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Wheat is an important food crop, wheat seedling count is very important to

estimate the emergence rate and yield prediction. Timely and accurate detection

of wheat seedling count is of great significance for field management and variety

breeding. In actual production, the method of artificial field investigation and

statistics of wheat seedlings is time-consuming and laborious. Aiming at the

problems of small targets, dense distribution and easy occlusion of wheat

seedling in the field, a wheat seedling number detection model (DM_IOC_fpn)

combining local and global features was proposed in this study. Firstly, the wheat

seedling image is preprocessed, and the wheat seedling dataset is built by using

the point annotationmethod. Secondly, the density enhanced encodermodule is

introduced to improve the network structure and extract local and global

contextual feature information of wheat seedling. Finally, the total loss function

is constructed by introducing counting loss, classification loss, and regression

loss to optimize the model, so as to enable accurate judgment of wheat seedling

position and category information. Experiment on self-built dataset have shown

that the root mean square error (RMSE) and mean absolute error (MAE) of

DM_IOC_fpn were 2.91 and 2.23, respectively, which were 1.78 and 1.04 lower

than the original IOCFormer. Compared with the current mainstream object

detection models, DM_IOC_fpn has better counting performance. DM_IOC_fpn

can accurately detect the number of small target wheat seedling, and better

solve the problem of occlusion and overlapping of wheat seedling, so as to

achieve the accurate detection of wheat seedling, which provides important

theoretical and technical support for automatic counting of wheat seedlings and

yield prediction in complex field environment.
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Introduction

Wheat is the world’s largest grain crop in terms of sowing area,

yield and distribution. In 2022, according to FAO data, the global

wheat planting area is 21.9 million hectares, with a yield of 80.8

million tons (FAO, 2023). The number of wheat seedling is an

important evaluation indicator that reflects the quality of wheat

sowing, growth status and yield trait (Liu et al., 2017). However, the

current acquisition of wheat seedling mainly relies on manual field

measurement, which have disadvantages such as poor timeliness,

low efficiency and time-consuming and laborious processes, and

can’t longer meet the needs of high-throughput screening in wheat

breeding. With the continuous advancement of computer vision

and artificial intelligence technology, especially the powerful ability

of deep learning in automatic detection and processing of wheat

seedling images, various counting problems of crop can be solved to

achieve accurate and efficient crop counting.

At present, ground hyperspectral data acquisition is not only

time-consuming and labor-consuming, but also difficult to

effectively complete large-scale crop seedling monitoring due to

the large number of bands and complex data processing; Although

the remote sensing satellite data with high spatial resolution can

cover a large area, the acquisition cost is high, which makes it

difficult to ensure the accuracy of crop seedling information

extraction, and there is great uncertainty. In contrast, the small

and light Unmanned Aerial Vehicle (UAV) has become an

important research hotspot and frontier direction in the field of

crop seedling number information extraction by virtue of its

advantages such as flexible and fast, non-destructive monitoring,

high spatial resolution and imaging free from atmospheric

interference, and its ingenious integration of the accuracy of

ground hyperspectral data and the wide area coverage ability of

satellite remote sensing. With the development of UAV remote

sensing technology, crop image data with centimeter accuracy can

be quickly obtained, and crop growth can be monitored in real time

through image analysis and processing (Bai et al., 2023). Combined

with crop growth model and historical data, crop yield can be

scientifically predicted, which provides timely and accurate

decision-making basis for agricultural production management.

The combination of UAV remote sensing technology and

artificial intelligence technology has brought revolutionary

changes to the agricultural field (Sharma et al., 2021). With the

continuous progress of technology, the future application prospects

in crop production, disease management, breeding optimization

and other aspects will be broader, bringing more accurate and

efficient solutions for agricultural production (Lu and Young, 2020).

In terms of data acquisition and processing, image quality control,

occlusion processing and complex background separation have

become difficult problems to improve the accuracy of recognition

and counting (Li et al., 2024). From the perspective of cost-

effectiveness, although the initial investment is relatively high, the

long-term operation cost is far lower than that of traditional
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methods, and the use of UAV reduces the physical interference to

farmland, which is conducive to sustainable agricultural practice.

Deep learning technology is widely used in agriculture,

especially for crop target counting using image data. The crop

target counting method mainly include detection based method

(Joseph et al., 2015; Zhao et al., 2021; Lu et al., 2022), regression

based method (Girshick et al., 2013) and density map based method

(Jiang et al., 2021). Detection based method estimate the number of

target by detecting object instances. However, this method only

perform well in sparse and relatively large scale scenes, and perform

poorly in dense and crowded scenes. The regression based method

considers the detection target as a whole and learns the mapping

relationship between low-level feature and the number of target to

complete the counting task, but it requires manual feature

extraction and isn’t suitable for small target detection. The

density map based method takes learning the relationship

between image features and their corresponding density maps as

the starting point, generates predicted density map through

gaussian kernel function, and then integrates the density map.

The integrated result is the number of predicted target. At

present, the representative detection methods mainly include

broad learning (BL) (Ma et al., 2019), multicolumn convolutional

neural network (MCNN) (Susheela Devi and Meena, 2017),

convolutional social relation network (CSRNet) (Li et al., 2018),

spatial/channel-wise attention regression networks (SCAR) (Gao

et al., 2019), point-to-point network (P2PNet) (Song et al., 2021),

and distribution matching for crowd counting (DM-Count) (Wang

et al., 2020).

In recent years, many scholars have applied computer vision

technology to crop detection, mainly focusing on improving the

accuracy of detection algorithm, expanding the range of detection

type, and optimizing algorithm to adapt to crop counting under

different environmental condition. Zang et al. (2022b) extracted

wheat coverage based on UAV images at seedling stage and

constructed the relationship between coverage and plant density,

coefficient of determination (R2) was 0.82. Wilke et al. (2021)

proposed a new method to obtain multispectral images by UAV

and evaluate the density of grain plant, with R2 of 0.83. Zang et al.

(2022a) proposed YOLOv5s spike detection method based on

improved attention mechanism, with accuracy rate of 71.61%,

which better solved the problem of occlusion and overlapping of

spike. Wen et al. (2024) proposed a generalized model for accurate

counting of wheat spike in complex scene, average accuracy was

81.54%. Zhao et al. (2022) proposed a deep learning method for

spike detection, with average accuracy of 90.5%. Zhao et al. (2023)

proposed WheatNet to detect wheat spike from filling to maturity,

the average accuracy of spike detection in filling stage was 90.1%,

and the average accuracy of spike detection in maturity stage was

88.6%. Zaji et al. (2023) proposed a new enhancement algorithm for

wheat spike counting, the mean absolute error (MAE) and root

mean square error (RMSE) were 2.085 and 2.695, respectively.

Although wheat spikes and wheat seedlings originate from organs
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at different growth stages of wheat, they both face core challenges

such as small targets and dense distribution in dense target

detection tasks. Therefore, the methods and ideas proposed in

wheat spike detection research have important reference

significance for wheat seedling detection. Wheat spikes are

located at the top of the plant and are relatively independent

targets, suitable for scenes in the middle and late stages of

growth; whereas wheat seedlings are continuously and densely

distributed in the field, easily obscured by leaves, and are mainly

suitable for early growth stage detection. This study focuses on the

difficult problem of wheat seedling detection and optimizes the

model design specifically to adapt to its unique characteristics. In

the images taken by UAV, wheat seedling is in the stage of two

leaves at one heart, and the directions are different, so the horizontal

detection can’t provide accurate direction information. However,

there are many problem in the wheat seedling images taken by

UAV. The wheat seedling is small, densely distributed, seriously

occluded and overlapped with each other, which makes it difficult

for the deep convolution network to extract the characteristics of

small target wheat seedling, resulting in false detection and missed

detection in wheat seedling detection. The current common target

detection models can’t solve the above problems, and the detection

effect of small targets and dense targets is poor. Therefore, it is

ne c e s s a ry to fu r the r s tudy and improve the deep

convolution network.

This study proposes a wheat seedling detection model

DM_IOC_fpn that integrates local and global feature, which can

accurately detect small target wheat seedling in complex field

environment, and better solve the problem of wheat seedling

occlusion and overlap. The main purposes of this study is: (1) the

wheat seedling image dataset is built; (2) the density enhanced

encoder module is introduced to improve the network structure; (3)

a wheat seedling number detection model DM_IOC_fpn was
Frontiers in Plant Science 03
proposed; (4) The DM_IOC_fpn detection method is compared

with the mainstream detection method.
Materials and methods

Study area

The wheat regional test was conducted in Henan Modern

Agricultural Research and Development Base of the Henan

Academy of Agricultural Sciences, as shown in Figure 1. The

climate type of the region is semi-arid and semi humid warm

temperate continental monsoon climate, with an annual average

temperature of 14.5°C and an average annual rainfall of 660 mm,

mainly concentrated in June-September. The experiment was

conducted in a completely randomized block design with three

repetitions, six rows of new wheat varieties were planted in each

plot. The sowing date was October 18, 2023. The test materials were

80 wheat varieties, and the plot area was 12 m2.
UAV images of wheat seedling

DJI Mavic 3 UAV was used in the experiment. The camera pixel

was 20million pixels, the image sensor was 4/3 CMOS, the lens

equivalent focal length was 24 mm, and the aperture was f/2.8-f/11.

The images were collected at 10:00 a.m. on November 1 and

November 2, 2023. The weather was clear and cloudless, and the

images were taken obliquely. The flight speed was 3 M/s, the flight

time was 25 min, the heading overlap was 80%, and the lateral

overlap was 70%. The visible light images at the seedling stage were

taken at a height of 3 m, with a resolution of 4000 × 2250 pixels, and

a total of 2000 images were taken, some images of wheat seedling
FIGURE 1

Study area and UAV images of wheat seedling (a) original image (b) annotation image.
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were shown in Figure 2. In order to improve the efficiency of data

processing and facilitate the training of neural network, the original

image is cut into an image with a resolution of 512 × 512 pixel, as

shown in Figure 2a. Use the annotation tool to annotate the self-

built wheat seedling dataset image (Wang et al., 2021; Zhu et al.,

2022), as shown in Figure 2b.
Data processing

Wheat seedling is small and densely distributed, which is prone

to occlusion and overlap, resulting in missed detection, making the

method based on box annotation difficult to be effectively applied.

Therefore, we adopt a low-cost, convenient and fast point

annotation method. The point annotation represents the position

coordinates of wheat seedling in the image. This method can not

only mark the image into block, but also support the random

scaling of the marked area. For the areas with dense distribution of

wheat seedling, serious occlusion and overlap in the image, we use

the method of point annotation after magnification, which
Frontiers in Plant Science 04
effectively improves the annotation speed and quality. The

labeling points are selected at the root and stem of wheat

seedlings with obvious characteristics, which is convenient for the

subsequent training of target detection network.
Data expansion

This method strengthens the generalization ability of the model

by means of data expansion, thus successfully avoiding the possible

over fitting problem of the model. The specific data enhancement

operation is realized by image flipping, image rotation, brightness

balance and adding gaussian noise. A single image typically

contains a vast amount of data, and through data processing, it

can yield over 100 pieces of useful information. During drone

flights, factors such as low altitudes and slow speeds lead to

variations in shooting angles and lighting within the same area.

Additionally, images taken from different flight paths of the same

location may exhibit differences. This diverse data enhances the

robustness of deep neural networks, preventing overfitting to
FIGURE 2

Example of partial images of wheat seedling stage.
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specific data, and thus holds significant value in training deep

neural networks. After data enhancement, 2000 original images

were processed to obtain a total of 4000 wheat seedling images and

their corresponding annotation points, which together constitute

the wheat seedling image dataset, and meet the training

requirements of deep learning. According to the ratio of 7:2:1, the

wheat seedling image dataset is divided into training set, validation

set and test set. The training set, validation set and test set include

2800, 800 and 400 wheat seedling images respectively.
Deep learning model

The deep learning model is an important part of the field of

artificial intelligence. It’s basic principle is built by the convolution

layer, pooling layer and full connection layer, which is used for

automatic feature extraction and classification of input data (Shafiq

and Gu, 2022). Convolution layer is the core layer of deep learning

model to extract data feature such as image, which is mainly used to

automatically extract local features of data. The pool layer is located

behind the convolution layer, and it’s main function is to reduce the

dimension of the feature map output from the convolution layer,

which can’t only significantly reduce the amount of data, but also

reduce the complexity of subsequent calculation. The full

connection layer integrates the feature extracted from the

previous convolution layer and the pool layer. Each neuron is

connected to all neurons in the previous layer. By weighted

summation of the input feature, the final prediction result is

output. The convolution layer, pooling layer and full connection

layer work together to build a powerful deep learning model

architecture. In this study, we carefully selected seven most

advanced deep learning models, namely CSRNet, SCAR, MCNN,

P2PNet, DM-Count, IOCFormer and DM_IOC_fpn. These models

showed unique advantages and excellent performance in the field of

deep learning, and provided a solid technical foundation for

subsequent research and analysis. Using the transfer learning

method, all models have completed the pre training using the

transfer learning method. Figure 3 shows the schematic diagram

of data set, model selection and data set division.
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DM_IOC_fpn architecture

In this study, VGG19 is used as the backbone network to

creatively build a dual branch structure, which is density branch

and regression branch respectively. The network architecture of

DM_IOC_fpn is shown in Figure 4. The wheat seedling image is

input into the model. Firstly, through the backbone network VGG19,

the feature maps of the 12th and 16th layers are extracted and input

into the feature pyramid network. The feature pyramid network fuses

the low-level feature high-resolution and high-level high semantic

information to obtain the feature map F0, with a feature dimension of

16 × 16 × 256. The feature map F0 output from the feature pyramid is

input into the density branch and the regression branch respectively.

First, it enters the density branch, and generates the density sensing

feature map F1 through the convolution layer, with a feature

dimension of 16 × 16 × 256. Then, the feature map F0 and F1 are

added and input into the encoder, so that the regression branch to not

only rely on local appearance features when predicting the position of

wheat seedlings, but also perceive global density distribution context

information. When wheat seedlings are occluded or overlap, the

model can infer the potential presence of occluded areas based on

the distribution pattern of surrounding wheat seedlings, thereby

significantly reducing missed detections. Finally, the features output

by the decoder are processed by a classification head and a regression

head to generate predicted segmentation maps and coordinate

information, respectively, completing accurate localization and

counting of wheat seedlings.
Density enhancement encoder module

This research improves the density enhancement encoder

module in IOCFormer, as shown in Figure 5. Replace Convs with

GSConv to make it lighter, compared with Convs, GSConv divides

the traditional convolution process into two steps: depthwise

convolution and pointwise convolution, and adopts a strategy of

channel halving and then concatenation, significantly reducing the

number of parameter in the model at the structural level, as shown

in Figure 6. The density sensing feature F1 from the density branch
FIGURE 3

Framework of wheat seedling number detection using deep learning model.
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is input into GSConv. First, the standard convolution is performed

to generate the feature map A, the number of channels becomes half

of the output feature map, and then the depth convolution is

performed to generate the feature map B. The feature map A and

B are spliced in the channel dimension, which greatly enriches the

diversity of features, enables the model to learn more robust feature

representations from different receptive fields and computational

paths. Then, a shuffle operation is performed, which is crucial for

solving the occlusion problem. It effectively avoids the isolation of

feature information in the channel dimension, prompting the

model to integrate local details (such as partially visible wheat leaf

tips) with surrounding contextual information, thus making more

accurate judgments on partially occluded or heavily overlapped

wheat seedlings, and improving the model’s generalization ability.
Loss function

In order to improve the convergence speed, accuracy and

generalization ability of the model, the model uses three different

loss functions, namely counting loss, classification loss and

regression loss.

Count loss is calculated by calculating the absolute value of the

difference between the predicted number of wheat seedlings and the

real number of wheat seedlings in each image, and then added and

divided by the total sample. It is defined as follows:

LCT =
1
No

N

i=1
Cpred
i − CGT

i

��� ���
Where N is the total sample, and Cpred

i and CGT
i are the

predicted value and the real value of a sample respectively. The
Frontiers in Plant Science 06
binary cross entropy loss function is used for classification loss, in

areas where wheat seedlings are densely overlapped, the appearance

characteristics are blurred, which can easily lead to misjudgment.

The classification loss is achieved through a binary discrimination

mechanism, which forces the model to learn to distinguish the

subtle differences in characteristics between wheat seedlings and

non-wheat seedlings (such as soil, shadows, or overlapping edges).

This can effectively reduce false positives or missed detections

caused by overlap.it is defined as follows:

LCL = −½ylog(a) + (1 − y) log (1 − a)�
Where y is the real label, value is 0 or 1, a is the output of the

model, and the prediction is the probability of wheat seedlings.

Use regression loss to calculate the difference between the

predicted coordinates and the real coordinates, and supervise the

learning of the model. It is defined as follows:

LRL =
1
Mo

M

i=1
Ypred
i − YGT

i

��� ���
Where M is the total number of wheat seedlings, yGTi is the real

coordinate, and ypredi is the prediction coordinate. The total loss

function of the model is: L = aLCT + LCL + LRLWhere a is a super

parameter and is set to 0.5, so as to balance the contribution of

positive and negative samples.
Network training

This paper uses Ubuntu operating system and NVIDIA

GeForce RTX3090 as GPU, which is implemented based on
FIGURE 4

DM_IOC_fpn architecture.
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PyTorch, CUDA and Python. The batch size is limited by the data

size and GPU memory. The batch size was tested in the range of

8~32, and the results showed no significant difference. Therefore, 8

was selected as the optimal value that balances efficiency and

stability. The learning rate was selected based on grid search

using the validation set. The optimal initial value was determined

through cross-validation, and the learning rate decay strategy was

used to accelerate convergence. Therefore, the learning rate was set

to 0.001. The training rounds were 1000, and early stopping was

used to prevent overfitting during training. The model usually

converges after hundreds of rounds. Adam was selected as the

optimizer, which showed good convergence performance in

the experiment.
Evaluation index

In this study, RMSE, MAE and R2 were used to evaluate the

detection effect of wheat seedling, evaluate model performance

using GFLOP, parameter, memory, and time consumption. The

calculation formulas of RMSE, MAE and R2 are as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(pi − qi)

2

r

MAE =
1
No

N

i=1
pi − qij j

R2 = 1 −oi(pi − qi)
2

oi(�p − qi)
2

Frontiers in Plant Science 07
Where N is the number of images, Pi is the actual number of the

ith image, and qi is the predicted number of the ith image.
Results and analysis

Training loss results of different deep
learning models

To verify the superiority of DM_IOC_fpn, the training loss

results of IOCFormer and DM_IOC_fpn are shown in Figure 7,

where the horizontal axis represents the number of training times

and the vertical axis represents the loss value of each round. As

increasing the iterations number, IOCFormer and DM_IOC_fpn

converge and remain stable before 400 epochs, the training loss

gradually decreases, then converges and remains stable, the loss

value of IOCFormer is higher than that of DM_IOC_fpn. At the

beginning of the network training iteration, the training loss curve

of DM_IOC_fpn decreases rapidly. At the middle of the training

iteration, the training loss curve of DM_IOC_fpn decreases

moderately. At the end of the training iteration, the training loss

curve of DM_IOC_fpn remains stable, indicating that

DM_IOC_fpn has excellent stability.
Comparative analysis of wheat seedling
detection results using different deep
learning models

In order to compare the detection effect of DM_IOC_fpn model

and the current mainstream target detection model on wheat

seedlings in the field, CSRNet, SCAR, MCNN, P2PNet, DM-
FIGURE 5

Density-enhanced encoder module.
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Count, IOCFormer and DM_IOC_fpn were selected for

comparative analysis. Table 1 shows the comparison results of

evaluation indexes of different models on wheat seedling data

sets. The RMSE of CSRNet, SCAR, MCNN, P2PNet, DM-Count,
Frontiers in Plant Science 08
IOCFormer and DM_IOC_fpn models were 7.49, 3.36, 14.62, 6.17,

3.10, 4.69 and 2.91, respectively. The RMSE of MCNN was the

largest and that of DM_IOC_fpn was the smallest. The MAE of

CSRNET, SCAR, MCNN, P2PNet, DM-Count, IOCFormer and
FIGURE 6

GSConv module.
FIGURE 7

Training loss results of IOCFormer and DM_IOC_fpn.
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DM_IOC_fpn models were 6.10, 2.83, 13.72, 4.83, 2.38, 3.27 and

2.23, respectively. The RMSE of MCNN was the largest and that of

DM_IOC_fpn was the smallest. The DM_IOC_fpn model proposed

has the highest accuracy in counting wheat seedling, with RMSE of

2.91 and MAE of 2.23, which are reduced by 0.19 and 0.15

respectively compared with DM-Count. Therefore, in higher

image resolution and more complex environment, our proposed

DM_IOC_fpn still shows excellent performance, and the two kinds

of counting errors are also the smallest, which improves the

accuracy of wheat seedling counting, and has practical value for

wheat seedling counting.
Comparison of computation, parameter
count, memory and time per image for
different deep learning models

This study evaluated the possibility of implementing different

deep learning models on drone platforms. We compared the

performance of seven mainstream detection models in terms of

computation, parameter count, memory, and time per image, as

shown in Table 2. MCNN has the lowest FLOPs, parameter count,

memory, and time per image, but its counting accuracy is relatively

low. DM_IOC_fpn has a computation of 22.99 FLOPs, which is

between MCNN and IOCFormer, reflecting a balanced design

between computational efficiency and detection performance.

DM_IOC_fpn contains 87.26 M parameters and has a relatively

complex architectural design. Compared with the lightweight model
Frontiers in Plant Science 09
MCNN (0.51M), the parameter count has increased significantly,

but this provides the model with stronger feature expression

capabilities. DM_IOC_fpn has a memory of 7.15 GB, which is

relatively high among the compared models, but still within the

acceptable range of GPUs. DM_IOC_fpn provides an inference

speed suitable for drone deployment while maintaining optimal

detection accuracy, analyzing 10 high-resolution wheat seedling

images per second. Therefore, DM_IOC_fpn achieves a better

balance between accuracy and efficiency, providing a feasible

solution for real-time wheat seedling detection in the field.
The relationship between the actual and
predicted values of wheat seedling
counting using different deep learning
models

In order to verify the counting effect of the detection model

proposed on the self-built dataset, the counting experiment was

carried out on 50 wheat seedling images in the self-built dataset, and

the relationship between the actual values and the predicted values

of the test data is shown in Figure 8. It can be seen from Figure 8

that the predicted value and the real value of the wheat seedling

dataset from the perspective of UAV have a high correlation,

indicating that the DM_IOC_fpn model proposed by us not only

has high counting accuracy, but also has good generalization ability.

R2 varies across different deep learning models, R2 of IOCFormer,

MCNN, CSRNET, SCAR, P2PNet, DM-Count and DM_IOC_fpn

models are 0.90, 0.30, 0.80, 0.78, 0.92, 0.90 and 0.95 respectively,

The R2 of the DM_IOC_fpn model is the highest, while the R2 of the

MCNN is the lowest. Compared with IOCFormer model, the R2 of

DM_IOC_fpn model increased by 5%. In conclusion, the

DM_IOC_fpn model proposed has good robustness and can

accurately detect and count wheat seedling.
Analysis of typical wheat seedling images
in the testset

Affected by factors such as imaging angle, sundries and

weeds, and wheat seedling density, there are various typical

challenge scenarios in the testset, Figure 9 shows six typical
TABLE 1 Comparison analysis of experimental results of different deep
learning models on the wheat seedling dataset.

Models RMSE MAE

CSRNet 7.49 6.10

SCAR 3.36 2.83

MCNN 14.62 13.72

P2PNet 6.17 4.83

DM-Count 3.10 2.38

IOCFormer 4.69 3.27

DM_IOC_fpn 2.91 2.23
TABLE 2 Comparison of computation, parameter count, memory, and time per image for different deep learning models.

Models GFLOP (G) Parameters (M) Memory (G) Time (s/image)

CSRNet 20.72 16.26 5.15 0.09

SCAR 20.74 16.29 5.18 0.10

MCNN 1.34 0.13 0.12 0.04

P2PNet 20.04 19.21 6.65 1.72

DM-Count 20.66 20.50 4.28 0.06

IOCFormer 32.26 51.65 6.62 0.24

DM_IOC_fpn 22.99 25.78 7.15 0.11
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FIGURE 8

Relationship between actual and predicted values of wheat seedling counting using different deep learning models.
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image examples. Figure 9a shows that there are sundries between

wheat seedlings; Figure 9b shows the presence of debris between

wheat seedlings; Figure 9c shows the uneven growth state of

wheat seedlings and the phenomenon of lacking seedlings;

Figure 9d shows the image of wheat seedlings taken during the
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day and exposed to strong sunlight; Figure 9e shows the presence

of weed shelter between wheat seedlings; Figure 9f some wheat

seedlings grow too densely, crowded and disorderly. The

aforementioned complex external environmental conditions

have heightened the difficulty of wheat seedling detection,
FIGURE 9

Typical image example of the testset.
FIGURE 10

Visualization of wheat seedling counting results using different deep learning models.
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leading to instances of missed or false detections when using

other target detection models. This underscores the exceptional

robustness of our research model in addressing such challenges.
Visualization of wheat seedling counting
using different deep learning models

Figure 10 shows the visualization results of wheat seedling

counting on the self-built dataset of different deep learning

models, Figure 10a is the original image, and Figure 10b is the

density map generated by point annotation, which serves as the true

value for the density map counting method, Figures 10c-i present

the counting results forCSRNET, SCAR, MCNN, P2PNet, DM-

Count, IOCFormer and DM_IOC_fpn, respectively. Visualize the

data through a density plot, the darker the color of density map, the

more wheat seedlings. The counting accuracy of these density map-

based methods is not high, and the generated density maps cannot

directly identify the location of wheat seedlings, thus failing to

provide more supporting information for downstream tasks.

Figures 10f, h, i show the prediction results of P2PNet,

IOCFormer, and DM_IOC_fpn, respectively. These results are

more intuitive wheat seedling coordinates. Due to the

introduction of dual branches in DM_IOC_fpn, which enhances

the local and global contextual feature information of wheat

seedlings, its prediction values are closer to the true values when

counting wheat seedling images affected by factors such as

occlusion, overlap, and illumination, resulting in smaller counting

errors. The DM_IOC_fpn model proposed can fully extract the

image global feature, and the comprehensive detection effect is the

best. Figure 10 shows the visualization results of wheat seedling

detection by seven detection networks. When the counting of wheat

seedling images is affected by factors such as occlusion and overlap,

the convolutional neural network has missed detection.

DM_IOC_fpn can accurately locate and recognize wheat seedling

targets, and can eliminate the detection errors in the original model.

It not only improves the detection accuracy of wheat seedlings, but

also reduces the misjudgment of wheat seedlings, showing better

generalization performance.
Ablation test

In order to verify the effectiveness of the improved model,

ablation experiments were carried out in combination with the test

set, and the effectiveness of the improved DM_IOC_fpn model was
Frontiers in Plant Science 12
verified based on the IOCFormer model. It can be seen from Table 3

that adding density branches, RMSE and MAE decreased by 1.16

and 0.72 respectively compared with IOCFormer model, indicating

that density branches can improve the ability of the model to

capture the characteristics of wheat seedlings. Compared with

IOCFormer model, RMSE and MAE were increased by 0.48 and

0.63 respectively by introducing regression branch, indicating that

regression branch reduced the accuracy of wheat seedling detection.

When adding density branch and regression branch, DM_IOC_fpn

model performs best in comprehensive performance. Compared

with IOCFormer model, RMSE and MAE are reduced by 1.78 and

1.04 respectively. The comprehensive ablation test proves the

effectiveness of the improved DM_IOC_fpn model.
Verification of test results

In order to evaluate the automatic counting performance of

DM_IOC_fpn model in the field environment, 20 wheat seedling

images were randomly selected from the testset, and the accuracy

was evaluated by manually marking the true value and the predicted

value of the model. See Table 4 for wheat seedling counting results

of different models. The average relative error of DM_IOC_fpn

counting is 4.53%, which is 3.15%, 17.06%, 3.71%, 1.81%, 5.98% and

0.96% lower than that of IOCFormer, MCNN, CSRNET, SCAR,

P2PNet and DM-Count, indicating that the relative error of

DM_IOC_fpn is more concentrated and the result of wheat spike

seedling is more stable.
Generalization of different deep learning
models in wheat ear detection

In order to verify the effectiveness of DM_IOC_fpn model in

wheat ear detection task, we used the common dataset wheat ear

detection dataset (WEDD), which contains 236 high-resolution

images with a resolution of 6000 × 4000. In this study, the

WEDD test is zero-shot, the model trained on the self-built wheat

seedlings dataset, which was tested on the WEDD. Figure 11 shows

the experimental results of different deep learning models on the

wheat ear dataset, SCAR model has the largest MAE and RMSE,

while DM_IOC_fpn model has the smallest MAE and RMSE. The

DM_IOC_fpn we proposed still maintains the optimal

performance, with MAE of 10.46 and RMSE of 13.28. Compared

with IOCFormer, the MAE and RMSE of DM_IOC_fpn decreased

by 3.41 and 4.98, respectively. Compared with other detection
TABLE 3 Ablation test results.

Baseline network Regression branch Density branch RMSE MAE

IOCFormer

4.69 3.27

✓ 3.53 2.55

✓ 5.17 3.90

✓ ✓ 2.91 2.23
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TABLE 4 Counting results of wheat seedlings in different models.

Image True Relative Relative
t

Relative
error (%)

SCAR
Relative
error (%)

P2PNet
Relative
error (%)

DM-
count

Relative
error (%)

DM_IOC_fpn
Relative
error (%)

6.81 39 11.36 53 17.70 42 4.54 47 6.81

10.34 56 3.44 60 3.44 59 1.72 54 6.89

12.50 42 12.50 49 2.08 46 4.16 52 8.33

5.45 53 3.63 56 1.81 52 5.45 54 1.81

6.00 48 4.00 55 10.00 44 12.00 51 2.00

8.82 38 11.76 41 20.58 33 2.94 38 11.76

5.08 61 3.38 68 15.25 60 1.69 56 5.08

8.51 48 2.12 51 8.51 49 4.25 48 2.12

3.33 62 3.33 68 13.33 61 1.66 58 3.33

5.00 41 2.50 39 2.50 42 5.00 41 2.50

16.21 40 8.10 45 21.62 39 5.40 38 2.70

4.65 45 4.65 48 11.62 44 2.32 44 2.32

5.88 57 11.76 58 13.72 56 13.72 50 1.96

12.00 45 10.00 52 4.00 44 12.00 51 2.00

4.44 43 4.44 53 17.77 40 11.11 44 2.22

1.85 51 5.55 58 7.40 50 7.40 56 3.70
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number value
IOCFormer

error (%)
MCNN

error (%)
CSRNe

1 44 49 11.36 36 18.18 41

2 58 59 1.72 42 27.58 52

3 48 50 4.16 59 22.91 42

4 55 60 9.09 35 36.36 52

5 50 54 8.00 59 18.00 47

6 34 39 14.70 22 35.29 37

7 59 63 6.77 45 23.72 62

8 47 52 10.63 57 10.63 43

9 60 69 15.00 48 20.00 62

10 40 38 5.00 55 37.5 42

11 37 40 8.10 45 21.62 43

12 43 45 4.65 30 30.23 41

13 51 50 1.96 42 17.64 54

14 50 51 2.00 44 12.00 44

15 45 44 2.22 54 20.00 43

16 54 57 3.70 48 11.11 53
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models, the counting error of DM_IOC_fpn is the smallest.

Therefore, the method proposed in this study can accurately

detect the small target number of wheat ear, and better solve the

technical problems of occlusion and overlapping of the number of

wheat ear, thereby improving the accuracy of wheat ear counting.
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Five-fold cross-validation of different deep
learning models

To prevent model overfitting and comprehensively evaluate its

generalization ability, five-fold cross-validation was selected to train
FIGURE 11

Comparison of experimental results of different deep learning models on wheat spike dataset.
TABLE 5 Five-fold cross validation results of different deep learning models.

Models Index One fold Two fold Three fold Four fold Five fold t-test t-test

IOCFormer
RMSE 4.69 5.18 4.79 5.10 5.34 23.25** 37.12**

MAE 3.27 3.69 3.40 3.71 3.75 17.69** 24.40**

CSRNet
RMSE 7.49 7.82 8.18 8.13 7.92 -8.94** 1.73

MAE 6.10 6.55 7.10 6.89 6.48 -3.93* 4.87**

SCAR
RMSE 3.36 3.45 3.25 4.12 3.79 29.79** 34.97**

MAE 2.83 2.95 2.79 3.51 3.15 41.75** 46.46**

MCNN
RMSE 14.62 15.32 13.81 15.71 14.58 8.35** 17.86**

MAE 13.72 14.25 13.15 14.51 13.52 12.30** 20.94**

P2PNet
RMSE 6.17 6.28 6.57 6.37 7.18 -9.97** 2.00

MAE 4.83 4.96 5.36 5.44 5.49 -5.98** 1.63

DM-Count
RMSE 3.10 3.91 3.51 3.81 3.68 / 13.99**

MAE 2.38 3.22 2.44 2.51 2.71 / 12.06**

DM_IOC_fpn
RMSE 2.91 3.15 3.37 3.70 3.46 -12.63** /

MAE 2.23 2.48 2.39 2.41 2.51 -23.80** /
frontiersin.org

https://doi.org/10.3389/fpls.2025.1665672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zang et al. 10.3389/fpls.2025.1665672
and validate different data subsets. Five-fold cross-validation

ensures that the proportion of samples in each fold class is

exactly the same as the category proportion in the original dataset

during partitioning. The self-built wheat seedling dataset was

randomly divided into five subsets of similar size, with four of

them selected as the training set and the remaining one as the

validation set. Random seeds are fixed, and their core role in cross

validation is to ensure that the data partitioning results are

reproducible, using the same augmentation between folds for

training. The results of the five-fold cross-validation are shown in

Table 5. The RMSE of the IOCFormer model ranged from 4.69 to

5.34, and the MAE ranged from 3.27 to 3.75. The paired t-test

results showed that the differences between other models and the

IOCFormer model reached significant or extremely significant

levels, with the DM_IOC_fpn model showing an extremely

significant difference from the IOCFormer model. Despite

statistically significant differences, the numerical results showed

that the DM_IOC_fpn model maintained a relatively stable leading

performance, with RMSE ranging from 2.91 to 3.70 and MAE

ranging from 2.23 to 2.51, outperforming other models. The

differences between the CSRNet, MCNN, P2PNet, IOCFormer

models and the DM_IOC_fpn model reached extremely

significant levels. In summary, the DM_IOC_fpn model had the

lowest RMSE and MAE, indicating that it performed best in terms

of accuracy and stability, highlighting the effectiveness of

its structure.
Discussion

As one of the important characteristic parameters of wheat,

plant number is of great significance for wheat breeding and yield

estimation. Deep learning target detection technology is based on

deep convolutional neural network, which can automatically extract

features from the input image data, and then identify and locate

specific target objects (Zhang et al., 2024). Based on the massive

dataset with different light intensity and hue changes, diverse

shooting angles and various complex backgrounds, the deep

convolutional neural network model is systematically and

carefully trained, so as to achieve high-precision detection of the

target object. Common target detection algorithms include Faster

R-CNN (Li et al., 2022), YOLO (Joseph and Ali, 2016) and SSD,

MCNN, CSRNet, SCAR and DM-Count. At present, the deep

learning target detection technology is developing rapidly. With

its significant advantages in image detection, it is widely used in

corn seedling, wheat spike (Khaki et al., 2022), rice (Wu et al., 2019),

sugar beet (Barreto et al., 2021), rape (Li et al., 2023), peanut (Lin

et al., 2022) and so on to carry out the exploration of target

detection and counting. In addition, researchers have proposed a

deep learning network structure to achieve crop counting task in

natural scene. However, the existing deep learning methods mainly

focus on counting, and there are many other applications that have

not been mined (Liu et al., 2020; Wang et al., 2022). Although deep

learning has made significant progress in image counting tasks,

complex background interference and noise pollution are still
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technical bottlenecks to be solved, which have been the key

problems restricting the improvement of counting accuracy.

In order to further verify the feasibility of this method in the

aspects of small wheat seedling, dense distribution, mutual shielding

and serious overlapping, this method was compared with several

schemes to solve the above problems. Jin et al. (2017) used the

support vector machine method to estimate the wheat plant density

based on the high-resolution image taken by UAV, and the relative

RMSE was 14.31%. However, due to the small sample size of the

dataset, the experimental results were easy to overfit. Bai et al.

(2023) can accurately and effectively estimate the number of rice

plants using RiceNet network, with MAE and RMSE of 8.6 and 11.2

respectively; However, their method reduces the counting

performance of rice due to the emergence of weed. Zang et al.

(2024) proposed a DMseg-Count model to realize the automatic

detection and counting of wheat ears; due to the limited storage

space of the mobile phone, it may not be able to continuously collect

data for a long time, resulting in incomplete data. In addition, if the

mobile phone runs out of power, insufficient storage space and

other unexpected circumstances occur during the collection

process, it will also cause data loss or interruption, affecting the

integrity of the data set. Liu et al. (2017) developed an automatic

measurement method of wheat density based on machine vision,

and the average relative error of density estimation is 12%, this

method needs to recalibrate the model at each new experimental

site. Lu and Cao (2020) proposed a new network TasselNetV3 for

rice plant counting, which is suitable for counting on rice plant

images taken by fixed cameras, and can better solve the problem of

mesoscale distortion in plant images.

In recent years, significant progress has been made in wheat

seedling detection and counting technology, which has attracted

extensive attention of researchers. However, wheat growth is a

complex and dynamic process, especially reflected in the color

characteristics and background changes of wheat seedlings. The

existing target detection models are usually optimized for specific

growth stages when they are designed and applied, but their

adaptability to other growth stages or field scenes is often limited,

and the detection effect of small targets and dense targets is poor.

The wheat seedling dataset captured by UAV in this study has a

wider perspective than the WEDD. Because the detection accuracy

of the wheat seedling dataset captured by UAV in this paper is

higher than the WEDD, it further verifies that DM_IOC_fpn has

strong wheat seedling detection ability and generalization ability in

different perspectives. When agricultural experts manually count

wheat seedlings, in the face of difficult samples that are difficult to

determine, they usually judge that wheat seedlings belong to single

or multiple plants according to the local characteristics of the roots

and stems of wheat seedlings and the overall development of leaves.

Inspired by this, this study proposes a wheat seedling number

detection model DM_IOC_fpn, which can accurately detect the

number of small target wheat seedlings, and better solve the

problem of occlusion and overlapping of wheat seedling.

The innovativeness of the DM_IOC_fpn model lies in its

achievement of model combination to architecture fusion for

agricultural dense target scenarios. The IOCFormer model excels
frontiersin.org

https://doi.org/10.3389/fpls.2025.1665672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zang et al. 10.3389/fpls.2025.1665672
in instance localization but has weaker global density perception;

whereas the DM-Count model excels in density estimation but lacks

precise localization capabilities. The advantages of the

DM_IOC_fpn model are reflected in the significant performance

improvement and robustness enhancement brought by its overall

architecture. This study improves the existing target detection

model IOCFormer and proposes the DM_IOC_fpn model for

wheat seedling count detection, which integrates local and global

features. The model builds a dual-branch structure based on

IOCFormer to obtain local and global contextual feature

information of wheat seedlings. It introduces a density-enhanced

encoder module to enhance the model’s feature extraction ability.

The total loss function is constructed by combining counting loss,

classification loss, and regression loss, reducing the technical

challenges of false positives and false negatives in wheat seedling

detection. From the above experimental results, it can be seen that

compared with other mainstream counting models, the

DM_IOC_fpn model proposed in this study achieves a better

balance between counting accuracy and efficiency, providing a

feasible solution for real-time wheat seedling detection in the

field. The model builds a dual-branch structure based on

IOCFormer to obtain local and global contextual feature

information of wheat seedlings. It introduces a density-enhanced

encoder module to improve the feature extraction ability of the

model. The total loss function is constructed by combining

counting loss, classification loss, and regression loss, reducing the

technical difficulties of false positives and false negatives in wheat

seedling detection. From the above experimental results, it can be

seen that compared with other mainstream counting models, the

DM_IOC_fpn model proposed in this study achieves a better

balance between counting accuracy and efficiency of wheat

seedlings, providing a feasible solution for real-time wheat

seedling detection in the field.

The performance evaluation of this study is mainly based on the

GPU environment, which to some extent limits its direct reflection

of the applicability of the model on low-power edge devices such as

drones. Due to the limitations of edge processors in terms of

computing power, memory, and power consumption, the real-

time inference capability of the model on such platforms still

needs further verification. In future work, we will focus on

exploring model lightweighting and compression strategy for the

target edge configuration file Jetson Xavier, in order to reduce the

computational complexity and storage requirement of the model.

At the same time, the air-ground collaboration architecture can be

considered, which uses edge device for real-time feature extraction

and preliminary computation, while transferring complex inference

task to the ground or cloud for processing, thereby ensuring real-

time performance while reducing energy consumption. Through

the exploration of the above direction, the adaptability and

application value of the model on edge device will be

further improved.

In this study, the wheat seedling image was obtained based on

the UAV platform, and the accurate detection and counting of

wheat seedling was realized based on the counting method of deep

learning regression density map. From the perspective of result
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efficiency, the method proposed in this paper can replace the

traditional manual counting, which not only saves time and labor

cost, but also provides reliable counting results, and provides

important data support for wheat intelligent breeding and

planting. However, there are still many problems in the research

of plant counting on the wheat seedling image taken by UAV. The

wheat seedling detection model proposed in this study demonstrate

good detection performance during the seedling stage, it still has

certain limitations. These mainly include: (1) The model proposed

in this study is specifically designed for the wheat seedling stage and

has limited adaptability to other crops. It’s cross-crop generalization

ability needs further optimization to meet the needs of cross-crop

target detection tasks. (2) As wheat progresses from the seedling

stage to the tillering stage and eventually heads and bears fruit, the

plant structure and canopy morphology undergo significant

changes. The follow-up work of this model will focus on

improving its generalization ability, so that it can be migrated to

target detection of different crops or growth stage. However, this

model is mainly suitable for the seedling stage and lacks adaptability

to subsequent growth stages and complex field scenarios.

Nevertheless, the method proposed in this study stil l

demonstrates some transferability in the generalization test of the

WEDD dataset, indicating that its feature extraction and dense

target recognition modules have good adaptability and robustness.

(3) In large-scale breeding experiments, the model proposed in this

study still faces issues such as insufficient algorithm generalization

ability and poor transferability, which to some extent limit its

potential value in high-throughput phenotypic data acquisition

and application.
Conclusion

In order to solve the problems of low precision and poor

generalization of wheat seedling number detection model in the

field, wheat seedling number detection model DM_IOC_fpn

combining local and global features was proposed, which realized

the accurate detection and counting of wheat seedlings. By building

a double branch structure in the IOCFormer model, the local and

global context characteristics of wheat seedlings are obtained; The

density enhancement encoder module is introduced to improve the

network structure and enhance the ability of network feature

extraction; The total loss function is constructed by counting loss,

classification loss and regression loss, which reduces the technical

problems of false and missed detection caused by small

wheat seedlings.
1. The experiments show that DM_IOC_fpn can accurately

detect small target wheat seedlings, and the MAE and

RMSE of self-built wheat seedling image dataset are 2.91

and 2.23, respectively, which are 1.78 and 1.04 lower than

the original IOCFormer. Compared with other advanced

counting models, DM_IOC_fpn realizes high-precision

wheat seedling detection and counting, and can meet the
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requirements of wheat seedling detection in complex

field environment.

2. The automatic counting results of wheat seedling in the

actual field environment showed that DM_IOC_fpn can

accurately predict number of wheat seedling, break the

efficiency bottleneck faced by the traditional artificial

number of seedlings, improve the accuracy and efficiency

of wheat seedling data acquisition, better solve the

problems of mutual occlusion and overlapping of small

target wheat seedling, and improve the applicability in

complex field environment.
Although the method proposed in this study has better counting

performance compared to other methods, there are still some issues

that need to be addressed. Future research work needs to further

improve and refine relevant theories and methods, the difficulties

and challenges are as follows: (1) Based on the new data feedback

collected in real time, the dynamic update mechanism of the model

is constructed to further optimize the wheat seedling network

architecture, and comprehensively improve the generalization

ability and accuracy of the wheat seedling network in complex

scenes; (2) In view of the problems of the existing target detection

model, such as large number of parameters, high consumption of

computing resources, and difficult deployment in mobile devices,

we urgently need to develop a lightweight wheat seedling detection

model, so as to achieve real-time and accurate detection of wheat

seedling number.
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