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SegFormer-based nectar
source segmentation in
remote sensing imagery

Mengting Dong, Hao Cao*, Tian Zhao and Xu Zhao

College of Information and Network Engineering, Anhui Science and Technology University, Bengbu,
Anhui, China

Introduction: Beekeepers often face challenges in accurately determining the
spatial distribution of nectar-producing plants, which is crucial for informed
decision-making and efficient beekeeping.

Methods: In this study, we present an efficient approach for automatically
identifying nectar-producing plants using remote sensing imagery. High-
resolution satellite images were collected and preprocessed, and an improved
segmentation model based on the SegFormer architecture was developed. The
model integrates the CBAM attention mechanism, deep residual structures, and a
spatial feature enhancement module to improve segmentation accuracy.
Results: Experimental results on rapeseed flower images from Wuyuan County
demonstrate that the improved model outperforms the baseline SegFormer
model. The mean Intersection over Union (mloU) increased from 89.31% to
91.05%, mean Pixel Accuracy (mPA) improved from 94.15% to 95.02%, and both
mean Precision and mean Recall reached 95.40% and 95.02%, respectively.
Discussion: The proposed method significantly enhances the efficiency and
accuracy of nectar plant identification, providing real-time and reliable
technical support for precision beekeeping management, smart agriculture,
and ecological monitoring. It plays a key role in optimizing bee colony
migration, improving collection efficiency, and regulating honey quality.

KEYWORDS

remote sensing, SegFormer, nectar-producing plants, bees, semantic segmentation,
deep learning

1 Introduction

Nectar-producing plants serve as the foundational ecological resource for the
beekeeping industry, directly influencing honey yield and quality through their species
composition, distribution density, and phenological characteristics (KKhan and Khan, 2018).
Precisely analyzing the spatial distribution patterns of nectar-producing vegetation is
crucial for optimizing bee colony migration routes, improving honey collection efficiency,
and regulating honey’s nutritional quality (Ma and Yang, 2024). The sustainable
development and utilization of nectar-producing resources are critical issues for the
high-quality advancement of the beekeeping industry (Hunde, 2025). This study uses
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Wuyuan County, Jiangxi Province, as a representative area for
nectar-producing plant research. Its favorable ecological
conditions, including a warm, humid climate and abundant water
resources, support the growth of various nectarproducing plants,
particularly rapeseed flowers, which serve as a primary nectar
source for bees (Abrol et al., 2007). The extensive cultivation of
rapeseed flowers has not only contributed significantly to the 3 local
agricultural economy but has also provided a vital resource for the
beekeeping industry, attracting numerous tourists and fostering the
diversified growth of the regional economy (Jiang et al., 2016). As
shown in Figure 1, the specific location of Wuyuan County is an
ideal site for nectar source research, particularly given its unique
geographical features and abundant nectar-producing
plant resources.

However, the complex terrain of Wuyuan and its seasonal
variations, which include fluctuations in climate, temperature, and
precipitation, pose significant challenges for the remote sensing
identification of nectar-producing plants, as these changes directly
affect the growth cycles of the plants (Barahona et al, 2024).
Traditional methods for identifying nectar-producing plants
primarily rely on human expertise and typically require field
surveys to ascertain the location and extent of nectar sources
(Langlois et al., 2020). While effective on a small scale, this method
becomes time-consuming and labor-intensive when applied to
large areas or mobile beekeepers. It is also vulnerable to
environmental changes, hindering real-time monitoring of the
growth and distribution of nectar-producing plants (Zheng et al.,
2018). These methods depend on predictable environmental
patterns, such as temperature and rainfall, which are
increasingly disrupted by climate change. These methods rely on
predictable environmental patterns, such as temperature and
rainfall, which are becoming increasingly erratic due to climate
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FIGURE 1
Basic information of the dataset selection area.
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change (Vercelli et al.,, 2021). Furthermore, traditional methods
are ill-equipped to handle seasonal variations and are unable to
quickly adjust recognition models to accommodate dynamic
environmental changes, particularly when beekeeping sites
migrate seasonally, making fixed monitoring methods even
more limited. In contrast, remote sensing technology,
particularly when combined with deep learning algorithms, has
been widely applied in agriculture (Khanal et al., 2020). Especially
when combined with deep learning algorithms, remote sensing
technology can rapidly and accurately extract and identify the
spatial distribution information of nectar-producing plants over a
large area, making it of significant importance in the large-scale
monitoring of nectar-producing plant distributions (Barnsley
et al., 2022). Through drone or satellite remote sensing imagery,
remote sensing technology can efficiently and precisely extract
spatial distribution information from nectar-producing plants,
addressing the limitations of traditional methods (Namdeo
Aiwale et al,, 2025). Nevertheless, complex terrain backgrounds
and variations in the size of nectar-producing plants make remote
sensing image processing more challenging, especially when
environmental conditions are complex and plant growth states
vary significantly. Existing remote sensing identification methods
often face low accuracy and segmentation precision under
such conditions.

To address issues such as multifaceted backgrounds and varying
target scales encountered during the segmentation of nectar-
producing plants in remote sensing images, this paper proposes a
segmentation method based on an improved SegFormer model. This
method fully leverages the SegFormer model’s advantages in multi-
scale feature extraction and self-attention mechanisms, enabling
efficient processing of diverse plant distribution scenarios and
making it suitable for the automatic identification of
nectarproducing plants. To further enhance the segmentation
accuracy of the model, this paper introduces the Convolutional
Block Attention Module mechanism and Spatial Attention
mechanism into the SegFormer architecture, combined with deep
residual technology. CBAM effectively uncovers correlations between
different channels, enhancing the model’s ability to represent plant
regions (Zhang et al., 2023); the Spatial Attention mechanism helps
the model focus on key areas in the image, thereby improving
segmentation accuracy (Zhu et al,, 2019). Additionally, through the
deep residual structure, the model effectively enhances feature
expression capabilities and gradient propagation, improving
segmentation performance for nectar-producing plants of various
sizes and shapes (Fang et al., 2021). Whether in densely populated
rapeseed flower areas or in dispersed vegetation regions, the model
achieves high-precision segmentation.

The application of remote sensing image segmentation
technology in the large-scale monitoring of nectar plant
distribution is of great significance (Adgaba et al., 2017). With the
development of the beekeeping industry, mobile beekeeping has
gradually become a common farming method. Beekeepers need to
quickly and accurately understand the distribution of nectar-
producing plants in different regions to make scientific honey
harvesting decisions and flexibly adjust beekeeping strategies
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(Harianja et al., 2023). This helps beekeepers adjust their honey
harvesting plans in real time, thereby improving honey production
and quality. With technological advancements, the application of
remote sensing technology and deep learning methods in nectar-
producing plant monitoring has become increasingly precise and
efficient (Hicks et al, 2021). This enables beekeepers not only to
obtain real-time spatial distribution information but also to conduct
rapid monitoring across large areas, achieving more flexible and
scientific honey harvesting decisions. Through this technology,
beekeepers can promptly understand the distribution of nectar-
producing plants in different regions, adjust beekeeping strategies
and honey harvesting plans, and maximize honey production and
quality. This not only helps the beekeeping industry improve
production efficiency but also provides strong technical support
and theoretical foundations for the development of precision
agriculture.The remainder of this paper is structured as follows.
Section 1 introduces the experimental materials, including the
methods for data acquisition, preprocessing, and dataset
construction. Section 2 elaborates on the remote sensing image
honey source segmentation model based on the improved
SegFormer, detailing the fundamental SegFormer architecture and
the introduced enhancements: the CBAM attention mechanism,
deep residual structure, and spatial feature enhancement module.
The novelty of this work lies in the integration of these well-
established techniques to address the unique challenges in nectar
plant segmentation in remote sensing imagery. Although CBAM,
spatial attention, and residual blocks are widely known in the
computer vision domain, their combination and application to
nectar plant segmentation is a key contribution of this study. This
integrated approach enables more effective segmentation in
intricate environments, enhancing model robustness and
accuracy. Section 3 describes the model training environment,
evaluation metrics, and validates the effectiveness of the improved
model through ablation studies and comparative experiments.
Finally, Section 4 summarizes the main conclusions of this study
and discusses potential future research directions.

2 Experimental materials
2.1 Image acquisition and processing

In this study, 621 remote sensing images were obtained from
the Jilin-1 satellite via the Aokang Interactive Map Platform. The
images cover Wuyuan County in northeastern Jiangxi Province,
with acquisition dates from March 2022 to May 2025. The satellite
imagery includes various resolutions (500 meters, 100 meters, and
50 meters), with the 50-meter resolution images serving as the
primary data source. The 50-meter resolution images, which
represent the highest precision obtained from the platform under
current conditions, strike a balance between spatial resolution and
coverage, making them particularly suitable for large-scale
environmental monitoring and agricultural research. This
resolution allows for monitoring vast areas, such as agricultural
land or natural ecosystems, providing sufficient detail to study plant
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distribution, vegetation health, and land use changes. The Jilin-1
satellite can acquire various types of remote sensing images,
including optical and multispectral images, providing valuable
data support for the identification of nectar-producing plants (Li
et al,, 2021). To ensure the images meet the input requirements of
deep learning models, all images underwent a series of
preprocessing and enhancement steps.

During image preprocessing, the original remote sensing images
were first randomly cropped to extract different regions of interest,
with the crop size ranging from 80% to 100% of the original image.
This random cropping helps increase the diversity of the dataset
and allows the model to learn from various parts of the image,
improving its robustness. The cropped images were then
normalized, and their size and aspect ratio were standardized to
meet the input requirements of the deep learning model. The image
size was adjusted to 512x512 pixels to reduce computational
resource consumption during training while ensuring that
important image details were preserved. Subsequently, various
random image enhancement techniques were applied to further
augment the dataset, including brightness and contrast adjustments
(random values between -20% and +20%), random rotation
(between -30° and +30°), random translation (with a maximum
offset of 10% of the image size), mirror flipping, and noise addition
(with a variance of 0.01).

Through the above processing and enhancement steps, the
original 621 remote sensing images underwent seven rounds of
enhancement processing, resulting in a total of 4,337 images used
for model training. These enhanced images not only expanded the
scale of the dataset but also improved the model’s generalization
ability, enabling it to better handle the task of identifying nectar-
producing plants under complex environmental conditions and
seasonal changes.

2.2 Dataset creation

The images were annotated using Labelme annotation software.
Based on the typical color characteristics of rapeseed flowers in
remote sensing images, the areas containing rapeseed flowers were
initially preselected using color values in the range of RGB (200-
255, 200-255, 0-100). All nectarproducing plant regions were
precisely labeled, and corresponding annotation files in JSON
format were generated. After annotation, the dataset was
randomly divided into training, validation, and test sets with a
ratio of 8:1:1. This ratio helps balance the adequacy of training data
with the effectiveness of model evaluation. Subsequently, all
annotated JSON files were converted into mask images for use in
training deep learning models. Each mask image was a binary
image, with the same size as the original image, where annotated
areas were assigned a value of 1 and the background was assigned a
value of 0. This conversion process was automated through a script
to ensure accurate generation of the corresponding mask images
from the annotations, providing high-quality labeled data for
subsequent image segmentation tasks. The images and their
corresponding masks are shown in Figure 2.
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FIGURE 2
Nectar plant segmentation: original image vs. segmentation mask.

3 Methods

3.1 SegFormer model

SegFormer is an efficient image segmentation model based on
the Transformer architecture, particularly suited for handling
semantic segmentation in complex backgrounds and large-scale
regions (Xie et al., 2021). Unlike traditional convolutional neural
networks (CNNs), SegFormer leverages selfattention mechanisms
and multi-scale feature extraction to effectively capture long-range
dependencies in images, making it highly suitable for scenarios in
remote sensing images where target sizes and scales vary
significantly (Huang et al., 2023). The model employs a novel
hierarchical Transformer encoder that outputs multi-scale
features, extracting information from different levels through
progressive downsampling to fully preserve spatial and contextual
features (Wang et al., 2022). Additionally, SegFormer does not use
positional encoding, avoiding performance degradation caused by
interpolation when resolution changes (Huang et al., 2021). The
model also simplifies the decoding stage by using a lightweight MLP
decoder, which effectively aggregates features from different layers
to fuse local and global information (Shi et al., 2022). This design
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improves model inference efficiency while maintaining
segmentation accuracy.

Overall, SegFormer demonstrates exceptional multi-scale
feature fusion and representation capabilities, effectively
addressing challenges such as complicated terrain features, diverse
targets, and inconsistent scales in remote sensing image
segmentation tasks. Leveraging the powerful modeling capabilities
and efficient architecture of the Transformer framework.In remote
sensing image segmentation tasks, it is often necessary to
distinguish between different types of land cover (such as
vegetation, water bodies, buildings, etc.), with objects exhibiting
diverse shapes and sizes (Blaschke et al., 2004). SegFormer’s multi-
scale feature fusion module can simultaneously focus on fine-
grained local information and global contextual relationships,
significantly improving segmentation performance for small
objects and boundaries (Chen et al., 2024). Therefore, the
selection of SegFormer primarily considers its ability to
demonstrate higher segmentation accuracy and robustness when
processing remote sensing images with complex backgrounds,
multi-scale targets, and diverse land cover types. It is particularly
suitable for semantic segmentation tasks involving large-scale, high-
resolution remote sensing images, such as urban building areas,
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farmland distribution, and mixed forest and water bodies. Its
structural diagram is shown in Figure 3. C is the number of
channels, and Decoder fuses these features through MLP.

3.2 Improved SegFormer remote sensing
image nectar source segmentation model

To improve the performance of the SegFormer model in the
task of segmenting nectar-producing plants in remote sensing
images, this paper proposes targeted structural improvements to
the model. The overall improvement framework is shown in
Figure 4. While retaining the original encoder-decoder backbone
structure, this paper sequentially introduces the CBAM attention
mechanism, deep residual structure, and spatial attention module
during the feature fusion stage. This approach not only effectively
extracts key information from multi-scale features but also
significantly enhances the model’s segmentation capabilities for
multifaceted scenes and fine-grained targets.

3.2.1 CBAM attention

To further enhance the model’s feature extraction capabilities,
this paper introduces the CBAM (Convolutional Block Attention
Module) attention mechanism into the feature fusion module of
SegFormer. CBAM is a lightweight, pluggable attention mechanism
proposed by Sanghyun Woo et al. in their 2018 ECCV paper titled
“CBAM: Convolutional Block Attention Module.” (Woo et al,
2018) CBAM can adaptively adjust feature responses in both the

10.3389/fpls.2025.1666619

channel and spatial dimensions, thereby enhancing the network’s
ability to express key information. In this study, we integrate the
CBAM module into the SegFormer framework to enhance the
model’s feature extraction and fine-grained object discrimination
capabilities in the task of honey plant segmentation in remote
sensing images. CBAM primarily consists of a channel attention
module and a spatial attention module, which are used in series
(Wang et al., 2021), as shown in Figure 5.

Channel attention applies global average and max pooling to
input features, generating two vectors, which are summed and
passed through a Sigmoid function to obtain attention weights.
These weights adjust the contribution of each channel, emphasizing
important information. The spatial attention module pools along
the spatial dimension, concatenates results, and applies a
convolutional layer followed by a Sigmoid function to get spatial
attention weights. Equations 1 and 2. Compared to SENet, BAM,
and ECA, enhances both spatial and channel focus, making it
especially effective for complex remote sensing images in nectar
plant segmentation tasks. The formulas are given in Equation.

M_(F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

M,(F) = o(f””([AvgPool(F); MaxPool(F)))) )

M(F) is the channel attention weight. An adaptive coefficient
between 0 and 1 is assigned to each channel. F represents the input
features or image data. AvgPool(F) is global average pooling,
MaxPool(F) is global maximum pooling, and o refers to the
Sigmoid activation function.
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SegFormer architecture with enhanced channel attention for nectar plant segmentation.
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3.2.2 Depth residual

To enhance the model’s adaptability and feature representation
capabilities in complex scenarios, this paper introduces a deep
residual structure into the feature fusion stage of SegFormer (as
shown in Figure 6). The deep residual structure was first proposed
by He et al. and has since become a core module in modern deep
neural networks (He et al., 2016). Its fundamental idea is to add a
shortcut path with an identity mapping alongside the main branch,
enabling direct feature transmission and superposition, thereby

Frontiers in Plant Science 06

improving the efficiency of information flow within the network.
Compared to traditional structures, residual structures not only
effectively preserve input features, but also significantly enhance the
network’s ability to model complex targets and fine-grained
features, providing a robust foundation for improving
segmentation accuracy and robustness (Lin et al.,, 2017).

The deep residual structure uses shortcuts through identity
mappings to directly add input features to output features that have
undergone several convolutions, normalizations, and activations
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Diagram of the deep residual structure with identity shortcut and convolutional layers.

(He et al,, 2016; Yu et al,, 2018). This not only deepens the number
of network layers but also effectively alleviates the problems of
gradient disappearance and network degradation. The
mathematical expression is as follows Equation 3.

Y=M(F)®F (3)

x is the input feature, F(x) represents the residual mapping to be
learned, and y represents the desired original mapping.

3.2.3 Spatial attention

In this study, although the CBAM module has integrated
channel attention and spatial attention mechanisms, enabling
adaptive enhancement of feature representation in different
dimensions, the complex background information and multi-
dimensional distribution of fine-grained targets in remote sensing
images still pose substantial challenges for spatial feature modeling.
To further enhance the model’s sensitivity to key spatial regions,
this paper introduces an independent spatial attention mechanism
based on the CBAM module.

The spatial attention mechanism primarily targets the spatial
position dimension of feature maps, guiding the model to focus on
key regions related to the segmentation target by adaptively learning
response weights for different positions (Gu et al., 2020).
Specifically, spatial attention first performs global average pooling
and global max pooling on the input features in the channel
dimension, yielding two two-dimensional maps representing
spatial distribution features. These two maps are then
concatenated along the channel dimension, followed by feature
fusion through a convolutional layer (Chen et al., 2017). A Sigmoid
activation function is used to generate the spatial attention weight
map. This weight map applies element-wise weighting to the
original features, significantly enhancing important spatial regions
while effectively suppressing irrelevant regions. The structural
diagram is shown in Figure 7 below.
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4 Results
4.1 Experiment running platform

This study was conducted on the Windows 11 operating system,
equipped with a 12th-generation Intel Core i7 processor, an
NVIDIA GeForce RTX 3090 graphics card, and using Python 3.8
with PyTorch 1.11.0 and CUDA version 11.3. The study utilized
software packages including NumPy, Pandas, Matplotlib, Seaborn,
OpenCV, and torchvision, along with the SegFormer model to
perform remote sensing image segmentation tasks. CUDA provides
GPU acceleration, ensuring efficient model training and evaluation.

4.2 Evaluation indicators

To comprehensively evaluate the performance of the improved
SegFormer model in the task of segmenting nectar-producing
plants in remote sensing images, this article selected four
evaluation metrics: mean intersection over union (mlIoU), mean
pixel accuracy (mPA), mean precision (mPrecision) and mean
recall (mRecall). Their mathematical expressions are as follows
Equations 4-7.

1 K TP
mloU = —> ok (4)
K k=1 TPk + FPk + FNk
1 K TP
mpa- LS TP 6
Kkzl TPk + FN,
1 K TP,
mPrecision = — > Tk (6)
Kk:I TPk + FPk
1 K TP
mRecall = —» Tk (7)
Kk:1 TPk + FNk
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Independent spatial attention structure diagram.

Where K denotes the total number of categories, TP denotes
the true positives of category k, FP; denotes the false positives of
category k, and FNj denotes the false negatives of category k.

4.3 Ablation experiments

To validate the role of each module in the improved SegFormer
model for segmentation tasks on remote sensing images, this paper
designed multiple ablation experiments and compared and
evaluated each model under the condition of 100 training
iterations. The specific results are shown in Table 1. As shown in
the table, the baseline model (ID 0) without any modules achieved
an mlIoU of 89.31%, an mPA of 94.15%, and both mPrecision and
mRecall at 94.15%. By introducing the CBAM attention mechanism
(ID 1), the deep residual module (ID 2), and the spatial feature
module (ID 3), the model performance improved. Specifically, after
adding CBAM, mIoU improved to 90.43% and mPA to 94.64%;
after introducing the deep residual module, mIoU and mPA
reached 90.80% and 95.00%, respectively; while introducing only

TABLE 1 Ablation experiment comparison table.

the spatial module resulted in an mIoU of 89.88%, with
limited improvement.

Next, by combining the various modules, it can be observed that
when CBAM and the deep residual module (item 4) are added
together, the mIoU improves to 90.76% and the mPA improves to
94.90%; When CBAM and the spatial module (item 5) are combined,
mloU is 90.68%; when both the deep residual and spatial modules
(item 6) are added, mIoU is 90.68%, and mPA is 94.75%. Finally,
when all three modules are combined (item 7), the model achieves
optimal performance after 100 training rounds, with mIoU reaching
91.05%, mPA improving to 95.02%, and mPrecision and mRecall
reaching 95.40% and 95.02%, respectively. Additionally, as shown in
Figure 8, the seventh model converged faster in terms of mIoU during
training and achieved a higher final value than the baseline model,
further validating the improvement of segmentation performance by
the enhanced modules. The combined use of CBAM, deep residuals,
and spatial modules can greatly improve the segmentation
performance of the model. Each module has a positive effect on the
model, and the combined effect of all modules achieves
optimal results.

Serial number CBAM attention Depth residual = Spatial attention mloU/% mPA/% mPrecision/% mRecall/%
0 89.31 94.15 9425 94.15
1 v 90.43 94.64 95.07 94.64
2 v 90.80 95.00 95.14 95.00
3 89.88 94.62 94.43 94.62
4 v v 90.76 94.90 95.18 94.90
5 v 90.53 94.85 94.97 94.85
6 v 90.68 94.75 95.24 94.75
7 v v 91.05 95.02 95.40 95.02

“v/” indicates that this module has been added.
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4.4 Comparative experiments

To comprehensively evaluate the segmentation performance of
the proposed improved SegFormer model, this paper conducted
comparative experiments with various mainstream segmentation
methods, including Unet, Pspnet, Hrnet, Deeplabv3, and the
original SegFormer. The results are shown in Table 2. As can be
seen, the improved SegFormer achieves the best performance across
all metrics, significantly outperforming other comparison models,
indicating that the proposed method demonstrates superior
accuracy and generalization capabilities in remote sensing image
segmentation tasks. Additionally, the original SegFormer also
outperforms traditional convolutional neural network models,
further highlighting the advantages of the Transformer
architecture in semantic segmentation tasks.

In addition, Figure 9 compares the loss change curves of each
model during training. It can be seen that the improved
SegFormer converges to a lower level faster in both the training
and validation sets, and the training loss and validation loss always
maintain a small gap. The above experimental results fully
demonstrate that the proposed improved SegFormer can not
only effectively improve the accuracy of remote sensing

image segmentation, but also has better convergence and
generalization capabilities.

Figure 10 shows a comparison of the segmentation results of the
original SegFormer model and the improved SegFormer model on
the same remote sensing image. It can be seen that the improved
model achieves more accurate and complete segmentation
of field boundaries and small-area target regions, with a
significant reduction in missed and misclassified areas marked by
red circles. This result not only improves the accuracy of
automatic identification of nectar-producing plants but also
provides strong support for the practical application of remote
sensing technology in fields such as nectar resource surveys and
ecological environment monitoring.

5 Discussion

To address the segmentation requirements of remote sensing
images for Wuyuan County’s complex terrain and diverse
distribution of nectar-producing plants, this paper proposes an
improved SegFormer segmentation method using rapeseed flowers
as a representative nectar-producing plant. The method integrates

TABLE 2 Comparison of test results between SegFormer before and after improvement and other models.

Model mloU/% mPA/% mPrecision/% mRecall/%
Unet 87.68 92.73 93.72 92.73
TransUnet 90.44 95.19 94.53 95.19
SwinUnet 87.39 93.88 93.46 93.88
Pspnet 85.89 91.40 92.87 91.40
Hrnet 87.95 93.74 93.05 93.74
Deeplabv3 86.44 92.18 92.75 92.18
SegFormer 89.31 94.15 94.25 94.15
Improved SegFormer 91.05 95.02 95.40 95.02
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FIGURE 9

Comparison of loss change curves during training for each model. The y-axis represents the Loss, the x-axis represents the number of training
epochs, and different loss curves (train loss, val loss, smooth train loss, smooth val loss) are represented by different colors. (a) corresponds to
“Unet”, (b) to "Pspnet’, (c) to “Hrnet”, (d) to “Deeplabv3’, and (e) to “TransUnet"; the previous label for (f) contained an error, and it has now been
corrected to (f) corresponding to “SwinUnet”; in addition, (g) corresponds to “SegFormer” and (h) to “Improved SegFormer”.

the CBAM attention mechanism, deep residual structure, and
spatial attention module. Through experiments on multi-source
remote sensing image datasets, the model demonstrates superior
performance compared to mainstream segmentation methods such
as UNet, Pspnet, Hrnet, Deeplabv3, and the original SegFormer in
nectar plant boundary identification, segmentation of scattered and

Frontiers in Plant Science

small-scale targets, and other aspects. It enables more precise and
reliable extraction of spatial distribution features.

Experimental results show that the improved model achieves
significant improvements in key evaluation metrics such as mloU
and mPA, better addressing complex terrain backgrounds and
seasonal changes in nectar-producing plants. The model performs
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(@)

FIGURE 10

Comparison of prediction results before and after improvement. This is a remote sensing image, showing the changes in the target area and the
effect after model processing, with the red markings indicating areas of significant change. (a) shows the prediction result of “SegFormer” and (b)

shows the prediction result of the “Improved SegFormer”.

particularly well in areas such as the edges of rapeseed flower fields
and sparsely distributed regions. Based on this method, not only can
the efficient and accurate identification of nectar-producing plants
in remote sensing images be realized, but it also provides beekeepers
with scientific information on nectar distribution, assisting in
beekeeping decisionmaking and enhancing honey production and
quality. Additionally, the method offers productive and intelligent
technical support for practical applications such as nectar resource
surveys, precision beekeeping management, and dynamic
monitoring of ecological environments, effectively overcoming the
limitations of traditional manual surveys, which are time-
consuming, labor-intensive, and lack timeliness.

However, this study has limitations. First, while the improved
model performed well on rapeseed flower images from Wuyuan
County, its generalizability remains insufficiently verified for other
nectarproducing plants or images from diverse regions. Second, the
model’s real-time deployment performance may be affected by factors
like remote sensing image resolution, data processing speed, and
hardware conditions, particularly in large-scale and dynamic settings.
Third, although the method enhances nectarproducing plant
segmentation efficiency, it depends on high-resolution remote
sensing imagery, potentially constrained by data acquisition and
processing costs in some scenarios. To address these limitations,
future work will focus on several key directions: testing the method
on other nectar-producing plant species (e.g., lavender, sunflower)
and under different environmental conditions (such as arid, tropical
regions) to assess generalizability; conducting deployment and field
tests in actual agricultural and ecological monitoring scenarios
through collaboration with local agencies and enterprises,
evaluating performance in real-world dynamic conditions; adapting
the model to different growth stages (seedling, flowering, fruiting)
and stress conditions (drought, pest infestation) by incorporating
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stage-specific and stress-related features into training; and thoroughly
assessing scalability by comparing performance on smaller plots
versus larger commercial farms, a critical aspect for practical
application given its direct impact on utility in large-scale
scenarios. These efforts will enhance the model’s practicality and
application scope, making it more robust and versatile for nectar-
producing plant segmentation tasks.
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