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Dendrolimus species are the major defoliating forest pests in China, causing

severe damage to pine forests. Establishing an effective early monitoring system

was crucial for timely implementation of control measures to prevent further

infestation, significantly reducing economic losses and ecological damage. While

previous studies have demonstrated the limited effectiveness of spectral data

alone in early detection of Dendrolimus spp. infestations, our research reveals

that needle loss is the primary damage symptom, whereas canopy structural

characteristics remain underexplored in early monitoring. To address this

knowledge gap, this study innovatively integrates unmanned aerial vehicle-

based hyperspectral imaging (HSI) with Light Detection and Ranging (LiDAR)

data. This study employed SPA, ISIC, and ISIC-SPA algorithms in combination

with Random Forest (RF) to select sensitive hyperspectral imaging (HSI) bands.

Subsequently, vegetation indices (VIs) were developed from these optimal

wavelengths and integrated with LiDAR metrics. Finally, the performance of RF

models trained on individual data sources (HSI VIs or LiDAR metrics) and on the

combined data (HSI+LiDAR) was evaluated for detecting Dendrolimus spp.

damage at the individual tree level. For HSI band selection, compared to the 10

bands selected by SPA-RF (OA = 71.05, Kappa=0.57) and the 21 bands selected by

ISIC-RF (OA = 75.44, Kappa=0.63), ISIC-SPA-RF (OA = 70.18, Kappa=0.55)

selected only 3 bands and achieved good classification results on the

validation set, which substantially reduced data redundancy and improved VI

construction. For individual tree-level detection of Dendrolimus spp. damage,

four VIS and seven LiDAR-derived metrics were utilized. The results showed that

the HSI method (OA = 72.81%, Kappa=0.59) outperformed the LiDAR method

(OA = 71.05%, Kappa=0.56). The combined data approach achieved the highest

overall accuracy (OA = 83.33%, Kappa=0.75), with an early detection accuracy of

82.93%, which was significantly better than using HSI or LiDAR data alone. Our

study demonstrates that LiDAR can effectively capture the spatial distribution

changes of needles caused by defoliation, while also revealing spectral

reflectance characteristics in the near-infrared (NIR) band. The integration of
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HSI and LiDAR data significantly enhances the early detection accuracy for

Dendrolimus spp. infestations. This approach not only provides critical

technical support for Dendrolimus spp. control, but also establishes a novel

remote sensing methodology for monitoring other defoliation pests.
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1 Introduction

The pine caterpillars (Lepidoptera, Lasiocampidae,

Dendrolimus species) are typical leaf-feeding pests and major

forestry pests in China, causing severe damage to important tree

species such as pine, cypress, and fir (Bao et al., 2024). Dendrolimus

spp. feed on conifer needles, disrupting the ecological and structural

functions of coniferous forests and causing tree mortality in severe

cases (Han et al., 2024). Additionally, Damage caused by

Dendrolimus spp. weakens tree potentials thereby increasing the

risk of secondary pest infestations by wood-boring pests (Song et al.,

2016). China’s large-scale plantations are dominated by

monoculture coniferous forests characterized by simplified

structures and low resistance (Bao et al., 2022). By 2023 the

infestation area of Dendrolimus spp. in China reached 60.04

million hectares thereby causing significant economic and

ecological losses (Liu et al., 2024). Effective management and

control of Dendrolimus spp. are therefore essential.

In Liaoning Province, the major Dendrolimus spp. pest species

include Dendrolimus tabulaeformis Tsai et Liu, Dendrolimus

superans Butler, and Dendrolimus spectabilis Butler. Dendrolimus

spp. have one generation per year. Newly hatched larvae feed on one

side of pine needles, creating characteristic notches. These larvae are

unable to fully consume individual needles. Damaged needles

exhibit yellowing, desiccation, and curling. Dendrolimus spp.

overwinter as larvae in the soil or under bark. In the following

year, overwintering larvae ascend the tree, disperse across branches,

and rapidly consume entire needles, thereby entering their peak

feeding phase. Following emergence, adults disperse to nearby

forest stands or migrate to more distant forest stands to lay eggs.

Dendrolimus spp. outbreaks are cyclical, cover large areas, and

escalate rapidly (Zhang et al., 2022). During the early larval feeding

stage, physical and chemical methods can effectively prevent further

damage and spread (Skrzecz et al., 2020). However, monitoring

remains a critical phase for implementing effective control

strategies. Traditional ground surveys require significant labor

and time, making them unsuitable for large-scale pest monitoring.

They also risk missing optimal control periods (Nasi et al., 2015).

The rapid development of remote sensing technology enhances

forest health monitoring capabilities and provides a critical tool for

acquiring forest pest and disease data (Luo et al., 2022). Satellite-
02
based studies on Dendrolimus spp. monitoring are primarily

conducted at the stand level (Zhu et al., 2016; Zhao et al., 2024;

Zhang et al., 2025). Although satellite monitoring demonstrates the

ability to detect forest changes induced by Dendrolimus spp., it

remains constrained by insufficient revisit frequency, potentially

missing early stage infestations (Hu et al., 2024). In early stage

monitoring, the high resolution of hyperspectral sensors can detect

more detailed and precise spectral changes. UAV-based hyperspectral

imaging (HSI) captures extensive narrow-band spectral information

from horizontal tree canopies, enhancing tree health detection. This is

critical for monitoring forest pests and diseases in early stage

infestations or complex ecological environments (Zhang et al.,

2019). Studies on wood-boring pests Bursaphelenchus xylophilus,

Agrilus planipennis, and Dendroctonus valens used HSI and

achieved good early detection accuracy (Pontius et al., 2008; Li

et al., 2023; Bi et al., 2024). In studies on leaf-feeding pests, Zhang

et al. developed an ISIC-SPA-P-PLSR framework using hyperspectral

data to estimate defoliation percentages (DP) in trees damaged by D.

tabulaeformis The coefficient of determination (R2) reached 0.8061

for trees at mild to moderate damage stages (Zhang et al., 2018). Bai

et al. developed a regression model for DP based on five spectral VIS,

achieving an R² of 0.786 (Bai et al., 2016). While tree damage caused

by Dendrolimus spp. has been distinguishable using hyperspectral

technology in previous studies, canopy spectral information can be

lost or overall reflectance curves distorted due to shadows caused by

variations in camera angles and solar elevation angles (Liu et al.,

2025). Furthermore, in pine forests, healthy canopies and damaged

branches are often interwoven and obscured, making such

overlapping structures difficult to accurately characterize through

spectral data alone (Lin et al., 2021, 2023). Therefore, precise

monitoring at mild damage stages continues to be faced with

significant challenges.

Throughout the entire infestation cycle, larvae of Dendrolimus

spp. continuously feed on all needles within the host tree’s crown,

inducing conspicuous morphological alterations and biomass loss –

a symptomatic profile distinctly divergent from that of wood-boring

pests, whose infestation typically manifests as crown discoloration.

Previous studies on remote sensing monitoring of Dendrolimus spp.

primarily relied on spectral data, which exhibited limitations in

capturing dynamic variations within lower canopy layers and were

additionally subject to weather-related interferences.
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As an active light detection and ranging (LiDAR) also corrects

reduced spectral intensity and altered spectral shapes in

hyperspectral imagery caused by shaded areas, improving spectral

information (Oduncu and Yuksel, 2021). Wang et al. demonstrate

that combining HSI and LiDAR data enables individual tree

segmentation in high-density areas (Wang et al., 2025), This

approach enhances early detection at the individual tree level.

Previous studies in forest pest monitoring showed that combining

HSI data and LiDAR data can improve accuracy. LiDAR derived

structural metrics also detected forest pests (Lin et al., 2019; Yu

et al., 2021; Zhou et al., 2022). However, the combination of HSI

and LiDAR data has not been used in remote sensing monitoring of

Dendrolimus spp.

Based on the characteristic of Dendrolimus spp. damage leads to

needle loss, this study aim to investigate the role of HSI and LiDAR

data in the early monitoring of Dendrolimus spp. The objectives are:

(1) to identify the most sensitive HSI bands and LiDAR structural

indices for detecting the early stage of Dendrolimus spp. infestation

at the individual tree level; (2) to compare the differences between

HSI and LiDAR in early monitoring of Dendrolimus spp.; (3) to

explore the potential of integrating HSI and LiDAR data for

monitoring Dendrolimus spp. in early damage stages.
2 Materials and methods

2.1 Study area

The study area located in Yushulinzi Township, Jianping

County, Chaoyang City, Liaoning Province, China. The county’s

topography consists mainly of mountainous and hilly terrain.

Average annual temperatures range from 5.4°C to 8.7°C, with

elevations varying between 400 and 1200 meters above sea level.

A semi-humid to semi-arid continental monsoon climate prevails in

the region. Pinus tabuliformis is the dominant tree species. A pure
Frontiers in Plant Science 03
P. tabuliformis stand infested with Dendrolimus spp. was selected as

the test plot based on a ground survey (Figure 1).
2.2 Remote sensing data acquisition and
processing

2.2.1 Field survey
Based on field surveys and previous studies, P. tabuliformis

growth showed no significant negative effects at DP ≤ 30%. Instead,

DP ≤ 30% may promote tree height, apical shoot growth, lateral

shoot growth, and improve tree vigor. Based on field surveys, the

mild damage stage (DP ≤ 30%) was defined as the early stage of

Dendrolimus spp. Infestation. However, when DP≥ 50%, tree

growth decreased with increasing DP, causing significant negative

impacts on height and radial growth (Zhou and Li, 1993; Yang and

Li, 1994). Based on the relationship between DP and tree growth,

damaged trees were divided into three stages: mild stage (DP ≤

30%), moderate stage (30% < DP < 50%), and severe stage (DP ≥

50%). The mild damage stage (DP ≤ 30%) was defined as the early

stage of Dendrolimus spp. damage.

Data were collected fromMay 28 to June 7, 2024 (Figure 2). The

DP was measured to quantify tree damage. Standard branches

representing the overall defoliation of each sample tree were

selected. Each tree was divided into three vertical layers. Within

each layer, standard branches from the east, south, west, and north

directions were systematically selected. The ratio of damaged

needles to total needles was recorded for each standard branch.

The average DP of all standard branches was calculated as the DP of

the sample tree. Based on DP values, sample trees were classified

into three damage stages (Figure 3): mild (DP ≤ 30%), moderate

(30% < DP < 50%), and severe (DP ≥ 50%). A total of 284 individual

sample trees were included in the ground survey. These trees were

divided into 103, 99, and 82 samples with mild, moderate, and

severe damage. The study employed a DJI Mavic 3M (DJI,
FIGURE 1

Study area.
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Shenzhen, China) equipped with dual imaging systems—a 4/3-inch

CMOS visible light camera and a 1/2.8-inch CMOS multispectral

camera—to acquire RGB orthophotographic data and geotag

sample tree locations. This configuration enabled simultaneous

high-resolution visible spectrum documentation and multispectral

analysis for vegetation monitoring application.

2.2.2 UAV hyperspectral data acquisition and
processing

Hyperspectral data were acquired on May 30, 2024 (10:30 am–

12:00 pm), under clear and windless conditions. A DJI Matrice M600

Pro hexacopter UAV (DJI, Shenzhen, China, Figure 4A) equipped with

a PikaL hyperspectral camera (Resonon, Bozeman, MT, USA) was

deployed. The spectral range is 400–1000 nm, with a spectral

resolution of 4 nm. The camera has a field of view (FOV) of 17.6

and a focal length of 17 mm. The flight was conducted at an altitude of
Frontiers in Plant Science 04
100 m with 50% heading and lateral overlap maintained. Weather

conditions were clear. Themeasurement area was extensive. Two flight

missions were conducted. A 3 m² reference cloth was placed in the

flight area for radiometric calibration and reflectance correction. UAV

inertial navigation and Z-survey i50 RTK enhanced POS accuracy.

Raw hyperspectral POS data were processed using

SBGcenter3.4.89 software (Company, Country) with differential

correction. Route segmentation boundaries were established in

Omap10.0.5 (Company, Country). Original hyperspectral data

were pre-segmented in AirlineDivision1.8 (Company, Country)

based on route boundaries. Pre-segmented data from both

missions were merged in Megacube2.9.6.3 (Company, Country).

Geographic elevation was set to 650 m in ArcGIS10.7 (Company,

Country). Sequential alignment of route images was performed in

ArcGIS10.7 using existing RGB orthophotos. Aligned images were

mosaicked in ENVI Classic5.6. A hypercube file was generated in
FIGURE 2

Overall experimental workflow.
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MegaCube2.9.6.3 and converted to a reflectance image in ENVI5.6.

The region of interest (ROI) tool in ENVI5.6 was used to delineate

the crowns of 284 sample trees in hyperspectral imagery. The

spectral reflectance of the canopy areas was calculated, and the

average reflectance across 145 spectral bands was obtained.

2.2.3 UAV LiDAR data acquisition and processing
On the morning of May 28, 2024 (07:00–08:40), under windless

and rain-free conditions, point cloud data acquisition was

conducted using a DJI Matrice 350 RTK platform (DJI, Shenzhen,

China; Figure 4B) equipped with a Zenmuse L2 LiDAR sensor (DJI,

Shenzhen, China). Flight planning utilized a DJI Pilot 2 system, with

data collection parameters set to 240 kHz pulse frequency, repetitive

scanning mode, and five-echo reception. The RTK state was FIX,

the laser side overlap rate was 60%, the flight speed was 15m/s, the

flight altitude was set to 100m, and the point cloud density was
Frontiers in Plant Science 05
189 points/m2. LiDAR data processing was conducted in DJI Terra

v4.6.6, followed by exportation of LAS-format point cloud files.

Noise removal and point classification were performed in

LiDAR360 (GreenValley Inc., Shanghai, China) using the

Improved Progressive TIN Densification (IPTD) algorithm,

separating ground and non-ground points. Ground point

normalization yielded three raster products: a digital elevation

model (DEM), digital surface model (DSM), and canopy height

model (CHM). Individual tree seed points were subsequently

derived from the CHM. Over-segmented and under-segmented

areas were adjusted by adding or deleting seed points using ALS

seed point editing. Individual tree point clouds were segmented

using seed points. Individual tree boundaries were delineated using

a concave hull algorithm with an edge length of 0.2 m. A total of

5 height metrics and 5 intensity metrics were computed using a

forest parameter analysis tool, with a height threshold set to 0.5 m.
FIGURE 4

UAV hyperspectral and LiDAR systems. (A) DJI Matrice M600 Pro (HSI); (B) DJI Matrice 350 RTK (LiDAR).
FIGURE 3

The three stages of damage in P. tabuliformis. (A) Mild damage stage; (B) Moderate damage stage; (C) Severe damage stage.
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2.3 Spectral band selection

Hyperspectral data provide rich spectral information (Figure 5).

However, adjacent bands are often highly correlated, leading to

significant redundant information and computational complexity

(Lorencs et al., 2018; Han et al., 2022). Compared to feature

extraction, band selection preserves the original hyperspectral

features and biophysical significance (Li et al., 2022). This method

eliminates redundant information and accelerates analysis speed. In

this study, the Successive Projections Algorithm (SPA) (Jiang et al.,

2022; Ma et al., 2022; Bai et al., 2024) and the Instability Index

between Classes (ISIC) (Zhang et al., 2018, 2019; Wang et al., 2023)

were applied to screen full-band data. Based on experimental

results, the ISIC-SPA (Zhang et al., 2018) method was further

utilized for secondary band selection.

2.3.1 Three band selection algorithms
SPA is a forward iterative search algorithm designed to

minimize collinearity between vectors (Sun et al., 2019). Starting

with one variable, the algorithm selects the next variable in the

orthogonal subspace of the previously selected variable. This new

variable has the maximum projection value and the smallest

collinearity (Liu et al., 2023). By choosing variables with the least

redundant information, SPA effectively reduces linear relationships

between variables, thereby lowering multicollinearity (Feng et al.,

2022). Band combinations selected by SPA were used to construct

Random Forest (RF) models. The optimal number of bands was

determined based on the 10-fold cross-validated accuracy (10-CV

ACC) of the training set.

The instability index between classes (ISIC) quantifies the

separability of HSI bands. ISIC values determine the suitability of

bands for classification tasks. Bands suitable for classification show

smaller ISIC values, while unsuitable bands show larger ISIC values.

Spectral bands are classified into three categories (mild, medium,

severe) using ground-survey DP. For three or more categories, ISIC

is calculated with its specific formula:
Frontiers in Plant Science 06
ISICi =
Dwithin, i
Dbetween, i

=
m

m(m − 1)o
m−1
z=1 om

j=z+1 =
Sz,i + Sj,i
mz,i −mj,i

This study employed Di, defined as the absolute difference

between ISIC values of neighboring bands, to evaluate the

suitability of spectral bands for classification. The removal of

bands with higher Di values improved both classification

efficiency and accuracy (Zhang et al., 2018).

Di = ISICi − ISICi+1j j
The optimal threshold Di was determined using ISIC combined

with RF. An initial large step size was set to define the threshold

range based on the 10-CV ACC of the training set at selected

thresholds. Iterative reduction of the step size was applied to

identify the final optimal threshold (Wang et al., 2023).

Single band selection methods risk losing critical HSI

information. Redundant data may persist (Zhang et al., 2024).

The ISIC-SPA method was further applied to screen bands; it

eliminates redundant combinations from ISIC, enhances

information independence, and provides SPA with a stable

denoised band subset for classification. This reduces the number

of bands processed by SPA, shortens runtime, and improves

selection efficiency. The process of combining three band

selection algorithms with the RF model for HSI band selection is

defined as SPA-RF, ISIC-RF, and ISIC-SPA-RF. Band combinations

from three methods were used to build RF models. Classification

performance on the same test set was compared, and model fitting

was evaluated to determine the optimal combination.

2.3.2 Random forest model parameter
configuration and model evaluation

RF is a classifier composed of multiple decision trees. It has

advantages including insensitivity to parameters, resistance to

overfitting, suitability for small sample sizes, and strong performance

in group classification (Jiang et al., 2021; Bi et al., 2024). The random

forest classifier was implemented through the RandomForestClassifier

module in Python’s sklearn.ensemble library. Hyperparameter

optimization focused on two critical variables: the quantity of

decision trees (n_estimators) and the initialization seed

(random_state). The dataset was split into a 6:4 ratio. 170 samples

formed the training set for model training and 10-fold cross-validation,

and 114 samples formed the test set for independent testing.

Classification accuracy was quantitatively evaluated using

metrics derived from the confusion matrix: Overall Accuracy

(OA), Kappa coefficient, Producer’s Accuracy (PA), and User’s

Accuracy (UA). PA represents the ratio of correctly classified

samples to the actual number of samples in a class. UA represents

the ratio of correctly classified samples to the total number of

samples predicted as that class by the model (Murfitt et al., 2016).

2.3.3 Construction of vegetation indices
To enhance the information contained in the spectral bands and

reduce the influence of factors such as soil background, 4 band

combination methods were selected based on previous studies and

as shown in Table 1. All possible combinations of these bands were
FIGURE 5

Average spectral reflectance at different damage stages.
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generated, and Spearman correlations between each vegetation

index (VI) and three damage stages of P. tabuliformis were

analyzed. The VI with the highest correlation in each category

was selected as a classification variable (Ma et al., 2021).
2.4 Significance analysis and variable
importance ranking

Kruskal-Wallis (K-W) tests were applied to the LiDAR metrics

from Section 2.2.3 and the VIs from Section 2.3.3. Variables showing

significant differences across damage stages were selected as inputs in

the combined dataset to construct the RF classification model.

Variable importance in the RF model was assessed using the Mean

Decrease Accuracy (MDA) index. The assessment involved randomly

permuting the values of each variable in the out-of-bag (OOB)

samples and comparing the misclassification rates before and after

permutation (Archer and Kirnes, 2008; Verikas et al., 2011).
3 Results

3.1 Spectral band selection

The SPA-RF results for optimal band selection were shown in

Figure 6. As the number of selected bands increased, the 10-CV
Frontiers in Plant Science 07
ACC of the training set showed small fluctuations. The overall trend

first rose and then fell, eventually stabilizing near 0.76. Considering

both fitting accuracy and band quantity, SPA-RF selected 10 bands:

5 near-infrared (NIR) bands, 4 infrared bands, and 1 ultraviolet

band. At this stage, the training set achieved a 10-CV ACC

of 0.7647.

RF models were built with HSI bands selected based on different

thresholds. Training performance improved with increasing band

numbers. Beyond 21 bands, no substantial increase in training set

10-CV ACC was observed. The ISIC threshold was therefore set to

0.00637. Bands with Di values exceeding this threshold were

removed. A final selection of 21 bands achieved a 10-CV ACC of

0.7647 (Figure 7).

After secondary HSI band screening using ISIC-SPA-RF. the

10-CV ACC reached 0.7647, further increases in band numbers still

caused minor fluctuations of 10-CV ACC around 0.76, with the

overall trend stabilizing (Figure 8A). Based on the ISIC-SPA-RF

results, 1 NIR bands 926 nm, 2 red band 686 nm and 759 nm were

selected (Figure 8B).
3.2 Evaluation of band selection algorithms
and screening of vegetation indices

The SPA-RF, ISIC-RF, and ISIC-SPA-RF methods were applied

for band selection. The classification model was then constructed

using RF based on the selected bands, and its performance was

evaluated with test set accuracy metrics (Table 2).

The RF model based on the ISIC method showed the best

performance. It had the highest OA, Kappa, UAmean, and

PAmean. OA reached 75.44%, and Kappa was 0.63. The SPA

method performed second best. OA and Kappa were 71.05% and

0.57 respectively. The ISIC-SPA method achieved only 70.18% OA.

However, it used only 3 bands. This was much fewer than the 21

bands for ISIC and 10 bands for SPA. Therefore, considering both

accuracy and band number, the 3 band ISIC-SPA method was

selected for further vegetation index construction.
FIGURE 6

(A) Number of bands selected by SPA and 10-CV ACC of the training set; (B) SPA selected bands.
TABLE 1 Vegetation indices selected.

Vegetation index Formula

NDSI (Rx1 − Rx2)
(Rx1 + Rx2)

DSI Rx1 − Rx2

RSI Rx1

Rx2

RA Rx1

(Rx2 + Rx3)
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Four VIS were constructed based on the spectral bands selected

through ISIC-SPA-RF. Subsequent correlation analysis evaluated

relationships between these indices and tree damage progression

stages. The four VIS with the highest Spearman correlation

coefficients were selected: NDSI (759, 686), DSI (759, 686), RSI

(759, 686), and RA (686, 759, 926).
3.3 Separability analysis of LiDAR metrics
and VIs

The separability of four VIs and ten LiDARmetrics were shown in

Figure 9. The K-W analysis indicates significant differences (P < 0.01)

among the three damage stages for all 14 variables. Between the early

and moderate damage stages, ten variables show overlap at the 25th

and 75th percentiles. For the severe damage stage, five variables

overlap at the 25th and 75th percentiles with the other two stages.

Eleven variables differ significantly (P < 0.01) between the early and

moderate damage stages. However, no significant differences are
Frontiers in Plant Science 08
observed for elev_percentile_10th, elev_percentile_20th,

elev_percentile_25th, and elev_percentile_30th, which may hinder

the detection of early damage stages. Variables with significant

differences (P < 0.01) were used as single or combined datasets to

build RF classification models.
3.4 Classification results for different data
sources

The confusion matrix displayed classification results using VIs

and LiDAR metrics as input data (Figure 10). The RF model using

VIs as input data achieved an OA of 72.81% and a Kappa of 0.59.

The severe stage showed the best classification performance, with an

accuracy of 93.94%. followed by the mild stage, with an accuracy of

80.49%. The moderate stage achieved an accuracy of only 47.50%.

The RF model constructed using LiDAR metrics achieved an OA of

71.05% and a Kappa of 0.56. Among the mild, moderate, and severe
FIGURE 7

(A) Number of bands selected by ISIC and 10-CV ACC of the training set; (B) ISIC selected bands.
FIGURE 8

(A) Number of bands selected by ISIC-SPA and 10-CV ACC of the training set; (B) ISIC-SPA selected bands.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1664466
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2025.1664466
stages, the severe stage achieved the highest accuracy of 75.76%. The

moderate stage showed the lowest accuracy of 65.00%.

The classification model built with the combined dataset of HSI

bands and LiDAR metrics achieved an OA of 83.33% and a Kappa

of 0.75, with the confusion matrix shown in Figure 10. The severe

stage showed the best classification performance with an accuracy

of 96.97%. The mild stage achieved an accuracy of 82.93% with

eight samples misclassified as moderate. The moderate stage

exhibited the poorest classification results. Compared to using VIs

alone, this method increased OA by 10.52%, improved accuracy for
Frontiers in Plant Science 09
mild and severe stages by 2.44% and 3.03% respectively, and raised

accuracy for the moderate stage by 25%.

The importance ranking of selected features using MDA in the

RF model is shown in Figure 11. DSI (759, 686) was the most

important HSI variable. Among LiDAR metrics, the elev_AII_5th is

the most significant.
4 Discussion

This study used LiDAR and HSI data, combined with the

bioecological characteristics of Dendrolimus spp. damage. Based

on the defoliation percentage of P. tabuliformis, trees were classified

into three damage stages: mild, moderate, and severe. Focusing on

early stage damage caused by newly hatched or overwintering

larvae, monitoring was conducted at the single tree level. The

results showed that integrating LiDAR and HSI data improved

the early detection accuracy ofDendrolimus spp. compared to single

datasets, achieving effective results in identifying damaged trees.
TABLE 2 Test set performance of RF models constructed with different
band selection algorithms.

Arithmetic N OA Kappa PAmean UAmean

SPA 10 71.05% 0.57 72.59% 70.58%

ISIC 21 75.44% 0.63 76.34% 75.45%

ISIC-SPA 3 70.18% 0.55 71.03% 70.52%
FIGURE 9

Vegetation indices and LiDAR metrics across three stages of damage. The symbol * indicates significant differences between mild and moderate
stages.
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FIGURE 10

Confusion matrix results of RF classification.
FIGURE 11

Variable importance ranking based on MDA.
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4.1 Optimal band selection for
hyperspectral

Among the bands select algorithms, the ISIC-SPA-RF method

selected 3 bands, far fewer than the 10 bands of SPA-RF and the 21

bands of ISIC-RF, and achieved the best classification performance

on the test dataset.

The ISIC-SPA-RFmethod selected four optimal bands at 686 nm,

759 nm and 926 nm. The 686 nm and 759 nm bands are red-edge

bands linked to chlorophyll content and leaf area index (LAI)

(Gholizadeh et al., 2016; Tao et al., 2020). HSI data were collected

in early June during the peak feeding period of Dendrolimus spp., a

period characterized by severe needle loss and reduced chlorophyll

content. As defoliation increased, a blue shift in the red-edge bands

occurred, resulting in higher reflectance. Meanwhile, severe needle

loss reduced tree transpiration and water content (Li et al., 1997),

resulting in lower reflectance in the NIR bands at 926 nm. When HSI

and LiDAR data are combined, DSI (759, 686) was the most

important HSI variable, matched the biophysical processes of

Dendrolimus spp. damage in trees, and clearly showed differences

between damage stages. The bands after dimensionality reduction

and the constructed VIs achieved high accuracy. However, in

practical applications, HSI data acquisition is costly, with large data

volume and complex image processing. UAV based multispectral

data (MSI) can replace HSI for band data collection. MSI and HSI not

only show strong band compatibility but also reduce costs, improve

processing efficiency, and facilitate large scale forest monitoring.
4.2 Integration of HSI and LiDAR data

HSI data effectively monitor Dendrolimus spp. damage in trees.

Previous studies by Zhang et al. used HSI data and partial least

squares regression (PLSR) to model needle loss in P. tabuliformis,

achieving an R² of 0.8061 for mild to moderate damage stages (DP ≤

40%) (Zhang et al., 2018). Bai et al. used spectral indices with multiple

regression to quantify DP, yielding an R² value of 0.7860 (Bai et al.,

2016). In comparison, the RF classification model developed in this

study using hyperspectral data achieved an OA of 72.81%, with

80.49% accuracy for mild damage stages. The improved monitoring

performance at early stages may be due to three reasons. First,

compared to prior research, the classification standard was based

on the effect of DP on volume growth in P. tabuliformis. At 30% DP,

no significant growth reduction occurred; instead, enhanced tree

height, apical shoot growth, and lateral shoot growth may have been

detected. At 50%DP, a highly significant volume growth decrease was

recorded. Using these thresholds, damage stages of P. tabuliformis

were classified. Greater differences in DP between damage stages were

present compared to conventional standards. Zhang et al. used only

12 mildly damaged samples, whereas 103 such samples were analyzed

in this study, with regression analysis replaced by RF classification.

These differences in sample size and methodology may explain the

result variations.

The confusion matrix results show that LiDAR data can detect

trees damaged by Dendrolimus spp., with an OA of 71.05%. In
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comparison, He-Ya et al. achieved 62% OA using LiDAR data and

support vector machine (SVM) classification in a study on

Dendrolimus superans (He-Ya et al., 2024). This difference may

arise on one hand from variations in LiDAR point cloud density.

The point cloud density during our data collection was 189 points/

m², while that of previous studies was 70 points/m². Additionally,

tree canopy occlusion reduces lower canopy point cloud density

(Hamraz et al., 2017), leading to incomplete 3D tree models and less

accurate structural parameter extraction (Cateanu and Ciubotaru,

2021). On the other hand, He-Ya et al. used only LiDAR height

metrics, not intensity or density metrics. Our study focused on P.

tabuliformis as the host species, whereas their study focused on

larch. These differences in host tree species may have affected the

classification results. LiDAR is less affected by environmental

factors and has low requirements for illumination conditions.

Additionally, the typically short peak feeding phase of

Dendrolimus spp. and its rapid spread necessitate monitoring of

large forest areas. LiDAR is less affected by environmental factors,

allowing data acquisition even on cloudy days while covering wide

areas during collection. When HSI or MSI are restricted by weather

conditions, monitoring requirements can be met by using

LiDAR alone.

Combining HSI and LiDAR data improved the classification

accuracy of damaged trees, achieving an OA of 83.33%. This

represents an 10.52% OA improvement compared to using VIs

alone. The recognition accuracy for three damage stages increased

by 2.44%, 25%, and 3.03%, respectively, with the mild damage stage

reaching 82.93%. Although the classification performance for the

moderate damage stage showed the greatest improvement, its

accuracy remained the lowest, not exceeding 80%. Firstly, the

moderate stage is a transitional phase between the mild stage and

severe stage, with a highly variable mixture ratio of healthy to

damaged needles. Trees with a DP close to 30% exhibit spectral and

structural characteristics similar to the mild stage, while those with

a DP near 50% are more similar to the severe stage, and lack typical

and uniform characteristics unlike the other two stages. Various

variables may exhibit greater variability within the group. Secondly,

two-dimensional HSI imagery only monitors the upper part of the

canopy, while damage from Dendrolimus spp. generally begins in

the lower part of trees. This may cause changes in canopy spectral

features during the moderate damage stage to lag behind the actual

damage condition. Additionally, misclassification of damage stages

due to human error during DP assessment further increases the

difficulty of accurate classification.

The integration of the two datasets demonstrates complementary

advantages. HSI band-combined VIs reduced background

interference (Qiao et al., 2020), enhance vegetation information in

spectral data, and effectively monitor spectral changes caused by

physiological variations such as leaf yellowing, chlorophyll reduction,

and water stress. LiDAR quantifies structural information linked to

the damage characteristics of Dendrolimus spp. The elev_AIH_5th

metric in LiDAR describes structural features of the lower tree layer.

This may link to Dendrolimus spp. overwintering on the leeward side

of trees, nearby stones, and leaf litter. These insects climb trees the

next year and first affect lower needles. Additionally, damaged trees
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showed reduced water content and lower NIR reflectance. This

decreased LiDAR point cloud intensity, causing intensity metrics to

decline with higher defoliation rates. The int_kurtosis metric reflects

heterogeneity in point cloud intensity distribution. This occurs

because Dendrolimus spp. feeding reduces needles and increases

exposed trunks. When weather allows, forest areas are small, or

higher accuracy is needed, combining HSI and LiDAR allows

physiological and structural data to complement each other,

providing more accurate and reliable damage data.
4.3 Shortcomings and improvements

The integration of hyperspectral and LiDAR data enhanced the

early monitoring accuracy for Dendrolimus spp., enabling reliable

detection of trees at mild damage stages, though further optimization

is warranted. During hyperspectral data collection, manual selection

of tree crown ROIs may have introduced errors. Future studies

should incorporate canopy segmentation algorithms to eliminate

such subjective bias and enable efficient spectral data extraction

from larger forest areas. This study was limited by its sample size

and geographical scope. The restricted scale may affect the model’s

generalizability across diverse geographical environments, forest

stand structures, and site conditions. Subsequent research should

establish sample plots across broader regions to validate and optimize

the classification model. Furthermore, data collection was limited to a

relatively short time window due to constraints in flight equipment

and local pest control operations. Future work will explore long-term

time-series monitoring using MSI and RGB as primary data sources

to reveal the spatiotemporal dynamics of Dendrolimus spp. damage.

We will also further investigate the relationship between LiDAR data

and the biophysical processes of Dendrolimus spp. damage, and

integrate LiDAR with MSI or RGB data to improve early detection

accuracy and coverage in forest areas.
5 Conclusions

Effective forest pest management supports sustainable forest

development. The combination of HSI and LiDAR technologies

provided a novel approach for early monitoring of Dendrolimus

spp. infestations. This study used HSI data to capture spectral

features of damaged trees and LiDAR data to obtain structural

features. red and NIR bands were more sensitive to Dendrolimus

spp. induced tree damage than other bands and were more effective

for vegetation index development. Using LiDAR data alone

achieved an OA of 71.05% in distinguishing damaged trees,

confirming its capability to monitor Dendrolimus spp. damage.

Combined HSI and LiDAR data improved monitoring results. The

accuracy in detecting trees at mild damage stages increased by

2.44% and 9.76% compared to using VIS or LiDAR metrics alone,

with an OA of 83.33%. The integration of HSI and LiDAR enhanced

monitoring precision at the individual tree stage, offering a vital

technical solution to prevent Dendrolimus spp. outbreaks.
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