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India is an agro-based country. The major goal of agriculture is to produce

disease-free healthy crops. For Indian agronomists, cotton is a profitable

commercial and fibre crop, it is the world’s second-biggest export crop after

China. Cotton production is also affected in a negative way by high use of water,

authority of soil erosion and the practice of using dangerous fertilizers and

pesticides. The two greatest threats to the rapid growth of the crop are the

sucking bugs and cotton diseases. Prompt detection and accurate identification

of diseases is vital to ensure healthy crop growth and achieve better yields. The

primary objective of this research is to build a model by implementing deep

learning-based approaches to spot infections in cotton crops. Deep learning is

used because of its exceptional results in classification and image processing

tasks. To address this issue, we developed CottonNet-MHA a novel deep

learning framework to identify pathological symptoms in cotton leaves. The

model employs multi-head attention mechanisms to strengthen feature learning

and highlight the diseased-affected regions. To evaluate the performance of the

proposed model, five pretrained transfer learning architectures—VGG16, VGG19,

InceptionV3, Xception, and MobileNet were used as benchmark models.

Furthermore, Gradient-weighted Class Activation Mapping (Grad-CAM)

visualization was applied to enhance the trustworthiness and interpretability of

the model. A web-based application was developed to deploy the trained model

for real-world applicability. The performance analysis is carried out on the

developed model based on the conventional models and the results indicate

that CottonNet-MHA dominates the conventional models with respect to its

accuracy as well as efficiency in the detection of diseases. The use of attention

mechanisms approach strengthens the model’s diagnostic accuracy and overall

reliability. Grad-CAM results further demonstrated that the model effectively

targets diseased areas, enhancing interpretability and reliability. Discussion: The

study shows that CottonNet-MHA not only automates disease detection but also
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enhances interpretability through Grad-CAM analysis. The developed web

platform allows the model to be applied in real-world environments,

supporting live disease monitoring. The proposed framework not only

improves the accuracy of cotton disease diagnosis but also offers potential

for extension to other crop disease detection systems.
KEYWORDS

deep learning, CNN, transfer learning techniques, cotton plant, cotton disease,
agriculture, Gradient-weighted Class Activation Mapping (Grad-CAM)
1 Introduction

Around 70% of individuals residing in rural and semi-urban

regions rely heavily on agricultural resources and agriculture is the

key origin of their livelihood (Arjun, 2013). Cotton is a cash crop

that has a big impact on India's economy. Due to India's varied

environment, farmers cultivate a range of crops, including

horticulture, cash crops, food crops, plantations, and numerous

others (Rajasekar et al., 2021). In India, the agriculture sector has a

big influence on the economy. Prompt detection and assessment of

crop infections is very crucial in agriculture operations

(Vallabhajosyula et al., 2022).

Every year, farmers suffer significant financial losses due to crop

disease. Consequently, prompt, accurate, and timely disease

identification reduces product loss and enhances product quality.

Consequently, it contributes to the nation's economic expansion

(Shrivastava et al., 2019). Various computer vision algorithms are

available to identify plant diseases effectively (Wang et al., 2017). In

contemporary agriculture, there are two distinct phases: the first

phase, which covers the years 1943 to 2006, and the second phase,

which began in 2012 and primarily applies deep learning ideas for

detection. During the early phase of neural network evolution, key

techniques such as Backpropagation, Chain Rule-based learning,

and the Neocognitron architecture were developed (Saleem et al.,

2019). Deep Learning (DL) methods like AlexNet, ResNet, Segnet,

YOLO, UNet, and Fast R-CNN were implemented in the second

stage (Shrivastava and Pradhan, 2021; Pandian et al., 2022). Deep

learning algorithms have become the driving force behind modern

AI-based computer vision, offering a significant advancement over

traditional machine learning methods that relied heavily on

manually crafted feature extraction. These advanced models learn

to extract relevant features directly from raw data.

Recent advancements in remote sensing, computer vision, and AI

have significantly enhanced the capability to analyze complex image

data across diverse domains. Studies have demonstrated innovative

applications of deep learning in remote sensing, terrain mapping, and

environmental monitoring (Xu et al., 2023; Wang et al., 2024; Lu

et al., 2025; Tu et al., 2024; Gong et al, 2024). These developments

collectively emphasize the growing potential of AI-driven models for

image-based agricultural analysis, such as cotton disease detection.
02
Many researchers employed well-known deep learning

architectures for plant disease classification, including AlexNet,

VGGNet, InceptionV3, ResNet, and DenseNet (Nigam et al.,

2023; Too et al., 2018). Deep neural approaches are extensively

utilized in diverse applications like image processing, autonomous

driving, healthcare, and more.

One notable limitation of deep neural architecture is its reliance

on large volumes of data for effective model training. When datasets

contain only a small number of images, the model's performance

tends to suffer. Transfer learning offers a solution to this issue, as it

allows networks to be trained with significantly less data. Transfer

learning facilitates the learning of a new task by utilizing the

information acquired from a related prior task. Its key advantages

include optimized training process, better generalisation

performance, lowers resource consumption and simplifies the

development process of deep learning systems (Hassan et al.,

2021; Pandian et al., 2022).

In recent decades, extensive research efforts have focused on

identifying various Phytopathological conditions, resulting in the

development of several deep learning-based models to analyse

images (Wang et al., 2019). Due to the usage of laboratory

conditioned dataset, this work is currently experiencing a

significant problem. The images in this case did not generalize to

real field images because they were generated in a lab for training

and assessment purposes. Model performance was significantly

impacted by the high complexity of real plant images. The

selection and extraction of features are challenging, as overlapping

features in images complicate their identification (Krishnakumar

and Narayanan, 2019). Identification of the plant disease at an early

stage is important to prevent from spreading rapidly. Farmers apply

poisonous drugs to control diseases in plants. We consume these

harmful drugs into our daily routine. The use of dangerous

chemicals in agricultural operations can be greatly decreased or

perhaps eliminated with early diagnosis of plant diseases.

The remaining sections of the paper are organized as follows:

Literature Review, Proposed methodology, Classification models,

Data set and implementation details, Results and Discussion,

Responsive Web Application Development,GRAD-CAM Analysis,

Comparative Analysis, Computational Efficiency and Resource

Utilization, and Conclusion and Future Scope.
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TABLE 1 Summary of the literature review.

Study Model Objective Results

Rastogi et al., 2024 CNN Classify diseases in potato, tomato & pepper for
timely treatment

CNN achieved 86.21% accuracy on Plant Village
dataset; supports yield & sustainability.

Zhou et al., 2024 REM-
ShuffleNetV2

Lightweight model for crop leaf disease detection in
real- field conditions.

Achieved 96.72% accuracy & 96.62% F1; better than
DenseNet121 & EfficientNet;
efficient & robust.

Islam et al., 2023 VGG-16, VGG-
19, Inception-V3, Xception

Transfer Learning models for cotton leaf disease
detection & web-based real-time prediction

Xception achieved 98.7% accuracy; effective for
disease diagnosis & scalable web deployment.

Zhang and Wang, 2023 BERT-BiGRU-
CapsNet with Attention
Pooling
(BBGCAP)

Classify agricultural queries on crop diseases & pests Achieved >90% precision, recall, F1; efficient for
real-time Q&A.

Borhani et al., 2022 Vision Transformer (ViT) Lightweight DL model for real-time plant disease
classification

Outperforms CNNs in F1, recall, precision with
fewer parameters; balances accuracy & speed.

Zhu et al., 2022 VGG16,
ResNet164, DenseNet40

Optimize cotton disease detection using pruning,
transfer learning & model compression for mobile
devices

Pruned DenseNet40 achieved 97.23% accuracy;
transfer learning after compression improved results;
87 ms
response time suitable for low- resource devices.

Ahmed, 2021 DCPLD-CNN Develop CNN-based model for detecting cotton
diseases (bacterial blight, rolling-leaf
disorder)

Achieved 98.77% accuracy using transfer learning &
augmentation; reduces need for
manual diagnosis.

Tiwari et al., 2021 DenseNet Automate plant disease detection using dense CNN
to overcome limitations of traditional methods

Achieved 99.58% accuracy, high specificity (99.97%),
real-time processing; effective for automated
identification

Sharma et al., 2020 F-CNN & S-CNN Improve disease detection via segmentation for
robust CNN-based diagnosis

S-CNN (segmented images) achieved 98.6%
accuracy, reduced misclassification, more
robust than F-CNN

Chen et al., 2020 INC-VGGN Enhance plant disease detection using transfer
learning (VGGNet + Inception) with fewer labeled
datasets

Achieved 91.83% validation accuracy; efficient for
real-time monitoring & computer-aided diagnosis

Geetharamani and
Pandian, 2019

Deep CNN Develop a 9-layer CNN for accurate plant leaf
disease classification

Achieved 96.46% accuracy; outperformed traditional
ML models using data augmentation

Jiang et al., 2019 INAR-SSD Develop real-time apple leaf disease detection using
enhanced CNN (Inception + Rainbow
concatenation)

Achieved 78.80% mAP & 23.13 FPS for five apple
leaf diseases; improved speed & precision for on-
field use

Barbedo, 2019 GoogLeNet Improve plant disease detection by focusing on leaf
lesions using CNNs and a
large dataset (46,409 images, 79 diseases, 14 species)

Achieved 12% accuracy improvement; emphasized
dataset diversity, collaboration,
and citizen science for better real-world

Zhang et al., 2019 TCCNN Improve vegetable leaf disease diagnosis by
addressing segmentation & background issues using
RGB channels

Achieved higher accuracy without manual
segmentation; robust against lighting & background
interference

Barbedo, 2018 LeNet, AlexNet, GoogLeNet,
VGG

Examine factors influencing DL performance in
plant disease detection and adoption challenges

Identified intrinsic/extrinsic factors (dataset
diversity, misclassification, covariate shift) impacting
accuracy; emphasized practical adoption
issues

Lu et al., 2017 Deep CNN Develop automated rice disease diagnosis using
CNNs with standard digital cameras for early
detection

Outperformed conventional methods with 95.48%
accuracy,
faster training, and user-friendly application

Dyrmann et al., 2016 Deep CNN Use CNNs for precise weed and crop species
recognition to improve site-specific weed
control

Classified 22 weed & crop species with 86.2%
accuracy, outperforming earlier
approaches
F
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2 Literature survey

The accuracy of deep learning models has significantly

increased because of the widespread application of transfer

learning in computer vision, especially for identifying diseased

cotton plants. A preliminary literature review was conducted to

examine existing studies and methodologies in plant disease

detection, focusing on models, objectives, research gaps, findings,

limitations, and future scope. A summary of the reviewed literature

is presented in the Table 1. The objective of this review was to

evaluate various approaches, techniques, and algorithms employed

by researchers in this domain. Notably, a large amount of research

has demonstrated how transfer learning can improve the detection

of diseased cotton crops when deep learning frameworks are used.

Rastogi et al. (2024) proposed a Convolutional Neural Network

(CNN) which aims to develop a plant disease classifier for potato,

tomato, and pepper bell plants to precisely identify diseases and

provide prompt treatments for more robust crops. It draws

attention to the necessity of more accurate techniques, cutting-

edge tactics including transfer learning, machine learning

integration, and resolving system limitations for increased

performance and generalization in CNN-based plant disease

identification. The paper shows how AI may increase crop yields,

lower losses, and support sustainable agriculture in India by

exhibiting the success of a CNN-based model with 86.21%

accuracy on the Plant Village dataset. Despite improving CNN-

based plant disease detection, the study has some drawbacks,

including a narrow illness scope, limited generalization, real-

world complexity, scaling problems, dataset dependency, and the

need for additional research for wider applicability. To improve

model performance and practical usability for farmers, further

studies on plant disease detection with CNNs should focus on

transfer learning, real-time detection, optimisation strategies, and

advanced ML integration.

Zhou et al. (2024) proposed REM-ShuffleNetV2, an improved

lightweight model based on ShuffleNetV2 that provides accurate

crop leaf disease detection in challenging field circumstances.

According to the results, REM- ShuffleNetV2 performs better in

crop disease detection than models such as DenseNet121 and

EfficientNet, obtaining superior accuracy (96.72%) and F1 score

(96.62%). It also has improved efficiency, attention mechanisms,

and robustness, making it a useful tool for raising agricultural

productivity. The study outlines future to expand datasets, improve

model efficiency, and enable real-time agricultural applications,

while acknowledging limitations like the need for broader

environmental evaluations, limited disease sample types, and

deployment challenges on mobile devices and field robots. To

increase agricultural disease detection's practicality and resilience

in agriculture, future research will focus on expanding data

collection, creating effective deep learning models, optimizing for

mobile deployment, integrating into autonomous systems, and

testing in a variety of environments.

The goal of Islam et al. (2023) is to lower the crop losses and

boosting cotton production in areas like Bangladesh, the suggested

deep learning-based cotton leaf disease identification method makes
Frontiers in Plant Science 04
use of improved Transfer Learning models (VGG-16, VGG-19,

Inception-V3, and Xception) to boost accuracy and facilitate a web-

based intelligent system for real-time prediction of plant diseases.

The study demonstrates that refined deep learning models—

particularly Xception, which has an accuracy of 98.70%—

effectively identify cotton leaf diseases, facilitate real-time

predictions through a web-based application, and provide a

scalable framework for crop disease diagnosis. Despite its high

accuracy, the suggested cotton disease detection model has

drawbacks, including class imbalance, poor flexibility, insufficient

feature extraction, and the requirement for sophisticated image pre-

processing techniques like segmentation, which highlight areas for

further development. To increase agricultural productivity and

sustainability, future research on cotton disease detection should

address class imbalance, improve feature extraction, integrate

advanced pre-processing, improve adaptability to novel diseases,

integrate IoT for real-time monitoring, expand to other crops, and

investigate hybrid deep learning approaches.

To enhance the accuracy and effectiveness of agricultural query

classification, Zhang and Wang (2023) present BERT-BiGRU-

CapsNet with Attention Pooling (BBGCAP), a unique approach

for categorizing inquiries pertaining to crop diseases and pests using

BERT, BiGRU, attention pooling, and CapsNet. The report

emphasizes the need for integrated research to improve

classification and apply deep learning in agricultural Q&A

systems by highlighting research gaps in crop disease and pest

classification, including fragmented knowledge, limited datasets,

complex queries, and real-time processing demands. According to

the results, the BBGCAP model yields better performance

compared to existing conventional techniques in the classification

of agricultural diseases and pests, with over 90% precision, recall,

and F1 scores. Its efficient architecture and enhanced performance

on larger datasets make it a useful tool for real-time agricultural

Q&A systems. To recommend areas for future optimization, the

document identifies constraints such as the inability to handle

complex semantic information, the dependence.

on big datasets, the limited applicability outside of agriculture,

and the difficulties in accessing fragmented knowledge. To increase

the BBGCAP model's efficacy in agricultural Q&A systems and pest

management tactics, the paper makes several recommendations for

improvements, such as optimization, data augmentation,

knowledge graph integration, fine-tuning BERT for agriculture,

ensemble learning, and adding multi-modal data.

Borhani et al. (2022) aims to design a lightweight deep learning

model based on Vision Transformer (ViT) for real-time

classification of plant diseases, enabling farmers to act early and

preserve agricultural productivity which provides visual

information. The report identifies research gaps in automated

plant disease classification. These include the need to advance

multi-label classification and object localization techniques,

optimize real-time prediction speed, balance lightweight models

with transfer learning, address imbalanced datasets, and adapt

domains for small datasets. The report highlights the balance

between prediction accuracy and speed, input image resolution,

and real-world usability to support more effective crop
frontiersin.org
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management. It also shows that the Vision Transformer (ViT)

Model 4, which has transformer blocks, performs better than

conventional CNNs in F1-score, recall, and precision with fewer

parameters. The paper lists the drawbacks of the Vision

Transformer-based method for classifying plant diseases, such as

speed and accuracy trade-offs, computational demands on smaller

datasets, difficulties with generalization, and problems with image

quality, multi-label classification, and unbalanced data. It also

identifies areas that require more study. To enhance the efficiency

and resilience of agricultural automated plant disease identification

systems, future research proposes combining object localization and

multi-label classification networks with the collection of well-

labeled datasets.

To improve accuracy and efficiency through pruning methods,

transfer learning, and model compression, Zhu et al. (2022) intends

to create an optimized cotton disease identification method utilizing

deep convolutional neural networks (DCNN) for deployment on

mobile and smart devices with low resources. The report identifies

research gaps in the areas of evaluating transfer learning and model

compression, balancing accuracy, and efficiency, addressing

imbalanced datasets in disease classification, optimizing model

deployment for resource-constrained devices, and investigating

novel architectures for various agricultural scenarios. With an

average response time of 87 ms, the study showed that pruned

models are feasible for effective, precise disease identification on

resource- constrained devices. It also discovered that pruning

DenseNet40 for cotton disease identification achieved 97.23%

accuracy, with transfer learning following model compression

outperforming the reverse approach. Several challenges are

associated with applying pruning techniques to deep learning

models for cotton disease identificat ion such as the

generalisability of pruning and transfer learning, the variety of

datasets, the specificity of pruning techniques that might not fully

address accuracy in complex or uncommon disease cases, and

difficulties deploying on devices with limited resources. Future

research directions for cotton disease identification are suggested

in the document. These include hybrid models, lightweight

networks, sophisticated pruning algorithms, real-time learning,

unsupervised learning, multi-modal data integration, and

enhanced data augmentation to improve model accuracy,

efficiency, and adaptability for agricultural applications based on

smart devices.

The goal of Ahmed (2021) is to create the Diseased Cotton Plant

Leaf Detection Convolutional Neural Network (DCPLD-CNN)

model for the autonomous identification of cotton plant diseases,

including bacterial blight and a new rolling-leaf disorder, by making

use of deep learning and convolutional neural networks. As a result,

manual expert evaluations will no longer be necessary, allowing for

rapid and accurate diagnosis. The paper highlights several

important research gaps in the recognition of cotton plant

disorder, such as the dearth of data, the requirement for region-

based segmentation, the dependence on conventional image

processing, and the need for improvements in methodology, data

collection, and automatic feature extraction. The DCPLD-CNN

model, which has a 98.77% accuracy rate in cotton disease
Frontiers in Plant Science 05
diagnosis, is introduced in this work. This model demonstrates

how pre-trained models, data augmentation, and transfer learning

can enhance disease diagnosis and support crop management. This

research points out shortcomings in generalization, model

robustness, expert dependency, and data scarcity, indicating the

need for larger datasets and better real-world application for more

thorough disease detection in various agricultural contexts. To

enhance the accuracy, usability, and real-world application of

cotton plant disease recognition systems, future research

directions include identifying disease severity, growing datasets,

applying region-based segmentation, integrating cross-disciplinary

insights, creating user-friendly mobile apps, and adding

feedback mechanisms.

Tiwari et al. (2021) proposed a system based on deep learning

that uses a Dense Convolutional Neural Network (DenseNet) to

automate the identification and classification of plant illnesses, the

research aims to address problems like as the inexperience and high

expense of traditional diagnostic processes. The report identifies.

research gaps in plant disease identification, including the

shortcomings of traditional methods., the requirement for a

variety of datasets, integration with autonomous systems for

monitoring in real time, and the necessity of comparative analysis

of deep learning models in different agricultural environments to

verify their effectiveness. In comparison to previous models, the

work shows that a dense CNN is effective for automated plant

disease identification, achieving 99.58% accuracy, real-time

processing, and enhanced metrics (e.g., specificity: 99.97%) on a

variety of datasets. Furthermore, there is potential for its integration

with camera-based systems for continuous monitoring and disease

management. Although the suggested dense CNN for plant disease

identification exhibits remarkable speed and accuracy, it has

drawbacks, such as the requirement for a more varied dataset,

validation in real-world scenarios, and more extensive testing on

unseen photos and other crops to verify its generalizability. The

study makes recommendations for future research on growing

datasets of plant leaf images, creating sophisticated AI systems

using transfer learning and EfficientNet architectures, and

integrating hyperspectral imaging to improve the effectiveness,

precision, and robustness of systems for identifying plant species

and detecting diseases.

To improve automated disease detection for effective crop

management and food security, the Sharma et al. (2020) uses

image segmentation to improve CNN models for identifying

plant diseases. It demonstrates that a model trained on segmented

images (S-CNN) achieves higher accuracy than one trained on full

leaf images (F-CNN). By training CNNs, the study closes a gap in

traditional deep learning models for diagnosing plant diseases with

segmented photos targeted at symptomatic regions. For real world

agricultural applications, this enhances accuracy and robustness

while emphasising the significance of complex data preparation and

segmentation. With the segmented CNN (S-CNN) attaining 98.6%

accuracy, decreased misclassification, increased robustness, and

useful implications for efficient automated disease detection in

agriculture, the study shows that image segmentation greatly

enhances CNN performance for tomato plant disease detection.
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The S-CNN model for identifying plant diseases has drawbacks,

according to the paper. These include difficulties with overlapping

symptoms, a dependence on segmentation quality, a lack of

representation in the dataset, and the need for more extensive

datasets or improved data augmentation to increase accuracy and

consistency. By increasing the precision, robustness, and

generalization of plant disease detection systems, more research

could concentrate on advanced image segmentation, augmented

data sourcing, GANs, multi-task learning, environmental feature

integration, real-time processing, federated learning, and transfer

learning refinements to enhance agricultural practices and

food security.

Chen et al. (2020) proposed INC-VGGN deep transfer learning

architecture aims to enhance accuracy and decrease the need for

expensive labeled datasets and processing resources for plant

disease detection using pre- trained CNN models such as

VGGNet and Inception. To improve precision, decrease

computing complexity, and increase performance in a variety of

agricultural situations, the study highlights shortcomings in

conventional plant disease identification techniques and suggests

utilizing deep transfer learning with the modified CNN architecture

INC-VGGN. Using VGGNet modifications to improve

performance, the paper shows that the INC- VGGN deep transfer

learning architecture is effective for plant disease identification,

achieving 91.83% validation accuracy. It also suggests future

applications in computer-aided diagnosis for plant health

management and real- time monitoring on mobile devices. The

study identifies the drawbacks of conventional plant disease

detection techniques, such as their dependence on expert

judgment, subjective feature selection, lack of diversity in data,

difficulties in gathering sizable labeled datasets, and susceptibility to

background fluctuations, which make it more difficult to create

efficient automated detection systems for agricultural applications.

Real-time mobile deployment, application to computer-aided

diagnosis, improved image processing, investigating advanced

neural network architectures, employing larger datasets,

incorporating environmental context, and investigating

explainable AI techniques for improved model interpretability

and trust are some of the future directions for improving plant

disease identification that are suggested in the document.

Geetharamani and Pandian (2019) aims to create a new type of

deep convolutional neural network (Deep CNN) model that can

reliably and efficiently classify plant leaves as either healthy or ill,

outperforming traditional machine learning techniques. The

objective of the paper is to increase plant disease identification

accuracy by deep transfer learning using CNN models that have

already been trained, such as VGGNet and Inception. This will

decrease the need for expensive labelled datasets and processing

power. This would help with efficient agricultural management.

With the help of data augmentation and reliable metrics, the study

shows that the nine- layer Deep CNN model for plant leaf disease

identification outperforms conventional models with an accuracy of

96.46%. It also makes recommendations for future research,

including the expansion of datasets, application to other plant

parts, and investigation of unsupervised learning for precision
Frontiers in Plant Science 06
agriculture. Potential difficulties are deduced from the study, such

as the use of augmented images with little diversity, the emphasis on

disease identification based on leaves, transfer learning constraints,

overfitting risks despite dropout, and the requirement for additional

research to increase dataset size, class diversity, and applicability to

more extensive plant disease scenarios. Future research directions

are outlined in the publication, and they include growing the

dataset, optimizing the model for better performance, applying

the model to different plant components, moving toward the

practical detection of plant diseases, and investigating unlabeled

training techniques to improve generalization.

Jiang et al. (2019) aim is to develop a revolutionary deep

learning method namely INAR-SSD (SSD with Inception module

and Rainbow concatenation) for the real-time identification of

common apple leaf diseases using enhanced convolutional neural

networks. By improving the speed and precision of apple leaf

disease detection, this will benefit the Apple Companies. With an

emphasis on enhancing accuracy, speed, and real-time application,

the study fills a research gap in conventional methodologies and

object recognition algorithms for apple leaf disease diagnosis. This

results in the creation of an improved CNN strategy for useful on-

field detection. The INAR-SSD deep learning model, which

enhances existing methods and promotes sustainable apple

production, is presented in the paper. Using cutting-edge

technologies such as Rainbow concatenation and GoogLeNet

Inception, it can identify five apple leaf diseases in real time with

78.80% mAP and 23.13 FPS. The study highlights the need for

improvements to increase the model's robustness and practicality

by identifying issues such the inability to differentiate between

comparable diseases, vulnerability to environmental influences,

possible overfitting, and a trade-off between speed and accuracy.

Future directions for improving the INAR-SSD model are outlined

in the document. These include the utilization of GANs for

advanced data augmentation, the integration of multi-modal

sensor data, transfer learning, advanced feature visualization, real-

world deployment with feedback loops, and the investigation of

ensemble learning for increased robustness and adaptability.

Barbedo (2018) proposed GoogLeNet by concentrating on

individual leaf lesions using CNNs, the study seeks to improve

plant disease detection. To increase training data diversity and

classification accuracy, a comprehensive dataset of 46,409 photos

from 79 diseases across 14 plant species will be created. The study

draws attention to the deficiency of small, homogeneous datasets

for plant disease diagnosis, highlighting the necessity for more

varied data and recommending citizen science and collaboration to

increase dataset variety and boost the efficacy of deep learning

models. By concentrating on certain lesions and using a diverse

dataset of 46,409 images, the study shows that deep learning,

particularly CNNs, improves plant disease detection accuracy by

12%. It also highlights the importance of data diversity,

collaboration, and citizen science in image annotation for

improved real-world applicability. The study identifies several

barriers to full automation and practical use of deep learning for

the identification of plant illnesses, like sample imbalance,

generalization issues, manual segmentation requirements, dataset
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representativeness, and the resources and time required for data

collection. The study makes recommendations for future

advancements in the identification of plant diseases by utilizing

deep learning, like adaptable network designs, automated symptom

segmentation, innovative data augmentation, citizen science for

data gathering, and cooperation for a wider range of datasets.

To solve segmentation issues and background interference,

Zhang et al. (2019) present a Three-Channel Convolutional

Neural Network (TCCNN) model for vegetable leaf disease

diagnosis. To improve classification accuracy, this model takes

advantage of RGB picture colour information. This study

introduces a three-channel convolutional neural network

(TCCNN) for the recognition of vegetable leaf disease. By using

RGB colour components to improve accuracy without manual

segmentation, the network overcomes drawbacks like poor

segmentation, the requirement for extensive preprocessing, and

sensitivity to lighting changes. This work represents a

breakthrough in agricultural disease surveillance by introducing a

Three-Channel Convolutional Neural Network (TCCNN) for

vegetable leaf disease detection. This network decreases

preprocessing, increases accuracy, and strengthens resilience

against real-world picture variability. The research identifies

opportunities for additional validation by highlighting the

drawbacks of conventional techniques, such as complicated

backdrops and manual segmentation, which may also have an

impact on the TCCNN model for vegetable leaf disease detection.

To enhance the recognition of vegetable leaf diseases, the paper

highlights the necessity of developments in image segmentation and

feature extraction and recommends investigating methods such as

data augmentation, transfer learning, multimodal data, attention

mechanisms, ensemble learning, and real-time monitoring.

To reduce the need for specialized knowledge and provide

farmers with a simple tool for early detection using standard

digital cameras, Lu et al. (2017) suggests building an automated

rice disease diagnosis method that uses Deep convolutional neural

network (CNN) to improve diagnostic speed and precision. To

improve the effectiveness and precision of diagnosis, the research

proposes deep CNNs as a remedy for the inadequacy of

conventional expert knowledge-based rice disease identification

techniques. The study demonstrates how well a CNN-based

model for rice disease diagnosis works, surpassing conventional

techniques in automated detection with 95.48% accuracy, quicker

training, and an intuitive application. To improve the precision of

automated rice disease detection, the research identifies several

obstacles to CNN design optimization, such as the requirement

for sizable, high-quality datasets and the necessity to adjust

parameters. To improve precision and early disease diagnosis, the

paper describes future directions for automated rice disease

identification, with a particular emphasis on investigating other

deep architectures, training techniques, expanding datasets, and

fine-tuning CNN parameters.

By employing Deep convolutional neural network (CNN) for

precise plant species recognition, Dyrmann et al. (2016) seeks to

improve weed management in agriculture by enabling site-specific

weed control and lowering the use of herbicides to increase
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sustainability and yield protection. To overcome the constraints

of manual feature extraction and improve site-specific weed control

for the best herbicide use, the study employs deep convolutional

neural networks (CNNs) to categorize 22 weed and crop species.

The CNN model presented in this work outperformed earlier

research and showed promise for site-specific weed management

in agriculture, classifying 22 weed and crop species with an accuracy

of 86.2%. To create a more reliable and adaptable weed and crop

classification system, the report identifies shortcomings in earlier

research, including restricted species recognition, dependency on

pre-processing, class biases, and data unpredictability. To increase

resilience, accuracy, and efficiency in agricultural applications, the

research makes recommendations for future advancements in the

categorization of weed and crop species. These include improved

data augmentation, transfer learning, multispectral imaging, hybrid

techniques, and real-time processing.
3 Proposed methodology

Figure 1 depicts the complete pipeline of the suggested model.

Three primary steps make up the approach: preparing the data,

training the model with the training dataset, and making

predictions with the test dataset. Each step's specifics are given in

the following subsections.
3.1 Data preprocessing step
• Normalization: Image normalization is a preprocessing

strategy that standardizes the size and pixel range of all

images in the dataset. This procedure is essential to

improving the model's generalizability and facilitating

faster convergence during the training stage.

• Image Transformation: The images are resized to 224×224

pixels to ensure uniform input size and smooth

compatibility with the neural network.

• Random Oversampling: Random oversampling helps

correct class distribution issues by expanding the dataset

with repeated samples from the less frequent classes. To

ensure a more balanced dataset, it randomly duplicates

existing samples from the minority class. This method

reduces biases toward majority classes which enhances the

models' performance. However, because repeated samples

do not contribute new information, it can result

in overfitting.

• Splitting of Dataset: To support learning and performance

assessment, the data is divided into segments for testing,

validation, and training.

• a) Training Set: Most of the dataset is used to make the

training set and this training set is used to fine-tune the

model by updating its parameters through repeated

learning cycles.

• b) Validation Set: Using the validation set, the model's

performance is evaluated and its hyperparameters are
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adjusted. Because it permits evaluation on data that was not

visible at the time of training, it is essential in

avoiding overfitting.

• a) Test Set: Test set is used only when model training is

complete the test set is a separate dataset. It evaluates the

final performance and generalizability of the trained model

to fresh data.

• Image Augmentation: Image augmentation is the modified

version of the existing data which helps to increase the
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model performance and generalization. To improve both

the volume and variety of training data, data augmentation

techniques are applied. It plays a crucial role in improving

the robustness and minimizing the risk of overfitting. Data

augmentation is mainly used when we are leading with an

unbalanced and limited dataset. Various transformation

techniques like rotating, flipping, zooming, cropping, or

adjusting brightness and contrast are applied to our existing

images, aiming to prevent overfitting, improve model
FIGURE 1

Block diagram of proposed methodology.
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robustness, and allow deep learning models to generalize

better when exposed to new or unseen data. Translation

technique helps to learn the model of various positional

contexts of the cotton leaves by shifting the images

horizontally and vertically by 10% of their dimension. We

employed horizontal flipping to generate the mirror images

of the original images, and this technique provides a border

spectrum of visual patterns and also helps the model to

generalize across naturally occurring variations by

strengthening the dataset's diversity.

• Web application Development: We have developed a web

application using a Python framework, namely Flask, for

deployment and runs DL based applications. This web

application is capable of identifying cotton disease leaves

and plants from healthy leaves and plants based on real-

time data.

• Grad Cam Analysis: We used the Grad Cam analysis

method, which plays a significant role by generating the

heatmaps that indicate the disease region of the cotton plant

and leaves that contribute most of the model’s predictions.

It enhances the trust of plant pathologists by transforming

the abstract neural network output into a visual explanation

and which bridges the gap between AI and human

understanding and makes the diagnosis process more

transparent and reliable.
3.2 Model training phase

Step I: Define the Model:

Using pretrained backbone with custom layers involves

leveraging a pre-trained deep learning model (e.g., VGG16,

VGG19, InceptionV3, Xception, MobileNet), as a feature

extractor or base for a new model. These pretrained models offer

reliable feature representations because they were trained on huge

datasets like ImageNet. The model is then customized for a

particular task by adding custom layers:
• Reshape: Modifies the tensor's dimensions to fit the

architecture that is desired.

• MultiHeadAttention: Frequently utilized in transformer

topologies, this feature records relationships between

various input components. MultiHeadAttention enables

the model to focus on multiple regions of the cotton leaf

images simultaneously. Multi Heda attention allowing to

capture the contextual information from various spatial

locations. By applying attention across multiple heads, the

model can easily identify the different features and that

improve the ability to detect the subtle patterns hat may be

indicative of disease.

• Dropout: During training, neurons are randomly dropped

to lessen overfitting.

• Regularization layers: By penalizing excessively complex

models, they help avoid overfitting.
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This method blends task-specific modifications with the

effectiveness of transfer learning.
1. Pretrained Model: By leveraging previously learnt generic

characteristics (such as edges and textures), models like

MobileNet or VGG16 that have been pretrained on sizable

datasets like ImageNet can speed up training. Through fine-

tuning, this method enhances model performance on certain

tasks while lowering the computational load and requiring a

big dataset.

2. Unfreeze Specific Layers: To maintain generic properties like

edges and textures, previous layers of a pretrained model are

usually frozen in transfer learning. To adapt the model to a new

task, deeper layers that capture more task-specific patterns can

be unfrozen and adjusted, allowing for effective learning

without erasing fundamental features.

3. Custom Layers: Add task-specific layers to a pretrained

backbone to improve it:
• Reshape: Transforms 2D features into attention-

mechanism sequences.

• MultiHead Attention: Improves feature extraction by

concentrating on key areas.

• Dropout: During training, neurons are randomly

deactivated to prevent overfitting.

• Regularization (L2): By penalizing big weights, it

prevents overfitting.

• Dense Layers: Incorporate fully connected layers

according to the task's output dimensions.
4. Learning Rate Scheduler: Modifies the learning rate to

improve convergence during training.
• Warm-Up: To stabilize the model early on, it starts with a

low learning rate.

• Plateau: Maintains a steady learning rate throughout

training phases.

• Decay: Adjusts the model's weights by gradually lowering

the learning rate near the end.
5. Optimizer Configuration: Use an optimizer like Adam, which

adapts the learning rate for each parameter, along with gradient

clipping to prevent unstable updates by limiting large gradients,

ensuring stable training and improved model convergence.

Step II: Compile the Model.

Setting up the model for training entails choosing the metrics (like

accuracy) to assess performance, the optimizer (like Adam) to update

weights, and the loss function (like sparse_categorical_crossentropy)

to measure prediction error. Learning rate scheduling is employed to

dynamically modify the learning rate during training, ensuring stable

updates and better convergence of the model.

Step III: Train the Model.

Once the model is compiled, the next step is to train it using the

augmented data while incorporating monitoring mechanisms to

ensure optimal performance. Each step in this procedure operates

as follows:
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1. Feed Augmented Data: To expand the training dataset, the

original images are subjected to data augmentation techniques.

These include transformations like rotation, flipping, zooming,

and color adjustments. Such variations help the model learn from

diverse patterns, enhancing its ability to generalize and perform well

under real-world conditions.

We expose the model to a wider variety of changes by feeding it

enhanced data which helps it acquire more robust features and

avoids overfitting and it is the process by which a model

memorizes patterns.

2. Monitor Metrics:
Fron
• The model's learning progress and generalization strength

are assessed throughout the training phase by monitoring

key performance metrics like accuracy and loss for both

training and validation.

• Validation Loss against Training Loss: Tracking the loss

values during training helps to identify overfitting—an issue

where the model excels on training data and does not work

well with validation data. Instead of learning patterns that

generalize to new inputs, the model has likely memorized

the training data when the training loss is much smaller

than the validation loss.
3. Callbacks:
• Early Stopping: To reduce the chance of overfitting and save

computational effort, the callback mechanism is made to

terminate training early when no additional reduction in

validation loss is seen.

• Learning Rate Adjustment: During training, this callback

adjusts the learning rate. The learning rate is lowered to

enable more precise weight adjustments which aid in the

model's better convergence, if the validation loss stagnates,

that shows no progress after a predetermined number

of epochs.
3.3 Prediction phase

The last stage, the Prediction Phase, tests the model's capacity to

process fresh, untested data. This phase is critical because it gives a

clear measure of how well the model generalizes to real-

world situations.
3.4 Cotton net MHA model

The model architecture is expertly designed and it incorporates

a sequence of convolutional and pooling layers, culminating in a

cutting-edge Multi-Head Attention mechanism that effectively

processes feature maps before the flattening stage. Initially, the
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model employs three effective convolutional layers, using 32, 64,

and 128 filters in each layer. A MaxPooling2D layer, which employs

a pool size of (2, 2), comes after each layer. This improves the

model's ability to recognize and interpret key characteristics. To

prevent overfitting and maintain strong performance, we

incorporate the effective L2 regularization technique. This

advanced architecture is designed to yield outstanding results.

Following the convolutional layers, the feature map undergoes

normalization through a LayerNormalization layer, setting a solid

foundation for the next step. The MultiHeadAttention mechanism

is then employed, allowing for the capture of intricate dependencies

within the feature maps. This advanced attention mechanism

leverages four attention heads, each with a key dimension of 16,

ensuring a robust analysis of the data that enhances overall

model performance.

To effectively reduce the spatial dimensions, we integrate a

GlobalAveragePooling2D layer into the model architecture, which

transforms the output into a concise vector that aligns with the

quantity of channels. This is succeeded by a robust design of two

dense layers featuring 128 and 512 units, both leveraging the

powerful ReLU activation function. To enhance the model's

resilience and combat overfitting, we introduce a GaussianNoise

layer that adds a touch of random noise. After the second dense

layer, a dropout layer with a 0.2 rate is added to enhance the model's

generalization. Lastly, we finish with a dense output layer that has

four units and uses a softmax activation function to precisely

classify the input into one of four classes.
4 Classification models

The following Deep learning models are used for

performance analysis:
4.1 VGG16

Image classification, image recognition, and object

identification are the tasks handled by the VGG16 convolutional

neural network. The network's 16 layers of artificial neurons

analysed image data gradually to improve prediction accuracy.

Rather than employing several hyperparameters, with max pools

of 2x2 filter and stride 2 and 3x3 filter and stride 1, VGG16 use

convolution layers. The entire arrangement makes use of the

convolution and max pool layer architecture. The result

comprises a softmax for output and two fully connected layers.

The final product consists of two completely connected layers and

an output softmax. The time required for model training and

optimization is reduced by the availability of VGG16 as a pre-

trained neural network and its composition and quantity of layers.

Furthermore, the number of layers and its structure provide

extremely precise image categorization findings (Bagaskara and

Suryanegara, 2021).
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4.2 VGG19

There are 19 weight layers in this relatively deep convolutional

neural network which has 16 convolutional layers and 3 fully

connected layers. Its straightforward architecture and repetition

make it easy to use and comprehend. Non-linearity is added after

each convolution by the function that initiates ReLU and to

preserve spatial resolution, convolutional layers employ 3x3

filters with padding and stride of 1. Max pooling layers can be

used to effectively minimize spatial dimensions. Their filter is two-

by-two, and they are two-steppers. Three fully connected

classification layers make up the network and the final softmax

layer produces the final class probabilities (Bagaskara and

Suryanegara, 2021).
4.3 Inception V3

In 2015, Google unveiled Inception V3, a convolutional neural

network design. To improve performance on image categorization

tasks this improved version of the original Inception model uses

fewer parameters. The Inception V3 architecture uses a "deep stem"

of convolutional layers to take characteristics out of the

input imeage, followed by several inception modules to record

data at various sizes. Inception modules use average and

maximum pooling to extract features and 1x1, 3x3, and 5x5

convolutional filters. To regularizing the model at the network's

end and preventing overfitting, the model also includes dropout,

batch normalization, and a global average pooling layers. A few

image classification tests, such as the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC), have shown that

Inception V3 performs exceptionally well (Hassan et al., 2021;

Too et al., 2018).
4.4 Xception

Francois Chollet at Google created the Deep Learning model

known as Xception or Extreme Inception by further refining and

maintaining the Inception architecture. This deep convolutional

neural network's architecture incorporates depth wise separable

convolutions. Google defined Inception modules as a stage

between the depth wise separable convolution operation and

standard convolution which follows a pointwise convolution after

a depth wise one in convolutional neural networks (Chollet, 2017).

Depth wise Separable Convolution Resembling ResNet's

convolution block shortcuts, this architecture is based on two

essential elements.

The Xception model substitutes depth wise separable

convolution layers which add up to 36 layers for the inception

modules used in the inception architecture. The Xception model

outperforms the Inception V3 model by a small margin on the

ImageNet dataset while it outperforms the latter by a huge margin

on larger datasets with 350 million images.
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4.5 MobileNet

A powerful yet lightweight feature extraction architecture is

MobileNet that was open-sourced by Google (Howard et al., 2017).

It features minimal latency, cheap computing cost, great accuracy

and smaller neural networks. When depth wise separable

convolutions are used, the number of parameters is substantially

reduced in comparison to previous networks that used standard

convolutions and had the same net depth. The resultant deep neural

networks are lightweight. This design makes it possible for

convolutions to be separated based on depth. To produce a depth

wise separable convolution, two procedures are utilized.
1. Depthwise convolution.

2. Pointwise convolution.
MobileNet can serve as the foundation for segmentation,

classification, detection, and embeddings (Linkon et al., 2021).
5 Dataset and implementation details

5.1 Description of dataset

We have collected a freely available dataset fromAkash Zade. The

dataset contains 2293 total images. The dataset has been classified

into three categories (i)Training, (ii) Testing, and (iii) Validation as

shown in Figure 2 and Figure 3. Each category has 4 classes: (a)

Disease cotton leaf, (b) Disease cotton plant, (c) Fresh cotton leaf, and

(d) Fresh cotton plant. The training set contains 1951 images, 324

images for validation, and 18 images for testing. After applying

augmentation techniques, the dataset size was increased to 19,520

images, ensuring a more diverse and balanced representation.

Cotton is susceptible to diseases that can damage its leaves and

overall health, ultimately reducing its yield and quality. The

spectrum of diseases includes.
• Cotton Leaf Curl Disease: A virus spread by whiteflies

causes the newest leaves to become smaller, thicker,

glossy, crinkled, and curl upward.

• Bacterial Blight: Small, angular, water-soaked spots on

leaves that turn brown or black.

• Powdery mildew - The upper leaf surfaces get distorted and

yellowed due to a white, powdery fungal growth.

• Target Spot: Brown, round, concentric-ringed leaf spots

that frequently have a yellow halo around them.

• Aphids: These insects cause young leaves to curl and distort,

and they are frequently covered in sticky honeydew, which

can cause black sooty fungal growth.
The dataset used in this work is downloaded from Akash

Zade (Data Scientist) which is openly accessible and can be

f o und a t : h t t p s : / / d r i v e . g o o g l e . c om /d r i v e / f o l d e r s /

1vdr9CC9ChYVW2iXp6PlfyMOGD-4Um1ue.
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The dataset comprises four categories of cotton plants with their

distribution illustrated in Figure 4. The diseased cotton leaf category

accounts for 14.8% of the images, while diseased cotton plants make

up 41.8%. Fresh cotton leaves constitute 21.9% of the dataset, and

fresh cotton plants represent 21.6% of the images.

For additional testing, a dataset from Kaggle (Noon et al., 2021)

was utilised, containing images of cotton plants and leaves

exhibiting different diseases as shown in Figure 5. The dataset

includes labelled samples, making it suitable for assessing the

model’s accuracy and ensuring reliable performance across

multiple disease categories. The dataset contains a total of 1710

images and includes four classes. Images of these dataset collected

from real-world scenarios as well as the internet. The link to the
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dataset is given below: https://www.kaggle.com/datasets/

seroshkarim/cotton-leaf-disease-dataset
5.2 Tools selection

The proposed model is implemented using Python 3.10.8. Keras

Deep Learning Version 2.9.0 with TensorFlow support is used for

model training. The proposed system uses version 2.10.1 of Tensor

Flow and uses the graphical user interface; numerous trial setups are

conducted to evaluate the performance. A GPU rather than a CPU

is used for testing and training purposes. The proposed model will

be implemented in the Jupyter notebook environment.
FIGURE 2

Sample dataset of cotton plant disease.
FIGURE 3

Sample dataset of fresh cotton plant.
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FIGURE 4

Distribution of cotton plants.
FIGURE 5

Serosh Karim sample dataset.
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5.3 Implementation details

The following parameters are used for performance evaluation:

Confusion matrix: This table summarizes the performance of the

classification model, which supports both binary and multiclass

classification. Correct predictions are denoted by true positives (TP)

and true negatives (TN), whereas false negatives (FN) and false positives

(FP) represent missed detections and false alarms, respectively.

Accuracy: This metric assess how well a machine learning model

predicts the correct outcome which is expressed in Equations 1 and

2

Accuracy =
Correct Predictions
All predictions

(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision: Precision quantifies the proportion of positive

predictions made by the model which is defined in Equation 3. In

other words, precision evaluates the reliability of the model by

indicating the likelihood that a predicted positive case is truly positive.

Precision =
TP

TP + FP
(3)

Recall: Out of all the actual positive samples in the dataset, the

frequency with which a machine learning model properly detects

positive instances—also known as true positives—is measured,

which is given in Equation 4.

Recall =
TP

TP + FN
(4)

F1 – score: This metric is determined by using the harmonic

mean of precision and recall. This approach merge precision and

recall into a single evaluative parameter to maintain the effective

balance between them.

The F1-score can be mathematically expressed as shown in

Equation 5

F1 − Score =
2 ∗ Precision ∗Recall
Precision + Recall

(5)

Support: Support denotes the number of instances of each class

present in the dataset.

Loss curve: The loss curve, sometimes referred to as the training

loss curve, shows how the performance of the model changes over

time by computing the inaccuracy (or dissimilarity) between the

model's expected and actual outputs. The loss indicates the degree

to which the actual values deviate from the model's predictions.

ROC - AUC Score: Receiver Operating Characteristic Area

Under the Curve is referred to as ROC AUC. It provides a single

value that indicates the overall performance of the classifier across

various classification thresholds. This is the area below the ROC

curve. It summarizes the ability of the model to produce relative

scores for distinguishing between different classes across all

classification thresholds. An ROC AUC value of 0.5 indicates
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random guessing, while a value of 1 represents perfect

classification performance. ROC AUC defines the overall quality

of the model across different thresholds, providing a deeper

understanding of its performance evaluation.

The Table 2 presents a comparison of hyperparameters

between existing models and the proposed model for a deep learning

approach. The significance of each hyperparameter is given below:
• Learning Rate: During training, the learning rate regulates

how much the model modifies its parameters. Although a

greater learning rate (0.0007 in the suggested model)

implies faster updates and might result in faster

convergence, there is a chance that the ideal solution will

be overshot.

• Batch Size: The number of training data points processed

prior to model updates is known as the batch size. Reliable

gradient updates and more effective training could result

from the suggested model's larger batch size (32).

• Number of Epochs: The model's frequency of running

through the complete dataset is determined by the

number of epochs. More epochs are covered by the

suggested model to learn more intricate patterns (50 vs.

10), increasing the chance of overfitting.

• Optimizer: The optimization method Adam (Adaptive

Moment Estimation) incorporates the advantages of

momentum and RMSprop optimizers to enable

efficient training.

• Activation Function: By adding non-linearity using the

Rectified Linear Unit (RLU) activation function, the

model may learn complex patterns.

• Dropout: To avoid overfitting, a portion of neurons are

arbitrarily discarded during training as part of the dropout

regularization strategy. The suggested model appears to

strike a balance between regularization and learning

ability with a marginally lower dropout rate (0.2).

• Gaussian Noise: To provide unpredictability and strengthen

the model, Gaussian noise is employed as a regularization

technique. Gaussian noise has marginally lower noise, the

suggested model may rely more on learnt features than on

chance variations.

• Kernel Size: In convolutional layers, the filter size is referred

to as kernel size. CNNs often use a 3x3 kernel, which strikes

a reasonable compromise between computational efficiency

and collecting local information.

• Loss Function: When working with integer-labeled

categorical data, this loss function is particularly useful for

multi-class classification issues.

• Image Size: For deep learning models like CNNs, the input

image size stays constant at 224 x 224 pixels, which is a

common resolution.

• Multi-head Attention: In transformer-based models,

multihead attention is a system that enables the

simultaneous attention of various input components. By

lowering the number of attention heads from eight to four,
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the suggested model may lower computational complexity

without sacrificing performance.

• Early Stopping Patience: This refers to how many epochs

without progress are required before training is stopped. A

marginally greater patience value (6), the suggested model

can train for longer periods of time before ceasing, perhaps

leading to improved generalization.
The following observations were made while selecting the

hyperparameters for the proposed mobility model:
• The suggested approach emphasizes faster learning and

reliable updates by using a bigger batch size and a higher

learning rate.

• A deeper training process is suggested by the increase

in epochs.

• Confidence in model generalization is shown by lower

Gaussian noise and dropout.

• More flexibility in training is possible with a little higher

early stopping patience; fewer attention heads indicate an

optimization of computing resources.
6 Result and discussion

In-depth research and data analysis are presented in this

section, which serves as the core of the investigation. The

previous sections provided an overview of the study's objectives

and methodology; now, we focus on the key findings from our

analysis. Using a range of performance indicators, we provide a

clear and insightful review of the deep transfer learning models
tiers in Plant Science 15
which we have implemented. Advanced optimization techniques,

including learning rate (learning rate = 0.0001), early stopping

(patience = 5 epochs), Gaussian noise (s = 0.25), dropout

(rate=0.30) and L2 regularization (l = 0.0005), and multi-head

attention (attention heads=10) have been systematically refined to

enhance the efficiency of deep learning models in detecting and

classifying cotton plant diseases.

The effectiveness of many deep learning classifiers in identifying

four classes of cotton plant images—diseased cotton leaf, diseased

cotton plant, fresh cotton leaf, and fresh cotton plant—is contrasted

in Table 3. Metrics like Precision, Recall, F1 Score, Overall

Accuracy, and Test Loss are used to evaluate the models. The

analysis reveals that VGG16 reaches 94% total accuracy with a test

loss of 0.1368, demonstrating strong performance across all

categories. It records the highest F1 score (0.99) for diseased

cotton leaf, while the lowest (0.90) is observed for fresh cotton

plant. In contrast, VGG19 exhibits a lower overall accuracy of 89%

and a higher test loss of 0.2874, with the lowest F1 score (0.91) for

diseased cotton leaf, indicating challenges in classification.

InceptionV3 shows an improved accuracy of 93% with a test

loss of 0.1524. It excels in classifying fresh cotton leaf (Recall: 1.00)

but faces minor difficulties in identifying diseased cotton leaf (F1

score: 0.94). Xception, on the other hand, exhibits better

generalisation with a 96% accuracy rate and a reduced test loss of

0.1317. The model maintains consistently high F1 scores across all

categories, reflecting stable performance.

MobileNet stands out by achieving perfect classification (1.00

F1 score) for diseased cotton leaf and diseased cotton plant,

attaining the overall accuracy (98%) and the lowest test loss

(0.0686), making it a highly efficient model. However, CottonNet-

MHA, a custom model with Multi-Head Attention, surpasses all

models, achieving 99% accuracy across all categories with the lowest
TABLE 2 Hyperparameters used in deep learning model.

Hyperparameter
Value

Existing models Proposed model

Learning rate 0.0001 0.0007

Batch size 16 32

Number of epochs 10 50

Optimizer Adam Adam

Activation Relu Relu

Dropout 0.3 0.2

Gaussian noise 0.25 0.2

Kernel size 3×3 3×3

Loss Sparse_categorical_crossentropy Sparse_categorical_crossentropy

Image size 224×224 224×224

Multihead attention 8 4

Early stopping patience 5 6
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test loss (0.0683). This indicates superior learning capability and

minimal misclassifications, making it the most effective model

among those evaluated. This evaluation indicates that custom

models like CottonNet-MHA with Multi-Head Attention can

significantly enhance performance in plant disease classification

tasks, making them ideal for practical applications in agriculture.

As shown in Figure 6, the curves produced during the training

and validation stages are also used to assess the models. This implies

the model performed at peak efficiency during this period by

effectively minimising the difference between real and anticipated

values. This indicates that after ten training epochs, the models

reached an optimal state with minimal loss values. At different

epochs during the training process, different models achieved their

highest accuracy.

The performance of the VGG16 model for 10 epochs can be

illustrated in Figure 6.1a–1c. In Figure 6.1a the training accuracy
Frontiers in Plant Science 16
starts around 60% and it keeps improving which is an indication of

the ability of the model to learn efficiently from the training data.

Validation accuracy increases even more quickly and levels off at

about 95% after the third epoch. Even though there are vague

fluctuations in the validation accuracy in the middle epochs, it is

following the training curve closely, and from the fourth epoch,

both lines are converging – which suggests that the model is

performing well (not overfitting) to unseen data. Similarly, the

Figure 6.1b reveals that the training loss begins high (>0.8) and

declines sharply in the first few epochs with the validation loss being

on a continual downward progression starting just a little below that

point. These two losses also converge around 0.2 yet again with little

divergence indicating stable and efficient learning with no

overfitting. Moreover, Figure 6.1c ROC curve shows high

multiclass classification ability of the model. All AUC values for

Class 0, 1, 2, and 4 are 1.00, while Class 3 reached 0.99, indicating
TABLE 3 Execution of Applied models for cotton data set.

Classifiers Class Precision Recall F1 score
Overall
accuracy

Test loss

VGG16

diseased cotton leaf 1.00 0.99 0.99

0.94 0.1368
diseased cotton plant 0.93 0.94 0.93

fresh cotton leaf 0.95 0.94 0.94

fresh cotton plant 0.89 0.90 0.90

VGG19

diseased cotton leaf 0.96 0.86 0.91

0.89 0.2874
diseased cotton plant 0.93 0.86 0.90

fresh cotton leaf 0.83 0.95 0.89

fresh cotton plant 0.85 0.87 0.86

InceptionV3

diseased cotton leaf 0.99 0.89 0.94

0.93 0.1524
diseased cotton plant 0.97 0.93 0.95

fresh cotton leaf 0.85 1.00 0.92

fresh cotton plant 0.94 0.91 0.92

Xception

diseased cotton leaf 0.96 0.99 0.98

0.96 0.1317
diseased cotton plant 0.97 0.89 0.93

fresh cotton leaf 0.99 0.96 0.98

fresh cotton plant 0.91 0.99 0.95

MobileNet

diseased cotton leaf 1.00 1.00 1.00

0.98 0.0686diseased cotton plant 1.00 0.99 0.99

fresh cotton leaf 0.94 1.00 0.97

fresh cotton plant 1.00 0.95 0.97

CottonNet- MHA

diseased cotton leaf 1.00 1.00 1.00

0.99 0.0683
diseased cotton plant 1.00 0.98 0.99

fresh cotton leaf 0.98 0.99 0.98

fresh cotton plant 1.00 1.00 1.00
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FIGURE 6

Analysis of models based on their graphical curves. (1a) Model accuracy of VGG16. (1b) Model loss of VGG16. (1c) ROC curve of VGG16. (2a) Model
accuracy of VGG19. (2b) Model loss of VGG19. (2c) ROC curve of VGG19. (3a) Model accuracy of InceptionV3. (3b) Model loss of InceptionV3.
(3c) ROC curve of InceptionV3. (4a) Model accuracy of Xception. (4b) Model loss of Xception. (4c) ROC curve of Xception. (5a) Model accuracy of
MobileNet. (5b) Model loss of MobileNet. (5c) ROC curve of MobileNet. (6a) Model accuracy of Cotton Net-MHA. (6b) Model loss of Cotton Net-
MHA. (6c) ROC curve of Cotton Net-MHA.

Hassan et al. 10.3389/fpls.2025.1664242
almost perfect class discrimination. The 1.00 of the macro-

average AUC furthers the balanced and robust performance of

the model across every category. All ROC curves are far away from

the random chance line indicating high precision and
Frontiers in Plant Science 19
generalization ability of the VGG16 model. Together, these

results help show how VGG16 performs excellent accuracy,

stabil i ty in learning, and dependabil i ty in multiclass

classification undertakings.
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Figure 6.2a–c characterize the performance of the VGG19

model, where one can see its great effectiveness in multi class

classification tasks. In Figure 6.2a, both the training and

validation accuracy curves have an upward trend and the training

starts at about 58% and converges to around 90%. The path of the

validation accuracy is similar with some fluctuations but shortly

after a few epochs, it matches the trend of the training accuracy

closely. This convergence means that the model does not overfit and

is doing a great job generalizing on unseen data. In Figure 6.2b, we

have a progression of loss for the model, where training loss and

validation loss both drop significantly throughout the epochs and

become steady at approximately 0.27–0.30. The initial fluctuations

in the validation loss disappear in no time, and soon, the two lines

become one, which indicates a non-overfit effective learning

process. Accompanied by these findings, the ROC curve in

Figure 6.2c shows the multiclass test results and reveals

exceptionally high Area Under Curve (AUC) scores – Class 0

(1.00), Class 1 (0.98), Class 2 (0.99), and Class 3 (0.97 These

values represent good values of model performance whereby there

are very low misclassifications for the model to correctly separate

classes. All in all, the VGG19 model is characterized by a high

degree of learning ability and low error rates, and provides excellent

discriminative power which makes it a reliable and well optimized

model which can be used for accurate and reliable classification

of multiclass.

Through accuracy, loss, and ROC characteristics, performance

of the InceptionV3 model is tested as in Figure 6.3a–c. Figure 6.3a is

the training and validation accuracy for 10 epochs. Training

accuracy from the beginning is within the 70% and increases to

approximately 89% after the last epoch. Validation accuracy rises

initially about up to 83% and it peaks around 94% by epoch 7 and

stabilizes. The fact that the validation accuracy is consistently higher

and the gap between the two curves becomes increasingly smaller is

a sign of effective learning where strong generalization and no

overfitting signs are experienced. Figure 6.3b shows the trend of loss

model possesses while training. The training loss is high at the

initial stage (~0.7), but it falls rapidly for the first epochs and then

slowly levels off at ~0.32. Validation loss has the same trend, with

the value of approximately.

0.47 for the first epoch, reaching the minimum point of ~0.21 at

the epoch 7 and then slight increase. Importantly, validation loss is

smaller than training loss, also indicating the good model

generalization to the unseen data. Figure 6.3c depicts the ROC

curves for multiclass classification situation. The performances for

all four classes (Class 0 to Class 3) have an AUC equal to 1.00 i.e.

perfection in class separation. The ROC curves come close to the

upper-left corner of the ROC plot; this is indicative of high

sensitivity and specificity. The macro-average AUC, like 1.00,

pinpoints balanced and excellent performance on all classes.

These results far above random classifier baseline (AUC = 0.5)

support the good discriminative power of this model. Overall, the

InceptionV3 model is characterized by resilient, reliable, high-

performing behaviour on measures of accuracy, loss,

and classification.
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Figure 6.4a shows the training and validation accuracy of the

Xception model over 10 epochs. Training accuracy rises slowly but

steadily to over 90%, whereas the validation accuracy rises and

down but remains higher, peaking over 95%. This means effective

learning and good generalization with no prominent indications of

overfitting. The Xception model loss graph in Figure 6.4b shows a

significant decline of the training and validation loss in 10 epochs.

Loss in training reduces from about 0.6 to below 0.3, which shows

confident learning. Validation loss is more oscillating but overall, it

decreases severely until it achieves the minimum at epoch 8

approximately. The irregular spikes in the loss for validation (at

epoch 6) imply slight instability, but the underlying trend indicates

good learning and low overfitting tendency. The ROC curve

presented in Figure 6.4c shows the performance of the Xception

model on a multiclass classification task.

In the initial phase (epochs 0–2), the rate of training accuracy

increases rapidly from about 87% to ~94% as shown in Figure 6.5a.

The validation accuracy also increases and surpasses the training

accuracy over the epoch 1. In the middle Phase (epochs 3–6),

training accuracy stabilizes around 94–96%. Accuracy for validation

remains above training and approaches 97–98%, which indicates a

good generalizability. Final epochs (7–9), both accuracies fluctuate

slightly. Validation accuracy reaches more than 98%, while training

is close to 96%. No effect of overfitting, as we are not losing a lot of

accuracy in validation. In epoch 0–1, training loss is high initially

(~0.35) but then falls off very quickly, as shown in Figure 6.5b. The

validation loss also starts high (~0.18) and rises a little at first, and

then starts to decrease. In epochs 2–5, both losses smoothly

decrease, which means that learning is taking place on steady.

Validation loss remains always below training loss, which indicates

no overfitting. In epochs 6–9, validation loss achieves its lowest

(~0.05) in epoch 7. It shows resilience and good generalization by

spiking briefly at epoch 8 and then going back down again. Training

loss stabilizes around 0.13–0.15. AUC (Area Under the Curve)

values for all classes are 1.00, as shown in Figure 6.5c, this is the

perfect classification performance. The macro-average AUC is also

1.00, which means that the model achieves similar performance

with regard to all classes. Every ROC curve is close to the top left

corner, thus, high sensitivity, and low false positives.

As seen in Figure 6.6a the CottonNet MHA model has a strong

and stable learning curve for the 40 training epochs it uses.

Figure 6.6a indicates that the accuracy of the model rises during

training and that the validation accuracy is slightly higher than the

training accuracy in the beginning, while the model stabilizes

around 95%. It means that the model predicts well on new,

unseen data without getting confused. In the same way,

Figure 6.6b shows that loss for both training and validation

continues to drop steadily. Loss during training goes from 0.82

down to 0.2, and the validation loss follows the same pattern and

ends up being a small amount lower. Seeing both accuracy and loss

curves close to each other is a sign that the model is effective and

strong. All in all, the CottonNet MHA model performs well, getting

accurate results and keeping the error low as it learns and does not

lose its stability. The ROC curve for the CottonNet MHA model as
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TABLE 4 Evaluation of the current work in comparison with existing techniques.

Study Algorithm Accuracy Precision Recall F1 score Test loss Dataset used Key observations

VGG16 achieves decent accuracy but
struggles with overfitting and slower
convergence.

VGG19 slightly improves over VGG16 but
faces similar issues of overfitting and large
model size.

Inception V3 is more efficient than VGG
models but still shows performance gaps in
real-world data.

Xception improves efficiency and accuracy
compared to VGG models but still struggles
with generalization.

MobileNet is efficient but slightly lags behind
Xception and Inception V3 in accuracy
and performance.

et comprises five-band
gery from a

The study shows YOLOv5 can detect cotton
root rot (CRR) in real time from aerial
imagery at
11 FPS with moderate accuracy, aiding
targeted

MicaSense RedEdge-3
100 at 120

fungicide use. Ant colony optimization was
applied to GPS-based infected areas to
generate optimal management paths,
improving CRR control

des 825 cotton leaf
fields under varied
as healthy, fungal, or leaf
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ing to improve model

Early detection of cotton diseases is vital to
prevent yield loss in India. A CNN model
(TensorFlow Keras) achieved ~90% accuracy
for disease identification. A mobile app
enables offline diagnosis and pesticide
advice, supporting proactive management
and better yields. The study highlights AI’s
potential in modernizing cotton farming and
its adaptability to other crops.
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cterial Blight, Curl Virus)
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Using Transfer Learning (ResNet50, 95%
accuracy) and KNN (86%), the study
accurately detects bacterial blight and curl
disease, with a web app enabling timely
diagnosis and remedies to boost cotton
productivity. Limitations include reliance on
high-quality data, manual image capture,
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TABLE 4 Continued

Study Algorithm Accuracy Precision Recall F1 score Test loss Dataset used Key observations

detection of only two diseases, risk of
overfitting, and dependence on internet
access.

— — 3,475 images of cotton crop leaves that
were manually annotated to ensure
accurate disease identification and
classification

The study demonstrates that Vision
Transformers (ViT) effectively detect cotton
leaf diseases, for bacterial, fungal, viral, and
nutrient deficiency cases. This showcases
AI’s potential to improve timely, accurate
disease detection, reduce crop loss, and
support economic stability in major cotton-
producing nations like India, China, and
Pakistan

94.4% —– Kaggle Cotton Disease Early detection of cotton diseases is vital for
productivity. A hybrid ML
approach using RF, SVM, and an ensemble
model classifies leaves as healthy or diseased.
The study recommends regular model
updates and exploring deep learning to
enhance detection, supporting India’s cotton
industry and rural livelihoods. Limitations
include limited, less diverse training data and
challenges in fully interpreting the ensemble
model, affecting real-world agricultural use.

99% 0.06 Akash Zade. The dataset contains 2293
total images

Outperforms all other models with perfect
accuracy and generalization, providing a
more robust solution for cotton disease
detection.
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shown in Figure 6.6c illustrates very good results for classifying all

four groups of data. Every single class-related ROC curve touches

the top-left corner, showing that true positives are 100% and false

positives are 0%. This reveals that equality is achieved among the

classes. For every class, the AUC is 1.00, and the average AUC for all

classes is also 1.00, proving that the model correctly

classifies samples.

Figure 6 comparing the performance of different models

(VGG16, VGG19, and InceptionV3) in terms of their accuracy,

loss, and other performance metrics during the training and

validation process. VGG16 and VGG19 initially show

improvement in accuracy but may have slight fluctuations or

plateaus after reaching a certain level, indicating either the models

are overfitting or that further training is not yielding better results

and the loss for these models initially decreases rapidly, then may

fluctuate or start to stabilize, which suggests either a plateau or that

the model is not improving further. InceptionV3 appears to

improve in accuracy, showing a consistent rise in validation

accuracy over time, potentially showing that it is better

generalizing the data in contrast to the others. InceptionV3

appears to improve in accuracy, showing a steady increase in

validation accuracy over time, potentially indicating that it is

better generalizing the data compared to the others. The

consistent decrease in the loss of the InceptionV3 model suggests

that its performance improves with time with minimal variation,

suggesting better convergence and potentially enhanced

generalisation. The model's performance over time during

training and validation is displayed on the MobileNet accuracy

graph. A consistent rise in accuracy over time may indicate that the

model is developing and learning well.

In the initial epochs of the loss graph, MobileNet might show a

sharp decline in loss, whereas the training loss progressively

declines. If the validation loss decreases but starts to rise again or

stagnate, it indicates the model might have reached its optimal

performance but is now overfitting or it has reached a local

minimum. In case of Xception the accuracy graph for Xception

may show a faster increase in accuracy compared to MobileNet or

other models. If it shows a steady and significant increase with fewer

fluctuations, this indicates that the model is improving consistently

over epochs. For Xception, the loss should ideally decrease rapidly

at the beginning and then level off gradually. If the loss starts to rise

after dropping for some time, the model might have overfitted to the

training data. We have done evaluation of the proposed model with

the existing techniques as shown in Table 4.

Our proposed model CottonNet-MHA is designed specifically

for cotton plant disease classification. If it shows good accuracy in

the early epochs, it means that the model is successfully learning the

basic patterns of cotton health. When the validation accuracy rises

at a pace which is comparable to the training accuracy, good

generalisation is seen. When the loss drops off smoothly, the

model is effectively learning to minimise the error between the

predicted and actual labels. The ROC curve for CottonNet-MHA

should ideally show that the model can separate diseased and

healthy cotton plants with good precision, especially in cases

where the dataset might have imbalanced classes. For assessing
Frontiers in Plant Science 23
how well the model handles the positives and negatives in an

unbalanced dataset, the precision-recall curve - which should be

as close to the upper-right corner as feasible—would be useful.
6.1. Cross-validation for robust cotton
disease detection

By adding more data sources to the proposed model, it can be

made for practical deployment by integrating additional data

sources, Cotton Disease Plants Dataset (Serosh Karim, Kaggle), to

facilitate real-time detection of cotton diseases and improve

reliability under varying field conditions. Images depicted in

Figures 7 and 8 outline the predicted classes 0 and 1.

Evaluation using additional images from the Cotton Disease

Plants Dataset demonstrated that the model correctly identifies

disease classes, confirming its consistent and dependable

performance when applied to unseen data.
7 Responsive web application
development

Flask, a lightweight Python framework, was employed to

develop a responsive web-based platform for deploying deep

learning models, enabling cotton disease prediction for end users.

The application executes the trained CottonNet-MHA model,

which achieved the highest accuracy among all evaluated models,

to generate predictions from real-time data inputs. Figure 9 outlines

the key stages of development and testing for this farming-

oriented application:
FIGURE 7

Predicted fresh cotton plant.
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• Model Generation: A deep learning model is constructed to

determine the presence and type of cotton disease from an

image. The CottonNet-MHA model, offering superior

classification precision, is deployed on the Flask server

using Python and Gunicorn as the WSGI (Web Server

Gateway Interface) HTTP server deployed on Google

Cloud, with an API prepared to handle user requests.

• User Interface Design: A web page is created to allow users

to upload cotton plant images.

• Prediction and Result Delivery: The uploaded image is

processed through the model, the infection type is

identified, and the result is returned to the interface

(Figures 10 and 11).
The system is designed for ease of use, enabling farmers to

capture an image of their crop, upload it, and receive an immediate

diagnosis by clicking the “Predict” button. This not only aids timely

crop management without additional costs but also contributes to
tiers in Plant Science 24
improved agricultural productivity and broader socio-

economic growth.
8 GRAD-CAM analysis

The interpretability of the convolutional neural network was

enhanced using the Gradient-Weighted Class Activation Mapping

(Grad-CAM) method. This technique generates heatmaps that

highlight the regions of an image most influential in the model’s

decision-making process, thereby providing transparency in

classification outcomes. By localizing the critical areas that

contribute to class prediction, Grad-CAM enables a clearer

understanding of how the model distinguishes between categories.

Beyond validating prediction behavior and identifying disease-

specific regions, Grad-CAM also offers valuable insights for

refining the model’s architecture and training strategy. Figure 12

illustrates the visualization of disease detection using our proposed

model. Figure 12a presents the original image of the cotton leaf,

which shows visible symptoms of infection. Figure 12b displays the

disease heatmap generated by the model, highlighting the regions of

the leaf that are most affected by the disease. Finally, Figure 12c

shows the overlay of the heatmap on the original image, which

provides a clearer interpretation by localizing and emphasizing the

diseased regions on the leaf. This visualization effectively

demonstrates how the model identifies and focuses on the critical

areas of disease, thereby ensuring reliable disease detection.
9 Comparative analysis

To evaluate the effectiveness of our proposed algorithm, its

performance is compared with several existing methods. Table 4

provides comparative results across relevant evaluation criteria.
10 Computational efficiency and
resource utilization

This section provides a summary of hardware specification

training parameters and the computational complexity of the

model as shown in Table 5. This encompasses information on the
FIGURE 8

Predicted disease cotton leaf.
FIGURE 9

Web application development.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1664242
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hassan et al. 10.3389/fpls.2025.1664242
hardware setup, model dimensions, training duration, and

inference times for both GPU and CPU. These metrics are crucial

for evaluating the model's performance, efficiency, and

computational requirements.
11 Conclusion and future scope

Our research has revealed how well artificial intelligence-based

learning methods can identify disease in cotton plants. This study

emphasises the application of deep transfer learning methods for

precisely detecting cotton plant disease. To detect the cotton disease,
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CottonNet-MHA outperforms all standard models, achieving 99%

accuracy with the lowest test loss. It is also observed that MobileNet

performs exceptionally well, making it a lightweight and efficient

alternative. It achieves 98.46% accuracy with a lower error rate

compared to other transfer learning models. This model accurately

distinguishes the healthy and diseased cotton plant and leaves.

However, VGG19 underperforms compared to others, with the

lowest accuracy and highest test loss, whereas VGG16 is a reliable

model as it provides a good trade-off, maintaining strong performance

with a relatively lower test loss than VGG19. In addition to that,

Xception and InceptionV3 strike a balance between accuracy and loss,

making them strong contenders, but they do not surpass CottonNet-
FIGURE 11

Web application prediction results for fresh leaf.

FIGURE 10

Web application prediction results for infected leaf.
FIGURE 12

(a) Original Image, (b) Heatmap Image (c) Overlayed Image.
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MHA. We have developed a web-based application designed to

identify real-life cotton disease prediction. This web-based

application demonstrates high accuracy compared to other models

and can also be adapted for broader agricultural applications. We also

performed the cross-validation to evaluate the model’s performance

on a publicly available dataset and which ensures the model’s

robustness and validation across different folds of data. The Grad

Cam explanation technique is used for interpretability. The heat map

highlights the critical region of cotton leaves and plant disease and

enhances the trust of AI models for detecting the disease of cotton

leaves and plants. This technique improves the model’s reliability and

transparency by ensuring that predictions are made based on relevant

features rather than irrelevant information.

The proposed Deep Learning based automated model is very fast,

less expensive, and reliable for identifying cotton disease for plants and

leaves. It can be concluded that CottonNet-MHA is the best-

performing model, achieving flawless classification, while MobileNet

is a great alternative, offering high accuracy with minimal

computational cost.

The study demonstrates significant progress in identifying cotton

leaves and plant diseases, while also highlighting several flaws that

require more attention. One of the major challenges is accurately

identifying the region of interest (ROI) in images. It is necessary to

carefully identify the afflicted areas to identify plant diseases. The model

might analyze extraneous areas of the image if the ROI is not properly

defined, which could result in inaccurate categorization and predictions.

Another problem is that models may be inaccurate, particularly if they

are trained on small or undiversified datasets. Additionally, the deep

learning models used in this study require a large amount of processing

power for training and validation. This could be a drawback, particularly

when dealing with various datasets or deploying models in real-world

environments with restricted computational power. Optimization

methods, such as adjusting model parameters, are essential for

addressing these challenges by enhancing performance and reducing

errors. These limitations could affect the model's generalizability and

reliability, underscoring the need for continuous refinement of both

models and techniques. Examine cutting-edge transfer learning

strategies to optimize the performance of trained models, which can
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greatly enhance disease diagnosis. By improving existing models or

integrating multiple models using ensemble techniques, the system's

overall robustness and performance can be enhanced.

To reduce the manual effort and enable timely interventions, in

future studies, our proposed model can be integrated with IoT-

enabled sensors or drone-based imaging systems for real-time

monitoring of cotton fields. The approach of combining the deep

learning with IoT or drone technology will not only allow large-

scale, automated disease detection directly in agricultural

environments but also significantly enhance the scalability,

accuracy, and practical applicability of cotton disease diagnosis in

real-world scenarios.

Incorporating these innovations with emerging research

avenues can push research towards more precise, interpretable,

and user-oriented solutions. Advancements in this domain can

significantly contribute to sustainable agriculture by improving

crop health management, increasing productivity, and ultimately

strengthening food security.
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