75 95.24 94.75

7 ✓ ✓ ✓ 91.05 95.02 95.40 95.02
“✓” indicates that this module has been added.
FIGURE 7

Independent spatial attention structure diagram.
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4.4 Comparative experiments

To comprehensively evaluate the segmentation performance of

the proposed improved SegFormer model, this paper conducted

comparative experiments with various mainstream segmentation

methods, including Unet, Pspnet, Hrnet, Deeplabv3, and the

original SegFormer. The results are shown in Table 2. As can be

seen, the improved SegFormer achieves the best performance across

all metrics, significantly outperforming other comparison models,

indicating that the proposed method demonstrates superior

accuracy and generalization capabilities in remote sensing image

segmentation tasks. Additionally, the original SegFormer also

outperforms traditional convolutional neural network models,

further highlighting the advantages of the Transformer

architecture in semantic segmentation tasks.

In addition, Figure 9 compares the loss change curves of each

model during training. It can be seen that the improved

SegFormer converges to a lower level faster in both the training

and validation sets, and the training loss and validation loss always

maintain a small gap. The above experimental results fully

demonstrate that the proposed improved SegFormer can not

only effectively improve the accuracy of remote sensing
Frontiers in Plant Science 09
image segmentation, but also has better convergence and

generalization capabilities.

Figure 10 shows a comparison of the segmentation results of the

original SegFormer model and the improved SegFormer model on

the same remote sensing image. It can be seen that the improved

model achieves more accurate and complete segmentation

of field boundaries and small-area target regions, with a

significant reduction in missed and misclassified areas marked by

red circles. This result not only improves the accuracy of

automatic identification of nectar-producing plants but also

provides strong support for the practical application of remote

sensing technology in fields such as nectar resource surveys and

ecological environment monitoring.
5 Discussion

To address the segmentation requirements of remote sensing

images for Wuyuan County’s complex terrain and diverse

distribution of nectar-producing plants, this paper proposes an

improved SegFormer segmentation method using rapeseed flowers

as a representative nectar-producing plant. The method integrates
TABLE 2 Comparison of test results between SegFormer before and after improvement and other models.

Model mIoU/% mPA/% mPrecision/% mRecall/%

Unet 87.68 92.73 93.72 92.73

TransUnet 90.44 95.19 94.53 95.19

SwinUnet 87.39 93.88 93.46 93.88

Pspnet 85.89 91.40 92.87 91.40

Hrnet 87.95 93.74 93.05 93.74

Deeplabv3 86.44 92.18 92.75 92.18

SegFormer 89.31 94.15 94.25 94.15

Improved SegFormer 91.05 95.02 95.40 95.02
8FIGURE

Comparison of initial mIoU change curves. The y-axis of this figure represents the mIoU, the x-axis represents the number of training epochs, and
the mIoU curve for the training set is marked in red. (a) represents the “Item 0 experiment” and (b) represents the ”Item 7 experiment”.
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the CBAM attention mechanism, deep residual structure, and

spatial attention module. Through experiments on multi-source

remote sensing image datasets, the model demonstrates superior

performance compared to mainstream segmentation methods such

as UNet, Pspnet, Hrnet, Deeplabv3, and the original SegFormer in

nectar plant boundary identification, segmentation of scattered and
Frontiers in Plant Science 10
small-scale targets, and other aspects. It enables more precise and

reliable extraction of spatial distribution features.

Experimental results show that the improved model achieves

significant improvements in key evaluation metrics such as mIoU

and mPA, better addressing complex terrain backgrounds and

seasonal changes in nectar-producing plants. The model performs
FIGURE 9

Comparison of loss change curves during training for each model. The y-axis represents the Loss, the x-axis represents the number of training
epochs, and different loss curves (train loss, val loss, smooth train loss, smooth val loss) are represented by different colors. (a) corresponds to
“Unet”, (b) to “Pspnet”, (c) to “Hrnet”, (d) to “Deeplabv3”, and (e) to “TransUnet”; the previous label for (f) contained an error, and it has now been
corrected to (f) corresponding to “SwinUnet”; in addition, (g) corresponds to “SegFormer” and (h) to “Improved SegFormer”.
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particularly well in areas such as the edges of rapeseed flower fields

and sparsely distributed regions. Based on this method, not only can

the efficient and accurate identification of nectar-producing plants

in remote sensing images be realized, but it also provides beekeepers

with scientific information on nectar distribution, assisting in

beekeeping decisionmaking and enhancing honey production and

quality. Additionally, the method offers productive and intelligent

technical support for practical applications such as nectar resource

surveys, precision beekeeping management, and dynamic

monitoring of ecological environments, effectively overcoming the

limitations of traditional manual surveys, which are time-

consuming, labor-intensive, and lack timeliness.

However, this study has limitations. First, while the improved

model performed well on rapeseed flower images from Wuyuan

County, its generalizability remains insufficiently verified for other

nectarproducing plants or images from diverse regions. Second, the

model’s real-time deployment performance may be affected by factors

like remote sensing image resolution, data processing speed, and

hardware conditions, particularly in large-scale and dynamic settings.

Third, although the method enhances nectarproducing plant

segmentation efficiency, it depends on high-resolution remote

sensing imagery, potentially constrained by data acquisition and

processing costs in some scenarios. To address these limitations,

future work will focus on several key directions: testing the method

on other nectar-producing plant species (e.g., lavender, sunflower)

and under different environmental conditions (such as arid, tropical

regions) to assess generalizability; conducting deployment and field

tests in actual agricultural and ecological monitoring scenarios

through collaboration with local agencies and enterprises,

evaluating performance in real-world dynamic conditions; adapting

the model to different growth stages (seedling, flowering, fruiting)

and stress conditions (drought, pest infestation) by incorporating
Frontiers in Plant Science 11
stage-specific and stress-related features into training; and thoroughly

assessing scalability by comparing performance on smaller plots

versus larger commercial farms, a critical aspect for practical

application given its direct impact on utility in large-scale

scenarios. These efforts will enhance the model’s practicality and

application scope, making it more robust and versatile for nectar-

producing plant segmentation tasks.
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