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Wheat is an important food crop, wheat seedling count is very important to
estimate the emergence rate and yield prediction. Timely and accurate detection
of wheat seedling count is of great significance for field management and variety
breeding. In actual production, the method of artificial field investigation and
statistics of wheat seedlings is time-consuming and laborious. Aiming at the
problems of small targets, dense distribution and easy occlusion of wheat
seedling in the field, a wheat seedling number detection model (DM_IOC_fpn)
combining local and global features was proposed in this study. Firstly, the wheat
seedling image is preprocessed, and the wheat seedling dataset is built by using
the point annotation method. Secondly, the density enhanced encoder module is
introduced to improve the network structure and extract local and global
contextual feature information of wheat seedling. Finally, the total loss function
is constructed by introducing counting loss, classification loss, and regression
loss to optimize the model, so as to enable accurate judgment of wheat seedling
position and category information. Experiment on self-built dataset have shown
that the root mean square error (RMSE) and mean absolute error (MAE) of
DM_IOC_fpn were 2.91 and 2.23, respectively, which were 1.78 and 1.04 lower
than the original IOCFormer. Compared with the current mainstream object
detection models, DM_IOC_fpn has better counting performance. DM_IOC_fpn
can accurately detect the number of small target wheat seedling, and better
solve the problem of occlusion and overlapping of wheat seedling, so as to
achieve the accurate detection of wheat seedling, which provides important
theoretical and technical support for automatic counting of wheat seedlings and
yield prediction in complex field environment.

KEYWORDS

UAYV, wheat seedling count, object detection, deep learning, density enhancement encoder

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1665672/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1665672/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1665672/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1665672/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1665672&domain=pdf&date_stamp=2025-10-21
mailto:zhaoqing@hnagri.org.cn
mailto:moonlgq1984@163.com
https://doi.org/10.3389/fpls.2025.1665672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1665672
https://www.frontiersin.org/journals/plant-science

Zang et al.

Introduction

Wheat is the world’s largest grain crop in terms of sowing area,
yield and distribution. In 2022, according to FAO data, the global
wheat planting area is 21.9 million hectares, with a yield of 80.8
million tons (FAO, 2023). The number of wheat seedling is an
important evaluation indicator that reflects the quality of wheat
sowing, growth status and yield trait (Liu et al., 2017). However, the
current acquisition of wheat seedling mainly relies on manual field
measurement, which have disadvantages such as poor timeliness,
low efficiency and time-consuming and laborious processes, and
can’t longer meet the needs of high-throughput screening in wheat
breeding. With the continuous advancement of computer vision
and artificial intelligence technology, especially the powerful ability
of deep learning in automatic detection and processing of wheat
seedling images, various counting problems of crop can be solved to
achieve accurate and efficient crop counting.

At present, ground hyperspectral data acquisition is not only
time-consuming and labor-consuming, but also difficult to
effectively complete large-scale crop seedling monitoring due to
the large number of bands and complex data processing; Although
the remote sensing satellite data with high spatial resolution can
cover a large area, the acquisition cost is high, which makes it
difficult to ensure the accuracy of crop seedling information
extraction, and there is great uncertainty. In contrast, the small
and light Unmanned Aerial Vehicle (UAV) has become an
important research hotspot and frontier direction in the field of
crop seedling number information extraction by virtue of its
advantages such as flexible and fast, non-destructive monitoring,
high spatial resolution and imaging free from atmospheric
interference, and its ingenious integration of the accuracy of
ground hyperspectral data and the wide area coverage ability of
satellite remote sensing. With the development of UAV remote
sensing technology, crop image data with centimeter accuracy can
be quickly obtained, and crop growth can be monitored in real time
through image analysis and processing (Bai et al., 2023). Combined
with crop growth model and historical data, crop yield can be
scientifically predicted, which provides timely and accurate
decision-making basis for agricultural production management.
The combination of UAV remote sensing technology and
artificial intelligence technology has brought revolutionary
changes to the agricultural field (Sharma et al, 2021). With the
continuous progress of technology, the future application prospects
in crop production, disease management, breeding optimization
and other aspects will be broader, bringing more accurate and
efficient solutions for agricultural production (Lu and Young, 2020).
In terms of data acquisition and processing, image quality control,
occlusion processing and complex background separation have
become difficult problems to improve the accuracy of recognition
and counting (Li et al, 2024). From the perspective of cost-
effectiveness, although the initial investment is relatively high, the
long-term operation cost is far lower than that of traditional
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methods, and the use of UAV reduces the physical interference to
farmland, which is conducive to sustainable agricultural practice.

Deep learning technology is widely used in agriculture,
especially for crop target counting using image data. The crop
target counting method mainly include detection based method
(Joseph et al,, 2015; Zhao et al.,, 20215 Lu et al,, 2022), regression
based method (Girshick et al., 2013) and density map based method
(Jiang et al., 2021). Detection based method estimate the number of
target by detecting object instances. However, this method only
perform well in sparse and relatively large scale scenes, and perform
poorly in dense and crowded scenes. The regression based method
considers the detection target as a whole and learns the mapping
relationship between low-level feature and the number of target to
complete the counting task, but it requires manual feature
extraction and isn’t suitable for small target detection. The
density map based method takes learning the relationship
between image features and their corresponding density maps as
the starting point, generates predicted density map through
gaussian kernel function, and then integrates the density map.
The integrated result is the number of predicted target. At
present, the representative detection methods mainly include
broad learning (BL) (Ma et al.,, 2019), multicolumn convolutional
neural network (MCNN) (Susheela Devi and Meena, 2017),
convolutional social relation network (CSRNet) (Li et al., 2018),
spatial/channel-wise attention regression networks (SCAR) (Gao
et al,, 2019), point-to-point network (P2PNet) (Song et al., 2021),
and distribution matching for crowd counting (DM-Count) (Wang
et al., 2020).

In recent years, many scholars have applied computer vision
technology to crop detection, mainly focusing on improving the
accuracy of detection algorithm, expanding the range of detection
type, and optimizing algorithm to adapt to crop counting under
different environmental condition. Zang et al. (2022b) extracted
wheat coverage based on UAV images at seedling stage and
constructed the relationship between coverage and plant density,
coefficient of determination (R*) was 0.82. Wilke et al. (2021)
proposed a new method to obtain multispectral images by UAV
and evaluate the density of grain plant, with R* of 0.83. Zang et al.
(2022a) proposed YOLOv5s spike detection method based on
improved attention mechanism, with accuracy rate of 71.61%,
which better solved the problem of occlusion and overlapping of
spike. Wen et al. (2024) proposed a generalized model for accurate
counting of wheat spike in complex scene, average accuracy was
81.54%. Zhao et al. (2022) proposed a deep learning method for
spike detection, with average accuracy of 90.5%. Zhao et al. (2023)
proposed WheatNet to detect wheat spike from filling to maturity,
the average accuracy of spike detection in filling stage was 90.1%,
and the average accuracy of spike detection in maturity stage was
88.6%. Zaji et al. (2023) proposed a new enhancement algorithm for
wheat spike counting, the mean absolute error (MAE) and root
mean square error (RMSE) were 2.085 and 2.695, respectively.
Although wheat spikes and wheat seedlings originate from organs
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FIGURE 1

Study area and UAV images of wheat seedling (a) original image (b) annotation image.

at different growth stages of wheat, they both face core challenges
such as small targets and dense distribution in dense target
detection tasks. Therefore, the methods and ideas proposed in
wheat spike detection research have important reference
significance for wheat seedling detection. Wheat spikes are
located at the top of the plant and are relatively independent
targets, suitable for scenes in the middle and late stages of
growth; whereas wheat seedlings are continuously and densely
distributed in the field, easily obscured by leaves, and are mainly
suitable for early growth stage detection. This study focuses on the
difficult problem of wheat seedling detection and optimizes the
model design specifically to adapt to its unique characteristics. In
the images taken by UAV, wheat seedling is in the stage of two
leaves at one heart, and the directions are different, so the horizontal
detection can’t provide accurate direction information. However,
there are many problem in the wheat seedling images taken by
UAV. The wheat seedling is small, densely distributed, seriously
occluded and overlapped with each other, which makes it difficult
for the deep convolution network to extract the characteristics of
small target wheat seedling, resulting in false detection and missed
detection in wheat seedling detection. The current common target
detection models can’t solve the above problems, and the detection
effect of small targets and dense targets is poor. Therefore, it is
necessary to further study and improve the deep
convolution network.

This study proposes a wheat seedling detection model
DM_IOC_fpn that integrates local and global feature, which can
accurately detect small target wheat seedling in complex field
environment, and better solve the problem of wheat seedling
occlusion and overlap. The main purposes of this study is: (1) the
wheat seedling image dataset is built; (2) the density enhanced
encoder module is introduced to improve the network structure; (3)
a wheat seedling number detection model DM_IOC_fpn was
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proposed; (4) The DM_IOC_fpn detection method is compared
with the mainstream detection method.

Materials and methods
Study area

The wheat regional test was conducted in Henan Modern
Agricultural Research and Development Base of the Henan
Academy of Agricultural Sciences, as shown in Figure 1. The
climate type of the region is semi-arid and semi humid warm
temperate continental monsoon climate, with an annual average
temperature of 14.5°C and an average annual rainfall of 660 mm,
mainly concentrated in June-September. The experiment was
conducted in a completely randomized block design with three
repetitions, six rows of new wheat varieties were planted in each
plot. The sowing date was October 18, 2023. The test materials were
80 wheat varieties, and the plot area was 12 m>.

UAV images of wheat seedling

DJI Mavic 3 UAV was used in the experiment. The camera pixel
was 20million pixels, the image sensor was 4/3 CMOS, the lens
equivalent focal length was 24 mm, and the aperture was f/2.8-f/11.
The images were collected at 10:00 a.m. on November 1 and
November 2, 2023. The weather was clear and cloudless, and the
images were taken obliquely. The flight speed was 3 M/s, the flight
time was 25 min, the heading overlap was 80%, and the lateral
overlap was 70%. The visible light images at the seedling stage were
taken at a height of 3 m, with a resolution of 4000 x 2250 pixels, and
a total of 2000 images were taken, some images of wheat seedling
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FIGURE 2
Example of partial images of wheat seedling stage.

were shown in Figure 2. In order to improve the efficiency of data
processing and facilitate the training of neural network, the original
image is cut into an image with a resolution of 512 x 512 pixel, as
shown in Figure 2a. Use the annotation tool to annotate the self-
built wheat seedling dataset image (Wang et al., 2021; Zhu et al,
2022), as shown in Figure 2b.

Data processing

Wheat seedling is small and densely distributed, which is prone
to occlusion and overlap, resulting in missed detection, making the
method based on box annotation difficult to be effectively applied.
Therefore, we adopt a low-cost, convenient and fast point
annotation method. The point annotation represents the position
coordinates of wheat seedling in the image. This method can not
only mark the image into block, but also support the random
scaling of the marked area. For the areas with dense distribution of
wheat seedling, serious occlusion and overlap in the image, we use
the method of point annotation after magnification, which
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effectively improves the annotation speed and quality. The
labeling points are selected at the root and stem of wheat
seedlings with obvious characteristics, which is convenient for the
subsequent training of target detection network.

Data expansion

This method strengthens the generalization ability of the model
by means of data expansion, thus successfully avoiding the possible
over fitting problem of the model. The specific data enhancement
operation is realized by image flipping, image rotation, brightness
balance and adding gaussian noise. A single image typically
contains a vast amount of data, and through data processing, it
can yield over 100 pieces of useful information. During drone
flights, factors such as low altitudes and slow speeds lead to
variations in shooting angles and lighting within the same area.
Additionally, images taken from different flight paths of the same
location may exhibit differences. This diverse data enhances the
robustness of deep neural networks, preventing overfitting to
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FIGURE 3

Framework of wheat seedling number detection using deep learning model.

specific data, and thus holds significant value in training deep
neural networks. After data enhancement, 2000 original images
were processed to obtain a total of 4000 wheat seedling images and
their corresponding annotation points, which together constitute
the wheat seedling image dataset, and meet the training
requirements of deep learning. According to the ratio of 7:2:1, the
wheat seedling image dataset is divided into training set, validation
set and test set. The training set, validation set and test set include
2800, 800 and 400 wheat seedling images respectively.

Deep learning model

The deep learning model is an important part of the field of
artificial intelligence. It’s basic principle is built by the convolution
layer, pooling layer and full connection layer, which is used for
automatic feature extraction and classification of input data (Shafiq
and Gu, 2022). Convolution layer is the core layer of deep learning
model to extract data feature such as image, which is mainly used to
automatically extract local features of data. The pool layer is located
behind the convolution layer, and it’s main function is to reduce the
dimension of the feature map output from the convolution layer,
which can’t only significantly reduce the amount of data, but also
reduce the complexity of subsequent calculation. The full
connection layer integrates the feature extracted from the
previous convolution layer and the pool layer. Each neuron is
connected to all neurons in the previous layer. By weighted
summation of the input feature, the final prediction result is
output. The convolution layer, pooling layer and full connection
layer work together to build a powerful deep learning model
architecture. In this study, we carefully selected seven most
advanced deep learning models, namely CSRNet, SCAR, MCNN,
P2PNet, DM-Count, IOCFormer and DM_IOC_fpn. These models
showed unique advantages and excellent performance in the field of
deep learning, and provided a solid technical foundation for
subsequent research and analysis. Using the transfer learning
method, all models have completed the pre training using the
transfer learning method. Figure 3 shows the schematic diagram
of data set, model selection and data set division.
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DM_IOC_fpn architecture

In this study, VGGI19 is used as the backbone network to
creatively build a dual branch structure, which is density branch
and regression branch respectively. The network architecture of
DM_IOC_fpn is shown in Figure 4. The wheat seedling image is
input into the model. Firstly, through the backbone network VGG19,
the feature maps of the 12th and 16th layers are extracted and input
into the feature pyramid network. The feature pyramid network fuses
the low-level feature high-resolution and high-level high semantic
information to obtain the feature map F,, with a feature dimension of
16 x 16 x 256. The feature map F, output from the feature pyramid is
input into the density branch and the regression branch respectively.
First, it enters the density branch, and generates the density sensing
feature map F; through the convolution layer, with a feature
dimension of 16 x 16 x 256. Then, the feature map F, and F, are
added and input into the encoder, so that the regression branch to not
only rely on local appearance features when predicting the position of
wheat seedlings, but also perceive global density distribution context
information. When wheat seedlings are occluded or overlap, the
model can infer the potential presence of occluded areas based on
the distribution pattern of surrounding wheat seedlings, thereby
significantly reducing missed detections. Finally, the features output
by the decoder are processed by a classification head and a regression
head to generate predicted segmentation maps and coordinate
information, respectively, completing accurate localization and
counting of wheat seedlings.

Density enhancement encoder module

This research improves the density enhancement encoder
module in IOCFormer, as shown in Figure 5. Replace Convs with
GSConv to make it lighter, compared with Convs, GSConv divides
the traditional convolution process into two steps: depthwise
convolution and pointwise convolution, and adopts a strategy of
channel halving and then concatenation, significantly reducing the
number of parameter in the model at the structural level, as shown
in Figure 6. The density sensing feature F, from the density branch
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32x32x256

FIGURE 4
DM_IOC_fpn architecture.

is input into GSConv. First, the standard convolution is performed
to generate the feature map A, the number of channels becomes half
of the output feature map, and then the depth convolution is
performed to generate the feature map B. The feature map A and
B are spliced in the channel dimension, which greatly enriches the
diversity of features, enables the model to learn more robust feature
representations from different receptive fields and computational
paths. Then, a shuffle operation is performed, which is crucial for
solving the occlusion problem. It effectively avoids the isolation of
feature information in the channel dimension, prompting the
model to integrate local details (such as partially visible wheat leaf
tips) with surrounding contextual information, thus making more
accurate judgments on partially occluded or heavily overlapped
wheat seedlings, and improving the model’s generalization ability.

Loss function

In order to improve the convergence speed, accuracy and
generalization ability of the model, the model uses three different
loss functions, namely counting loss, classification loss and
regression loss.

Count loss is calculated by calculating the absolute value of the
difference between the predicted number of wheat seedlings and the
real number of wheat seedlings in each image, and then added and
divided by the total sample. It is defined as follows:

L _ 1Y pred GT
CT = NE Ci - Ci
i=1

Where N is the total sample, and Cf red and CiGT are the
predicted value and the real value of a sample respectively. The
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binary cross entropy loss function is used for classification loss, in
areas where wheat seedlings are densely overlapped, the appearance
characteristics are blurred, which can easily lead to misjudgment.
The classification loss is achieved through a binary discrimination
mechanism, which forces the model to learn to distinguish the
subtle differences in characteristics between wheat seedlings and
non-wheat seedlings (such as soil, shadows, or overlapping edges).
This can effectively reduce false positives or missed detections
caused by overlap.it is defined as follows:

Loy = ~[ylog(a) + (1~ y)log (1 - a)]

Where vy is the real label, value is 0 or 1, a is the output of the
model, and the prediction is the probability of wheat seedlings.

Use regression loss to calculate the difference between the
predicted coordinates and the real coordinates, and supervise the
learning of the model. It is defined as follows:

1 M
LRL:ME

i=1

pred GT
vy

Where M is the total number of wheat seedlings, y°7 is the real
coordinate, and y/ " is the prediction coordinate. The total loss
function of the model is: L = aL¢y + Ly + Ly Where o is a super
parameter and is set to 0.5, so as to balance the contribution of
positive and negative samples.

Network training

This paper uses Ubuntu operating system and NVIDIA
GeForce RTX3090 as GPU, which is implemented based on
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FIGURE 5

Density-enhanced encoder module.

PyTorch, CUDA and Python. The batch size is limited by the data
size and GPU memory. The batch size was tested in the range of
8~32, and the results showed no significant difference. Therefore, 8
was selected as the optimal value that balances efficiency and
stability. The learning rate was selected based on grid search
using the validation set. The optimal initial value was determined
through cross-validation, and the learning rate decay strategy was
used to accelerate convergence. Therefore, the learning rate was set
to 0.001. The training rounds were 1000, and early stopping was
used to prevent overfitting during training. The model usually
converges after hundreds of rounds. Adam was selected as the
optimizer, which showed good convergence performance in

the experiment.

Evaluation index

In this study, RMSE, MAE and R2 were used to evaluate the
detection effect of wheat seedling, evaluate model performance
using GFLOP, parameter, memory, and time consumption. The
calculation formulas of RMSE, MAE and R2 are as follows:

1
RMSE = |/ S, - 0
1 N
MAE =—S|p; — q;
NE\P: qil

>ilpi - q:)°

R’ =
' 21‘(13 - ‘Zi)z
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Where N is the number of images, Pi is the actual number of the
ith image, and qi is the predicted number of the ith image.

Results and analysis

Training loss results of different deep
learning models

To verify the superiority of DM_IOC_fpn, the training loss
results of IOCFormer and DM_IOC_fpn are shown in Figure 7,
where the horizontal axis represents the number of training times
and the vertical axis represents the loss value of each round. As
increasing the iterations number, IOCFormer and DM_IOC_fpn
converge and remain stable before 400 epochs, the training loss
gradually decreases, then converges and remains stable, the loss
value of IOCFormer is higher than that of DM_IOC_fpn. At the
beginning of the network training iteration, the training loss curve
of DM_IOC_fpn decreases rapidly. At the middle of the training
iteration, the training loss curve of DM_IOC_fpn decreases
moderately. At the end of the training iteration, the training loss
curve of DM_IOC_fpn remains stable, indicating that
DM_IOC_fpn has excellent stability.

Comparative analysis of wheat seedling
detection results using different deep
learning models

In order to compare the detection effect of DM_IOC_fpn model
and the current mainstream target detection model on wheat
seedlings in the field, CSRNet, SCAR, MCNN, P2PNet, DM-
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Training loss results of IOCFormer and DM_IOC_fpn.

Count, IOCFormer and DM_IOC_fpn were selected for
comparative analysis. Table 1 shows the comparison results of
evaluation indexes of different models on wheat seedling data
sets. The RMSE of CSRNet, SCAR, MCNN, P2PNet, DM-Count,

Frontiers in Plant Science

IOCFormer and DM_IOC_fpn models were 7.49, 3.36, 14.62, 6.17,
3.10, 4.69 and 2.91, respectively. The RMSE of MCNN was the
largest and that of DM_IOC_fpn was the smallest. The MAE of
CSRNET, SCAR, MCNN, P2PNet, DM-Count, IOCFormer and
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TABLE 1 Comparison analysis of experimental results of different deep
learning models on the wheat seedling dataset.

Models RMSE MAE
CSRNet 7.49 6.10
SCAR 336 2.83
MCNN 14.62 13.72
P2PNet 6.17 4.83
DM-Count 3.10 2.38
IOCFormer 4.69 3.27
DM_IOC_fpn 291 223

DM_IOC_fpn models were 6.10, 2.83, 13.72, 4.83, 2.38, 3.27 and
2.23, respectively. The RMSE of MCNN was the largest and that of
DM_IOC_fpn was the smallest. The DM_IOC_fpn model proposed
has the highest accuracy in counting wheat seedling, with RMSE of
291 and MAE of 2.23, which are reduced by 0.19 and 0.15
respectively compared with DM-Count. Therefore, in higher
image resolution and more complex environment, our proposed
DM_IOC_fpn still shows excellent performance, and the two kinds
of counting errors are also the smallest, which improves the
accuracy of wheat seedling counting, and has practical value for
wheat seedling counting.

Comparison of computation, parameter
count, memory and time per image for
different deep learning models

This study evaluated the possibility of implementing different
deep learning models on drone platforms. We compared the
performance of seven mainstream detection models in terms of
computation, parameter count, memory, and time per image, as
shown in Table 2. MCNN has the lowest FLOPs, parameter count,
memory, and time per image, but its counting accuracy is relatively
low. DM_IOC_fpn has a computation of 22.99 FLOPs, which is
between MCNN and IOCFormer, reflecting a balanced design
between computational efficiency and detection performance.
DM_IOC_fpn contains 87.26 M parameters and has a relatively
complex architectural design. Compared with the lightweight model

10.3389/fpls.2025.1665672

MCNN (0.51M), the parameter count has increased significantly,
but this provides the model with stronger feature expression
capabilities. DM_IOC_fpn has a memory of 7.15 GB, which is
relatively high among the compared models, but still within the
acceptable range of GPUs. DM_IOC_fpn provides an inference
speed suitable for drone deployment while maintaining optimal
detection accuracy, analyzing 10 high-resolution wheat seedling
images per second. Therefore, DM_IOC_fpn achieves a better
balance between accuracy and efficiency, providing a feasible
solution for real-time wheat seedling detection in the field.

The relationship between the actual and
predicted values of wheat seedling
counting using different deep learning
models

In order to verify the counting effect of the detection model
proposed on the self-built dataset, the counting experiment was
carried out on 50 wheat seedling images in the self-built dataset, and
the relationship between the actual values and the predicted values
of the test data is shown in Figure 8. It can be seen from Figure 8
that the predicted value and the real value of the wheat seedling
dataset from the perspective of UAV have a high correlation,
indicating that the DM_IOC_fpn model proposed by us not only
has high counting accuracy, but also has good generalization ability.
R? varies across different deep learning models, R? of IOCFormer,
MCNN, CSRNET, SCAR, P2PNet, DM-Count and DM_IOC_fpn
models are 0.90, 0.30, 0.80, 0.78, 0.92, 0.90 and 0.95 respectively,
The R* of the DM_IOC_fpn model is the highest, while the R* of the
MCNN is the lowest. Compared with IOCFormer model, the R? of
DM_IOC_fpn model increased by 5%. In conclusion, the
DM_IOC_fpn model proposed has good robustness and can
accurately detect and count wheat seedling.

Analysis of typical wheat seedling images
in the testset

Affected by factors such as imaging angle, sundries and
weeds, and wheat seedling density, there are various typical
challenge scenarios in the testset, Figure 9 shows six typical

TABLE 2 Comparison of computation, parameter count, memory, and time per image for different deep learning models.

Models GFLOP (G) Parameters (M) Memory (G) Time (s/image)
CSRNet 20.72 1626 5.15 0.09
SCAR 20.74 1629 518 0.10
MCNN 1.34 0.13 0.12 0.04
P2PNet 20.04 1921 6.65 1.72
DM-Count 20.66 20.50 428 0.06
IOCFormer 3226 51.65 6.62 024
DM_IOC._fpn 22.99 25.78 7.15 0.11
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Relationship between actual and predicted values of wheat seedling counting using different deep learning models.
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FIGURE 9
Typical image example of the testset
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FIGURE 10

Visualization of wheat seedling counting results using different deep learning models

image examples. Figure 9a shows that there are sundries between  day and exposed to strong sunlight; Figure 9¢ shows the presence
wheat seedlings; Figure 9b shows the presence of debris between  of weed shelter between wheat seedlings; Figure 9f some wheat
wheat seedlings; Figure 9c shows the uneven growth state of  seedlings grow too densely, crowded and disorderly. The
wheat seedlings and the phenomenon of lacking seedlings;  aforementioned complex external environmental conditions
Figure 9d shows the image of wheat seedlings taken during the  have heightened the difficulty of wheat seedling detection,
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TABLE 3 Ablation test results.

Baseline network Regression branch Density branch RMSE MAE
‘ 4.69 327
‘ v 3.53 2.55
IOCFormer
v ‘ 5.17 3.90
v ‘ v 291 223

leading to instances of missed or false detections when using  verified based on the IOCFormer model. It can be seen from Table 3
other target detection models. This underscores the exceptional  that adding density branches, RMSE and MAE decreased by 1.16
robustness of our research model in addressing such challenges.  and 0.72 respectively compared with IOCFormer model, indicating
that density branches can improve the ability of the model to
capture the characteristics of wheat seedlings. Compared with
Visualization of wheat seedling counting IOCFormer model, RMSE and MAE were increased by 0.48 and
using different deep lea rning models 0.63 respectively by introducing regression branch, indicating that
regression branch reduced the accuracy of wheat seedling detection.
Figure 10 shows the visualization results of wheat seedling ~ When adding density branch and regression branch, DM_IOC_fpn
counting on the self-built dataset of different deep learning  model performs best in comprehensive performance. Compared
models, Figure 10a is the original image, and Figure 10b is the  with IOCFormer model, RMSE and MAE are reduced by 1.78 and
density map generated by point annotation, which serves as the true ~ 1.04 respectively. The comprehensive ablation test proves the
value for the density map counting method, Figures 10c-i present  effectiveness of the improved DM_IOC_fpn model.
the counting results forCSRNET, SCAR, MCNN, P2PNet, DM-
Count, IOCFormer and DM_IOC_{pn, respectively. Visualize the
data through a density plot, the darker the color of density map, the ~ Verification of test results
more wheat seedlings. The counting accuracy of these density map-
based methods is not high, and the generated density maps cannot In order to evaluate the automatic counting performance of
directly identify the location of wheat seedlings, thus failing to ~ DM_IOC_fpn model in the field environment, 20 wheat seedling
provide more supporting information for downstream tasks.  images were randomly selected from the testset, and the accuracy
Figures 10f, h, i show the prediction results of P2PNet,  was evaluated by manually marking the true value and the predicted
IOCFormer, and DM_IOC_fpn, respectively. These results are  value of the model. See Table 4 for wheat seedling counting results
more intuitive wheat seedling coordinates. Due to the of different models. The average relative error of DM_IOC_fpn
introduction of dual branches in DM_IOC_fpn, which enhances  counting is 4.53%, which is 3.15%, 17.06%, 3.71%, 1.81%, 5.98% and
the local and global contextual feature information of wheat  0.96% lower than that of IOCFormer, MCNN, CSRNET, SCAR,
seedlings, its prediction values are closer to the true values when ~ P2PNet and DM-Count, indicating that the relative error of
counting wheat seedling images affected by factors such as  DM_IOC_fpn is more concentrated and the result of wheat spike
occlusion, overlap, and illumination, resulting in smaller counting  seedling is more stable.
errors. The DM_IOC_fpn model proposed can fully extract the
image global feature, and the comprehensive detection effect is the
best. Figure 10 shows the visualization results of wheat seedling ~Generalization of different deep learning
detection by seven detection networks. When the counting of wheat ~models in wheat ear detection
seedling images is affected by factors such as occlusion and overlap,
the convolutional neural network has missed detection. In order to verify the effectiveness of DM_IOC_fpn model in
DM_IOC_fpn can accurately locate and recognize wheat seedling ~ wheat ear detection task, we used the common dataset wheat ear
targets, and can eliminate the detection errors in the original model. ~ detection dataset (WEDD), which contains 236 high-resolution
It not only improves the detection accuracy of wheat seedlings, but ~ images with a resolution of 6000 x 4000. In this study, the
also reduces the misjudgment of wheat seedlings, showing better =~ WEDD test is zero-shot, the model trained on the self-built wheat
generalization performance. seedlings dataset, which was tested on the WEDD. Figure 11 shows
the experimental results of different deep learning models on the
wheat ear dataset, SCAR model has the largest MAE and RMSE,
Ablation test while DM_IOC_fpn model has the smallest MAE and RMSE. The
DM_IOC_fpn we proposed still maintains the optimal
In order to verify the effectiveness of the improved model,  performance, with MAE of 10.46 and RMSE of 13.28. Compared
ablation experiments were carried out in combination with the test ~ with IOCFormer, the MAE and RMSE of DM_IOC_fpn decreased
set, and the effectiveness of the improved DM_IOC_fpn model was by 3.41 and 4.98, respectively. Compared with other detection
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TABLE 4 Counting results of wheat seedlings in different models.
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FIGURE 11
Comparison of experimental results of different deep learning models on wheat spike dataset.

TABLE 5 Five-fold cross validation results of different deep learning models.

Models Index One fold Two fold  Three fold Four fold Five fold t-test t-test
RMSE 4.69 5.18 4.79 5.10 534 23.25%* 37.12%*
IOCFormer
MAE 327 3.69 3.40 3.71 3.75 17.69% 24.40%*
RMSE 7.49 7.82 8.18 8.13 7.92 -8.94%* 1.73
CSRNet
MAE 6.10 6.55 7.10 6.89 6.48 -3.93* 4,87
RMSE 3.36 345 325 412 379 29.79%* 34.97%%
SCAR
MAE 2.83 295 2.79 3.51 3.15 41.75% 46.46**
RMSE 14.62 1532 13.81 15.71 14.58 8.35%¢ 17.86**
MCNN
MAE 13.72 14.25 13.15 14.51 13.52 12.30** 20.94**
RMSE 6.17 6.28 6.57 6.37 7.18 -9.97%* 2.00
P2PNet
MAE 483 4.96 536 544 549 -5.98%* 1.63
RMSE 3.10 391 3.51 3.81 3.68 / 13.99
DM-Count
MAE 238 322 2.44 2.51 271 / 12,06
RMSE 291 3.15 3.37 3.70 346 12.63%* /
DM_IOC_fpn
MAE 223 248 2.39 241 2.51 -23.80%* /

models, the counting error of DM_IOC_fpn is the smallest. Fjye-fold cross-validation of different deep
Therefore, the method proposed in this study can accurately [earning models

detect the small target number of wheat ear, and better solve the
technical problems of occlusion and overlapping of the number of To prevent model overfitting and comprehensively evaluate its
wheat ear, thereby improving the accuracy of wheat ear counting.  generalization ability, five-fold cross-validation was selected to train

Frontiers in Plant Science 14 frontiersin.org


https://doi.org/10.3389/fpls.2025.1665672
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zang et al.

and validate different data subsets. Five-fold cross-validation
ensures that the proportion of samples in each fold class is
exactly the same as the category proportion in the original dataset
during partitioning. The self-built wheat seedling dataset was
randomly divided into five subsets of similar size, with four of
them selected as the training set and the remaining one as the
validation set. Random seeds are fixed, and their core role in cross
validation is to ensure that the data partitioning results are
reproducible, using the same augmentation between folds for
training. The results of the five-fold cross-validation are shown in
Table 5. The RMSE of the IOCFormer model ranged from 4.69 to
5.34, and the MAE ranged from 3.27 to 3.75. The paired t-test
results showed that the differences between other models and the
IOCFormer model reached significant or extremely significant
levels, with the DM_IOC_fpn model showing an extremely
significant difference from the IOCFormer model. Despite
statistically significant differences, the numerical results showed
that the DM_IOC_fpn model maintained a relatively stable leading
performance, with RMSE ranging from 2.91 to 3.70 and MAE
ranging from 2.23 to 2.51, outperforming other models. The
differences between the CSRNet, MCNN, P2PNet, IOCFormer
models and the DM_IOC_fpn model reached extremely
significant levels. In summary, the DM_IOC_fpn model had the
lowest RMSE and MAE, indicating that it performed best in terms
of accuracy and stability, highlighting the effectiveness of
its structure.

Discussion

As one of the important characteristic parameters of wheat,
plant number is of great significance for wheat breeding and yield
estimation. Deep learning target detection technology is based on
deep convolutional neural network, which can automatically extract
features from the input image data, and then identify and locate
specific target objects (Zhang et al., 2024). Based on the massive
dataset with different light intensity and hue changes, diverse
shooting angles and various complex backgrounds, the deep
convolutional neural network model is systematically and
carefully trained, so as to achieve high-precision detection of the
target object. Common target detection algorithms include Faster
R-CNN (Li et al., 2022), YOLO (Joseph and Ali, 2016) and SSD,
MCNN, CSRNet, SCAR and DM-Count. At present, the deep
learning target detection technology is developing rapidly. With
its significant advantages in image detection, it is widely used in
corn seedling, wheat spike (Khaki et al., 2022), rice (Wu et al,, 2019),
sugar beet (Barreto et al.,, 2021), rape (Li et al., 2023), peanut (Lin
et al,, 2022) and so on to carry out the exploration of target
detection and counting. In addition, researchers have proposed a
deep learning network structure to achieve crop counting task in
natural scene. However, the existing deep learning methods mainly
focus on counting, and there are many other applications that have
not been mined (Liu et al,, 2020; Wang et al., 2022). Although deep
learning has made significant progress in image counting tasks,
complex background interference and noise pollution are still
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technical bottlenecks to be solved, which have been the key
problems restricting the improvement of counting accuracy.

In order to further verify the feasibility of this method in the
aspects of small wheat seedling, dense distribution, mutual shielding
and serious overlapping, this method was compared with several
schemes to solve the above problems. Jin et al. (2017) used the
support vector machine method to estimate the wheat plant density
based on the high-resolution image taken by UAV, and the relative
RMSE was 14.31%. However, due to the small sample size of the
dataset, the experimental results were easy to overfit. Bai et al.
(2023) can accurately and effectively estimate the number of rice
plants using RiceNet network, with MAE and RMSE of 8.6 and 11.2
respectively; However, their method reduces the counting
performance of rice due to the emergence of weed. Zang et al.
(2024) proposed a DMseg-Count model to realize the automatic
detection and counting of wheat ears; due to the limited storage
space of the mobile phone, it may not be able to continuously collect
data for a long time, resulting in incomplete data. In addition, if the
mobile phone runs out of power, insufficient storage space and
other unexpected circumstances occur during the collection
process, it will also cause data loss or interruption, affecting the
integrity of the data set. Liu et al. (2017) developed an automatic
measurement method of wheat density based on machine vision,
and the average relative error of density estimation is 12%, this
method needs to recalibrate the model at each new experimental
site. Lu and Cao (2020) proposed a new network TasselNetV3 for
rice plant counting, which is suitable for counting on rice plant
images taken by fixed cameras, and can better solve the problem of
mesoscale distortion in plant images.

In recent years, significant progress has been made in wheat
seedling detection and counting technology, which has attracted
extensive attention of researchers. However, wheat growth is a
complex and dynamic process, especially reflected in the color
characteristics and background changes of wheat seedlings. The
existing target detection models are usually optimized for specific
growth stages when they are designed and applied, but their
adaptability to other growth stages or field scenes is often limited,
and the detection effect of small targets and dense targets is poor.
The wheat seedling dataset captured by UAV in this study has a
wider perspective than the WEDD. Because the detection accuracy
of the wheat seedling dataset captured by UAV in this paper is
higher than the WEDD, it further verifies that DM_IOC_fpn has
strong wheat seedling detection ability and generalization ability in
different perspectives. When agricultural experts manually count
wheat seedlings, in the face of difficult samples that are difficult to
determine, they usually judge that wheat seedlings belong to single
or multiple plants according to the local characteristics of the roots
and stems of wheat seedlings and the overall development of leaves.
Inspired by this, this study proposes a wheat seedling number
detection model DM_IOC_fpn, which can accurately detect the
number of small target wheat seedlings, and better solve the
problem of occlusion and overlapping of wheat seedling.

The innovativeness of the DM_IOC_fpn model lies in its
achievement of model combination to architecture fusion for
agricultural dense target scenarios. The IOCFormer model excels
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in instance localization but has weaker global density perception;
whereas the DM-Count model excels in density estimation but lacks
precise localization capabilities. The advantages of the
DM_IOC_fpn model are reflected in the significant performance
improvement and robustness enhancement brought by its overall
architecture. This study improves the existing target detection
model IOCFormer and proposes the DM_IOC_fpn model for
wheat seedling count detection, which integrates local and global
features. The model builds a dual-branch structure based on
IOCFormer to obtain local and global contextual feature
information of wheat seedlings. It introduces a density-enhanced
encoder module to enhance the model’s feature extraction ability.
The total loss function is constructed by combining counting loss,
classification loss, and regression loss, reducing the technical
challenges of false positives and false negatives in wheat seedling
detection. From the above experimental results, it can be seen that
compared with other mainstream counting models, the
DM_IOC_fpn model proposed in this study achieves a better
balance between counting accuracy and efficiency, providing a
feasible solution for real-time wheat seedling detection in the
field. The model builds a dual-branch structure based on
IOCFormer to obtain local and global contextual feature
information of wheat seedlings. It introduces a density-enhanced
encoder module to improve the feature extraction ability of the
model. The total loss function is constructed by combining
counting loss, classification loss, and regression loss, reducing the
technical difficulties of false positives and false negatives in wheat
seedling detection. From the above experimental results, it can be
seen that compared with other mainstream counting models, the
DM_IOC_fpn model proposed in this study achieves a better
balance between counting accuracy and efficiency of wheat
seedlings, providing a feasible solution for real-time wheat
seedling detection in the field.

The performance evaluation of this study is mainly based on the
GPU environment, which to some extent limits its direct reflection
of the applicability of the model on low-power edge devices such as
drones. Due to the limitations of edge processors in terms of
computing power, memory, and power consumption, the real-
time inference capability of the model on such platforms still
needs further verification. In future work, we will focus on
exploring model lightweighting and compression strategy for the
target edge configuration file Jetson Xavier, in order to reduce the
computational complexity and storage requirement of the model.
At the same time, the air-ground collaboration architecture can be
considered, which uses edge device for real-time feature extraction
and preliminary computation, while transferring complex inference
task to the ground or cloud for processing, thereby ensuring real-
time performance while reducing energy consumption. Through
the exploration of the above direction, the adaptability and
application value of the model on edge device will be
further improved.

In this study, the wheat seedling image was obtained based on
the UAV platform, and the accurate detection and counting of
wheat seedling was realized based on the counting method of deep
learning regression density map. From the perspective of result
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efficiency, the method proposed in this paper can replace the
traditional manual counting, which not only saves time and labor
cost, but also provides reliable counting results, and provides
important data support for wheat intelligent breeding and
planting. However, there are still many problems in the research
of plant counting on the wheat seedling image taken by UAV. The
wheat seedling detection model proposed in this study demonstrate
good detection performance during the seedling stage, it still has
certain limitations. These mainly include: (1) The model proposed
in this study is specifically designed for the wheat seedling stage and
has limited adaptability to other crops. It’s cross-crop generalization
ability needs further optimization to meet the needs of cross-crop
target detection tasks. (2) As wheat progresses from the seedling
stage to the tillering stage and eventually heads and bears fruit, the
plant structure and canopy morphology undergo significant
changes. The follow-up work of this model will focus on
improving its generalization ability, so that it can be migrated to
target detection of different crops or growth stage. However, this
model is mainly suitable for the seedling stage and lacks adaptability
to subsequent growth stages and complex field scenarios.
Nevertheless, the method proposed in this study still
demonstrates some transferability in the generalization test of the
WEDD dataset, indicating that its feature extraction and dense
target recognition modules have good adaptability and robustness.
(3) In large-scale breeding experiments, the model proposed in this
study still faces issues such as insufficient algorithm generalization
ability and poor transferability, which to some extent limit its
potential value in high-throughput phenotypic data acquisition
and application.

Conclusion

In order to solve the problems of low precision and poor
generalization of wheat seedling number detection model in the
field, wheat seedling number detection model DM_IOC_fpn
combining local and global features was proposed, which realized
the accurate detection and counting of wheat seedlings. By building
a double branch structure in the IOCFormer model, the local and
global context characteristics of wheat seedlings are obtained; The
density enhancement encoder module is introduced to improve the
network structure and enhance the ability of network feature
extraction; The total loss function is constructed by counting loss,
classification loss and regression loss, which reduces the technical
problems of false and missed detection caused by small
wheat seedlings.

1. The experiments show that DM_IOC_fpn can accurately
detect small target wheat seedlings, and the MAE and
RMSE of self-built wheat seedling image dataset are 2.91
and 2.23, respectively, which are 1.78 and 1.04 lower than
the original IOCFormer. Compared with other advanced
counting models, DM_IOC_fpn realizes high-precision
wheat seedling detection and counting, and can meet the
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requirements of wheat seedling detection in complex
field environment.

. The automatic counting results of wheat seedling in the
actual field environment showed that DM_IOC_fpn can
accurately predict number of wheat seedling, break the
efficiency bottleneck faced by the traditional artificial
number of seedlings, improve the accuracy and efficiency
of wheat seedling data acquisition, better solve the
problems of mutual occlusion and overlapping of small
target wheat seedling, and improve the applicability in
complex field environment.

Although the method proposed in this study has better counting
performance compared to other methods, there are still some issues
that need to be addressed. Future research work needs to further
improve and refine relevant theories and methods, the difficulties
and challenges are as follows: (1) Based on the new data feedback
collected in real time, the dynamic update mechanism of the model
is constructed to further optimize the wheat seedling network
architecture, and comprehensively improve the generalization
ability and accuracy of the wheat seedling network in complex
scenes; (2) In view of the problems of the existing target detection
model, such as large number of parameters, high consumption of
computing resources, and difficult deployment in mobile devices,
we urgently need to develop a lightweight wheat seedling detection
model, so as to achieve real-time and accurate detection of wheat
seedling number.
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