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India is an agro-based country. The major goal of agriculture is to produce
disease-free healthy crops. For Indian agronomists, cotton is a profitable
commercial and fibre crop, it is the world’'s second-biggest export crop after
China. Cotton production is also affected in a negative way by high use of water,
authority of soil erosion and the practice of using dangerous fertilizers and
pesticides. The two greatest threats to the rapid growth of the crop are the
sucking bugs and cotton diseases. Prompt detection and accurate identification
of diseases is vital to ensure healthy crop growth and achieve better yields. The
primary objective of this research is to build a model by implementing deep
learning-based approaches to spot infections in cotton crops. Deep learning is
used because of its exceptional results in classification and image processing
tasks. To address this issue, we developed CottonNet-MHA a novel deep
learning framework to identify pathological symptoms in cotton leaves. The
model employs multi-head attention mechanisms to strengthen feature learning
and highlight the diseased-affected regions. To evaluate the performance of the
proposed model, five pretrained transfer learning architectures—VGG16, VGG19,
InceptionV3, Xception, and MobileNet were used as benchmark models.
Furthermore, Gradient-weighted Class Activation Mapping (Grad-CAM)
visualization was applied to enhance the trustworthiness and interpretability of
the model. A web-based application was developed to deploy the trained model
for real-world applicability. The performance analysis is carried out on the
developed model based on the conventional models and the results indicate
that CottonNet-MHA dominates the conventional models with respect to its
accuracy as well as efficiency in the detection of diseases. The use of attention
mechanisms approach strengthens the model's diagnostic accuracy and overall
reliability. Grad-CAM results further demonstrated that the model effectively
targets diseased areas, enhancing interpretability and reliability. Discussion: The
study shows that CottonNet-MHA not only automates disease detection but also
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enhances interpretability through Grad-CAM analysis. The developed web
platform allows the model to be applied in real-world environments,
supporting live disease monitoring. The proposed framework not only
improves the accuracy of cotton disease diagnosis but also offers potential
for extension to other crop disease detection systems.

KEYWORDS

deep learning, CNN, transfer learning techniques, cotton plant, cotton disease,
agriculture, Gradient-weighted Class Activation Mapping (Grad-CAM)

1 Introduction

Around 70% of individuals residing in rural and semi-urban
regions rely heavily on agricultural resources and agriculture is the
key origin of their livelihood (Arjun, 2013). Cotton is a cash crop
that has a big impact on India's economy. Due to India's varied
environment, farmers cultivate a range of crops, including
horticulture, cash crops, food crops, plantations, and numerous
others (Rajasekar et al., 2021). In India, the agriculture sector has a
big influence on the economy. Prompt detection and assessment of
crop infections is very crucial in agriculture operations
(Vallabhajosyula et al., 2022).

Every year, farmers suffer significant financial losses due to crop
disease. Consequently, prompt, accurate, and timely disease
identification reduces product loss and enhances product quality.
Consequently, it contributes to the nation's economic expansion
(Shrivastava et al., 2019). Various computer vision algorithms are
available to identify plant diseases effectively (Wang et al., 2017). In
contemporary agriculture, there are two distinct phases: the first
phase, which covers the years 1943 to 2006, and the second phase,
which began in 2012 and primarily applies deep learning ideas for
detection. During the early phase of neural network evolution, key
techniques such as Backpropagation, Chain Rule-based learning,
and the Neocognitron architecture were developed (Saleem et al.,
2019). Deep Learning (DL) methods like AlexNet, ResNet, Segnet,
YOLO, UNet, and Fast R-CNN were implemented in the second
stage (Shrivastava and Pradhan, 2021; Pandian et al., 2022). Deep
learning algorithms have become the driving force behind modern
Al-based computer vision, offering a significant advancement over
traditional machine learning methods that relied heavily on
manually crafted feature extraction. These advanced models learn
to extract relevant features directly from raw data.

Recent advancements in remote sensing, computer vision, and Al
have significantly enhanced the capability to analyze complex image
data across diverse domains. Studies have demonstrated innovative
applications of deep learning in remote sensing, terrain mapping, and
environmental monitoring (Xu et al., 2023; Wang et al., 2024; Lu
et al, 2025; Tu et al,, 2024; Gong et al, 2024). These developments
collectively emphasize the growing potential of AI-driven models for
image-based agricultural analysis, such as cotton disease detection.
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Many researchers employed well-known deep learning
architectures for plant disease classification, including AlexNet,
VGGNet, InceptionV3, ResNet, and DenseNet (Nigam et al,
2023; Too et al, 2018). Deep neural approaches are extensively
utilized in diverse applications like image processing, autonomous
driving, healthcare, and more.

One notable limitation of deep neural architecture is its reliance
on large volumes of data for effective model training. When datasets
contain only a small number of images, the model's performance
tends to suffer. Transfer learning offers a solution to this issue, as it
allows networks to be trained with significantly less data. Transfer
learning facilitates the learning of a new task by utilizing the
information acquired from a related prior task. Its key advantages
include optimized training process, better generalisation
performance, lowers resource consumption and simplifies the
development process of deep learning systems (Hassan et al.,
2021; Pandian et al., 2022).

In recent decades, extensive research efforts have focused on
identifying various Phytopathological conditions, resulting in the
development of several deep learning-based models to analyse
images (Wang et al, 2019). Due to the usage of laboratory
conditioned dataset, this work is currently experiencing a
significant problem. The images in this case did not generalize to
real field images because they were generated in a lab for training
and assessment purposes. Model performance was significantly
impacted by the high complexity of real plant images. The
selection and extraction of features are challenging, as overlapping
features in images complicate their identification (Krishnakumar
and Narayanan, 2019). Identification of the plant disease at an early
stage is important to prevent from spreading rapidly. Farmers apply
poisonous drugs to control diseases in plants. We consume these
harmful drugs into our daily routine. The use of dangerous
chemicals in agricultural operations can be greatly decreased or
perhaps eliminated with early diagnosis of plant diseases.

The remaining sections of the paper are organized as follows:
Literature Review, Proposed methodology, Classification models,
Data set and implementation details, Results and Discussion,
Responsive Web Application Development, GRAD-CAM Analysis,
Comparative Analysis, Computational Efficiency and Resource
Utilization, and Conclusion and Future Scope.
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TABLE 1 Summary of the literature review.

10.3389/fpls.2025.1664242

Study Model Objective Results
Rastogi et al., 2024 CNN Classify diseases in potato, tomato & pepper for CNN achieved 86.21% accuracy on Plant Village
timely treatment dataset; supports yield & sustainability.
Zhou et al., 2024 REM- Lightweight model for crop leaf disease detection in Achieved 96.72% accuracy & 96.62% F1; better than
ShuffleNetV2 real- field conditions. DenseNet121 & EfficientNet;
efficient & robust.
Islam et al., 2023 VGG-16, VGG- Transfer Learning models for cotton leaf disease Xception achieved 98.7% accuracy; effective for

Zhang and Wang, 2023

Borhani et al., 2022

Zhu et al., 2022

19, Inception-V3, Xception

BERT-BiGRU-

CapsNet with Attention
Pooling

(BBGCAP)

Vision Transformer (ViT)

VGG16,
ResNet164, DenseNet40

detection & web-based real-time prediction

Classify agricultural queries on crop diseases & pests

Lightweight DL model for real-time plant disease
classification

Optimize cotton disease detection using pruning,
transfer learning & model compression for mobile
devices

disease diagnosis & scalable web deployment.

Achieved >90% precision, recall, F1; efficient for
real-time Q&A.

Outperforms CNNs in F1, recall, precision with
fewer parameters; balances accuracy & speed.

Pruned DenseNet40 achieved 97.23% accuracy;
transfer learning after compression improved results;
87 ms

response time suitable for low- resource devices.

Ahmed, 2021

Tiwari et al., 2021

Sharma et al., 2020

DCPLD-CNN

DenseNet

F-CNN & S-CNN

Develop CNN-based model for detecting cotton
diseases (bacterial blight, rolling-leaf
disorder)

Automate plant disease detection using dense CNN
to overcome limitations of traditional methods

Improve disease detection via segmentation for
robust CNN-based diagnosis

Achieved 98.77% accuracy using transfer learning &
augmentation; reduces need for
manual diagnosis.

Achieved 99.58% accuracy, high specificity (99.97%),
real-time processing; effective for automated
identification

S-CNN (segmented images) achieved 98.6%
accuracy, reduced misclassification, more
robust than F-CNN

Chen et al,, 2020 INC-VGGN Enhance plant disease detection using transfer Achieved 91.83% validation accuracy; efficient for
learning (VGGNet + Inception) with fewer labeled real-time monitoring & computer-aided diagnosis
datasets

Geetharamani and Deep CNN Develop a 9-layer CNN for accurate plant leaf Achieved 96.46% accuracy; outperformed traditional

Pandian, 2019 disease classification ML models using data augmentation

Jiang et al., 2019 INAR-SSD Develop real-time apple leaf disease detection using Achieved 78.80% mAP & 23.13 FPS for five apple
enhanced CNN (Inception + Rainbow leaf diseases; improved speed & precision for on-
concatenation) field use

Barbedo, 2019 GoogLeNet Improve plant disease detection by focusing on leaf Achieved 12% accuracy improvement; emphasized
lesions using CNNs and a dataset diversity, collaboration,
large dataset (46,409 images, 79 diseases, 14 species) | and citizen science for better real-world

Zhang et al., 2019 TCCNN Improve vegetable leaf disease diagnosis by Achieved higher accuracy without manual

Barbedo, 2018

Lu et al,, 2017

Dyrmann et al.,, 2016

LeNet, AlexNet, GoogLeNet,
VGG

Deep CNN

Deep CNN

addressing segmentation & background issues using
RGB channels

Examine factors influencing DL performance in
plant disease detection and adoption challenges

Develop automated rice disease diagnosis using
CNNs with standard digital cameras for early
detection

Use CNNs for precise weed and crop species
recognition to improve site-specific weed
control

segmentation; robust against lighting & background
interference

Identified intrinsic/extrinsic factors (dataset
diversity, misclassification, covariate shift) impacting
accuracy; emphasized practical adoption

issues

Outperformed conventional methods with 95.48%
accuracy,
faster training, and user-friendly application

Classified 22 weed & crop species with 86.2%
accuracy, outperforming earlier
approaches

Frontiers in Plant Science

03

frontiersin.org


https://doi.org/10.3389/fpls.2025.1664242
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hassan et al.

2 Literature survey

The accuracy of deep learning models has significantly
increased because of the widespread application of transfer
learning in computer vision, especially for identifying diseased
cotton plants. A preliminary literature review was conducted to
examine existing studies and methodologies in plant disease
detection, focusing on models, objectives, research gaps, findings,
limitations, and future scope. A summary of the reviewed literature
is presented in the Table 1. The objective of this review was to
evaluate various approaches, techniques, and algorithms employed
by researchers in this domain. Notably, a large amount of research
has demonstrated how transfer learning can improve the detection
of diseased cotton crops when deep learning frameworks are used.

Rastogi et al. (2024) proposed a Convolutional Neural Network
(CNN) which aims to develop a plant disease classifier for potato,
tomato, and pepper bell plants to precisely identify diseases and
provide prompt treatments for more robust crops. It draws
attention to the necessity of more accurate techniques, cutting-
edge tactics including transfer learning, machine learning
integration, and resolving system limitations for increased
performance and generalization in CNN-based plant disease
identification. The paper shows how AI may increase crop yields,
lower losses, and support sustainable agriculture in India by
exhibiting the success of a CNN-based model with 86.21%
accuracy on the Plant Village dataset. Despite improving CNN-
based plant disease detection, the study has some drawbacks,
including a narrow illness scope, limited generalization, real-
world complexity, scaling problems, dataset dependency, and the
need for additional research for wider applicability. To improve
model performance and practical usability for farmers, further
studies on plant disease detection with CNNs should focus on
transfer learning, real-time detection, optimisation strategies, and
advanced ML integration.

Zhou et al. (2024) proposed REM-ShuffleNetV2, an improved
lightweight model based on ShuffleNetV2 that provides accurate
crop leaf disease detection in challenging field circumstances.
According to the results, REM- ShuffleNetV2 performs better in
crop disease detection than models such as DenseNetl21 and
EfficientNet, obtaining superior accuracy (96.72%) and F1 score
(96.62%). It also has improved efficiency, attention mechanisms,
and robustness, making it a useful tool for raising agricultural
productivity. The study outlines future to expand datasets, improve
model efficiency, and enable real-time agricultural applications,
while acknowledging limitations like the need for broader
environmental evaluations, limited disease sample types, and
deployment challenges on mobile devices and field robots. To
increase agricultural disease detection's practicality and resilience
in agriculture, future research will focus on expanding data
collection, creating effective deep learning models, optimizing for
mobile deployment, integrating into autonomous systems, and
testing in a variety of environments.

The goal of Islam et al. (2023) is to lower the crop losses and
boosting cotton production in areas like Bangladesh, the suggested
deep learning-based cotton leaf disease identification method makes
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use of improved Transfer Learning models (VGG-16, VGG-19,
Inception-V3, and Xception) to boost accuracy and facilitate a web-
based intelligent system for real-time prediction of plant diseases.
The study demonstrates that refined deep learning models—
particularly Xception, which has an accuracy of 98.70%—
effectively identify cotton leaf diseases, facilitate real-time
predictions through a web-based application, and provide a
scalable framework for crop disease diagnosis. Despite its high
accuracy, the suggested cotton disease detection model has
drawbacks, including class imbalance, poor flexibility, insufficient
feature extraction, and the requirement for sophisticated image pre-
processing techniques like segmentation, which highlight areas for
further development. To increase agricultural productivity and
sustainability, future research on cotton disease detection should
address class imbalance, improve feature extraction, integrate
advanced pre-processing, improve adaptability to novel diseases,
integrate IoT for real-time monitoring, expand to other crops, and
investigate hybrid deep learning approaches.

To enhance the accuracy and effectiveness of agricultural query
classification, Zhang and Wang (2023) present BERT-BiGRU-
CapsNet with Attention Pooling (BBGCAP), a unique approach
for categorizing inquiries pertaining to crop diseases and pests using
BERT, BiGRU, attention pooling, and CapsNet. The report
emphasizes the need for integrated research to improve
classification and apply deep learning in agricultural Q&A
systems by highlighting research gaps in crop disease and pest
classification, including fragmented knowledge, limited datasets,
complex queries, and real-time processing demands. According to
the results, the BBGCAP model yields better performance
compared to existing conventional techniques in the classification
of agricultural diseases and pests, with over 90% precision, recall,
and F1 scores. Its efficient architecture and enhanced performance
on larger datasets make it a useful tool for real-time agricultural
Q&A systems. To recommend areas for future optimization, the
document identifies constraints such as the inability to handle
complex semantic information, the dependence.

on big datasets, the limited applicability outside of agriculture,
and the difficulties in accessing fragmented knowledge. To increase
the BBGCAP model's efficacy in agricultural Q&A systems and pest
management tactics, the paper makes several recommendations for
improvements, such as optimization, data augmentation,
knowledge graph integration, fine-tuning BERT for agriculture,
ensemble learning, and adding multi-modal data.

Borhani et al. (2022) aims to design a lightweight deep learning
model based on Vision Transformer (ViT) for real-time
classification of plant diseases, enabling farmers to act early and
preserve agricultural productivity which provides visual
information. The report identifies research gaps in automated
plant disease classification. These include the need to advance
multi-label classification and object localization techniques,
optimize real-time prediction speed, balance lightweight models
with transfer learning, address imbalanced datasets, and adapt
domains for small datasets. The report highlights the balance
between prediction accuracy and speed, input image resolution,
and real-world usability to support more effective crop
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management. It also shows that the Vision Transformer (ViT)
Model 4, which has transformer blocks, performs better than
conventional CNNs in Fl-score, recall, and precision with fewer
parameters. The paper lists the drawbacks of the Vision
Transformer-based method for classifying plant diseases, such as
speed and accuracy trade-offs, computational demands on smaller
datasets, difficulties with generalization, and problems with image
quality, multi-label classification, and unbalanced data. It also
identifies areas that require more study. To enhance the efficiency
and resilience of agricultural automated plant disease identification
systems, future research proposes combining object localization and
multi-label classification networks with the collection of well-
labeled datasets.

To improve accuracy and efficiency through pruning methods,
transfer learning, and model compression, Zhu et al. (2022) intends
to create an optimized cotton disease identification method utilizing
deep convolutional neural networks (DCNN) for deployment on
mobile and smart devices with low resources. The report identifies
research gaps in the areas of evaluating transfer learning and model
compression, balancing accuracy, and efficiency, addressing
imbalanced datasets in disease classification, optimizing model
deployment for resource-constrained devices, and investigating
novel architectures for various agricultural scenarios. With an
average response time of 87 ms, the study showed that pruned
models are feasible for effective, precise disease identification on
resource- constrained devices. It also discovered that pruning
DenseNet40 for cotton disease identification achieved 97.23%
accuracy, with transfer learning following model compression
outperforming the reverse approach. Several challenges are
associated with applying pruning techniques to deep learning
models for cotton disease identification such as the
generalisability of pruning and transfer learning, the variety of
datasets, the specificity of pruning techniques that might not fully
address accuracy in complex or uncommon disease cases, and
difficulties deploying on devices with limited resources. Future
research directions for cotton disease identification are suggested
in the document. These include hybrid models, lightweight
networks, sophisticated pruning algorithms, real-time learning,
unsupervised learning, multi-modal data integration, and
enhanced data augmentation to improve model accuracy,
efficiency, and adaptability for agricultural applications based on
smart devices.

The goal of Ahmed (2021) is to create the Diseased Cotton Plant
Leaf Detection Convolutional Neural Network (DCPLD-CNN)
model for the autonomous identification of cotton plant diseases,
including bacterial blight and a new rolling-leaf disorder, by making
use of deep learning and convolutional neural networks. As a result,
manual expert evaluations will no longer be necessary, allowing for
rapid and accurate diagnosis. The paper highlights several
important research gaps in the recognition of cotton plant
disorder, such as the dearth of data, the requirement for region-
based segmentation, the dependence on conventional image
processing, and the need for improvements in methodology, data
collection, and automatic feature extraction. The DCPLD-CNN
model, which has a 98.77% accuracy rate in cotton disease
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diagnosis, is introduced in this work. This model demonstrates
how pre-trained models, data augmentation, and transfer learning
can enhance disease diagnosis and support crop management. This
research points out shortcomings in generalization, model
robustness, expert dependency, and data scarcity, indicating the
need for larger datasets and better real-world application for more
thorough disease detection in various agricultural contexts. To
enhance the accuracy, usability, and real-world application of
cotton plant disease recognition systems, future research
directions include identifying disease severity, growing datasets,
applying region-based segmentation, integrating cross-disciplinary
insights, creating user-friendly mobile apps, and adding
feedback mechanisms.

Tiwari et al. (2021) proposed a system based on deep learning
that uses a Dense Convolutional Neural Network (DenseNet) to
automate the identification and classification of plant illnesses, the
research aims to address problems like as the inexperience and high
expense of traditional diagnostic processes. The report identifies.

research gaps in plant disease identification, including the
shortcomings of traditional methods., the requirement for a
variety of datasets, integration with autonomous systems for
monitoring in real time, and the necessity of comparative analysis
of deep learning models in different agricultural environments to
verify their effectiveness. In comparison to previous models, the
work shows that a dense CNN is effective for automated plant
disease identification, achieving 99.58% accuracy, real-time
processing, and enhanced metrics (e.g., specificity: 99.97%) on a
variety of datasets. Furthermore, there is potential for its integration
with camera-based systems for continuous monitoring and disease
management. Although the suggested dense CNN for plant disease
identification exhibits remarkable speed and accuracy, it has
drawbacks, such as the requirement for a more varied dataset,
validation in real-world scenarios, and more extensive testing on
unseen photos and other crops to verify its generalizability. The
study makes recommendations for future research on growing
datasets of plant leaf images, creating sophisticated Al systems
using transfer learning and EfficientNet architectures, and
integrating hyperspectral imaging to improve the effectiveness,
precision, and robustness of systems for identifying plant species
and detecting diseases.

To improve automated disease detection for effective crop
management and food security, the Sharma et al. (2020) uses
image segmentation to improve CNN models for identifying
plant diseases. It demonstrates that a model trained on segmented
images (S-CNN) achieves higher accuracy than one trained on full
leaf images (F-CNN). By training CNNss, the study closes a gap in
traditional deep learning models for diagnosing plant diseases with
segmented photos targeted at symptomatic regions. For real world
agricultural applications, this enhances accuracy and robustness
while emphasising the significance of complex data preparation and
segmentation. With the segmented CNN (S-CNN) attaining 98.6%
accuracy, decreased misclassification, increased robustness, and
useful implications for efficient automated disease detection in
agriculture, the study shows that image segmentation greatly
enhances CNN performance for tomato plant disease detection.
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The S-CNN model for identifying plant diseases has drawbacks,
according to the paper. These include difficulties with overlapping
symptoms, a dependence on segmentation quality, a lack of
representation in the dataset, and the need for more extensive
datasets or improved data augmentation to increase accuracy and
consistency. By increasing the precision, robustness, and
generalization of plant disease detection systems, more research
could concentrate on advanced image segmentation, augmented
data sourcing, GANs, multi-task learning, environmental feature
integration, real-time processing, federated learning, and transfer
learning refinements to enhance agricultural practices and
food security.

Chen et al. (2020) proposed INC-VGGN deep transfer learning
architecture aims to enhance accuracy and decrease the need for
expensive labeled datasets and processing resources for plant
disease detection using pre- trained CNN models such as
VGGNet and Inception. To improve precision, decrease
computing complexity, and increase performance in a variety of
agricultural situations, the study highlights shortcomings in
conventional plant disease identification techniques and suggests
utilizing deep transfer learning with the modified CNN architecture
INC-VGGN. Using VGGNet modifications to improve
performance, the paper shows that the INC- VGGN deep transfer
learning architecture is effective for plant disease identification,
achieving 91.83% validation accuracy. It also suggests future
applications in computer-aided diagnosis for plant health
management and real- time monitoring on mobile devices. The
study identifies the drawbacks of conventional plant disease
detection techniques, such as their dependence on expert
judgment, subjective feature selection, lack of diversity in data,
difficulties in gathering sizable labeled datasets, and susceptibility to
background fluctuations, which make it more difficult to create
efficient automated detection systems for agricultural applications.
Real-time mobile deployment, application to computer-aided
diagnosis, improved image processing, investigating advanced
neural network architectures, employing larger datasets,
incorporating environmental context, and investigating
explainable AI techniques for improved model interpretability
and trust are some of the future directions for improving plant
disease identification that are suggested in the document.

Geetharamani and Pandian (2019) aims to create a new type of
deep convolutional neural network (Deep CNN) model that can
reliably and efficiently classify plant leaves as either healthy or ill,
outperforming traditional machine learning techniques. The
objective of the paper is to increase plant disease identification
accuracy by deep transfer learning using CNN models that have
already been trained, such as VGGNet and Inception. This will
decrease the need for expensive labelled datasets and processing
power. This would help with efficient agricultural management.
With the help of data augmentation and reliable metrics, the study
shows that the nine- layer Deep CNN model for plant leaf disease
identification outperforms conventional models with an accuracy of
96.46%. It also makes recommendations for future research,
including the expansion of datasets, application to other plant
parts, and investigation of unsupervised learning for precision
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agriculture. Potential difficulties are deduced from the study, such
as the use of augmented images with little diversity, the emphasis on
disease identification based on leaves, transfer learning constraints,
overfitting risks despite dropout, and the requirement for additional
research to increase dataset size, class diversity, and applicability to
more extensive plant disease scenarios. Future research directions
are outlined in the publication, and they include growing the
dataset, optimizing the model for better performance, applying
the model to different plant components, moving toward the
practical detection of plant diseases, and investigating unlabeled
training techniques to improve generalization.

Jiang et al. (2019) aim is to develop a revolutionary deep
learning method namely INAR-SSD (SSD with Inception module
and Rainbow concatenation) for the real-time identification of
common apple leaf diseases using enhanced convolutional neural
networks. By improving the speed and precision of apple leaf
disease detection, this will benefit the Apple Companies. With an
emphasis on enhancing accuracy, speed, and real-time application,
the study fills a research gap in conventional methodologies and
object recognition algorithms for apple leaf disease diagnosis. This
results in the creation of an improved CNN strategy for useful on-
field detection. The INAR-SSD deep learning model, which
enhances existing methods and promotes sustainable apple
production, is presented in the paper. Using cutting-edge
technologies such as Rainbow concatenation and GoogLeNet
Inception, it can identify five apple leaf diseases in real time with
78.80% mAP and 23.13 FPS. The study highlights the need for
improvements to increase the model's robustness and practicality
by identifying issues such the inability to differentiate between
comparable diseases, vulnerability to environmental influences,
possible overfitting, and a trade-off between speed and accuracy.
Future directions for improving the INAR-SSD model are outlined
in the document. These include the utilization of GANs for
advanced data augmentation, the integration of multi-modal
sensor data, transfer learning, advanced feature visualization, real-
world deployment with feedback loops, and the investigation of
ensemble learning for increased robustness and adaptability.

Barbedo (2018) proposed GoogLeNet by concentrating on
individual leaf lesions using CNNs, the study seeks to improve
plant disease detection. To increase training data diversity and
classification accuracy, a comprehensive dataset of 46,409 photos
from 79 diseases across 14 plant species will be created. The study
draws attention to the deficiency of small, homogeneous datasets
for plant disease diagnosis, highlighting the necessity for more
varied data and recommending citizen science and collaboration to
increase dataset variety and boost the efficacy of deep learning
models. By concentrating on certain lesions and using a diverse
dataset of 46,409 images, the study shows that deep learning,
particularly CNNs, improves plant disease detection accuracy by
12%. It also highlights the importance of data diversity,
collaboration, and citizen science in image annotation for
improved real-world applicability. The study identifies several
barriers to full automation and practical use of deep learning for
the identification of plant illnesses, like sample imbalance,
generalization issues, manual segmentation requirements, dataset
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representativeness, and the resources and time required for data
collection. The study makes recommendations for future
advancements in the identification of plant diseases by utilizing
deep learning, like adaptable network designs, automated symptom
segmentation, innovative data augmentation, citizen science for
data gathering, and cooperation for a wider range of datasets.

To solve segmentation issues and background interference,
Zhang et al. (2019) present a Three-Channel Convolutional
Neural Network (TCCNN) model for vegetable leaf disease
diagnosis. To improve classification accuracy, this model takes
advantage of RGB picture colour information. This study
introduces a three-channel convolutional neural network
(TCCNN) for the recognition of vegetable leaf disease. By using
RGB colour components to improve accuracy without manual
segmentation, the network overcomes drawbacks like poor
segmentation, the requirement for extensive preprocessing, and
sensitivity to lighting changes. This work represents a
breakthrough in agricultural disease surveillance by introducing a
Three-Channel Convolutional Neural Network (TCCNN) for
vegetable leaf disease detection. This network decreases
preprocessing, increases accuracy, and strengthens resilience
against real-world picture variability. The research identifies
opportunities for additional validation by highlighting the
drawbacks of conventional techniques, such as complicated
backdrops and manual segmentation, which may also have an
impact on the TCCNN model for vegetable leaf disease detection.
To enhance the recognition of vegetable leaf diseases, the paper
highlights the necessity of developments in image segmentation and
feature extraction and recommends investigating methods such as
data augmentation, transfer learning, multimodal data, attention
mechanisms, ensemble learning, and real-time monitoring.

To reduce the need for specialized knowledge and provide
farmers with a simple tool for early detection using standard
digital cameras, Lu et al. (2017) suggests building an automated
rice disease diagnosis method that uses Deep convolutional neural
network (CNN) to improve diagnostic speed and precision. To
improve the effectiveness and precision of diagnosis, the research
proposes deep CNNs as a remedy for the inadequacy of
conventional expert knowledge-based rice disease identification
techniques. The study demonstrates how well a CNN-based
model for rice disease diagnosis works, surpassing conventional
techniques in automated detection with 95.48% accuracy, quicker
training, and an intuitive application. To improve the precision of
automated rice disease detection, the research identifies several
obstacles to CNN design optimization, such as the requirement
for sizable, high-quality datasets and the necessity to adjust
parameters. To improve precision and early disease diagnosis, the
paper describes future directions for automated rice disease
identification, with a particular emphasis on investigating other
deep architectures, training techniques, expanding datasets, and
fine-tuning CNN parameters.

By employing Deep convolutional neural network (CNN) for
precise plant species recognition, Dyrmann et al. (2016) seeks to
improve weed management in agriculture by enabling site-specific
weed control and lowering the use of herbicides to increase
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sustainability and yield protection. To overcome the constraints
of manual feature extraction and improve site-specific weed control
for the best herbicide use, the study employs deep convolutional
neural networks (CNNs) to categorize 22 weed and crop species.
The CNN model presented in this work outperformed earlier
research and showed promise for site-specific weed management
in agriculture, classifying 22 weed and crop species with an accuracy
of 86.2%. To create a more reliable and adaptable weed and crop
classification system, the report identifies shortcomings in earlier
research, including restricted species recognition, dependency on
pre-processing, class biases, and data unpredictability. To increase
resilience, accuracy, and efficiency in agricultural applications, the
research makes recommendations for future advancements in the
categorization of weed and crop species. These include improved
data augmentation, transfer learning, multispectral imaging, hybrid
techniques, and real-time processing.

3 Proposed methodology

Figure 1 depicts the complete pipeline of the suggested model.
Three primary steps make up the approach: preparing the data,
training the model with the training dataset, and making
predictions with the test dataset. Each step's specifics are given in
the following subsections.

3.1 Data preprocessing step

* Normalization: Image normalization is a preprocessing
strategy that standardizes the size and pixel range of all
images in the dataset. This procedure is essential to
improving the model's generalizability and facilitating
faster convergence during the training stage.

* Image Transformation: The images are resized to 224x224
pixels to ensure uniform input size and smooth
compatibility with the neural network.

¢ Random Oversampling: Random oversampling helps
correct class distribution issues by expanding the dataset
with repeated samples from the less frequent classes. To
ensure a more balanced dataset, it randomly duplicates
existing samples from the minority class. This method
reduces biases toward majority classes which enhances the
models' performance. However, because repeated samples
do not contribute new information, it can result
in overfitting.

» Splitting of Dataset: To support learning and performance
assessment, the data is divided into segments for testing,
validation, and training.

* a) Training Set: Most of the dataset is used to make the
training set and this training set is used to fine-tune the
model by updating its parameters through repeated
learning cycles.

e b) Validation Set: Using the validation set, the model's
performance is evaluated and its hyperparameters are
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FIGURE 1
Block diagram of proposed methodology.

adjusted. Because it permits evaluation on data that was not
visible at the time of training, it is essential in
avoiding overfitting.

a) Test Set: Test set is used only when model training is
complete the test set is a separate dataset. It evaluates the
final performance and generalizability of the trained model
to fresh data.

Image Augmentation: Image augmentation is the modified
version of the existing data which helps to increase the
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model performance and generalization. To improve both
the volume and variety of training data, data augmentation
techniques are applied. It plays a crucial role in improving
the robustness and minimizing the risk of overfitting. Data
augmentation is mainly used when we are leading with an
unbalanced and limited dataset. Various transformation
techniques like rotating, flipping, zooming, cropping, or
adjusting brightness and contrast are applied to our existing
images, aiming to prevent overfitting, improve model
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robustness, and allow deep learning models to generalize
better when exposed to new or unseen data. Translation
technique helps to learn the model of various positional
contexts of the cotton leaves by shifting the images
horizontally and vertically by 10% of their dimension. We
employed horizontal flipping to generate the mirror images
of the original images, and this technique provides a border
spectrum of visual patterns and also helps the model to
generalize across naturally occurring variations by
strengthening the dataset's diversity.

*  Web application Development: We have developed a web
application using a Python framework, namely Flask, for
deployment and runs DL based applications. This web
application is capable of identifying cotton disease leaves
and plants from healthy leaves and plants based on real-
time data.

* Grad Cam Analysis: We used the Grad Cam analysis
method, which plays a significant role by generating the
heatmaps that indicate the disease region of the cotton plant
and leaves that contribute most of the model’s predictions.
It enhances the trust of plant pathologists by transforming
the abstract neural network output into a visual explanation
and which bridges the gap between AI and human
understanding and makes the diagnosis process more
transparent and reliable.

3.2 Model training phase

Step I: Define the Model:

Using pretrained backbone with custom layers involves
leveraging a pre-trained deep learning model (e.g., VGGI16,
VGG19, InceptionV3, Xception, MobileNet), as a feature
extractor or base for a new model. These pretrained models offer
reliable feature representations because they were trained on huge
datasets like ImageNet. The model is then customized for a
particular task by adding custom layers:

* Reshape: Modifies the tensor's dimensions to fit the
architecture that is desired.

* MultiHeadAttention: Frequently utilized in transformer
topologies, this feature records relationships between
various input components. MultiHeadAttention enables
the model to focus on multiple regions of the cotton leaf
images simultaneously. Multi Heda attention allowing to
capture the contextual information from various spatial
locations. By applying attention across multiple heads, the
model can easily identify the different features and that
improve the ability to detect the subtle patterns hat may be
indicative of disease.

* Dropout: During training, neurons are randomly dropped
to lessen overfitting.

* Regularization layers: By penalizing excessively complex
models, they help avoid overfitting.
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This method blends task-specific modifications with the
effectiveness of transfer learning.

1. Pretrained Model: By leveraging previously learnt generic
characteristics (such as edges and textures), models like
MobileNet or VGG16 that have been pretrained on sizable
datasets like ImageNet can speed up training. Through fine-
tuning, this method enhances model performance on certain
tasks while lowering the computational load and requiring a
big dataset.
2. Unfreeze Specific Layers: To maintain generic properties like
edges and textures, previous layers of a pretrained model are
usually frozen in transfer learning. To adapt the model to a new
task, deeper layers that capture more task-specific patterns can
be unfrozen and adjusted, allowing for effective learning
without erasing fundamental features.
3. Custom Layers: Add task-specific layers to a pretrained
backbone to improve it:
o Reshape: Transforms 2D features into attention-
mechanism sequences.
» MultiHead Attention: Improves feature extraction by
concentrating on key areas.
« Dropout: During training, neurons are randomly
deactivated to prevent overfitting.
o Regularization (L2): By penalizing big weights, it
prevents overfitting.
o Dense Layers: Incorporate fully connected layers
according to the task's output dimensions.

4. Learning Rate Scheduler: Modifies the learning rate to
improve convergence during training.

*  Warm-Up: To stabilize the model early on, it starts with a
low learning rate.

* Plateau: Maintains a steady learning rate throughout
training phases.

* Decay: Adjusts the model's weights by gradually lowering
the learning rate near the end.

5. Optimizer Configuration: Use an optimizer like Adam, which
adapts the learning rate for each parameter, along with gradient
clipping to prevent unstable updates by limiting large gradients,
ensuring stable training and improved model convergence.

Step II: Compile the Model.

Setting up the model for training entails choosing the metrics (like
accuracy) to assess performance, the optimizer (like Adam) to update
weights, and the loss function (like sparse_categorical_crossentropy)
to measure prediction error. Learning rate scheduling is employed to
dynamically modify the learning rate during training, ensuring stable
updates and better convergence of the model.

Step III: Train the Model.

Once the model is compiled, the next step is to train it using the
augmented data while incorporating monitoring mechanisms to
ensure optimal performance. Each step in this procedure operates
as follows:
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1. Feed Augmented Data: To expand the training dataset, the
original images are subjected to data augmentation techniques.
These include transformations like rotation, flipping, zooming,
and color adjustments. Such variations help the model learn from
diverse patterns, enhancing its ability to generalize and perform well
under real-world conditions.

We expose the model to a wider variety of changes by feeding it
enhanced data which helps it acquire more robust features and
avoids overfitting and it is the process by which a model
memorizes patterns.

2. Monitor Metrics:

* The model's learning progress and generalization strength
are assessed throughout the training phase by monitoring
key performance metrics like accuracy and loss for both
training and validation.

* Validation Loss against Training Loss: Tracking the loss
values during training helps to identify overfitting—an issue
where the model excels on training data and does not work
well with validation data. Instead of learning patterns that
generalize to new inputs, the model has likely memorized
the training data when the training loss is much smaller
than the validation loss.

3. Callbacks:

* Early Stopping: To reduce the chance of overfitting and save
computational effort, the callback mechanism is made to
terminate training early when no additional reduction in
validation loss is seen.

* Learning Rate Adjustment: During training, this callback
adjusts the learning rate. The learning rate is lowered to
enable more precise weight adjustments which aid in the
model's better convergence, if the validation loss stagnates,
that shows no progress after a predetermined number
of epochs.

3.3 Prediction phase

The last stage, the Prediction Phase, tests the model's capacity to
process fresh, untested data. This phase is critical because it gives a
clear measure of how well the model generalizes to real-
world situations.

3.4 Cotton net MHA model

The model architecture is expertly designed and it incorporates
a sequence of convolutional and pooling layers, culminating in a
cutting-edge Multi-Head Attention mechanism that effectively
processes feature maps before the flattening stage. Initially, the
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model employs three effective convolutional layers, using 32, 64,
and 128 filters in each layer. A MaxPooling2D layer, which employs
a pool size of (2, 2), comes after each layer. This improves the
model's ability to recognize and interpret key characteristics. To
prevent overfitting and maintain strong performance, we
incorporate the effective L2 regularization technique. This
advanced architecture is designed to yield outstanding results.

Following the convolutional layers, the feature map undergoes
normalization through a LayerNormalization layer, setting a solid
foundation for the next step. The MultiHeadAttention mechanism
is then employed, allowing for the capture of intricate dependencies
within the feature maps. This advanced attention mechanism
leverages four attention heads, each with a key dimension of 16,
ensuring a robust analysis of the data that enhances overall
model performance.

To effectively reduce the spatial dimensions, we integrate a
GlobalAveragePooling2D layer into the model architecture, which
transforms the output into a concise vector that aligns with the
quantity of channels. This is succeeded by a robust design of two
dense layers featuring 128 and 512 units, both leveraging the
powerful ReLU activation function. To enhance the model's
resilience and combat overfitting, we introduce a GaussianNoise
layer that adds a touch of random noise. After the second dense
layer, a dropout layer with a 0.2 rate is added to enhance the model's
generalization. Lastly, we finish with a dense output layer that has
four units and uses a softmax activation function to precisely
classify the input into one of four classes.

4 Classification models

The following Deep learning models are used for
performance analysis:

4.1 VGG16

Image classification, image recognition, and object
identification are the tasks handled by the VGG16 convolutional
neural network. The network's 16 layers of artificial neurons
analysed image data gradually to improve prediction accuracy.
Rather than employing several hyperparameters, with max pools
of 2x2 filter and stride 2 and 3x3 filter and stride 1, VGG16 use
convolution layers. The entire arrangement makes use of the
convolution and max pool layer architecture. The result
comprises a softmax for output and two fully connected layers.
The final product consists of two completely connected layers and
an output softmax. The time required for model training and
optimization is reduced by the availability of VGG16 as a pre-
trained neural network and its composition and quantity of layers.
Furthermore, the number of layers and its structure provide
extremely precise image categorization findings (Bagaskara and
Suryanegara, 2021).
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4.2 VGGI19

There are 19 weight layers in this relatively deep convolutional
neural network which has 16 convolutional layers and 3 fully
connected layers. Its straightforward architecture and repetition
make it easy to use and comprehend. Non-linearity is added after
each convolution by the function that initiates ReLU and to
preserve spatial resolution, convolutional layers employ 3x3
filters with padding and stride of 1. Max pooling layers can be
used to effectively minimize spatial dimensions. Their filter is two-
by-two, and they are two-steppers. Three fully connected
classification layers make up the network and the final softmax
layer produces the final class probabilities (Bagaskara and
Suryanegara, 2021).

4.3 Inception V3

In 2015, Google unveiled Inception V3, a convolutional neural
network design. To improve performance on image categorization
tasks this improved version of the original Inception model uses
fewer parameters. The Inception V3 architecture uses a "deep stem"
of convolutional layers to take characteristics out of the
input imeage, followed by several inception modules to record
data at various sizes. Inception modules use average and
maximum pooling to extract features and 1x1, 3x3, and 5x5
convolutional filters. To regularizing the model at the network's
end and preventing overfitting, the model also includes dropout,
batch normalization, and a global average pooling layers. A few
image classification tests, such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), have shown that
Inception V3 performs exceptionally well (Hassan et al, 2021;
Too et al., 2018).

4.4 Xception

Francois Chollet at Google created the Deep Learning model
known as Xception or Extreme Inception by further refining and
maintaining the Inception architecture. This deep convolutional
neural network's architecture incorporates depth wise separable
convolutions. Google defined Inception modules as a stage
between the depth wise separable convolution operation and
standard convolution which follows a pointwise convolution after
a depth wise one in convolutional neural networks (Chollet, 2017).
Depth wise Separable Convolution Resembling ResNet's
convolution block shortcuts, this architecture is based on two
essential elements.

The Xception model substitutes depth wise separable
convolution layers which add up to 36 layers for the inception
modules used in the inception architecture. The Xception model
outperforms the Inception V3 model by a small margin on the
ImageNet dataset while it outperforms the latter by a huge margin
on larger datasets with 350 million images.
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4.5 MobileNet

A powerful yet lightweight feature extraction architecture is
MobileNet that was open-sourced by Google (Howard et al., 2017).
It features minimal latency, cheap computing cost, great accuracy
and smaller neural networks. When depth wise separable
convolutions are used, the number of parameters is substantially
reduced in comparison to previous networks that used standard
convolutions and had the same net depth. The resultant deep neural
networks are lightweight. This design makes it possible for
convolutions to be separated based on depth. To produce a depth
wise separable convolution, two procedures are utilized.

1. Depthwise convolution.
2. Pointwise convolution.

MobileNet can serve as the foundation for segmentation,
classification, detection, and embeddings (Linkon et al., 2021).

5 Dataset and implementation details
5.1 Description of dataset

We have collected a freely available dataset from Akash Zade. The
dataset contains 2293 total images. The dataset has been classified
into three categories (i)Training, (ii) Testing, and (iii) Validation as
shown in Figure 2 and Figure 3. Each category has 4 classes: (a)
Disease cotton leaf, (b) Disease cotton plant, (c) Fresh cotton leaf, and
(d) Fresh cotton plant. The training set contains 1951 images, 324
images for validation, and 18 images for testing. After applying
augmentation techniques, the dataset size was increased to 19,520
images, ensuring a more diverse and balanced representation.

Cotton is susceptible to diseases that can damage its leaves and
overall health, ultimately reducing its yield and quality. The
spectrum of diseases includes.

+ Cotton Leaf Curl Disease: A virus spread by whiteflies
causes the newest leaves to become smaller, thicker,
glossy, crinkled, and curl upward.

* Bacterial Blight: Small, angular, water-soaked spots on
leaves that turn brown or black.

* Powdery mildew - The upper leaf surfaces get distorted and
yellowed due to a white, powdery fungal growth.

» Target Spot: Brown, round, concentric-ringed leaf spots
that frequently have a yellow halo around them.

* Aphids: These insects cause young leaves to curl and distort,
and they are frequently covered in sticky honeydew, which
can cause black sooty fungal growth.

The dataset used in this work is downloaded from Akash
Zade (Data Scientist) which is openly accessible and can be
found at: https://drive.google.com/drive/folders/
1vdr9CCIChYVW2iXp6PlfyMOGD-4Um1ue.
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FIGURE 2
Sample dataset of cotton plant disease.
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The dataset comprises four categories of cotton plants with their
distribution illustrated in Figure 4. The diseased cotton leaf category
accounts for 14.8% of the images, while diseased cotton plants make
up 41.8%. Fresh cotton leaves constitute 21.9% of the dataset, and
fresh cotton plants represent 21.6% of the images.

For additional testing, a dataset from Kaggle (Noon et al., 2021)
was utilised, containing images of cotton plants and leaves
exhibiting different diseases as shown in Figure 5. The dataset
includes labelled samples, making it suitable for assessing the
model’s accuracy and ensuring reliable performance across
multiple disease categories. The dataset contains a total of 1710
images and includes four classes. Images of these dataset collected
from real-world scenarios as well as the internet. The link to the

fresh cotton leaf fresh cotton leaf

fresh cotton plant

FIGURE 3
Sample dataset of fresh cotton plant.

fresh cotton leaf

dataset is given below: https://www.kaggle.com/datasets/
seroshkarim/cotton-leaf-disease-dataset

5.2 Tools selection

The proposed model is implemented using Python 3.10.8. Keras
Deep Learning Version 2.9.0 with TensorFlow support is used for
model training. The proposed system uses version 2.10.1 of Tensor
Flow and uses the graphical user interface; numerous trial setups are
conducted to evaluate the performance. A GPU rather than a CPU
is used for testing and training purposes. The proposed model will
be implemented in the Jupyter notebook environment.

fresh cotton leaf fresh cotton leaf

fresh cotton plant
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FIGURE 4
Distribution of cotton plants.
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FIGURE 5
Serosh Karim sample dataset.
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5.3 Implementation details

The following parameters are used for performance evaluation:

Confusion matrix: This table summarizes the performance of the
classification model, which supports both binary and multiclass
classification. Correct predictions are denoted by true positives (TP)
and true negatives (TN), whereas false negatives (FN) and false positives
(FP) represent missed detections and false alarms, respectively.

Accuracy: This metric assess how well a machine learning model
predicts the correct outcome which is expressed in Equations 1 and
2

Correct Predictions

A = 1
couracy All predictions )

A 3 TP+ TN @)
Y =P TN + FP+ EN

Precision: Precision quantifies the proportion of positive
predictions made by the model which is defined in Equation 3. In
other words, precision evaluates the reliability of the model by
indicating the likelihood that a predicted positive case is truly positive.

P

= 3
TP + FP 3)

Precision =

Recall: Out of all the actual positive samples in the dataset, the

frequency with which a machine learning model properly detects

positive instances—also known as true positives—is measured,
which is given in Equation 4.

P

Recall = ——
O = TPy EN

4)
FI - score: This metric is determined by using the harmonic
mean of precision and recall. This approach merge precision and
recall into a single evaluative parameter to maintain the effective
balance between them.
The Fl-score can be mathematically expressed as shown in

Equation 5

2 s Precision * Recall

F1 — Score = (5)

Precision + Recall

Support: Support denotes the number of instances of each class
present in the dataset.

Loss curve: The loss curve, sometimes referred to as the training
loss curve, shows how the performance of the model changes over
time by computing the inaccuracy (or dissimilarity) between the
model's expected and actual outputs. The loss indicates the degree
to which the actual values deviate from the model's predictions.

ROC - AUC Score: Receiver Operating Characteristic Area
Under the Curve is referred to as ROC AUC. It provides a single
value that indicates the overall performance of the classifier across
various classification thresholds. This is the area below the ROC
curve. It summarizes the ability of the model to produce relative
scores for distinguishing between different classes across all
classification thresholds. An ROC AUC value of 0.5 indicates
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random guessing, while a value of 1 represents perfect
classification performance. ROC AUC defines the overall quality
of the model across different thresholds, providing a deeper
understanding of its performance evaluation.

The Table 2 presents a comparison of hyperparameters
between existing models and the proposed model for a deep learning
approach. The significance of each hyperparameter is given below:

* Learning Rate: During training, the learning rate regulates
how much the model modifies its parameters. Although a
greater learning rate (0.0007 in the suggested model)
implies faster updates and might result in faster
convergence, there is a chance that the ideal solution will
be overshot.

* Batch Size: The number of training data points processed
prior to model updates is known as the batch size. Reliable
gradient updates and more effective training could result
from the suggested model's larger batch size (32).

e Number of Epochs: The model's frequency of running
through the complete dataset is determined by the
number of epochs. More epochs are covered by the
suggested model to learn more intricate patterns (50 vs.
10), increasing the chance of overfitting.

e Optimizer: The optimization method Adam (Adaptive
Moment Estimation) incorporates the advantages of
momentum and RMSprop optimizers to enable
efficient training.

* Activation Function: By adding non-linearity using the
Rectified Linear Unit (RLU) activation function, the
model may learn complex patterns.

* Dropout: To avoid overfitting, a portion of neurons are
arbitrarily discarded during training as part of the dropout
regularization strategy. The suggested model appears to
strike a balance between regularization and learning
ability with a marginally lower dropout rate (0.2).

* Gaussian Noise: To provide unpredictability and strengthen
the model, Gaussian noise is employed as a regularization
technique. Gaussian noise has marginally lower noise, the
suggested model may rely more on learnt features than on
chance variations.

» Kernel Size: In convolutional layers, the filter size is referred
to as kernel size. CNNs often use a 3x3 kernel, which strikes
a reasonable compromise between computational efficiency
and collecting local information.

e Loss Function: When working with integer-labeled
categorical data, this loss function is particularly useful for
multi-class classification issues.

» Image Size: For deep learning models like CNNs, the input
image size stays constant at 224 x 224 pixels, which is a
common resolution.

e Multi-head Attention: In transformer-based models,
multihead attention is a system that enables the
simultaneous attention of various input components. By
lowering the number of attention heads from eight to four,
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TABLE 2 Hyperparameters used in deep learning model.

10.3389/fpls.2025.1664242

Value

Hyperparameter
Existing models Proposed model

Learning rate 0.0001 0.0007
Batch size 16 32
Number of epochs 10 50
Optimizer Adam Adam
Activation Relu Relu
Dropout 0.3 0.2
Gaussian noise 0.25 0.2
Kernel size 3x3 3x3
Loss Sparse_categorical_crossentropy Sparse_categorical_crossentropy
Image size 224x224 224x224
Multihead attention 8 4
Early stopping patience 5 6

the suggested model may lower computational complexity
without sacrificing performance.

 Early Stopping Patience: This refers to how many epochs
without progress are required before training is stopped. A
marginally greater patience value (6), the suggested model
can train for longer periods of time before ceasing, perhaps
leading to improved generalization.

The following observations were made while selecting the
hyperparameters for the proposed mobility model:

* The suggested approach emphasizes faster learning and
reliable updates by using a bigger batch size and a higher
learning rate.

* A deeper training process is suggested by the increase
in epochs.

* Confidence in model generalization is shown by lower
Gaussian noise and dropout.

*  More flexibility in training is possible with a little higher
early stopping patience; fewer attention heads indicate an
optimization of computing resources.

6 Result and discussion

In-depth research and data analysis are presented in this
section, which serves as the core of the investigation. The
previous sections provided an overview of the study's objectives
and methodology; now, we focus on the key findings from our
analysis. Using a range of performance indicators, we provide a
clear and insightful review of the deep transfer learning models
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which we have implemented. Advanced optimization techniques,

including learning rate (learning rate = 0.0001), early stopping
(patience 5 epochs), Gaussian noise (¢ = 0.25), dropout
(rate=0.30) and L2 regularization (A = 0.0005), and multi-head
attention (attention heads=10) have been systematically refined to

enhance the efficiency of deep learning models in detecting and

classifying cotton plant diseases.

The effectiveness of many deep learning classifiers in identifying
four classes of cotton plant images—diseased cotton leaf, diseased
cotton plant, fresh cotton leaf, and fresh cotton plant—is contrasted
in Table 3. Metrics like Precision, Recall, F1 Score, Overall
Accuracy, and Test Loss are used to evaluate the models. The
analysis reveals that VGG16 reaches 94% total accuracy with a test
loss of 0.1368, demonstrating strong performance across all
categories. It records the highest F1 score (0.99) for diseased
cotton leaf, while the lowest (0.90) is observed for fresh cotton
plant. In contrast, VGG19 exhibits a lower overall accuracy of 89%
and a higher test loss of 0.2874, with the lowest F1 score (0.91) for
diseased cotton leaf, indicating challenges in classification.

InceptionV3 shows an improved accuracy of 93% with a test
loss of 0.1524. It excels in classifying fresh cotton leaf (Recall: 1.00)
but faces minor difficulties in identifying diseased cotton leaf (F1
score: 0.94). Xception, on the other hand, exhibits better
generalisation with a 96% accuracy rate and a reduced test loss of
0.1317. The model maintains consistently high F1 scores across all
categories, reflecting stable performance.

MobileNet stands out by achieving perfect classification (1.00
F1 score) for diseased cotton leaf and diseased cotton plant,
attaining the overall accuracy (98%) and the lowest test loss
(0.0686), making it a highly efficient model. However, CottonNet-
MHA, a custom model with Multi-Head Attention, surpasses all
models, achieving 99% accuracy across all categories with the lowest
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TABLE 3 Execution of Applied models for cotton data set.

10.3389/fpls.2025.1664242

Overall

Classifiers Class Precision Recall F1 score Test loss
accuracy
diseased cotton leaf 1.00 0.99 0.99
diseased cotton plant | 0.93 0.94 0.93
VGGl16 0.94 0.1368
fresh cotton leaf 0.95 0.94 0.94
fresh cotton plant 0.89 0.90 0.90
diseased cotton leaf 0.96 0.86 0.91
diseased cotton plant | 0.93 0.86 0.90
VGG19 0.89 0.2874
fresh cotton leaf 0.83 0.95 0.89
fresh cotton plant 0.85 0.87 0.86
diseased cotton leaf 0.99 0.89 0.94
diseased cotton plant | 0.97 0.93 0.95
InceptionV3 0.93 0.1524
fresh cotton leaf 0.85 1.00 0.92
fresh cotton plant 0.94 0.91 0.92
diseased cotton leaf 0.96 0.99 0.98
diseased cotton plant | 0.97 0.89 0.93
Xception 0.96 0.1317
fresh cotton leaf 0.99 0.96 0.98
fresh cotton plant 091 0.99 0.95
diseased cotton leaf 1.00 1.00 1.00
MobileNet diseased cotton plant | 1.00 0.99 0.99 0.98 0.0686
fresh cotton leaf 0.94 1.00 0.97
fresh cotton plant 1.00 0.95 0.97
diseased cotton leaf 1.00 1.00 1.00
diseased cotton plant | 1.00 0.98 0.99
CottonNet- MHA 0.99 0.0683
fresh cotton leaf 0.98 0.99 0.98
fresh cotton plant 1.00 1.00 1.00

test loss (0.0683). This indicates superior learning capability and
minimal misclassifications, making it the most effective model
among those evaluated. This evaluation indicates that custom
models like CottonNet-MHA with Multi-Head Attention can
significantly enhance performance in plant disease classification
tasks, making them ideal for practical applications in agriculture.

As shown in Figure 6, the curves produced during the training
and validation stages are also used to assess the models. This implies
the model performed at peak efficiency during this period by
effectively minimising the difference between real and anticipated
values. This indicates that after ten training epochs, the models
reached an optimal state with minimal loss values. At different
epochs during the training process, different models achieved their
highest accuracy.

The performance of the VGG16 model for 10 epochs can be
illustrated in Figure 6.1a-lc. In Figure 6.1a the training accuracy
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starts around 60% and it keeps improving which is an indication of
the ability of the model to learn efficiently from the training data.
Validation accuracy increases even more quickly and levels off at
about 95% after the third epoch. Even though there are vague
fluctuations in the validation accuracy in the middle epochs, it is
following the training curve closely, and from the fourth epoch,
both lines are converging — which suggests that the model is
performing well (not overfitting) to unseen data. Similarly, the
Figure 6.1b reveals that the training loss begins high (>0.8) and
declines sharply in the first few epochs with the validation loss being
on a continual downward progression starting just a little below that
point. These two losses also converge around 0.2 yet again with little
divergence indicating stable and efficient learning with no
overfitting. Moreover, Figure 6.1c ROC curve shows high
multiclass classification ability of the model. All AUC values for
Class 0, 1, 2, and 4 are 1.00, while Class 3 reached 0.99, indicating
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FIGURE 6 (Continued)
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Analysis of models based on their graphical curves. (1a) Model accuracy of VGG16. (1b) Model loss of VGG16. (1c) ROC curve of VGG16. (2a) Model
accuracy of VGG19. (2b) Model loss of VGG19. (2c) ROC curve of VGG19. (3a) Model accuracy of InceptionV3. (3b) Model loss of InceptionV3.

(3c) ROC curve of InceptionV3. (4a) Model accuracy of Xception. (4b) Model loss of Xception. (4c) ROC curve of Xception. (5a) Model accuracy of
MobileNet. (5b) Model loss of MobileNet. (5¢) ROC curve of MobileNet. (6a) Model accuracy of Cotton Net-MHA. (6b) Model loss of Cotton Net-

MHA. (6c) ROC curve of Cotton Net-MHA.

almost perfect class discrimination. The 1.00 of the macro-
average AUC furthers the balanced and robust performance of
the model across every category. All ROC curves are far away from
the random chance line indicating high precision and
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generalization ability of the VGG16 model. Together, these
results help show how VGG16 performs excellent accuracy,
stability in learning, and dependability in multiclass
classification undertakings.
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Figure 6.2a—c characterize the performance of the VGG19
model, where one can see its great effectiveness in multi class
classification tasks. In Figure 6.2a, both the training and
validation accuracy curves have an upward trend and the training
starts at about 58% and converges to around 90%. The path of the
validation accuracy is similar with some fluctuations but shortly
after a few epochs, it matches the trend of the training accuracy
closely. This convergence means that the model does not overfit and
is doing a great job generalizing on unseen data. In Figure 6.2b, we
have a progression of loss for the model, where training loss and
validation loss both drop significantly throughout the epochs and
become steady at approximately 0.27-0.30. The initial fluctuations
in the validation loss disappear in no time, and soon, the two lines
become one, which indicates a non-overfit effective learning
process. Accompanied by these findings, the ROC curve in
Figure 6.2c shows the multiclass test results and reveals
exceptionally high Area Under Curve (AUC) scores - Class 0
(1.00), Class 1 (0.98), Class 2 (0.99), and Class 3 (0.97 These
values represent good values of model performance whereby there
are very low misclassifications for the model to correctly separate
classes. All in all, the VGG19 model is characterized by a high
degree of learning ability and low error rates, and provides excellent
discriminative power which makes it a reliable and well optimized
model which can be used for accurate and reliable classification
of multiclass.

Through accuracy, loss, and ROC characteristics, performance
of the InceptionV3 model is tested as in Figure 6.3a—c. Figure 6.3a is
the training and validation accuracy for 10 epochs. Training
accuracy from the beginning is within the 70% and increases to
approximately 89% after the last epoch. Validation accuracy rises
initially about up to 83% and it peaks around 94% by epoch 7 and
stabilizes. The fact that the validation accuracy is consistently higher
and the gap between the two curves becomes increasingly smaller is
a sign of effective learning where strong generalization and no
overfitting signs are experienced. Figure 6.3b shows the trend of loss
model possesses while training. The training loss is high at the
initial stage (~0.7), but it falls rapidly for the first epochs and then
slowly levels off at ~0.32. Validation loss has the same trend, with
the value of approximately.

0.47 for the first epoch, reaching the minimum point of ~0.21 at
the epoch 7 and then slight increase. Importantly, validation loss is
smaller than training loss, also indicating the good model
generalization to the unseen data. Figure 6.3c depicts the ROC
curves for multiclass classification situation. The performances for
all four classes (Class 0 to Class 3) have an AUC equal to 1.00 i.e.
perfection in class separation. The ROC curves come close to the
upper-left corner of the ROC plot; this is indicative of high
sensitivity and specificity. The macro-average AUC, like 1.00,
pinpoints balanced and excellent performance on all classes.
These results far above random classifier baseline (AUC = 0.5)
support the good discriminative power of this model. Overall, the
InceptionV3 model is characterized by resilient, reliable, high-
performing behaviour on measures of accuracy, loss,
and classification.
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Figure 6.4a shows the training and validation accuracy of the
Xception model over 10 epochs. Training accuracy rises slowly but
steadily to over 90%, whereas the validation accuracy rises and
down but remains higher, peaking over 95%. This means effective
learning and good generalization with no prominent indications of
overfitting. The Xception model loss graph in Figure 6.4b shows a
significant decline of the training and validation loss in 10 epochs.
Loss in training reduces from about 0.6 to below 0.3, which shows
confident learning. Validation loss is more oscillating but overall, it
decreases severely until it achieves the minimum at epoch 8
approximately. The irregular spikes in the loss for validation (at
epoch 6) imply slight instability, but the underlying trend indicates
good learning and low overfitting tendency. The ROC curve
presented in Figure 6.4c shows the performance of the Xception
model on a multiclass classification task.

In the initial phase (epochs 0-2), the rate of training accuracy
increases rapidly from about 87% to ~94% as shown in Figure 6.5a.
The validation accuracy also increases and surpasses the training
accuracy over the epoch 1. In the middle Phase (epochs 3-6),
training accuracy stabilizes around 94-96%. Accuracy for validation
remains above training and approaches 97-98%, which indicates a
good generalizability. Final epochs (7-9), both accuracies fluctuate
slightly. Validation accuracy reaches more than 98%, while training
is close to 96%. No effect of overfitting, as we are not losing a lot of
accuracy in validation. In epoch 0-1, training loss is high initially
(~0.35) but then falls off very quickly, as shown in Figure 6.5b. The
validation loss also starts high (~0.18) and rises a little at first, and
then starts to decrease. In epochs 2-5, both losses smoothly
decrease, which means that learning is taking place on steady.
Validation loss remains always below training loss, which indicates
no overfitting. In epochs 6-9, validation loss achieves its lowest
(~0.05) in epoch 7. It shows resilience and good generalization by
spiking briefly at epoch 8 and then going back down again. Training
loss stabilizes around 0.13-0.15. AUC (Area Under the Curve)
values for all classes are 1.00, as shown in Figure 6.5¢, this is the
perfect classification performance. The macro-average AUC is also
1.00, which means that the model achieves similar performance
with regard to all classes. Every ROC curve is close to the top left
corner, thus, high sensitivity, and low false positives.

As seen in Figure 6.6a the CottonNet MHA model has a strong
and stable learning curve for the 40 training epochs it uses.
Figure 6.6a indicates that the accuracy of the model rises during
training and that the validation accuracy is slightly higher than the
training accuracy in the beginning, while the model stabilizes
around 95%. It means that the model predicts well on new,
unseen data without getting confused. In the same way,
Figure 6.6b shows that loss for both training and validation
continues to drop steadily. Loss during training goes from 0.82
down to 0.2, and the validation loss follows the same pattern and
ends up being a small amount lower. Seeing both accuracy and loss
curves close to each other is a sign that the model is effective and
strong. All in all, the CottonNet MHA model performs well, getting
accurate results and keeping the error low as it learns and does not
lose its stability. The ROC curve for the CottonNet MHA model as
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TABLE 4 Evaluation of the current work in comparison with existing techniques.

Algorithm

Accuracy

Precision

F1 score

Test loss

Dataset used

Key observations

2022

KNN

-95% KNN- 86%

72%

Curl Virus- 98%

97%

Curl Virus- 80%

82.8%
Curl Virus-
88.5%

leaf images (Bacterial Blight, Curl Virus)
split 80% training and

20% validation, with varied angles for
robustness.

Simonyan and VGGl6 85% 83% 84% 83.5% 0.25 ImageNet VGG16 achieves decent accuracy but

Zisserman (2014) struggles with overfitting and slower
convergence.

Simonyan and VGG19 86% 84% 85% 84.5% 0.23 ImageNet VGG19 slightly improves over VGG16 but

Zisserman (2015) faces similar issues of overfitting and large
model size.

Szegedy et al Inception V3 88% 87% 86% 86.5% 0.18 ImageNet Inception V3 is more efficient than VGG

(2016) models but still shows performance gaps in
real-world data.

Chollet (2017) Xception 89% 88% 87% 87.5% 0.17 ImageNet Xception improves efficiency and accuracy
compared to VGG models but still struggles
with generalization.

Howard et al. MobileNet 87% 85% 86% 85.5% 0.22 ImageNet MobileNet is efficient but slightly lags behind

(2017) Xception and Inception V3 in accuracy
and performance.

Qian et al., 2022 YOLOV5 31% 45% 41% 43% 2% The dataset comprises five-band The study shows YOLOVS5 can detect cotton
multispectral imagery from a root rot (CRR) in real time from aerial
cotton field in imagery at
Thrall, Texas, 11 FPS with moderate accuracy, aiding

targeted
captured by a MicaSense RedEdge-3 fungicide use. Ant colony optimization was
on a DJI Matrice 100 at 120 applied to GPS-based infected areas to
m (GSD: 1.29 generate optimal management paths,
cm/pixel) improving CRR control

Kumar et al., Convolutio nal 90% — — — — The dataset includes 825 cotton leaf Early detection of cotton diseases is vital to

2022 Neural Network images from real fields under varied prevent yield loss in India. A CNN model

(CNN) weather, labeled as healthy, fungal, or leaf | (TensorFlow Keras) achieved ~90% accuracy
spot. Images were split 80% for training for disease identification. A mobile app
and 20% for testing to improve model enables offline diagnosis and pesticide
accuracy. advice, supporting proactive management
and better yields. The study highlights AT’'s
potential in modernizing cotton farming and
its adaptability to other crops.
Kotian et al., ResNet50 and ResNet50 Bacterial Blight- Bacteri al Blight-  Bacteri al Blight- 2% The Kaggle dataset has ~2000 cotton Using Transfer Learning (ResNet50, 95%

accuracy) and KNN (86%), the study
accurately detects bacterial blight and curl
disease, with a web app enabling timely
diagnosis and remedies to boost cotton
productivity. Limitations include reliance on
high-quality data, manual image capture,

(Continued)
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TABLE 4 Continued

Algorithm

Accuracy

Precision

Recall

F1 score

Test loss

Dataset used

Key observations

detection of only two diseases, risk of
overfitting, and dependence on internet
access.

Ahmad et al.,
2024

Vision 96.72%

Transform ers (binary classificat

(ViT) ion) and
93.39% (

multi- class
classificat ion)

3,475 images of cotton crop leaves that
were manually annotated to ensure
accurate disease identification and
classification

The study demonstrates that Vision
Transformers (ViT) effectively detect cotton
leaf diseases, for bacterial, fungal, viral, and
nutrient deficiency cases. This showcases
AT’s potential to improve timely, accurate
disease detection, reduce crop loss, and
support economic stability in major cotton-
producing nations like India, China, and
Pakistan

Kumar et al.,
2024

Hybrid Random 94.5%
Forest and
Decision Tree

94.4%

94.4%

94.4%

Kaggle Cotton Disease

Early detection of cotton diseases is vital for
productivity. A hybrid ML

approach using RF, SVM, and an ensemble
model classifies leaves as healthy or diseased.
The study recommends regular model
updates and exploring deep learning to
enhance detection, supporting India’s cotton
industry and rural livelihoods. ~Limitations
include limited, less diverse training data and
challenges in fully interpreting the ensemble
model, affecting real-world agricultural use.

Hassan et al.,
2025

CottonNet 99%
-MHA

99%

99%

99%

0.06

Akash Zade. The dataset contains 2293
total images

Outperforms all other models with perfect
accuracy and  generalization, providing a
more robust solution for cotton disease
detection.
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shown in Figure 6.6¢ illustrates very good results for classifying all
four groups of data. Every single class-related ROC curve touches
the top-left corner, showing that true positives are 100% and false
positives are 0%. This reveals that equality is achieved among the
classes. For every class, the AUC is 1.00, and the average AUC for all
classes is also 1.00, proving that the model correctly
classifies samples.

Figure 6 comparing the performance of different models
(VGG16, VGGI19, and InceptionV3) in terms of their accuracy,
loss, and other performance metrics during the training and
validation process. VGG16 and VGGI19 initially show
improvement in accuracy but may have slight fluctuations or
plateaus after reaching a certain level, indicating either the models
are overfitting or that further training is not yielding better results
and the loss for these models initially decreases rapidly, then may
fluctuate or start to stabilize, which suggests either a plateau or that
the model is not improving further. InceptionV3 appears to
improve in accuracy, showing a consistent rise in validation
accuracy over time, potentially showing that it is better
generalizing the data in contrast to the others. InceptionV3
appears to improve in accuracy, showing a steady increase in
validation accuracy over time, potentially indicating that it is
better generalizing the data compared to the others. The
consistent decrease in the loss of the InceptionV3 model suggests
that its performance improves with time with minimal variation,
suggesting better convergence and potentially enhanced
generalisation. The model's performance over time during
training and validation is displayed on the MobileNet accuracy
graph. A consistent rise in accuracy over time may indicate that the
model is developing and learning well.

In the initial epochs of the loss graph, MobileNet might show a
sharp decline in loss, whereas the training loss progressively
declines. If the validation loss decreases but starts to rise again or
stagnate, it indicates the model might have reached its optimal
performance but is now overfitting or it has reached a local
minimum. In case of Xception the accuracy graph for Xception
may show a faster increase in accuracy compared to MobileNet or
other models. If it shows a steady and significant increase with fewer
fluctuations, this indicates that the model is improving consistently
over epochs. For Xception, the loss should ideally decrease rapidly
at the beginning and then level off gradually. If the loss starts to rise
after dropping for some time, the model might have overfitted to the
training data. We have done evaluation of the proposed model with
the existing techniques as shown in Table 4.

Our proposed model CottonNet-MHA is designed specifically
for cotton plant disease classification. If it shows good accuracy in
the early epochs, it means that the model is successfully learning the
basic patterns of cotton health. When the validation accuracy rises
at a pace which is comparable to the training accuracy, good
generalisation is seen. When the loss drops off smoothly, the
model is effectively learning to minimise the error between the
predicted and actual labels. The ROC curve for CottonNet-MHA
should ideally show that the model can separate diseased and
healthy cotton plants with good precision, especially in cases
where the dataset might have imbalanced classes. For assessing
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how well the model handles the positives and negatives in an
unbalanced dataset, the precision-recall curve - which should be
as close to the upper-right corner as feasible—would be useful.

6.1. Cross-validation for robust cotton
disease detection

By adding more data sources to the proposed model, it can be
made for practical deployment by integrating additional data
sources, Cotton Disease Plants Dataset (Serosh Karim, Kaggle), to
facilitate real-time detection of cotton diseases and improve
reliability under varying field conditions. Images depicted in
Figures 7 and 8 outline the predicted classes 0 and 1.

Evaluation using additional images from the Cotton Disease
Plants Dataset demonstrated that the model correctly identifies
disease classes, confirming its consistent and dependable
performance when applied to unseen data.

7/ Responsive web application
development

Flask, a lightweight Python framework, was employed to
develop a responsive web-based platform for deploying deep
learning models, enabling cotton disease prediction for end users.
The application executes the trained CottonNet-MHA model,
which achieved the highest accuracy among all evaluated models,
to generate predictions from real-time data inputs. Figure 9 outlines
the key stages of development and testing for this farming-
oriented application:

Predicted: 0

FIGURE 7
Predicted fresh cotton plant.
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FIGURE 8
Predicted disease cotton leaf.

*  Model Generation: A deep learning model is constructed to
determine the presence and type of cotton disease from an
image. The CottonNet-MHA model, offering superior
classification precision, is deployed on the Flask server
using Python and Gunicorn as the WSGI (Web Server
Gateway Interface) HTTP server deployed on Google
Cloud, with an API prepared to handle user requests.

* User Interface Design: A web page is created to allow users
to upload cotton plant images.

* Prediction and Result Delivery: The uploaded image is
processed through the model, the infection type is
identified, and the result is returned to the interface
(Figures 10 and 11).

The system is designed for ease of use, enabling farmers to
capture an image of their crop, upload it, and receive an immediate
diagnosis by clicking the “Predict” button. This not only aids timely
crop management without additional costs but also contributes to

10.3389/fpls.2025.1664242

improved agricultural productivity and broader socio-
economic growth.

8 GRAD-CAM analysis

The interpretability of the convolutional neural network was
enhanced using the Gradient-Weighted Class Activation Mapping
(Grad-CAM) method. This technique generates heatmaps that
highlight the regions of an image most influential in the model’s
decision-making process, thereby providing transparency in
classification outcomes. By localizing the critical areas that
contribute to class prediction, Grad-CAM enables a clearer
understanding of how the model distinguishes between categories.
Beyond validating prediction behavior and identifying disease-
specific regions, Grad-CAM also offers valuable insights for
refining the model’s architecture and training strategy. Figure 12
illustrates the visualization of disease detection using our proposed
model. Figure 12a presents the original image of the cotton leaf,
which shows visible symptoms of infection. Figure 12b displays the
disease heatmap generated by the model, highlighting the regions of
the leaf that are most affected by the disease. Finally, Figure 12c
shows the overlay of the heatmap on the original image, which
provides a clearer interpretation by localizing and emphasizing the
diseased regions on the leaf. This visualization effectively
demonstrates how the model identifies and focuses on the critical
areas of disease, thereby ensuring reliable disease detection.

9 Comparative analysis

To evaluate the effectiveness of our proposed algorithm, its
performance is compared with several existing methods. Table 4
provides comparative results across relevant evaluation criteria.

10 Computational efficiency and
resource utilization

This section provides a summary of hardware specification
training parameters and the computational complexity of the
model as shown in Table 5. This encompasses information on the
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Web application development.
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Image uploaded

Predicted Cotton Disease Status:

The output is a diseased cotton leaf

FIGURE 10
Web application prediction results for infected leaf.

hardware setup, model dimensions, training duration, and
inference times for both GPU and CPU. These metrics are crucial
for evaluating the model's performance, efficiency, and
computational requirements.

11 Conclusion and future scope

Our research has revealed how well artificial intelligence-based
learning methods can identify disease in cotton plants. This study
emphasises the application of deep transfer learning methods for
precisely detecting cotton plant disease. To detect the cotton disease,

Original Image

(a)

FIGURE 12
(a) Original Image, (b) Heatmap Image (c) Overlayed Image.
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Disease Heatmap

Image uploaded

Predicted Cotton Disease Status:

The output is a fresh cotton leaf

FIGURE 11
Web application prediction results for fresh leaf.

CottonNet-MHA outperforms all standard models, achieving 99%
accuracy with the lowest test loss. It is also observed that MobileNet
performs exceptionally well, making it a lightweight and efficient
alternative. It achieves 98.46% accuracy with a lower error rate
compared to other transfer learning models. This model accurately
distinguishes the healthy and diseased cotton plant and leaves.
However, VGG19 underperforms compared to others, with the
lowest accuracy and highest test loss, whereas VGG16 is a reliable
model as it provides a good trade-off, maintaining strong performance
with a relatively lower test loss than VGG19. In addition to that,
Xception and InceptionV3 strike a balance between accuracy and loss,
making them strong contenders, but they do not surpass CottonNet-

Overlayed Image

(b) (c)
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TABLE 5 Hardware specifications, training parameters, and
computational complexity of the CottonNet-MHA model.

Parameters Description

Hardware NVIDIA Tesla P100 GPU (16 GB VRAM)
Platform Kaggle

Model Size 17 MB

Batch Size 16
Epochs 10

Training Time Approximately 2 hours

Computational Complexity ~0.6 GFLOPs per 224x224x3 input image

GPU 18-25 ms per image (= 40-55 FPS)

CPU 180-220 ms per image

MHA. We have developed a web-based application designed to
identify real-life cotton disease prediction. This web-based
application demonstrates high accuracy compared to other models
and can also be adapted for broader agricultural applications. We also
performed the cross-validation to evaluate the model’s performance
on a publicly available dataset and which ensures the model’s
robustness and validation across different folds of data. The Grad
Cam explanation technique is used for interpretability. The heat map
highlights the critical region of cotton leaves and plant disease and
enhances the trust of AT models for detecting the disease of cotton
leaves and plants. This technique improves the model’s reliability and
transparency by ensuring that predictions are made based on relevant
features rather than irrelevant information.

The proposed Deep Learning based automated model is very fast,
less expensive, and reliable for identifying cotton disease for plants and
leaves. It can be concluded that CottonNet-MHA is the best-
performing model, achieving flawless classification, while MobileNet
is a great alternative, offering high accuracy with minimal
computational cost.

The study demonstrates significant progress in identifying cotton
leaves and plant diseases, while also highlighting several flaws that
require more attention. One of the major challenges is accurately
identifying the region of interest (ROI) in images. It is necessary to
carefully identify the afflicted areas to identify plant diseases. The model
might analyze extraneous areas of the image if the ROI is not properly
defined, which could result in inaccurate categorization and predictions.
Another problem is that models may be inaccurate, particularly if they
are trained on small or undiversified datasets. Additionally, the deep
learning models used in this study require a large amount of processing
power for training and validation. This could be a drawback, particularly
when dealing with various datasets or deploying models in real-world
environments with restricted computational power. Optimization
methods, such as adjusting model parameters, are essential for
addressing these challenges by enhancing performance and reducing
errors. These limitations could affect the model's generalizability and
reliability, underscoring the need for continuous refinement of both
models and techniques. Examine cutting-edge transfer learning
strategies to optimize the performance of trained models, which can
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greatly enhance disease diagnosis. By improving existing models or
integrating multiple models using ensemble techniques, the system's
overall robustness and performance can be enhanced.

To reduce the manual effort and enable timely interventions, in
future studies, our proposed model can be integrated with IoT-
enabled sensors or drone-based imaging systems for real-time
monitoring of cotton fields. The approach of combining the deep
learning with IoT or drone technology will not only allow large-
scale, automated disease detection directly in agricultural
environments but also significantly enhance the scalability,
accuracy, and practical applicability of cotton disease diagnosis in
real-world scenarios.

Incorporating these innovations with emerging research
avenues can push research towards more precise, interpretable,
and user-oriented solutions. Advancements in this domain can
significantly contribute to sustainable agriculture by improving
crop health management, increasing productivity, and ultimately
strengthening food security.
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