

OPEN ACCESS

EDITED AND REVIEWED BY
Jim Leebens-Mack,
University of Georgia, United States

*CORRESPONDENCE
Carmen Benítez-Benítez
Cbenitez2@us.es
Marcial Escudero
aescudero2@us.es

RECEIVED 14 July 2025 ACCEPTED 06 August 2025 PUBLISHED 29 September 2025

CITATION

Benítez-Benítez C, Carta A, Escudero M, Maguilla E and Martín-Bravo S (2025) Editorial: Plant diversification driven by genome and chromosome evolution and its reproductive and environmental correlates. *Front. Plant Sci.* 16:1665681. doi: 10.3389/fpls.2025.1665681

COPYRIGHT

© 2025 Benítez-Benítez, Carta, Escudero, Maguilla and Martín-Bravo. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Plant diversification driven by genome and chromosome evolution and its reproductive and environmental correlates

Carmen Benítez-Benítez^{1*}, Angelino Carta², Marcial Escudero^{1*}, Enrique Maguilla³ and Santiago Martín-Bravo³

¹Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain,
²Department of Biology, Botany Unit, University of Pisa, Pisa, Italy,
³Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain

KEYWORDS

chromosome, microevolution, macroevolution, genome, biodiversity, diversification

Editorial on the Research Topic

Plant diversification driven by genome and chromosome evolution and its reproductive and environmental correlates

The intricate processes of plant diversification are profoundly influenced by changes at the genomic and chromosomal levels (Wang et al., 2025), which in turn impact reproductive strategies and adaptation to diverse environments (Hansen et al., 2012; Bragg et al., 2015). This Research Topic, "Plant Diversification Driven by Genome and Chromosome Evolution and Its Reproductive and Environmental Correlates," brings together a collection of nine insightful articles that explore these multifaceted interactions across a diverse range of plant lineages. From ancient polyploidization events to contemporary local adaptations, these articles highlight the dynamic interplay between genomic architecture, chromosomal rearrangements, and evolutionary success in the plant kingdom.

Several articles in this Research Topic shed light on the fundamental role of genome and chromosome evolution in shaping plant diversity. Gallego-Narbón et al. investigated the influence of whole-genome duplication (WGD) events on the evolution of the ginseng family (Araliaceae). Their phylogenomic analyses suggest that ancient hybridization and WGDs preceded the origin and diversification of major clades within the family, underscoring the long-term impact of these events (Soltis and Soltis, 2016). Building on this theme, Benítez-Benítez et al. provided a comprehensive review bridging micro and macroevolutionary processes through chromosomal dynamics. The reviewed evidence reflects that while polyploidy and dysploidy are known drivers of speciation, other chromosomal rearrangements like insertions, deletions, inversions, and translocations are increasingly recognized for their role in local adaptation and speciation. In addition, it suggests that certain chromosomal dynamics become fixed over macroevolutionary time after the filter of speciation (Rolland et al., 2023).

Benítez-Benítez et al. 10.3389/fpls.2025.1665681

Further exploring the impact of polyploidy, Sharovikj Ivanova et al. employed an integrative taxonomic approach to uncover cryptic diversity within the Euphorbia nicaeensis alliance (Euphorbiaceae). Their research revealed multiple polyploidization events and complex phylogenetic patterns, resulting in the description of new species and emphasizing the significant role of polyploidy driving diversification within this group. The dynamic behavior of repetitive DNA elements in polyploid genomes is addressed by Decena et al. in their study of Brachypodium grasses (Poaceae). They demonstrate how the expansion and contraction of repeat elements contribute to genome size variation and respond to the "polyploid genome shock hypothesis," revealing contrasting evolutionary outcomes across different Brachypodium lineages. Meanwhile, Beránková et al. uncover striking variations in chromosome structure within Musa acuminata subspecies (Musaceae) and cultivars, underscoring the profound impact of hybridization and polyploidization on chromosomal rearrangements in cultivated bananas.

Beyond the direct impact of genome and chromosome evolution (Lucek et al., 2023; Mohan et al., 2024), this Research Topic also delves into how these changes correlate with reproductive traits and environmental adaptation. Valdés-Florido et al. investigated the interplay between climatic niche evolution, polyploidy, and reproductive traits in the Mediterranean genus Centaurium (L.) Hill. Their findings suggest that polyploidization is a crucial process for plant evolution in the Mediterranean region (Escudero et al., 2018), facilitating speciation and diversification into new areas with different climates, and involving shifts in climatic niches and the evolution of novel reproductive strategies. This emphasizes the adaptive advantage conferred by genomic changes in response to environmental pressures (Hansen et al., 2012).

The genetic basis of local adaptation to environmental challenges is further investigated by Zou et al. in the cold-tolerant mangrove *Kandelia obovata* Sheue, Liu & Yong. Using wholegenome re-sequencing they identified strong population structure and selective sweeps in highly differentiated regions, with candidate genes underlying local adaptation to temperature-related variables. This study provides crucial insights into how genomic variation underlies a species' ability to adapt to specific environmental conditions (Bragg et al., 2015).

This Research Topic also showcases advanced genomic approaches that facilitate a deeper understanding of plant diversification (Soltis and Soltis, 2021). Monloy and Planta provide a comprehensive analysis of tRNA gene content, structure, and organization across the flowering plant lineage. Their comparative genomic study reveals variation in the number of nuclear tDNAs and distinct clustering patterns among different plant groups, providing a valuable foundation for future research on tRNA gene function and regulation. Furthermore, Tao et al. utilized complete chloroplast genome data to investigate the *Solidago canadensis* L. complex and its anthropogenic introduction pathways into China. Their *de novo* assembled chloroplast genomes offer important insights into phylogenetic relationships, sequence divergence, and potential

introduction routes, demonstrating the power of organellar genomics in understanding invasion biology and evolutionary history (Keller and Taylor, 2008).

In summary, the articles in this Research Topic collectively underscore the pivotal role of genome and chromosome evolution in driving plant diversification (Soltis and Soltis, 2021). From ancient polyploidization events that shaped entire plant families to the subtle chromosomal rearrangements influencing local adaptation and speciation at microevolutionary levels, the contributions highlight the dynamic and intricate mechanisms at play. Furthermore, the interplay between these genomic changes, reproductive strategies, and environmental correlates provides a more complete scenario of how plants adapt and diversify (Cowling and Pressey, 2001). The ongoing advancements in genomic technologies are clearly helping researchers to unravel these complex processes with unprecedented detail (Zuntini et al., 2024). We hope this Research Topic serves as a valuable resource for researchers interested in the genetic and chromosomal underpinnings of plant evolution and inspires further investigations into these fascinating areas.

Author contributions

CBB: Writing – original draft, Writing – review & editing. AC: Writing – original draft, Writing – review & editing. ME: Writing – original draft, Writing – review & editing. EM: Writing – original draft, Writing – review & editing. SMB: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This work was supported by grants from the Spanish AEI MICINN (PID2021-122715NB-I00 DiversiChrom) to ME and CB-B. CB-B was also supported by a Postdoctoral Fellowship Program grant (JDC2022-048955-I), Innovation and Universities (MICIU/AEI/10.13039/501100011033) and by the EuropeanUnionNextGenerationEU/PRTR.

Acknowledgments

We thank all reviewers and Frontiers editors that critically scrutinized and assisted in editing the articles included in this Research Topic. We are also grateful to all the researchers who contributed their work to this collection.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Benítez-Benítez et al. 10.3389/fpls.2025.1665681

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Bragg, J. G., Supple, M. A., Andrew, R. L., and Borevitz, J. O. (2015). Genomic variation across landscapes: insights and applications. *New Phytol.* 207, 953–967. doi: 10.1111/nph.13410

Cowling, R. M., and Pressey, R. L. (2001). Rapid plant diversification: planning for an evolutionary future. *Proc. Natl. Acad. Sci.* 98, 5452–5457. doi: 10.1073/pnas.101093498

Escudero, M., Balao, F., Martín-Bravo, S., Valente, L., and Valcárcel, V. (2018). Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes? *Plant Biol.* 20, 166–175. doi: 10.1111/plb.12563

Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E., and GeM Working Group (2012). Monitoring adaptive genetic responses to environmental change. *Mol. Ecol.* 21, 1311–1329. doi: 10.1111/j.1365-294X.2011.05463.x

Keller, S. R., and Taylor, D. R. (2008). History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. *Ecol. Lett.* 11, 852–866. doi: 10.1111/j.1461-0248.2008.01188.x

Lucek, K., Giménez, M. D., Joron, M., Rafajlović, M., Searle, J. B., Walden, N., et al. (2023). The impact of chromosomal rearrangements in speciation: from micro-to macroevolution. *Cold Spring Harbor Perspect. Biol.* 15, a041447. doi: 10.1101/cshperspect.a041447

Mohan, A. V., Escuer, P., Cornet, C., and Lucek, K. (2024). A three-dimensional genomics view for speciation research. *Trends Genet.* 40, 638–641. doi: 10.1016/j.tig.2024.05.009

Rolland, J., Henao-Diaz, L. F., Doebeli, M., Germain, R., Harmon, L. J., Knowles, L. L., et al. (2023). Conceptual and empirical bridges between micro-and macroevolution. *Nat. Ecol. Evol.* 7, 1181–1193. doi: 10.1038/s41559-023-02116-7

Soltis, P. S., and Soltis, D. E. (2016). Ancient WGD events as drivers of key innovations in angiosperms. *Curr. Opin. Plant Biol.* 30, 159–165. doi: 10.1016/j.pbi.2016.03.015

Soltis, P. S., and Soltis, D. E. (2021). Plant genomes: markers of evolutionary history and drivers of evolutionary change. *Plants People Planet* 3, 74–82. doi: 10.1002/ppp3.10159

Wang, S., Mank, J. E., Ortiz-Barrientos, D., and Rieseberg, L. H. (2025). Genome architecture and speciation in plants and animals. *Mol. Ecol.*, e70004. doi: 10.1111/mec.70004

Zuntini, A. R., Carruthers, T., Maurin, O., Bailey, P. C., Leempoel, K., Brewer, G. E., et al. (2024). Phylogenomics and the rise of the angiosperms. *Nature* 629, 843–850. doi: 10.1038/s41586-024-07324-0