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Dendrolimus species are the major defoliating forest pests in China, causing
severe damage to pine forests. Establishing an effective early monitoring system
was crucial for timely implementation of control measures to prevent further
infestation, significantly reducing economic losses and ecological damage. While
previous studies have demonstrated the limited effectiveness of spectral data
alone in early detection of Dendrolimus spp. infestations, our research reveals
that needle loss is the primary damage symptom, whereas canopy structural
characteristics remain underexplored in early monitoring. To address this
knowledge gap, this study innovatively integrates unmanned aerial vehicle-
based hyperspectral imaging (HSI) with Light Detection and Ranging (LiDAR)
data. This study employed SPA, ISIC, and ISIC-SPA algorithms in combination
with Random Forest (RF) to select sensitive hyperspectral imaging (HSI) bands.
Subsequently, vegetation indices (VIs) were developed from these optimal
wavelengths and integrated with LiIDAR metrics. Finally, the performance of RF
models trained on individual data sources (HSI Vis or LiDAR metrics) and on the
combined data (HSI+LiDAR) was evaluated for detecting Dendrolimus spp.
damage at the individual tree level. For HSI band selection, compared to the 10
bands selected by SPA-RF (OA = 71.05, Kappa=0.57) and the 21 bands selected by
ISIC-RF (OA = 75.44, Kappa=0.63), ISIC-SPA-RF (OA = 70.18, Kappa=0.55)
selected only 3 bands and achieved good classification results on the
validation set, which substantially reduced data redundancy and improved VI
construction. For individual tree-level detection of Dendrolimus spp. damage,
four VIS and seven LiDAR-derived metrics were utilized. The results showed that
the HSI method (OA = 72.81%, Kappa=0.59) outperformed the LIDAR method
(OA = 71.05%, Kappa=0.56). The combined data approach achieved the highest
overall accuracy (OA = 83.33%, Kappa=0.75), with an early detection accuracy of
82.93%, which was significantly better than using HSI or LiDAR data alone. Our
study demonstrates that LIDAR can effectively capture the spatial distribution
changes of needles caused by defoliation, while also revealing spectral
reflectance characteristics in the near-infrared (NIR) band. The integration of
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HSI and LiDAR data significantly enhances the early detection accuracy for
Dendrolimus spp. infestations. This approach not only provides critical
technical support for Dendrolimus spp. control, but also establishes a novel
remote sensing methodology for monitoring other defoliation pests.
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1 Introduction

The pine caterpillars (Lepidoptera, Lasiocampidae,
Dendrolimus species) are typical leaf-feeding pests and major
forestry pests in China, causing severe damage to important tree
species such as pine, cypress, and fir (Bao et al., 2024). Dendrolimus
spp. feed on conifer needles, disrupting the ecological and structural
functions of coniferous forests and causing tree mortality in severe
cases (Han et al, 2024). Additionally, Damage caused by
Dendrolimus spp. weakens tree potentials thereby increasing the
risk of secondary pest infestations by wood-boring pests (Song et al.,
2016). China’s large-scale plantations are dominated by
monoculture coniferous forests characterized by simplified
structures and low resistance (Bao et al, 2022). By 2023 the
infestation area of Dendrolimus spp. in China reached 60.04
million hectares thereby causing significant economic and
ecological losses (Liu et al., 2024). Effective management and
control of Dendrolimus spp. are therefore essential.

In Liaoning Province, the major Dendrolimus spp. pest species
include Dendrolimus tabulaeformis Tsai et Liu, Dendrolimus
superans Butler, and Dendrolimus spectabilis Butler. Dendrolimus
spp. have one generation per year. Newly hatched larvae feed on one
side of pine needles, creating characteristic notches. These larvae are
unable to fully consume individual needles. Damaged needles
exhibit yellowing, desiccation, and curling. Dendrolimus spp.
overwinter as larvae in the soil or under bark. In the following
year, overwintering larvae ascend the tree, disperse across branches,
and rapidly consume entire needles, thereby entering their peak
feeding phase. Following emergence, adults disperse to nearby
forest stands or migrate to more distant forest stands to lay eggs.
Dendrolimus spp. outbreaks are cyclical, cover large areas, and
escalate rapidly (Zhang et al., 2022). During the early larval feeding
stage, physical and chemical methods can effectively prevent further
damage and spread (Skrzecz et al., 2020). However, monitoring
remains a critical phase for implementing effective control
strategies. Traditional ground surveys require significant labor
and time, making them unsuitable for large-scale pest monitoring.
They also risk missing optimal control periods (Nasi et al., 2015).

The rapid development of remote sensing technology enhances
forest health monitoring capabilities and provides a critical tool for
acquiring forest pest and disease data (Luo et al, 2022). Satellite-
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based studies on Dendrolimus spp. monitoring are primarily
conducted at the stand level (Zhu et al, 2016; Zhao et al., 2024;
Zhang et al., 2025). Although satellite monitoring demonstrates the
ability to detect forest changes induced by Dendrolimus spp., it
remains constrained by insufficient revisit frequency, potentially
missing early stage infestations (Hu et al, 2024). In early stage
monitoring, the high resolution of hyperspectral sensors can detect
more detailed and precise spectral changes. UAV-based hyperspectral
imaging (HSI) captures extensive narrow-band spectral information
from horizontal tree canopies, enhancing tree health detection. This is
critical for monitoring forest pests and diseases in early stage
infestations or complex ecological environments (Zhang et al,
2019). Studies on wood-boring pests Bursaphelenchus xylophilus,
Agrilus planipennis, and Dendroctonus valens used HSI and
achieved good early detection accuracy (Pontius et al., 2008; Li
et al, 2023; Bi et al., 2024). In studies on leaf-feeding pests, Zhang
et al. developed an ISIC-SPA-P-PLSR framework using hyperspectral
data to estimate defoliation percentages (DP) in trees damaged by D.
tabulaeformis The coefficient of determination (R?) reached 0.8061
for trees at mild to moderate damage stages (Zhang et al., 2018). Bai
et al. developed a regression model for DP based on five spectral VIS,
achieving an R” of 0.786 (Bai et al., 2016). While tree damage caused
by Dendrolimus spp. has been distinguishable using hyperspectral
technology in previous studies, canopy spectral information can be
lost or overall reflectance curves distorted due to shadows caused by
variations in camera angles and solar elevation angles (Liu et al,
2025). Furthermore, in pine forests, healthy canopies and damaged
branches are often interwoven and obscured, making such
overlapping structures difficult to accurately characterize through
spectral data alone (Lin et al, 2021, 2023). Therefore, precise
monitoring at mild damage stages continues to be faced with
significant challenges.

Throughout the entire infestation cycle, larvae of Dendrolimus
spp. continuously feed on all needles within the host tree’s crown,
inducing conspicuous morphological alterations and biomass loss —
a symptomatic profile distinctly divergent from that of wood-boring
pests, whose infestation typically manifests as crown discoloration.
Previous studies on remote sensing monitoring of Dendrolimus spp.
primarily relied on spectral data, which exhibited limitations in
capturing dynamic variations within lower canopy layers and were
additionally subject to weather-related interferences.
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As an active light detection and ranging (LiDAR) also corrects
reduced spectral intensity and altered spectral shapes in
hyperspectral imagery caused by shaded areas, improving spectral
information (Oduncu and Yuksel, 2021). Wang et al. demonstrate
that combining HSI and LiDAR data enables individual tree
segmentation in high-density areas (Wang et al, 2025), This
approach enhances early detection at the individual tree level.
Previous studies in forest pest monitoring showed that combining
HSI data and LiDAR data can improve accuracy. LIDAR derived
structural metrics also detected forest pests (Lin et al,, 2019; Yu
et al., 2021; Zhou et al., 2022). However, the combination of HSI
and LiDAR data has not been used in remote sensing monitoring of
Dendrolimus spp.

Based on the characteristic of Dendrolimus spp. damage leads to
needle loss, this study aim to investigate the role of HSI and LiDAR
data in the early monitoring of Dendrolimus spp. The objectives are:
(1) to identify the most sensitive HSI bands and LiDAR structural
indices for detecting the early stage of Dendrolimus spp. infestation
at the individual tree level; (2) to compare the differences between
HSI and LiDAR in early monitoring of Dendrolimus spp.; (3) to
explore the potential of integrating HSI and LiDAR data for
monitoring Dendrolimus spp. in early damage stages.

2 Materials and methods

2.1 Study area

The study area located in Yushulinzi Township, Jianping
County, Chaoyang City, Liaoning Province, China. The county’s
topography consists mainly of mountainous and hilly terrain.
Average annual temperatures range from 5.4°C to 8.7°C, with
elevations varying between 400 and 1200 meters above sea level.
A semi-humid to semi-arid continental monsoon climate prevails in

the region. Pinus tabuliformis is the dominant tree species. A pure

Liaoning Province

[ Jianping County

FIGURE 1
Study area.
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P. tabuliformis stand infested with Dendrolimus spp. was selected as
the test plot based on a ground survey (Figure 1).

2.2 Remote sensing data acquisition and
processing

2.2.1 Field survey

Based on field surveys and previous studies, P. tabuliformis
growth showed no significant negative effects at DP < 30%. Instead,
DP < 30% may promote tree height, apical shoot growth, lateral
shoot growth, and improve tree vigor. Based on field surveys, the
mild damage stage (DP < 30%) was defined as the early stage of
Dendrolimus spp. Infestation. However, when DP> 50%, tree
growth decreased with increasing DP, causing significant negative
impacts on height and radial growth (Zhou and Li, 1993; Yang and
Li, 1994). Based on the relationship between DP and tree growth,
damaged trees were divided into three stages: mild stage (DP <
30%), moderate stage (30% < DP < 50%), and severe stage (DP >
50%). The mild damage stage (DP < 30%) was defined as the early
stage of Dendrolimus spp. damage.

Data were collected from May 28 to June 7, 2024 (Figure 2). The
DP was measured to quantify tree damage. Standard branches
representing the overall defoliation of each sample tree were
selected. Each tree was divided into three vertical layers. Within
each layer, standard branches from the east, south, west, and north
directions were systematically selected. The ratio of damaged
needles to total needles was recorded for each standard branch.
The average DP of all standard branches was calculated as the DP of
the sample tree. Based on DP values, sample trees were classified
into three damage stages (Figure 3): mild (DP < 30%), moderate
(30% < DP < 50%), and severe (DP > 50%). A total of 284 individual
sample trees were included in the ground survey. These trees were
divided into 103, 99, and 82 samples with mild, moderate, and
severe damage. The study employed a DJI Mavic 3M (DJI,

0 50 10
— \
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Overall experimental workflow.

Shenzhen, China) equipped with dual imaging systems—a 4/3-inch
CMOS visible light camera and a 1/2.8-inch CMOS multispectral
camera—to acquire RGB orthophotographic data and geotag
sample tree locations. This configuration enabled simultaneous
high-resolution visible spectrum documentation and multispectral
analysis for vegetation monitoring application.

2.2.2 UAV hyperspectral data acquisition and
processing

Hyperspectral data were acquired on May 30, 2024 (10:30 am-
12:00 pm), under clear and windless conditions. A DJI Matrice M600
Pro hexacopter UAV (DJI, Shenzhen, China, Figure 4A) equipped with
a PikaL hyperspectral camera (Resonon, Bozeman, MT, USA) was
deployed. The spectral range is 400-1000 nm, with a spectral
resolution of 4 nm. The camera has a field of view (FOV) of 17.6
and a focal length of 17 mm. The flight was conducted at an altitude of
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100 m with 50% heading and lateral overlap maintained. Weather
conditions were clear. The measurement area was extensive. Two flight
missions were conducted. A 3 m” reference cloth was placed in the
flight area for radiometric calibration and reflectance correction. UAV
inertial navigation and Z-survey i50 RTK enhanced POS accuracy.
Raw hyperspectral POS data were processed using
SBGcenter3.4.89 software (Company, Country) with differential
correction. Route segmentation boundaries were established in
Omap10.0.5 (Company, Country). Original hyperspectral data
were pre-segmented in AirlineDivision1.8 (Company, Country)
based on route boundaries. Pre-segmented data from both
missions were merged in Megacube2.9.6.3 (Company, Country).
Geographic elevation was set to 650 m in ArcGIS10.7 (Company,
Country). Sequential alignment of route images was performed in
ArcGIS10.7 using existing RGB orthophotos. Aligned images were
mosaicked in ENVI Classic5.6. A hypercube file was generated in
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FIGURE 3

The three stages of damage in P. tabuliformis. (A) Mild damage stage; (B) Moderate damage stage; (C) Severe damage stage.

MegaCube2.9.6.3 and converted to a reflectance image in ENVI5.6.
The region of interest (ROI) tool in ENVI5.6 was used to delineate
the crowns of 284 sample trees in hyperspectral imagery. The
spectral reflectance of the canopy areas was calculated, and the
average reflectance across 145 spectral bands was obtained.

2.2.3 UAV LiDAR data acquisition and processing
On the morning of May 28, 2024 (07:00-08:40), under windless
and rain-free conditions, point cloud data acquisition was
conducted using a DJI Matrice 350 RTK platform (DJI, Shenzhen,
China; Figure 4B) equipped with a Zenmuse L2 LiDAR sensor (DJI,
Shenzhen, China). Flight planning utilized a DJI Pilot 2 system, with
data collection parameters set to 240 kHz pulse frequency, repetitive
scanning mode, and five-echo reception. The RTK state was FIX,
the laser side overlap rate was 60%, the flight speed was 15m/s, the
flight altitude was set to 100m, and the point cloud density was

189 points/m>. LIDAR data processing was conducted in DJI Terra
v4.6.6, followed by exportation of LAS-format point cloud files.
Noise removal and point classification were performed in
LiDAR360 (GreenValley Inc., Shanghai, China) using the
Improved Progressive TIN Densification (IPTD) algorithm,
separating ground and non-ground points. Ground point
normalization yielded three raster products: a digital elevation
model (DEM), digital surface model (DSM), and canopy height
model (CHM). Individual tree seed points were subsequently
derived from the CHM. Over-segmented and under-segmented
areas were adjusted by adding or deleting seed points using ALS
seed point editing. Individual tree point clouds were segmented
using seed points. Individual tree boundaries were delineated using
a concave hull algorithm with an edge length of 0.2 m. A total of
5 height metrics and 5 intensity metrics were computed using a
forest parameter analysis tool, with a height threshold set to 0.5 m.

FIGURE 4

UAV hyperspectral and LiDAR systems. (A) DJI Matrice M600 Pro (HSI); (B) DJI Matrice 350 RTK (LiDAR).
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2.3 Spectral band selection

Hyperspectral data provide rich spectral information (Figure 5).
However, adjacent bands are often highly correlated, leading to
significant redundant information and computational complexity
(Lorencs et al, 2018; Han et al, 2022). Compared to feature
extraction, band selection preserves the original hyperspectral
features and biophysical significance (Li et al., 2022). This method
eliminates redundant information and accelerates analysis speed. In
this study, the Successive Projections Algorithm (SPA) (Jiang et al.,
20225 Ma et al,, 2022; Bai et al.,, 2024) and the Instability Index
between Classes (ISIC) (Zhang et al., 2018, 2019; Wang et al., 2023)
were applied to screen full-band data. Based on experimental
results, the ISIC-SPA (Zhang et al., 2018) method was further
utilized for secondary band selection.

2.3.1 Three band selection algorithms

SPA is a forward iterative search algorithm designed to
minimize collinearity between vectors (Sun et al., 2019). Starting
with one variable, the algorithm selects the next variable in the
orthogonal subspace of the previously selected variable. This new
variable has the maximum projection value and the smallest
collinearity (Liu et al., 2023). By choosing variables with the least
redundant information, SPA effectively reduces linear relationships
between variables, thereby lowering multicollinearity (Feng et al,
2022). Band combinations selected by SPA were used to construct
Random Forest (RF) models. The optimal number of bands was
determined based on the 10-fold cross-validated accuracy (10-CV
ACC) of the training set.

The instability index between classes (ISIC) quantifies the
separability of HSI bands. ISIC values determine the suitability of
bands for classification tasks. Bands suitable for classification show
smaller ISIC values, while unsuitable bands show larger ISIC values.
Spectral bands are classified into three categories (mild, medium,
severe) using ground-survey DP. For three or more categories, ISIC
is calculated with its specific formula:

>
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FIGURE 5
Average spectral reflectance at different damage stages.
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This study employed D;, defined as the absolute difference
between ISIC values of neighboring bands, to evaluate the
suitability of spectral bands for classification. The removal of
bands with higher D; values improved both classification
efficiency and accuracy (Zhang et al.,, 2018).

D; = |ISIC; - ISIC,,, |

The optimal threshold D; was determined using ISIC combined
with RF. An initial large step size was set to define the threshold
range based on the 10-CV ACC of the training set at selected
thresholds. Iterative reduction of the step size was applied to
identify the final optimal threshold (Wang et al., 2023).

Single band selection methods risk losing critical HSI
information. Redundant data may persist (Zhang et al., 2024).
The ISIC-SPA method was further applied to screen bands; it
eliminates redundant combinations from ISIC, enhances
information independence, and provides SPA with a stable
denoised band subset for classification. This reduces the number
of bands processed by SPA, shortens runtime, and improves
selection efficiency. The process of combining three band
selection algorithms with the RF model for HSI band selection is
defined as SPA-RF, ISIC-RF, and ISIC-SPA-RF. Band combinations
from three methods were used to build RF models. Classification
performance on the same test set was compared, and model fitting
was evaluated to determine the optimal combination.

2.3.2 Random forest model parameter
configuration and model evaluation

RF is a classifier composed of multiple decision trees. It has
advantages including insensitivity to parameters, resistance to
overfitting, suitability for small sample sizes, and strong performance
in group classification (Jiang et al., 2021; Bi et al,, 2024). The random
forest classifier was implemented through the RandomForestClassifier
module in Python’s sklearn.ensemble library. Hyperparameter
optimization focused on two critical variables: the quantity of
decision trees (n_estimators) and the initialization seed
(random_state). The dataset was split into a 6:4 ratio. 170 samples
formed the training set for model training and 10-fold cross-validation,
and 114 samples formed the test set for independent testing.

Classification accuracy was quantitatively evaluated using
metrics derived from the confusion matrix: Overall Accuracy
(OA), Kappa coefficient, Producer’s Accuracy (PA), and User’s
Accuracy (UA). PA represents the ratio of correctly classified
samples to the actual number of samples in a class. UA represents
the ratio of correctly classified samples to the total number of
samples predicted as that class by the model (Murfitt et al., 2016).

2.3.3 Construction of vegetation indices

To enhance the information contained in the spectral bands and
reduce the influence of factors such as soil background, 4 band
combination methods were selected based on previous studies and
as shown in Table 1. All possible combinations of these bands were
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TABLE 1 Vegetation indices selected.

Vegetation index Formula

NDsI Ry ~Rg)
Ry +Ry)
DSI R, -R,
RSI Ry
Ro
RA _Ra
(R +Ry3)

generated, and Spearman correlations between each vegetation
index (VI) and three damage stages of P. tabuliformis were
analyzed. The VI with the highest correlation in each category
was selected as a classification variable (Ma et al., 2021).

2.4 Significance analysis and variable
importance ranking

Kruskal-Wallis (K-W) tests were applied to the LIDAR metrics
from Section 2.2.3 and the VIs from Section 2.3.3. Variables showing
significant differences across damage stages were selected as inputs in
the combined dataset to construct the RF classification model.
Variable importance in the RF model was assessed using the Mean
Decrease Accuracy (MDA) index. The assessment involved randomly
permuting the values of each variable in the out-of-bag (OOB)
samples and comparing the misclassification rates before and after
permutation (Archer and Kirnes, 2008; Verikas et al., 2011).

3 Results
3.1 Spectral band selection

The SPA-RF results for optimal band selection were shown in
Figure 6. As the number of selected bands increased, the 10-CV

A
0.9
o 0.8
Q
<
>
Q 0.7
S
=
0.6
Number of Selected Bands: 10
10-CV ACC: 0.7647
0.5

20 40 60 80 100 120

Number of Selected Wavebands

140

FIGURE 6

(A) Number of bands selected by SPA and 10-CV ACC of the training set;
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ACC of the training set showed small fluctuations. The overall trend
first rose and then fell, eventually stabilizing near 0.76. Considering
both fitting accuracy and band quantity, SPA-RF selected 10 bands:
5 near-infrared (NIR) bands, 4 infrared bands, and 1 ultraviolet
band. At this stage, the training set achieved a 10-CV ACC
of 0.7647.

RF models were built with HSI bands selected based on different
thresholds. Training performance improved with increasing band
numbers. Beyond 21 bands, no substantial increase in training set
10-CV ACC was observed. The ISIC threshold was therefore set to
0.00637. Bands with Di values exceeding this threshold were
removed. A final selection of 21 bands achieved a 10-CV ACC of
0.7647 (Figure 7).

After secondary HSI band screening using ISIC-SPA-RF. the
10-CV ACC reached 0.7647, further increases in band numbers still
caused minor fluctuations of 10-CV ACC around 0.76, with the
overall trend stabilizing (Figure 8A). Based on the ISIC-SPA-RF
results, 1 NIR bands 926 nm, 2 red band 686 nm and 759 nm were
selected (Figure 8B).

3.2 Evaluation of band selection algorithms
and screening of vegetation indices

The SPA-RF, ISIC-RF, and ISIC-SPA-RF methods were applied
for band selection. The classification model was then constructed
using RF based on the selected bands, and its performance was
evaluated with test set accuracy metrics (Table 2).

The RF model based on the ISIC method showed the best
performance. It had the highest OA, Kappa, UAmean, and
PAmean. OA reached 75.44%, and Kappa was 0.63. The SPA
method performed second best. OA and Kappa were 71.05% and
0.57 respectively. The ISIC-SPA method achieved only 70.18% OA.
However, it used only 3 bands. This was much fewer than the 21
bands for ISIC and 10 bands for SPA. Therefore, considering both
accuracy and band number, the 3 band ISIC-SPA method was
selected for further vegetation index construction.

B
/_/V""""v\,\’vv
0.20 / !
g 0.15
=
3
5
& 0.10
0.05 —— Average Spectrum
Selected Wavebands
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(B) SPA selected bands.
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Four VIS were constructed based on the spectral bands selected
through ISIC-SPA-RF. Subsequent correlation analysis evaluated
relationships between these indices and tree damage progression
stages. The four VIS with the highest Spearman correlation
coefficients were selected: NDSI (759, 686), DSI (759, 686), RSI
(759, 686), and RA (686, 759, 926).

3.3 Separability analysis of LIDAR metrics
and Vls

The separability of four VIs and ten LIDAR metrics were shown in
Figure 9. The K-W analysis indicates significant differences (P < 0.01)
among the three damage stages for all 14 variables. Between the early
and moderate damage stages, ten variables show overlap at the 25th
and 75th percentiles. For the severe damage stage, five variables
overlap at the 25th and 75th percentiles with the other two stages.
Eleven variables differ significantly (P < 0.01) between the early and
moderate damage stages. However, no significant differences are
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observed for elev_percentile_10th, elev_percentile_20th,
elev_percentile_25th, and elev_percentile_30th, which may hinder
the detection of early damage stages. Variables with significant
differences (P < 0.01) were used as single or combined datasets to

build RF classification models.

3.4 Classification results for different data
sources

The confusion matrix displayed classification results using VIs
and LiDAR metrics as input data (Figure 10). The RF model using
VIs as input data achieved an OA of 72.81% and a Kappa of 0.59.
The severe stage showed the best classification performance, with an
accuracy of 93.94%. followed by the mild stage, with an accuracy of
80.49%. The moderate stage achieved an accuracy of only 47.50%.
The RF model constructed using LIDAR metrics achieved an OA of
71.05% and a Kappa of 0.56. Among the mild, moderate, and severe
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TABLE 2 Test set performance of RF models constructed with different
band selection algorithms.

Arithmetic N OA Kappa PAmean UAmean
SPA 10 ‘ 71.05% 0.57 72.59% 70.58%
ISIC 21 ‘ 75.44% 0.63 76.34% 75.45%
ISIC-SPA 3 ‘ 70.18% 0.55 71.03% 70.52%

stages, the severe stage achieved the highest accuracy of 75.76%. The
moderate stage showed the lowest accuracy of 65.00%.

The classification model built with the combined dataset of HSI
bands and LiDAR metrics achieved an OA of 83.33% and a Kappa
of 0.75, with the confusion matrix shown in Figure 10. The severe
stage showed the best classification performance with an accuracy
of 96.97%. The mild stage achieved an accuracy of 82.93% with
eight samples misclassified as moderate. The moderate stage
exhibited the poorest classification results. Compared to using VIs
alone, this method increased OA by 10.52%, improved accuracy for

10.3389/fpls.2025.1664466

mild and severe stages by 2.44% and 3.03% respectively, and raised
accuracy for the moderate stage by 25%.

The importance ranking of selected features using MDA in the
RF model is shown in Figure 11. DSI (759, 686) was the most
important HSI variable. Among LiDAR metrics, the elev_AII_5th is
the most significant.

4 Discussion

This study used LiDAR and HSI data, combined with the
bioecological characteristics of Dendrolimus spp. damage. Based
on the defoliation percentage of P. tabuliformis, trees were classified
into three damage stages: mild, moderate, and severe. Focusing on
early stage damage caused by newly hatched or overwintering
larvae, monitoring was conducted at the single tree level. The
results showed that integrating LiDAR and HSI data improved
the early detection accuracy of Dendrolimus spp. compared to single
datasets, achieving effective results in identifying damaged trees.
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4.1 Optimal band selection for
hyperspectral

Among the bands select algorithms, the ISIC-SPA-RF method
selected 3 bands, far fewer than the 10 bands of SPA-RF and the 21
bands of ISIC-RF, and achieved the best classification performance
on the test dataset.

The ISIC-SPA-RF method selected four optimal bands at 686 nm,
759 nm and 926 nm. The 686 nm and 759 nm bands are red-edge
bands linked to chlorophyll content and leaf area index (LAI)
(Gholizadeh et al., 2016; Tao et al., 2020). HSI data were collected
in early June during the peak feeding period of Dendrolimus spp., a
period characterized by severe needle loss and reduced chlorophyll
content. As defoliation increased, a blue shift in the red-edge bands
occurred, resulting in higher reflectance. Meanwhile, severe needle
loss reduced tree transpiration and water content (Li et al., 1997),
resulting in lower reflectance in the NIR bands at 926 nm. When HSI
and LiDAR data are combined, DSI (759, 686) was the most
important HSI variable, matched the biophysical processes of
Dendrolimus spp. damage in trees, and clearly showed differences
between damage stages. The bands after dimensionality reduction
and the constructed VIs achieved high accuracy. However, in
practical applications, HSI data acquisition is costly, with large data
volume and complex image processing. UAV based multispectral
data (MSI) can replace HSI for band data collection. MSI and HSI not
only show strong band compatibility but also reduce costs, improve
processing efficiency, and facilitate large scale forest monitoring.

4.2 Integration of HSI and LiDAR data

HSI data eftectively monitor Dendrolimus spp. damage in trees.
Previous studies by Zhang et al. used HSI data and partial least
squares regression (PLSR) to model needle loss in P. tabuliformis,
achieving an R” of 0.8061 for mild to moderate damage stages (DP <
40%) (Zhang et al., 2018). Bai et al. used spectral indices with multiple
regression to quantify DP, yielding an R value of 0.7860 (Bai et al.,
2016). In comparison, the RF classification model developed in this
study using hyperspectral data achieved an OA of 72.81%, with
80.49% accuracy for mild damage stages. The improved monitoring
performance at early stages may be due to three reasons. First,
compared to prior research, the classification standard was based
on the effect of DP on volume growth in P. tabuliformis. At 30% DP,
no significant growth reduction occurred; instead, enhanced tree
height, apical shoot growth, and lateral shoot growth may have been
detected. At 50% DP, a highly significant volume growth decrease was
recorded. Using these thresholds, damage stages of P. tabuliformis
were classified. Greater differences in DP between damage stages were
present compared to conventional standards. Zhang et al. used only
12 mildly damaged samples, whereas 103 such samples were analyzed
in this study, with regression analysis replaced by RF classification.
These differences in sample size and methodology may explain the
result variations.

The confusion matrix results show that LIDAR data can detect
trees damaged by Dendrolimus spp., with an OA of 71.05%. In
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comparison, He-Ya et al. achieved 62% OA using LiDAR data and
support vector machine (SVM) classification in a study on
Dendrolimus superans (He-Ya et al., 2024). This difference may
arise on one hand from variations in LiDAR point cloud density.
The point cloud density during our data collection was 189 points/
m?, while that of previous studies was 70 points/m”. Additionally,
tree canopy occlusion reduces lower canopy point cloud density
(Hamraz et al., 2017), leading to incomplete 3D tree models and less
accurate structural parameter extraction (Cateanu and Ciubotaru,
2021). On the other hand, He-Ya et al. used only LiDAR height
metrics, not intensity or density metrics. Our study focused on P.
tabuliformis as the host species, whereas their study focused on
larch. These differences in host tree species may have affected the
classification results. LIDAR is less affected by environmental
factors and has low requirements for illumination conditions.
Additionally, the typically short peak feeding phase of
Dendrolimus spp. and its rapid spread necessitate monitoring of
large forest areas. LIDAR is less affected by environmental factors,
allowing data acquisition even on cloudy days while covering wide
areas during collection. When HSI or MSI are restricted by weather
conditions, monitoring requirements can be met by using
LiDAR alone.

Combining HSI and LiDAR data improved the classification
accuracy of damaged trees, achieving an OA of 83.33%. This
represents an 10.52% OA improvement compared to using VIs
alone. The recognition accuracy for three damage stages increased
by 2.44%, 25%, and 3.03%, respectively, with the mild damage stage
reaching 82.93%. Although the classification performance for the
moderate damage stage showed the greatest improvement, its
accuracy remained the lowest, not exceeding 80%. Firstly, the
moderate stage is a transitional phase between the mild stage and
severe stage, with a highly variable mixture ratio of healthy to
damaged needles. Trees with a DP close to 30% exhibit spectral and
structural characteristics similar to the mild stage, while those with
a DP near 50% are more similar to the severe stage, and lack typical
and uniform characteristics unlike the other two stages. Various
variables may exhibit greater variability within the group. Secondly,
two-dimensional HSI imagery only monitors the upper part of the
canopy, while damage from Dendrolimus spp. generally begins in
the lower part of trees. This may cause changes in canopy spectral
features during the moderate damage stage to lag behind the actual
damage condition. Additionally, misclassification of damage stages
due to human error during DP assessment further increases the
difficulty of accurate classification.

The integration of the two datasets demonstrates complementary
advantages. HSI band-combined VIs reduced background
interference (Qiao et al, 2020), enhance vegetation information in
spectral data, and effectively monitor spectral changes caused by
physiological variations such as leaf yellowing, chlorophyll reduction,
and water stress. LIDAR quantifies structural information linked to
the damage characteristics of Dendrolimus spp. The elev_AIH_5th
metric in LIDAR describes structural features of the lower tree layer.
This may link to Dendrolimus spp. overwintering on the leeward side
of trees, nearby stones, and leaf litter. These insects climb trees the
next year and first affect lower needles. Additionally, damaged trees
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showed reduced water content and lower NIR reflectance. This
decreased LiDAR point cloud intensity, causing intensity metrics to
decline with higher defoliation rates. The int_kurtosis metric reflects
heterogeneity in point cloud intensity distribution. This occurs
because Dendrolimus spp. feeding reduces needles and increases
exposed trunks. When weather allows, forest areas are small, or
higher accuracy is needed, combining HSI and LiDAR allows
physiological and structural data to complement each other,
providing more accurate and reliable damage data.

4.3 Shortcomings and improvements

The integration of hyperspectral and LiDAR data enhanced the
early monitoring accuracy for Dendrolimus spp., enabling reliable
detection of trees at mild damage stages, though further optimization
is warranted. During hyperspectral data collection, manual selection
of tree crown ROIs may have introduced errors. Future studies
should incorporate canopy segmentation algorithms to eliminate
such subjective bias and enable efficient spectral data extraction
from larger forest areas. This study was limited by its sample size
and geographical scope. The restricted scale may affect the model’s
generalizability across diverse geographical environments, forest
stand structures, and site conditions. Subsequent research should
establish sample plots across broader regions to validate and optimize
the classification model. Furthermore, data collection was limited to a
relatively short time window due to constraints in flight equipment
and local pest control operations. Future work will explore long-term
time-series monitoring using MSI and RGB as primary data sources
to reveal the spatiotemporal dynamics of Dendrolimus spp. damage.
We will also further investigate the relationship between LiDAR data
and the biophysical processes of Dendrolimus spp. damage, and
integrate LIDAR with MSI or RGB data to improve early detection
accuracy and coverage in forest areas.

5 Conclusions

Effective forest pest management supports sustainable forest
development. The combination of HSI and LiDAR technologies
provided a novel approach for early monitoring of Dendrolimus
spp. infestations. This study used HSI data to capture spectral
features of damaged trees and LiDAR data to obtain structural
features. red and NIR bands were more sensitive to Dendrolimus
spp. induced tree damage than other bands and were more effective
for vegetation index development. Using LiDAR data alone
achieved an OA of 71.05% in distinguishing damaged trees,
confirming its capability to monitor Dendrolimus spp. damage.
Combined HSI and LiDAR data improved monitoring results. The
accuracy in detecting trees at mild damage stages increased by
2.44% and 9.76% compared to using VIS or LiDAR metrics alone,
with an OA of 83.33%. The integration of HSI and LiDAR enhanced
monitoring precision at the individual tree stage, offering a vital
technical solution to prevent Dendrolimus spp. outbreaks.
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