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Genomic selection (GS) using whole-genome sequencing (WGS) data has
potential to improve breeding value accuracy in fruit trees, but previous studies
have reported limited gains compared to high-density marker sets. Incorporating
preselected variants identified through genome-wide association studies (GWAS)
is a promising strategy to enhance the predictive power of WGS data. We
investigated whether incorporating GWAS-preselected variants and fixed-effect
markers into genomic best linear unbiased prediction (GBLUP) models improves
predictive ability for fruit blush color (FBC), average fruit weight (AFW), fruit
firmness (FF), and trunk circumference (TC) in mango (Mangifera indica L.). The
study used 225 gene pool accessions from the Queensland Department of
Primary Industries in Australia, with phenotypes collected between 1999 and
2024. Predictive ability was assessed using models that ignored or accounted for
population structure using fixed principal components. Accounting for
population structure led to substantial reduction in predictive ability across all
traits, suggesting that initially high predictive abilities may have been partly driven
by genetic differences between subpopulations. GWAS-preselected variants
improved predictive abilities compared to using all WGS data, especially when
population structure was accounted for in both parental and 5-fold cross-
validation. Gains under parental validation reached 0.28 for AFW (from 0.30 to
0.58) and 0.06 for FBC (from 0.44 to 0.50). In 5-fold cross validation, gains were
up to 0.16 for AFW (from 0.32 to 0.48) and 0.10 for FBC (from 0.35 to 0.45). This
suggests that prioritizing markers that better capture relationships at causal loci
can improve predictive ability. Fixed-effect SNPs improved predictive ability of
WGS data, particularly for FBC, with increases of up to 0.18 (from 0.44 to 0.62).
The combination of GWAS-preselected variants and fixed-effect markers yielded
the highest improvements in predictive ability for FBC and TC. GWAS identified 5
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trait-associated SNPs for FBC, 11 for AFW, and 8 for TC. These results
demonstrate that leveraging GWAS-preselected variants and fixed-effect SNPs
improves predictive ability, potentially enhancing breeding efficiency in

fruit trees.
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1 Introduction

Mango (Mangifera indica L.), the world’s fifth most produced
fruit crop, holds major economic value due to its global
consumption and diverse applications (Srivastav et al., 2023).
While global production exceeds 50 million tons, Australia
contributes less than 0.2%, with an estimated 61,474 tons
produced annually, 89% of which is consumed domestically (Bally
and De Faveri, 2021; Bally et al., 2021). Genetic improvement of
mango is essential to enhance productivity and to meet evolving
market demands. Key breeding goals include dwarf or semi-dwarf
tree architecture suitable for high-density orchards (Mahmud et al.,
2023; Reddy et al., 2003), attractive skin color, and market-specific
fruit weight (Bally et al., 2009). Genetic gain in conventional mango
breeding is primarily constrained by lengthy breeding cycles
exceeding 20 years, with juvenility alone accounting for nearly
half of this duration (Bally and Dillon, 2018). New breeding
approaches that can reduce the breeding cycle length are greatly
needed to accelerate genetic gains in mango breeding programs.

Genomic selection (GS) has great potential to shorten breeding
cycles in horticultural fruit trees by predicting genetic values
(breeding or clonal) of unphenotyped individuals at the juvenile
stage using statistical models trained on a training set with both
genotypic and phenotypic data (Meuwissen et al., 2001). Proof of
concept studies in apple (Muranty et al., 2015; Roth et al., 2020),
macadamia (O’Connor et al, 2021), and eucalyptus (Suontama
et al,, 2019) have demonstrated that GS can accelerate genetic gain
per unit of time compared to conventional breeding by shortening
the cycle length, primarily through skipping progeny testing.
However, in oil palm, GS did not yield sufficient prediction
accuracy for some key traits to justify skipping progeny testing
(Cros et al,, 2017), underscoring the importance of accurate genetic
value prediction for effectively implementing GS in tree crops.

The genomic best linear unbiased prediction (GBLUP) model
(VanRaden, 2008) is one of the most widely used approach for
genomic prediction due to its flexibility and computational
efficiency (Barreto et al., 2024). The GBLUP model estimates
breeding values of selection candidates using a genomic
relationship matrix (GRM), which aims to capture relationships
among individuals at quantitative trait loci (QTLs). However, it
assumes that all markers contribute equally to genetic variance
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(Meuwissen and Goddard, 2010), a limitation when a few major loci
account for a substantial portion of trait variation. This can lead to
underestimation of the contribution of major loci to genetic
variation, and consequently, reduced genetic gain from GS
(Bernardo, 2014). To address this, several studies have
incorporated key trait-associated markers as fixed or random
effects in GBLUP models, resulting in improved prediction
accuracy (Bernardo, 2014; Chen et al., 2023; Hardner et al., 2022;
Kostick et al., 2023).

Whole-genome sequencing (WGS) data has been proposed to
improve the accuracy of genomic prediction by capturing QTL
variants directly rather than relying on the linkage disequilibrium
(LD) between markers and unobserved QTLs (Meuwissen et al.,
2016). However, prior research has demonstrated that to enhance
genomic prediction accuracy with WGS data, predictions should
utilize preselected variants based on their association with target
traits, such as those identified through genome-wide association
studies (GWAS) (Liu et al., 2023; Raymond et al., 2018; Warburton
et al,, 2020; Wei et al., 2023; Ye et al., 2020). This is because not all
markers in WGS data are causative or in strong LD with causative
mutations for the target trait (van Binsbergen et al., 2015); instead,
many may introduce noise into the prediction model, ultimately
reducing prediction accuracy (Raymond et al, 2018). GWAS-
preselected variants from WGS data may enhance prediction
accuracy in GBLUP models by enabling the construction of trait-
specific GRMs that prioritize causative mutations or markers in LD
with them, thereby better capturing genetic relationships at causal
loci. Although GWAS-preselected variants from WGS data have
shown improved prediction accuracy in livestock (Jang et al., 2023a;
Raymond et al., 2018; Veerkamp et al., 2016), this approach remains
largely unexplored in fruit trees, including mango.

Genome-wide association studies (GWAS) remain the most
widely used approach for identifying trait-associated single
nucleotide polymorphisms (SNPs) and prioritizing markers for
genomic prediction based on their potential causal effects.
However, most studies employed single-locus GWAS (SL-GWAS)
models, which test markers individually and have limited detection
power for polygenic traits (Wang et al., 2016). The ability to detect
causal variants is further influenced by factors such as effective
population size (Ne), LD structure, GWAS sample size, and the
statistical model used (Jang et al., 2023b). For instance, detection
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power is enhanced and sample size requirements are reduced for
GWAS in populations with high Ne and low LD (Misztal et al,
2021), whereas small Ne increases long-range LD and noise,
reducing detection power. To date, Ne has not been estimated in
mango. In addition, most genomic prediction studies using GWAS-
preselected variants have relied on a single GWAS methodology for
variant discovery, limiting comparison across models. This
represents a key research gap. To address this, we evaluate
genomic prediction performance using GWAS-preselected
variants identified from three multi-locus GWAS methods:
Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK) (Huang et al, 2019), the Fixed and
random model Circulating Probability Unification (FarmCPU)
(Liu et al., 2016) and the Multi-loci Mixed Linear Model
(MLMM) (Segura et al,, 2012). We also compare these with a
single-locus approach, the general linear mixed model (GLMM).

A key challenge in genomic prediction is population structure,
defined as the presence of genetically distinct subgroups with
divergent allele frequencies (Jacquin et al, 2025). If unaccounted
for, population structure can bias genomic estimated breeding values
(GEBVs) and inflate estimates of selection accuracy (Riedelsheimer
et al,, 2013; Werner et al., 2020). Addressing population structure is
especially critical in perennial tree crops, where training populations
often represent broad genetic diversity to minimize phenotyping
demands across populations or generations, given the long breeding
cycles and extended juvenile phases (Brault et al., 2022). Despite its
potential to confound predictions, population structure is frequently
overlooked, especially when perceived to be weak. A common
strategy used to account for population structure is to include
principal components (PCs) derived from principal component
analysis (PCA) of the GRM as fixed-effect covariates in prediction
models (Hayatgheibi et al., 2024).

To the best of our knowledge, there are currently no published
reports of genomic prediction in mango, and the use of GWAS-
preselected variants from WGS data remains largely unexplored in
tree crops. This represents a significant gap in the application of GS in
mango and other fruit trees. To address this, we aimed to develop and
evaluate strategies for improving genomic predictive ability for key
traits in mango using WGS data. Specifically, we: (i) assessed the
power of GWAS using multi-locus and single-locus models, (ii)
evaluated the impact of increasing marker density to WGS level on
predictive ability, (iii) evaluated whether predictive ability could be
increased by using GWAS preselected variants, (iv) assessed the
impact of incorporating significant GWAS loci as fixed effects in
GBLUP models on predictive ability, and (v) investigated the impact
of population structure on predictive ability. Together, these analyses
inform strategies for optimizing genomic selection in mango.

2 Materials and methods
2.1 Germplasm and trial design

This study used 225 mango (Mangifera indica L.) accessions
from the gene-pool collection of the Queensland Mango Breeding
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Program (QMBP), maintained by the Queensland Department of
Primary Industries (DPI) in Australia. This collection comprises
historical cultivars from 24 countries and progenies from advanced
selections, capturing a broad spectrum of Mangifera indica’s genetic
diversity (Wilkinson et al., 2025). The accessions exhibit strong
population structure, divided into two primary sub-populations: 33
individuals of Southeast Asian origin and 192 of Indian ancestry
(Wilkinson et al., 2022). Among the 225 gene-pool accessions, 41
are used as parents for the QMBP breeding population
(Supplementary Table 1). None of these parental accessions
originated from Southeast Asia. The trees were grown at the
Walkamin Research Station (WRS) and assessments of fruit
quality traits and tree growth were conducted from 1999 to 2024.

2.2 Phenotypic data

2.2.1 Trunk circumference

Trunk circumference (TC), an indicator of tree vigor, was
measured using a tape measure positioned 10 cm above the graft
union. Due to differences in planting times, the trees were assessed
at different ages, resulting in unbalanced data. We used TC data for
trees assessed at the ages of 9 (T'C9, 200 unique accessions) and 12
(TC12, 199 unique accessions) years (total of 207 unique
accessions) due to the availability of a relatively large number of
individuals assessed in these years.

2.2.2 Fruit quality traits

Physiologically mature fruits were harvested from the outer tree
canopy, where they were exposed to sunlight. The fruits were
washed thoroughly with a detergent, treated with a fungicide dip
(1.0 ml L-1 Fludioxonil (230g/L)) for five minutes at 52 °C to
control anthracnose. They were then stored in a ripening room
maintained at 22°C until they developed a soft texture. Fruit blush
color (FBC) was assessed in 220 accessions over at least two seasons,
using ten ripe fruits from each accession. FBC of the ripened fruit
was rated on a categorical scale, in order from least to most
desirable: no blush, orange, pink, pink-red, red, and burgundy.
FBC categorical data was converted to a numerical scale as: no blush
or yellow = 0, orange = 1, pink = 2, pink-red = 3, red = 4, and
burgundy = 5.

The average fruit weight (AFW) in grams (g) was calculated
across 222 accessions using the weight of ten fruits at the eating
ripeness stage. Fruit firmness (FF) was measured in 221 mango
accessions using an analogue firmness meter. Not all accessions
were assessed for the three fruit quality traits in every season due to
the irregular bearing of some cultivars and differences in planting
seasons, resulting in unbalanced data.

2.3 Molecular data

Genomic DNA extraction, whole genome sequencing and variant
calling followed the protocols outlined by Wilkinson et al. (2025),
using the same set of 225 mango gene-pool accessions utilized in this
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study. Briefly, genomic DNA was extracted from young mango leaf
tissues using the modified cetyltrimethylammonium bromide
(CTAB) method. Whole genome sequencing (WGS) was
performed on all 225 accessions, with the 41 parental accessions
sequenced at 40X coverage and the remaining 184 individuals at a
depth of 15X. Joint SNP calling was performed using GATK4
software (Poplin et al.,, 2018), and trimmed paired-end reads were
aligned to the M. indica ‘Alphonso’ reference genome (Wang et al,
2020) to identify physical position. This resulted in a total of
44,125,383 SNPs.

To generate a high-quality SNP dataset, a series of quality
filtering steps using VCFtools (Danecek et al., 2011) were applied.
Data points with a read depth below five were set to missing, and
SNPs exhibiting more than 20% missing data across the population
were discarded. To ensure the inclusion of only the most reliable
variants, we imposed a maximum mean read depth of 50, removed
SNPs with a minor allele frequency (MAF) below 0.05, and applied
a Hardy-Weinberg equilibrium p-value cut-off of le-6 to eliminate
potential genotyping errors. Following these stringent quality
control measures, 10,172,985 SNPs remained for downstream
analyses. Missing markers in the final dataset were imputed using
the Hidden Markov Model (HMM) implemented in Beagle 5.4
(Browning et al., 2018).

2.4 Estimation of effective population size
(Ne) and linkage disequilibrium

To assess genetic diversity within the QMBP gene-pool
collection, we estimated recent historical N, for the 225 accessions
based on LD between pairs of markers, as implemented in GONE
software (Santiago et al., 2020). This method estimates the N, from
the variance of progeny number, which is equal to the number of
breeding individuals (N). To minimize downward bias in N,
estimates due to elevated LD (Waples et al, 2016), we used
815,255 independent SNPs derived by pruning the initial set of
~10 million SNPs. Pruning was performed in PLINK 2.0 (Purcell
et al., 2007) by removing one SNP from each pair with a squared
correlation coefficient (r*) > 0.2 within a 35-SNP sliding window.
Additionally, N, was estimated for each of the two sub-populations
defined by Wilkinson et al. (2022), as population structure can bias
N, estimates (Santiago et al., 2020). Furthermore, N, was estimated
for the parental accessions in the QMBP to evaluate whether
sufficient genetic diversity exists to sustain long-term genetic
gains within the breeding program. Analyses were conducted
using default GONE software parameters.

To evaluate LD decay with physical distance among the 225
gene-pool accessions, pairwise estimates of LD were calculated
using the squared correlation of allele frequencies (r?) for all SNP
pairs within 1 Mbp windows across the entire set of 10,172,985
SNPs. The distance at which r* decayed to 0.2, commonly regarded
as the minimum threshold for high genomic prediction accuracy
(Calus et al., 2008), was determined separately for each
chromosome using PopLDdecay (Zhang et al.,, 2019).
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2.5 GBLUP model implementation and
parameter estimation

Linear mixed models were used to fit residual maximum
likelihood (REML) as implemented in the R package ASReml-R 4
(Butler et al., 2023), within a GBLUP framework to estimate model
parameters and predict random and fixed effects for all traits. When
a GRM was ill-conditioned (i.e. not positive-definite), bending was
applied to allow for matrix inversion, as implemented in the
ASRgenomics R package (Nazarian and Gezan, 2016). The linear
mixed model used to predict the genomic estimated breeding values
(GEBVs) of mango individuals is given in Equation 1:

y=Xb+Za+e (1)

Where y was the vector of phenotypic measurements, X was the
design matrix relating phenotypic records to the vector of fixed
effects (the intercept for all traits, age of tree at assessment for trunk
circumference, significant markers for models that included these as
fixed effects, and the first six principal components for models that
accounted for population structure) denoted by b, Z was the design
matrix linking phenotypic records to the additive genomic effects of
the mango accessions, a was the vector of additive genomic effects,
and e represented the random residual effects. We assumed the
following distributions for the four traits: a ~ N(0, 62G)ande ~

N(0, I62), where G was an n xn symmetric and positive-definite
additive GRM which described the additive genomic relationships
among all pairs of individuals in both the training and validation
sets. The additive genomic variance explained by the set of SNPs in
each analysis was denoted by 62. The residual variance was denoted
by 02, and I was an n xn identity matrix. For trunk circumference,
62 was replaced by the additive genomic-by-age-at-assessment
covariance matrix, Guage and the 2 X2 variance-covariance
matrix of residual effects were modelled using a CORGH variance
structure, assuming correlated heterogeneous variances among
observations across the two ages of assessment (age 9 and 12). In
this case, (562 was replaced with the residual variance-covariance
matrix capturing both the heterogeneous residual variances and the
residual correlation between ages. The additive genomic
relationship matrix (G) for each marker set was estimated using
the method described by Yang et al. (2010). Individual narrow-
sense heritability (h?) for each specific trait was estimated as h? =
02/(02 + 6?2). The Akaike Information Criteria (AIC) was used to
assess the quality of model fit.

2.5.1 Model validation

Two approaches were used to validate genomic prediction
models in this study. In the first cross-validation approach
(parental validation), own phenotypes of the 41 gene-pool
accessions that are being used as parents in the QMBP served as
an independent dataset for model validation, while the remaining
gene-pool accessions served as the training population. Predictive
ability was estimated as the Pearson correlation between the
phenotypes predicted by the linear mixed models (GEBVs) and
the observed phenotypes of parental accessions, r(y,” y).
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To provide a more robust evaluation of model performance, a
second validation approach involving random 5-fold cross-
validation (5-fold CV) was also implemented. In this approach,
the entire gene pool collection was randomly partitioned into five
subsets in which each subset consisted of 20% of the accessions. For
each fold, four subsets (80% of total individuals) were used for
model training and the remaining fold (20% of the accessions) for
model validation. Predictive ability was calculated as the Pearson
correlation between the GEBVs and the observed phenotypes after
each 5-fold CV run. To ensure stability and reliability of the
predictive ability estimates, the 5-fold CV procedure was repeated
five times. Thus, 25 correlation values were calculated for each
model. For trunk circumference, only phenotypic data collected
from trees aged 12 years were used for validation. The bias of
predictions was calculated as the regression of phenotypes on
GEBV:s for individuals in the validation set.

2.6 Linkage disequilibrium pruning of WGS
data

To evaluate whether increasing marker density to WGS level
enhances genomic predictive ability, we performed GP using the full
set of available WGS markers (~10 million SNPs) and lower-density
marker sets (~2 million, ~800k, ~80k, ~20k, and ~10k SNPs). These
reduced marker sets were generated by pruning correlated markers
based on LD thresholds. The LD pruning thresholds were chosen
arbitrarily to generate a range of marker densities. LD pruning was
performed using PLINK 2.0 (Purcell et al., 2007) to remove one
SNP from each pair if their squared correlation (r?) exceeds a user-
defined threshold within a specified window. For example, the ~2
million SNP dataset (LD_2mil) was created by pruning one of each
pair of SNPs if their * value exceeded 0.2 within a window size of 15
SNPs, shifting the window 10 SNPs forward and repeating the
procedure. More stringent LD thresholds were applied to derive
lower-density marker sets, as detailed in Table 1. The final datasets -
LD_2mil (~2 million SNPs), LD_800k (~800k SNPs), LD_80k
(~80k SNPs), LD_20k (~20k SNPs), and LD_10k (~10k SNPs)
were used to assess the impact of marker density on
predictive ability.

10.3389/fpls.2025.1664012

2.7 Accounting for population structure

To evaluate the impact of population structure on predictive
ability, the top six principal components (PCs) derived from
principal component analysis (PCA) of the GRM were included
as fixed effects in GBLUP models. Since LD can affect PCA analysis
(Campoy et al., 2016), we conducted PCA using a GRM constructed
using a set of ~80k (LD_80k) unlinked markers derived from LD
pruning of the ~10 million WGS markers. We selected the top six
PCs to represent population structure based on their relative
contributions to global molecular variance. Individually, these
PCs accounted for between 2.5% and 10% of the molecular
variance, and together they explained 33% of the total variation
in the mango gene pool collection. The predictive ability of models
that included fixed PCs was compared to that for models that did
not include this adjustment.

2.8 Genome-wide association study

We performed GWAS using the LD_2mil marker set to identify
trait-associated markers and establish an association-based
criterion for preselecting SNPs from WGS data for use in
genomic prediction. Although GWAS for the same traits and
phenotypic data was conducted in the original study by
Wilkinson et al. (2025), our reanalysis aimed to enhance
statistical power by leveraging a denser marker set and multi-
locus GWAS methods. In this study, we evaluated three multi-
locus GWAS methods: (1) the MLMM (Segura et al,, 2012), (2)
BLINK (Huang et al., 2019), and (3) FarmCPU (Liu et al., 2016).
The MLMM employs a stepwise regression approach to iteratively
incorporate the most influential markers (pseudo quantitative trait
nucleotides: pseudo-QTNs) as covariates to account for population
structure. The BLINK approach accounts for population structure
using pseudo-QTNs selected using LD information and optimized
for Bayesian information criterion (BIC), while FarmCPU employs
the fixed-bin approach to select pseudo-QTNs, assuming a uniform
distribution of pseudo-QTNs across the genome. All three multi-
locus GWAS methods were implemented using GAPIT 3 (Wang
and Zhang, 2021). For comparison, a single-locus GWAS was

TABLE 1 Description of marker sets including whole-genome sequencing (WGS) data and LD-pruned markers.

Scenario Window size Number of SNPs R? between adjacent SNPs
WGS NA NA 10, 172, 985 033
LD_2mil 0.2 15 2,016,911 0.11
LD_800k 02 35 815,255 0.08
LD_80k 02 1,500 82,504 0.03
LD_20k 0.1 8,000 20,523 0.01
LD_10k 0.1 100,000 10,068 0.01

PLINK 2.0 was used to prune one of each pair of correlated SNPs at an arbitrarily chosen LD threshold using WGS data. For example, the LD_2mil scenario was created by pruning one of each
pair of SNPs if their r* value exceeded 0.2 within a window size of 15 SNPs, shifting the window 10 SNPs forward and repeating the procedure again.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1664012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Munyengwa et al.

performed using a GLMM implemented in PLINK 2.0 (Purcell
et al., 2007).

To account for population structure in GWAS analyses, both
multi-locus and single-locus methods incorporated the first six PCs
derived from PCA of the GRM as fixed effects as described above. A
marker was considered significant if it surpassed the Bonferroni
threshold (-log(p) = 7.61). For TC, GWAS was conducted
separately for trees assessed at the ages of 9 and 12 years. To
perform GWAS for variant preselection or the identification of
fixed-effect SNPs, GWAS analyses were exclusively conducted using
individuals from the training population. This exclusion was
implemented to minimize the bias in GEBVs that could arise
from discovering markers in the same population used for
model validation.

2.9 Incorporation of GWAS results in
GBLUP models

To evaluate whether predictive ability using WGS data can be
improved by prioritizing markers based on potential LD with QTLs,
we created marker subsets containing preselected variants identified
using GWAS approaches described earlier. Markers were first
ranked in descending order of estimated effect from GWAS
(-logl0(p-value)), with the most statistically significant SNPs
selected first. Different densities of preselected variants were
evaluated as top 1,000, 10,000, 15,000, 20,000, 30,000, 50,000, and
100,000 SNPs. Markers preselected through GWAS conducted
using BLINK, FarmCPU, MLMM, and the GLMM methodologies
are referred to as TOP-BLINK, TOP-FarmCPU, TOP-MLMM, and
TOP-GLMM, respectively. Genomic predictive ability from GBLUP
models using additive GRMs based on preselected variants from
different GWAS models and unselected marker sets (WGS data and
LD-pruned data) were compared.

To test the hypothesis that fitting significant SNPs from GWAS
as fixed effects enhances predictive ability, the additive genetic
effects of significant markers identified by at least two GWAS
methods, hereafter referred to as reliable SNPs, were added to
GBLUP models as fixed effects. These reliable SNPs were identified
using GWAS in the training population. In models incorporating
fixed-effect SNPs, reliable SNPs were excluded from GRM
construction, and their best linear unbiased estimates (BLUEs)
were added to the GEBVs prior to model validation. The fixed-
effect SNPs were added to models based on GWAS-preselected
variants, WGS data, and LD-pruned marker sets.

3 Results

3.1 Effective population size and linkage
disequilibrium

The effective population size (N,) varied considerably between

sub-populations within the QMBP’s mango gene-pool collection.
The overall N, for the entire gene-pool collection was estimated to
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be 113. Subpopulation-specific estimates revealed relatively high N,
values for non-Southeast Asian accessions (N, = 129) and for
individuals currently used as parents in the QMBP (N, = 104). In
contrast, the Southeast Asian accessions exhibited a markedly lower
effective population size (N, = 29).

Linkage disequilibrium (LD) decayed sharply with increasing
physical distance between markers. The 1* estimates between pairs
of SNPs dropped below the widely accepted critical threshold for
accurate genomic prediction (#* = 0.20) within 3.6 kb (Figure 1).
The mean genome-wide 1 between adjacent SNPs across all
chromosomes in WGS dataset was 0.33. In contrast, the mean 7°
values for the LD-pruned marker subsets (LD_2mil, LD_800k,
LD_80k, LD_20k, and LD_20k, and LD_10k) were substantially
lower (Table 1).

3.2 Phenotypic analysis

We observed substantial to relatively low phenotypic variation
across the evaluated traits in the mango gene pool (Supplementary
Table 2). The greatest variability was observed for FBC and AFW,
with coefficients of variation (CV) of 88.5% and 42.4%, respectively,
indicating pronounced differences in pigmentation and fruit weight
among accessions. In contrast, FF showed moderate variability (CV
= 28.3%), while TC at ages 9 and 12 showed relatively lower
variation (CV = 21.1% and 19.3%, respectively), with mean values
of 50.4 cm and 56.06 cm. The density distributions of TC
(Supplementary Figure 1) reveal a rightward shift from age 9 to
12, reflecting overall tree growth.

3.3 Heritability

Estimates of narrow-sense heritability (I:lz) based on the full
marker set (WGS data) varied widely across traits and models,
revealing notably high heritabilities for FBC (h?=0.98) and AFW
(PAl2 = 0.95), but considerably lower estimates for FF (I:lz=0.26) and
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FIGURE 1

Linkage disequilibrium (LD) decay in the mango gene pool. The X-
axis shows the physical distance between SNPs in kilobases (kb), and
the Y-axis represents the squared correlation (r?) between allele
frequencies. The dotted line marks the threshold of r? = 0.2.
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TC (ft2:0.33) (Supplementary Table 3). Marker density exerted
minimal overall impact on heritability estimates; however, contrary
to expectations, an increase in marker density from ~10k (LD_10k)
to full WGS coverage led to a reduction in heritability estimates for
TC from 0.40 to 0.33. Incorporation of the first six principal
components derived from the GRM as fixed effects intended to
control for population structure resulted in only subtle changes in
h? across all traits (Supplementary Table 4).

Optimal model fits as indicated by lower AIC values were
generally observed with intermediate to high marker densities,
suggesting that an optimal balance exists between capturing
genetic variation and avoiding over-parameterization. Moreover,
prediction models employing GRMs constructed from GWAS-
preselected variants consistently had better model fit than models
based on the full WGS dataset.

3.4 Genomic prediction using WGS data

3.4.1 Predictive ability with WGS data and effect
of marker density on predictive ability

Genomic predictive ability varied across traits, marker density,
and validation strategy (Table 2, Supplementary Table 7), and
generally aligned with the narrow-sense heritability estimates (/12
). When considering predictions based on WGS data and baseline
GBLUP models (i.e., models without population structure
correction or fixed-effect SNPs), higher predictive abilities (PA)
were observed for highly heritable traits and lower predictive
abilities for traits with lower 42 Under the parental validation
strategy, the highest predictive abilities were observed for FBC and
AFW (PA = 0.67 for both traits), followed by TC (PA = 0.54), with
FF showing the lowest predictive ability (PA = 0.41). A similar trend
was observed in the 5-fold cross-validation (CV) strategy, where
predictive abilities for AFW (0.65) and TC (0.57) were comparable
to those from the parental validation (Supplementary Table 7).
However, the predictive ability for FBC increased substantially
under the 5-fold CV strategy (0.80), while that for FF decreased
markedly (0.28), relative to the parental validation results.

Results from the evaluation of marker density effects under the
parental validation strategy using baseline GBLUP models revealed
that predictive ability varied with density. Predictive ability ranged
from 0.60 to 0.67 for FBC, 0.59 to 0.67 for AFW, 0.35 to 0.41 for FF,
and 0.51 to 0.54 for TC (Supplementary Table 5). Across all traits,
predictive ability generally increased with marker density but
plateaued beyond LD_20k (~20,000 SNPs), indicating little gains
at higher SNP densities. Models incorporating a GRM estimated
from the lowest-density marker set (LD_10k) exhibited
substantially lower predictive ability compared to those using
higher-density marker sets (LD_20k to WGS), which showed only
marginal variation in predictive ability among themselves. For TC,
differences in predictive ability were relatively stable across marker
densities, with a maximum difference of just 0.03 between LD_10k
and WGS. Under the 5-fold CV, differences in predictive ability
across marker densities were minimal for all traits
(Supplementary Table 7).
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3.4.2 Effect of population structure on predictive
ability

Incorporating the top six principal components (PCs) as fixed
effects to account for population structure resulted in substantial
reductions in predictive ability for all traits (Table 2). The decrease
in predictive ability ranged from 0 to over 100% depending on
marker set and validation approach employed, highlighting the
dominant influence of population structure on genomic prediction
within this gene-pool for these traits. Under parental validation,
predictive ability based on WGS data decreased from 0.67 to 0.44
for FBC, from 0.67 to 0.30 for AFW, and from 0.41 to 0.30 for FF
when population structure was accounted for (Supplementary
Table 6). The exception was TC, where a slight increase in
predictive ability was observed, rising from 0.54 to 0.57. Notably,
while population structure correction reduced predictive ability for
FBC, this decline was substantially mitigated when the FBC-
associated SNP on chromosome 15 was fitted as a fixed effect in
GBLUP models. When only the top six PCs were included as fixed
effects, predictive ability for FBC dropped by 34%. However, when
both the first six PCs and the most significant GWAS-identified
SNP were jointly fitted as fixed effects, the reduction in predictive
ability was mitigated to just 7%.

Similarly, results from 5-fold cross validation revealed a marked
decline in predictive ability after correcting for population structure
(Supplementary Table 8). However, unlike in the parental
validation strategy where the predictive ability for TC remained
stable despite population structure correction, the predictive ability
in the 5-fold cross-validation declined sharply, dropping from 0.57
to 0.45 when using WGS data.

3.5 Genome-wide association studies

Utilizing three multi-locus GWAS approaches and one single-
locus GWAS method on ~2 million SNPs, we identified 24 unique
associations across three traits (Table 3): fruit blush color (FBC, n =
5; Supplementary Figure 2), average fruit weight (AFW, n = 11;
Supplementary Figure 3), and trunk circumference (TC, n = 8;
Supplementary Figure 4). Notably, the FBC-associated SNPs on
chromosome 15 identified by the GLMM were in very strong LD
with each other (mean 7* = 0.94), forming a distinct peak. FarmCPU
identified the most trait-associated SNPs among the four GWAS
methods evaluated, identifying 20 significant associations, followed
by BLINK (7), and the MLMM (2). In contrast, the GLMM only
detected one association. For TC, all significant marker-trait
associations were detected in trees assessed at 9 years of age,
whereas no significant SNPs were identified in trees assessed at 12
years of age. The comparison of SNP positions with the annotated
‘Alphonso’ genome suggested that some SNPs were associated with
regions containing putative loci for FBC, AFW, and TC previously
identified in mango and other tree species (Table 4).

3.5.1 Genotype and GEBVs relationship
Reliable trait-associated SNPs (identified by at least two GWAS
methods) showed clear effects on phenotypic variation, as revealed
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TABLE 2 Genomic predictive abilities for fruit blush color (FBC), average fruit weight (AFW), fruit firmness (FF) and trunk circumference (TC) across different marker sets and prediction models under parental
validation.

Marker set
Scenario
LD_20k LD_80k LD_800k LD_2mil WGS TOP-BLINK | TOP_FarmCPU TOP-MLMM @ TOP-GLM

GBLUP 0.60 0.65 0.65 0.66 0.66 0.67 0.70 0.71 0.67 0.66

GBLUP + fixed PCs - - - - - 0.44 0.45 0.50 0.37 0.33
FBC

GBLUP + fixed-SNPs - - - - - 0.74 0.77 0.74 0.68 0.70

GBLUP + fixed-SNPs + fixed PCs - - - - - 0.62 0.69 0.64 0.51 0.48

GBLUP 0.59 0.65 0.66 0.67 0.67 0.67 0.78 0.68 0.70 0.68

GBLUP + fixed PCs - - - - - 0.30 0.37 0.58 0.48 0.54
AFW

GBLUP + fixed-SNPs - - - - - 0.68 0.78 0.69 0.71 0.69

GBLUP + fixed-SNPs + fixed PCs - - - - - 0.30 0.36 0.59 0.48 0.55

GBLUP 0.35 0.38 0.40 0.41 041 0.41 043 043 0.40 0.45
FF

GBLUP + fixed PCs - - - - - 0.30 0.34 0.34 0.27 0.35

GBLUP 0.51 0.52 0.53 0.54 0.54 0.54 0.59 0.59 0.54 0.58

GBLUP + fixed PCs - - - - - 0.57 0.61 0.61 0.55 0.60
TC

GBLUP + fixed-SNPs - - - - - 0.58 0.64 0.64 0.61 0.64

GBLUP + fixed-SNPs + fixed PCs - - - - - 0.61 0.66 0.66 0.62 0.65

Marker Sets Include: Whole-Genome Sequence (WGS) data, LD Pruned SNP Sets (LD_2mil to LD_10k), and the optimum density of GWAS-Preselected Variants (TOP-BLINK, TOP-FarmCPU, TOP-MLMM, TOP-GLMM) for each GWAS-method-by-trait
combination. Prediction models include: (1) Base GBLUP (without population structure control or fixed-effect SNPs), (2) GBLUP with a fixed-effect SNP (GBLUP + fixed SNP), (3) GBLUP with top six Principal Components as fixed effects (GBLUP + fixed PCs), and (4)
GBLUP with both fixed-effect SNP and fixed PCs (GBLUP + fixed PCs + fixed SNP).

e 3@ embBuaAuniy

210%991°5202'S19}/6855°0T


https://doi.org/10.3389/fpls.2025.1664012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Munyengwa et al.

10.3389/fpls.2025.1664012

TABLE 3 Significant marker-trait associations for average fruit weight (AFW), fruit blush color (FBC), and trunk circumference (TC).

Trait Marker name Chr Pos (bp) P-value MAF GWAS method
NC_058139.1_14599216 3 14599216 2.19¢-10 0.08 BLINK
NC_058143.1_71757 7 71757 7.70e-10 03 BLINK
NC_058151.1_3295704 15 3295704 1.42e-10 0.17 BLINK
NC_058153.1_7169193 17 7169193 2.12e-20 0.13 BLINK, FarmCPU
NC_058156.1_9929325 20 9929325 1.33¢-10 037 BLINK

AFW NC_058138.1_17016987 2 17016987 1.78¢-10 0.49 FarmCPU
NC_058146.1_6357250 10 6357250 8.97¢-09 0.09 FarmCPU
NC_058149.1_10041368 13 10041368 1.99¢-13 038 FarmCPU
NC_058151.1_14147173 15 14147173 1.91e-11 0.11 FarmCPU
NC_058153.1_2108313 17 2108313 2.10e-09 0.44 FarmCPU
NC_058156.1_9195450 20 9195450 1.21e-10 027 FarmCPU
NC_058151.1_10729807 15 10729807 332e-22 035 BLINK, FarmCPU, GLMM
NC_058140.1_17796415 4 17796415 1.92¢-20 0.06 FarmCPU
NC_058143.1_10454361 7 10454361 2.28¢-09 0.46 FarmCPU

FBC
NC_058143.1_15901033 7 15901033 1.87¢-12 0.47 FarmCPU
NC_058148.1_6029563 12 6029563 8.04e-10 0.18 FarmCPU
NC_058151.1_10744410 15 10744410 412¢-11 0.36 MLMM
NC_058143.1_14357156 7 14357156 223¢-14 035 BLINK, FarmCPU, MLMM
NC_058137.1_13654943 1 13654943 5.37¢-09 0.09 FarmCPU
NC_058138.1_3215561 2 3215561 1.50e-09 0.36 FarmCPU
NC_058138.1_9666205 2 9666205 2.04e-08 0.07 FarmCPU

e NC_058139.1_20457585 3 20457585 7.01e-11 0.16 FarmCPU
NC_058148.1_14363648 12 14363648 1.66e-10 0.19 FarmCPU
NC_058149.1_5010618 13 5010618 7.26¢-10 0.16 FarmCPU
NC_058154.1_7179850 18 7179850 2.44¢-10 0.12 FarmCPU

Table legend: The table displays trait, marker name, chromosome (Chr), position (Pos) in base pairs, GWAS-derived p-value, minor allele frequency (MAF) of the trait-associated SNP, and

GWAS Method.

by GEBVs for the three genotypic classes: homozygous reference,
heterozygous, and homozygous alternate allele (Supplementary
Figure 5-Supplementary Figure 7). For FBC, the SNP on
chromosome 15 (G/A) showed that cultivars with the GG
genotype (e.g., ‘Ah Hal’, “Tommy Atkins’, and ‘Trwin’) had
significantly higher FBC ratings (p < 0.0005, mean GEBV = 2.0)
compared to those carrying the A allele either in homozygous form
(mean GEBV = 1.2; e.g., ‘Dashehari’, ‘Mallika’, and ‘Arumanis A’)
or heterozygous form (mean GEBV = 1.0; e.g., ‘Maha Chanook’,
‘Alphonso’, and ‘Carabao Pep’). For AFW, the SNP on chromosome
17 (A/G) revealed that cultivars with the A allele in homozygous
form had significantly lower fruit weight (p< 0.0005; mean GEBV =
322.0 g) than the heterozygous cultivars (mean GEBV = 415.2 g).
For TC, the SNP on chromosome 7 (T/A) revealed that AA
genotypes (e.g., ‘Manjeera’, ‘Lippens’) had significantly lower
trunk circumference (p < 0.0005; mean GEBV = 45.5 cm)
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compared to cultivars carrying the T allele either in homozygous
form (mean GEBV = 56.5 cm) or heterozygous form (mean GEBV
= 52.4 cm). Notably, heterozygous (T/A) genotypes also had
significantly smaller trunk circumference (p < 0.0005) than
homozygous TT genotypes.

3.6 Incorporation of GWAS results in
GBLUP models

3.6.1 Preselected variants from GWAS increased
predictive ability

Models incorporating a GRM derived from variants preselected
based on the highest ranked probability of effect as estimated using
GWAS improved predictive ability across all traits, with
improvements of up to 93% under parental validation (Table 2).
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TABLE 4 Candidate genes identified near significant SNP markers associated with fruit blush color (FBC), average fruit weight (AFW), and trunk

circumference (TC) in mango.

Distance from SNP

Trait (kb)

Chr MAF

Candidate gene

Functional

Reference
role

FBC 15 0.35 0.52 kb MYB114-like transcription factor Fruit coloration (Kanzaki et al., 2020; Plunkett et al., 2019)
Devoghalaere et al., 2012; Karim et al., 2022;
AFW 2 0.49 158 kb Cell division control protein Fruit size ( evoghataere ct a et a
Zhang et al., 2006)
AFW . 0.30 110 kb Two .ce]l division control Fruit size (Devoghalaere et al., 2012; Karim et al., 2022;
proteins Zhang et al., 2006)
AFW 13 0.38 12 kb Two auxin response factors Fruit size (Devoghalaere et al., 2012)
Ethylene- ive t ipti
AFW 13 038 | 26kb yiene-responsive ranscriPtion - pit size (Bally et al,, 2021)
factor
AFW 15 0.17 33 kb GDSL esterase/lipase Fruit size (Bally et al., 2021)
AFW 15 0.17 160 kb Cell number regulator Fruit size (Devoghalaere et al., 2012)
Tree trunk
TC 2 0.07 21 kb Growth regulating factor gene .ree o (Wu et al,, 2021)
diameter
TC 2 0.36 6 kb and 16 kb Two auxin efflux carrier genes Tree growth (Qi et al., 2020; Zhang et al., 2015)
TC 7 0.35 68 kb GATA transcription factor Tree growth (An et al, 2014)

Candidate genes were identified based on alignment with the annotated ‘Alphonso’ reference genome. The Table lists the associated Trait, Chromosome (Chr), minor allele frequency (MAF) of
the trait-associated SNP, distance between the SNP and candidate gene, the candidate gene or transcription factor, its functional role, and supporting references where the gene or transcription

factor’s role has previously been reported.

The magnitude of these improvements varied depending on the
trait, density of GWAS-preselected variants, GWAS method
applied, and whether population structure was accounted for.
When using base models (i.e., models without population
structure correction or fixed-effect SNPs) under the parental
validation strategy, preselecting variants based on GWAS showed
an advantage depending on the GWAS method used to identify
variants, particularly for AFW and to a lesser extent for FBC, FF,
and TC (Figure 2A). The predictive ability for AFW was markedly
higher when using 20,000 TOP-BLINK GWAS-preselected
variants, reaching 0.78, compared to 0.67 using the complete
WGS dataset. In contrast, improvements in predictive ability for
other traits were more modest, increasing from 0.67 to 0.71 for FBC
using 100,000 SNPs from the TOP-FarmCPU set, from 0.54 to 0.59
for TC using either 20,000 or 50,000 SNPs from the TOP-BLINK or
TOP-FarmCPU set, and from 0.41 to 0.45 for FF using 1,000 SNPs
from the TOP-GLMM set. However, under 5-fold cross-validation
using models that did not account for population structure, GWAS-
based SNP preselection did not lead to improvements in predictive
ability across any of the traits (Figure 3A, Supplementary Table 7).

The increases in predictive ability observed with GWAS-
preselected variants relative to WGS data were much larger when
population structure was accounted for (Figure 2B). Under the
parental validation strategy, adjusting for population structure in
GBLUP models led to a 93% improvement in predictive ability for
AFW, increasing from 0.30 to up to 0.58 when 15,000 variants from
the TOP-FarmCPU set were used instead of WGS data. Similar
improvements in predictive ability were observed for FBC and FF,
rising from 0.44 to 0.50 using either 50,000 or 100,000 TOP-
FarmCPU SNPs for FBC, and from 0.30 to 0.35 using top 1,000
SNPs selected by GLMM for FF. In contrast, there was little
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variation in predictive ability for TC between models that
included GWAS pre-selected variants with or without adjustment
for population structure.

A comparable pattern was observed under the 5-fold cross-
validation strategy in GBLUP models that included population
structure correction (Figure 3B). Specifically, predictive ability
increased by up to 29% for FBC (from 0.35 to 0.45), 50% for
AFW (from 0.32 to 0.48), and 150% for FF (from 0.08 to 0.20), while
TC showed a modest improvement of 11% (from 0.45 to 0.50). The
highest predictive abilities under 5-fold cross validations were
achieved using 10,000 SNPs from TOP-GLM for FBC, 1,000
SNPs from TOP-MLMM for AFW, 1,000 SNPs from all GWAS
methods for FF, and 10,000 or more SNPs from either TOP-
FarmCPU or TOP-GLMM for TC (Supplementary Table 8).
Notably, for FF and TC, the predictive abilities obtained using
GWAS-preselected variants were comparable to those achieved
using LD-pruned marker sets (LD_10k to LD_2mil).

Predictive abilities using GWAS-preselected variants showed
substantial variation depending on marker density and validation
strategy, with no consistent trend across traits (Supplementary
Tables 5, 7). Under the parental validation strategy in models
ignoring population structure, the highest predictive abilities were
achieved using 20,000 SNPs from BLINK for AFW, 100,000 SNPs
from FarmCPU for FBC, 1,000 SNPs from GLMM for FF, and
either 20,000 or 50,000 SNPs from BLINK or FarmCPU for TC. In
contrast, under 5-fold cross validation, predictive abilities remained
relatively stable across different marker densities (Supplementary
Table 7). Differences in maximum predictive ability between GWAS
models were generally small (< 0.03), except for FBC and AFW in
models that accounted for population structure (Supplementary
Table 8). In these cases, the highest predictive abilities were
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Predictive ability of breeding population parent phenotypes: (A) without accounting for population structure and (B) while accounting for population
structure, using models without fixed-effect SNPs. Bars represent predictive abilities across marker sets: WGS data and GWAS-preselected variants
(TOP-BLINK, TOP-FarmCPU, TOP-MLMM, TOP-GLMM). Notably, under scenario A, predictive ability for AFW increased from 0.67 to 0.78 when

20,000 TOP-BLINK SNPs were used instead of WGS data.

achieved using 10,000 and 1,000 SNPs from TOP-GLM and TOP-
MLMM, respectively. All subsequent results are based on the
parental validation strategy using both the full WGS dataset and
the optimal set of GWAS-preselected variants for each trait.

3.6.2 Fixed-effect SNPs increased predictive
ability for fruit blush color and trunk
circumference

The impact of incorporating reliable markers as fixed effects on
predictive ability varied depending on the trait, marker set, and
whether population structure was accounted for (Figure 4,
Supplementary Table 9, Supplementary Table 10). Our findings
indicate that incorporating a reliable SNP as a fixed effect in
prediction models markedly improved predictive ability for FBC
and TC, with gains of up to 0.26 and 0.07, respectively.

For FBC, incorporating the reliable trait-associated SNP on
chromosome 15 as a fixed effect in GBLUP models without
accounting for population structure resulted in an improvement
in predictive ability ranging from 0.01 to 0.07 compared to models
without the fixed-effect SNP. Notably, predictive ability increased
from 0.67 to 0.74 with WGS data and from 0.70 to 0.77 using
100,000 TOP-BLINK markers when the FBC-reliable marker was
included as a fixed effect. Strikingly, under population structure
correction, the enhancement in predictive ability due to the
inclusion of the FBC-reliable marker as a fixed effect was even
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more pronounced, with gains ranging from 0.12 to 0.26. In these
population structure corrected models, predictive ability increased
from 0.44 to 0.62 with WGS data, from 0.45 to 0.69 using 50,000
TOP-BLINK markers, from 0.50 to 0.62 using either 50,000 or
100,000 TOP-FarmCPU markers, from 0.37 to 0.51 using 15,000
TOP-MLMM markers, and from 0.33 to 0.48 using 10,000 TOP-
GLMM markers. Further analysis using ~ 2 million SNPs showed
that this FBC-associated SNP accounted for 36% of the genetic
variance (results not shown).

Incorporating the reliable TC-associated SNP on chromosome
7 as a fixed effect in GBLUP models also improved predictive
ability, with gains of up to 0.07 in models without population
structure control, and up to 0.06 when population structure was
accounted for. For example, predictive ability increased from 0.54
to 0.58 with WGS data, from 0.59 to 0.64 using 20,000 or 50,000
SNPs from either BLINK or FarmCPU, and from 0.54 to 0.61 with
20,000 TOP-MLMM markers when the reliable TC-associated
SNP was included as a fixed effect in models without population
structure correction. A similar pattern was observed when
population structure was accounted for, with the predictive
ability for WGS data increasing from 0.57 to 0.61, from 0.61 to
0.66 using 50,000 SNPs from either BLINK or FarmCPU, and
from 0.55 to 0.62 using 15,000 TOP-MLMM markers. In contrast,
for AFW, adding fixed-effect markers to the prediction models did
not improve predictive ability.
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structure correction, using models without fixed-effect SNPs. Bars represent predictive abilities across different marker sets, including WGS data

(WGS) and GWAS-preselected variants (TOP-BLINK, TOP-FarmCPU, TOP-

increased from 0.32 to 0.48 when 1,000 TOP-FarmCPU SNPs were used

MLMM, TOP-GLMM). Notably, under scenario B, predictive ability for AFW
instead of WGS data.

3.6.3 Improved prediction via combined use of
GWAS-preselected variants and fixed-effect SNPs

Combining GWAS-preselected variants with fixed-effect SNPs
substantially improved predictive ability for FBC and TC compared
to models using WGS data alone or GWAS-preselected variants
alone. The highest predictive abilities for these traits were achieved
using this integrated approach both with and without population
structure correction (Table 2; Figure 4). For example, substituting
WGS data with TOP-BLINK markers improved predictive ability
for FBC from 0.67 to 0.70 (Figure 2A). Incorporating the FBC-
associated reliable SNP on chromosome 15 as a fixed effect
increased predictive ability with WGS data from 0.67 to 0.74 (a
0.07 increase). Notably, combining 100,000 GWAS-preselected
variants from BLINK with the fixed-effect SNP yielded a
substantial improvement, boosting predictive ability by 0.10 (from
0.67 with WGS data to 0.77 using a combination of GWAS-
preselected variants and the fixed-effect SNP). A similar trend was
observed when population structure was accounted for, with the
highest predictive ability (0.69) achieved by incorporating the FBC-
reliable SNP as a fixed effect in a GBLUP model based on a GRM
derived from 50,000 TOP-BLINK markers. This predictive ability
represents a substantial improvement, exceeding that of WGS data
alone by 0.25 and that of TOP-BLINK markers alone by 0.24, and
surpassing WGS data with a fixed-effect SNP by 0.07.
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A similar trend was observed for TC, where the highest
predictive abilities were achieved by integrating GWAS-
preselected variants with fixed-effect SNPs in a single GBLUP
model. Specifically, including 20,000 or 50,000 GWAS-preselected
variants from TOP-FarmCPU or TOP-BLINK alongside fixed-
effect SNPs improved predictive ability by 0.1, increasing from
0.54 with WGS data to 0.64. This enhancement in predictive ability
surpasses the gains of 0.06 and 0.05 obtained when using either
WGS data plus fixed-effect SNPs or GWAS-preselected variants
alone. Notably, a comparable pattern emerged in GBLUP models
that accounted for population structure, with predictive abilities
remaining nearly identical to those observed in models without
population structure correction.

When considering the optimal marker density for GWAS-
preselected variants under parental validation, defined as the
density yielding the highest predictive ability, TOP-BLINK and
TOP-FarmCPU both achieved the highest predictive abilities in
eight of the fourteen trait-by-scenario combinations (four traits and
four scenarios [GBLUP, GBLUP + fixed SNP, GBLUP + fixed PCs,
and GBLUP + fixed PCs + fixed SNP]). TOP-GLMM produced the
highest predictive ability in three combinations, while MLMM did
not result in the highest predictive ability in any of the scenarios. In
contrast, the performance of GWAS models under 5-fold cross-
validations was comparable across all traits when population
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SNPs with fixed-effect SNP instead of using WGS data alone.

structure was ignored. However, under models that accounted for
population structure, GWAS-preselected variants identified using
the MLMM and GLMM yielded the highest predictive ability for
AFW and FBC, respectively.

4 Discussion

4.1 Effective population size and linkage
disequilibrium

Our results indicate that estimates of effective population size
(Ne) in the QMBP gene-pool collection (Ne
accessions from Southeast Asia) and the parental population (Ne

= 129, excluding
= 104) are well above the recommended minimum of 50 required to
minimize short-term inbreeding (Clarke et al., 2024). These large
estimates of Ne indicate a high number of independently
segregating chromosome segments, suggesting that high density
marker sets are needed to ensure marker-QTL LD for accurate
genomic prediction (Grattapaglia, 2014). The estimates of Ne in
both the gene-pool collection and parental population suggest that
these populations maintain sufficient genetic diversity to sustain
long-term genetic gains (White et al., 2007) in the QMBP.
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Mango is an outcrossing and highly heterozygous species
(Wilkinson et al., 2022) and thus would be expected to have
rapid LD decay (Vos et al., 2017). The rapid LD decay observed in
our study likely reflects the substantial genetic diversity within the
gene-pool collection (Wilkinson et al., 2022), in agreement with
the high Ne estimates. Specifically, LD decay of +* = 0.2 (the
commonly considered minimum LD threshold for accurate
genomic prediction) occurred at 3.6 kb in our study using WGS
data. This is comparable to estimates in other outcrossing species
like Eucalyptus (4 kb; Butler et al.,, 2022) and Populus (3-6 kb;
Slavov et al., 2012) but lower than reported in a diverse historical
apple population (0.1 kb; Migicovsky et al., 2016). The rapid LD
decay observed in this study should increase the resolution of
GWAS studies by allowing for accurate identification of causal
variants. This improvement stems from the presence of short
haplotype blocks which mitigate the confounding effects of strong
LD between causal mutations and numerous non-causal loci,
thereby reducing the noise-to-signal ratio and improving GWAS
resolution (Jang et al., 2023b). The mean r° between adjacent WGS
SNPs in our study (0.33) is comparable to values reported in apple
(0.32; Kumar et al, 2012) and pear (0.33; Minamikawa et al.,
2018), indicating a strong potential for implementing genomic
selection in mango.
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4.2 Genome-wide association studies

4.2.1 Fruit blush color

This study identified five distinct and statistically significant
associations for FBC (Table 3, Supplementary Figure 2). Notably, a
MYBI114 transcription factor was located just 0.5 kb from a key
FBC-associated marker on chromosome 15, consistently identified
by three different GWAS methods. MYB transcription factors are
widely reported to regulate fruit skin color in multiple fruit tree
species, including mango (Kanzaki et al., 2020; Wilkinson et al.,
2025), apple (Plunkett et al., 2019; Sun et al., 2021), pear (Cong
etal., 2021; Zhang et al., 2021) and kiwifruit (Ampomah-Dwamena
et al., 2019). These genes are central regulators of the anthocyanin
biosynthesis pathway, which plays a critical role in pigmentation of
fruit peels (Gao et al., 2021). The well-established role of
anthocyanin accumulation in contributing to red skin coloration
in fruits is consistent with previous findings in mango. Wang et al.
(2020) demonstrated that anthocyanin biosynthesis genes were
significantly upregulated in the peel of red-skinned mango
cultivars compared to yellow- or green-skinned types.
Additionally, Kanzaki et al. (2020) reported that exposure to light
stimulus increased the expression of MiMYBI and MiMYB4
transcription factors in reddened mango fruit, further
highlighting the involvement of MYB transcription factors and
light exposure in regulating peel coloration.

4.2.2 Fruit weight

This study identified 11 novel SNPs significantly associated with
AFW (Table 3, Supplementary Figure 3), a key trait for influencing
consumer appeal and market value, and therefore a major target for
improvement in mango breeding programs (Bally et al., 2021). Our
results support the role of hormone-mediated cell division in
determining fruit weight, consistent with findings in other
horticultural fruit tree species (Karim et al., 2022; Li et al., 2024;
Zhang et al, 2006). Notably, two auxin response factors were
identified within 12 kb of an AFW-associated SNP on
chromosome 13, suggesting a likely regulatory role of auxin
signaling in fruit weight variation. Auxin response factors have
previously been implicated in apple fruit weight variation through
modulation of cell division and expansion (Devoghalaere et al,
2012). Additionally, an AFW-associated SNP on chromosome 7
was located ~110 kb from two cell division control proteins,
reinforcing the mechanistic link between cell division during
mango fruit development and fruit size. Similar associations have
been reported in sweet cherry (Prunus avium L.), where a fruit size
QTL was closely linked to a gene governing cell number,
underscoring the conserved nature of these genetic mechanisms
across species (De Franceschi et al., 2013).

4.2.3 Trunk circumference

We identified eight unique marker-trait associations for TC
across seven chromosomes (Table 3, Supplementary Figure 4). Our
analyses identified a GATA transcription factor located within 70
kb of a TC-associated SNP on chromosome 7. GATA transcription
factors have been reported to regulate tree growth in Populus
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(An et al, 2020). BLAST analysis revealed that the GATA
transcription factor identified in our study shares 86% sequence
similarity with the one reported in Populus (An et al., 2020),
suggesting similar regulatory mechanisms in mango tree growth.
GATA transcription factors are known to modulate the expression
of auxin efflux carrier genes, facilitating the basipetal movement of
auxins to the roots (An et al,, 2020, An et al,, 2014). In our study,
two auxin efflux carrier genes were located just 6 kb and 16 kb from
TC-associated SNPs on chromosome 2, further supporting the
potential regulatory role of auxin transport in mango tree growth.

Prior studies strongly support a model in which plant dwarfism
results from reduced expression of PIN genes (auxin efflux carriers)
in stem bark tissues, leading to impaired auxin transport to the
roots. This disruption limits root growth and cytokinin
biosynthesis, ultimately constraining shoot development (An
et al., 2017; Li et al, 2018). These mechanisms align with
previous studies in apple, where use of dwarfing inter-stock (M9)
led to decreased expression of auxin efflux carrier genes in stem bark
tissues, suppressing the basipetal movement of auxins and leading
to reduced root and shoot development (Zhang et al., 2015). Similar
findings in pear demonstrated significantly higher expression levels
of the PcPIN-L auxin efflux carrier gene in standard-size trees
compared to dwarf types (Qi et al., 2020), further reinforcing the
role of auxin transport in tree growth regulation.

In addition to the GATA transcription factor and auxin efflux
carrier proteins, we identified a growth-regulating factor gene
located approximately 21 kb from a TC-associated SNP on
chromosome 2. This, together with the proximity of auxin efflux
carrier genes and the GATA transcription factor to TC-associated
SNPs, suggests the involvement of a coordinated regulatory
network governing tree growth in mango. The trait-associated
markers identified for FBC, AFW and TC in this study represent
a valuable resource for marker-assisted breeding in mango, pending
validation in independent populations.

4.2.4 Multi-locus GWAS are powerful at
detecting trait-associated SNPs

Our findings underscore the superior statistical power of multi-
locus GWAS methods compared to single-locus approaches. Consistent
with previous studies (Cebeci et al., 2023; Huang et al, 2019;
Minamikawa et al,, 2018), multi-locus GWAS methods, particularly
BLINK and FarmCPU, identified more significant marker-trait
associations than the single-locus GWAS approach (GLMM). The
increased power of multi-locus GWAS stems from their ability to
account for LD between SNPs (as in BLINK) while simultaneously
testing multiple markers, enhancing the detection of small-effect loci
associated with a trait (Segura et al., 2012; Wang et al., 2016). BLINK
and FarmCPU, which use multi-locus strategies and iterative inclusion
of pseudo-QTNs, tend to capture both large- and small-effect loci more
robustly, especially in polygenic traits. In contrast, MLMM’s stepwise
regression approach appears to underperform, likely due to over-
adjustment for population structure and the inherent sensitivity of its
sequential covariate inclusion, which may mask genuine signals.

Our results, particularly for AFW where BLINK and FarmCPU
identified more significant marker-trait associations, highlight the
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value of this multi-method GWAS strategy. These findings are
consistent with reports by Minamikawa et al. (2018) and Kumar
et al. (2019), who identified a higher number of trait-associated
SNPs in pears (Pyrus pyrifolia) by employing multiple GWAS
methods rather than relying on a single approach. Integrating
results across multiple GWAS methods is a powerful strategy to
identify additional marker-trait associations as no single method is
optimal for all traits. Moreover, loci detected by the different
methods do not completely overlap (Zhou et al., 2023). The use
of a combination of complementary GWAS methods not only
strengthens statistical robustness but also strengthens confidence
in associations consistently detected across analyses, making these
associations strong candidates for marker development and
functional validation.

4.3 Genomic prediction

4.3.1 Simply increasing marker density to WGS
level does not increase predictive ability

In our study, we observed that increasing marker density
beyond a certain threshold, even up to WGS level, did not yield
further improvements in predictive ability (Table 2). These findings
are consistent with previous studies (Bedhane et al., 2021;
Moghaddar et al., 2019; Raymond et al., 2018b, Raymond et al.,
2018c; van Binsbergen et al., 2015; VanRaden et al., 2017) that also
found little or no improvement in prediction accuracy when using
WGS variants compared to lower density or high-density SNP
chips. A plausible explanation is that WGS data include many
variants that are not in strong LD with the causative loci (van
Binsbergen et al., 2015). These non-informative markers may not
capture the QTL effects or accurately reflect genetic relationships at
causal loci, potentially undermining the performance of GP models
through over-shrinkage of QTL effects. This phenomenon likely
reflects the balance between capturing true causal variation and
overfitting to random, non-informative variation. Our analyses
using different LD-pruned subsets (e.g. LD_2mil, LD_800k, etc.)
indicated that predictive ability tended to plateau or even decline
when the number of markers exceeded an optimal threshold. This
threshold is inherently linked to the underlying LD structure and
genetic architecture of the trait in question.

4.3.2 Marker preselection could enhance
genomic predictive ability

This study showed that GRMs constructed using GWAS-
preselected variants resulted in higher predictive abilities across
the four studied traits compared to GRMs built using all WGS
variants (Table 2, Figures 2, 3). These findings highlight that
preselecting WGS markers likely to be in LD with causal
mutations, while excluding those that do not capture genetic
relationships at causal loci, can improve genomic predictive
ability. Thus, it appears that including markers not in LD with
causative mutations in GRM construction may cause the realized
genetic relationships to diverge from true relationships at causal
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loci, thereby reducing the performance of GBLUP models.
However, when markers preselected for their potential causal
effects are used, the GRM is dominated by SNPs in high LD with
QTL for the target trait. Thus, the trait-specific GRM may better
capture the genetic relationships among individuals at unobserved
causal loci, potentially enhancing the accuracy of genomic
predictions. Our results are consistent with those of Tan and
Ingvarsson (2022) who showed that when the top 1% of markers
from GWAS are selected, the accuracy of genomic predictions can
be increased significantly. Chen et al. (2023) also showed that
performing GP using a GRM built using 100 preselected markers
resulted in improved prediction accuracies compared to models
based on all markers.

While our results clearly demonstrate that the integration of
GWAS-preselected variants improves predictive ability, we
acknowledge that validation confined to a single, relatively small
dataset may limit the external applicability and generalizability of
our findings. Such internal validation alone does not adequately
account for potential biases introduced by population-specific
genetic structure or unique environmental factors. Although we
employed a 5-fold cross-validation strategy to strengthen
robustness of our model assessment, external validation in large,
independent datasets such as a full-sib population remains essential.
Such validation would verify whether the observed improvement in
predictive performance genuinely reflects enhanced capture of
causal genetic variation.

4.3.3 Fixed-effect SNPs improve predictive ability
While the use of GWAS-preselected variants increased genomic
predictive ability in our analyses, this approach still suffers from the
assumption of the GBLUP model that all markers contribute an
equal and individually small proportion of the total genetic variance
(Meuwissen and Goddard, 2010). However, increasing evidence
supports the hypothesis that SNPs in high LD with causal mutations
explain more genetic variance than those in low LD (Meuwissen
et al., 2024). Incorporating fixed-effect SNPs into GBLUP models
appeared to improve predictive ability for both FBC and TC, likely
by capturing variation associated with major QTLs (Figure 4). This
strategy enabled us to account explicitly for the effects of markers
with large estimated effects, potentially helping to separate their
contribution from those assumed under the infinitesimal model.
While these results suggest benefits from including such markers, it
remains important to recognize that the identified SNPs may not
represent true causal variants, and further validation in an
independent population such as a full-sib family would be needed
to confirm their functional significance. The differentiation between
large- and small-effect QTLs appears to model better the true
genetic architecture of traits, leading to more accurate prediction
models. This is especially true when markers in LD with major
genes are treated as fixed effects (Li et al., 2019). Our findings are
consistent with prior studies. For example, Kostick et al. (2023)
demonstrated a substantial improvement in the predictive ability of
‘percent red overcolor’ in apple, which increased from 0.33 to 0.80
upon inclusion of a fixed-effect SNP at a fruit color locus. Similarly,
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Nsibi et al. (2020) reported a 25.8% increase in prediction accuracy
for apricot (Prunus armeniaca) fruit color (hue angle) after
incorporating two major QTLs as fixed effects.

Critically, the effectiveness of using fixed-effect SNPs relies on
their LD with a QTL, as reported by Li et al. (2019). In this study,
the fixed-effect SNPs that enhanced predictive abilities were
consistently identified by three GWAS methods (reliable SNPs),
strengthening the evidence that these SNPs are likely in LD with
underlying QTLs.

4.3.4 Combining preselected variants and fixed-
effect SNPs further enhances predictive ability

In our study, we demonstrated that while the utilization of
GWAS-preselected variants or fixed-effect SNPs can enhance
predictive ability, further improvements can be achieved through
the integration of preselected variants with fixed-effect SNPs
(Table 2, Figure 4). Traditional GBLUP models employing a
single GRM constructed from GWAS-preselected variants do not
fully capitalize on the predictive potential of large-effect SNPs due
to the inherent assumptions of the infinitesimal model, which
overly constrains their contribution to the total genetic variance.
By contrast, our approach, combining preselected variants and
fixed-effect SNPs, benefits from more accurate estimation of
genomic relationships at causative loci. If all markers explain the
same proportion of the total genetic variance, as is the assumption
of the infinitesimal model, there would be no notable reduction in
heritability when significant SNPs from GWAS are fitted as fixed
effects in GBLUP models. However, our analyses demonstrated a
notable reduction in additive genetic variance due to the
anonymous markers and heritability when the fixed-effect SNP
for FBC was included in GBLUP models, suggesting that a
substantial portion of the additive genetic variance was explained
by this SNP potentially due to its LD with the causative mutation.
For mango breeding, fixed SNPs associated with FBC and TC
provide particularly strong gains in predictive ability and should
be prioritized for marker-assisted prediction pipelines.

While our findings demonstrate that integrating GWAS-
preselected variants with fixed-effect SNPs can enhance genomic
predictive ability, several limitations warrant discussion. First, the
relatively modest training population size used in our study may
limit statistical power to detect small-effect loci and increase the risk
of overfitting, raising concerns about the external validity of this
approach. Additionally, the specific population structure of our
study may not fully represent the broader genetic landscape of
mango germplasm, potentially affecting the transferability of our
findings to more diverse populations. If between-subpopulation
genetic variance differs across populations, the benefits of marker
preselection and fixed-effect SNP integration may not be universally
applicable. Future studies should validate these results in larger,
independent datasets and assess the approach’s robustness across
different genetic backgrounds to ensure broader applicability.

Several inconsistencies in predictive ability across varying
densities of GWAS-preselected SNPs and different GWAS models
highlight the practical challenges of selecting an appropriate GWAS
method for variant preselection and determining the optimal
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number of SNPs to include. Such inconsistencies have important
downstream implications, as the choice of GWAS method and
preselected variants directly influences the construction of the GRM
and the inclusion of fixed-effect SNPs in prediction models,
ultimately affecting prediction accuracy. To address these
inconsistencies and leverage the complementary strengths of
individual GWAS methods, an ensemble-based approach that
aggregates summary statistics from multiple GWAS models may
offer a more robust solution. Such an approach could combine p-
values, effect sizes, or marker rankings to prioritize SNPs that are
consistently identified across methods, thereby balancing both
sensitivity and specificity. Although ensemble GWAS has
primarily been applied to the identification of causative variants
(Zhou et al.,, 2023), its potential for SNP preselection in genomic
prediction remains untapped. Meanwhile, ensemble genomic
prediction models which aggregate predictions from multiple
methods, have demonstrated improved accuracy in maize
(Tomura et al., 2025), common bean (Chiaravallotti et al., 2025),
and across cattle, wheat, and human datasets (Gu et al., 2024),
underscoring the potential of model integration at various stages of
the genomic prediction pipeline. While ensemble GWAS remains
underexplored, a practical strategy for breeders is to prioritize
markers consistently identified across multiple GWAS methods
and benchmark the resulting models through cross-validation. This
ensures that selected SNPs are both reproducible and practically
useful in applied breeding programs.

4.3.5 Multi-locus GWAS are powerful approaches
for variant preselection

Our findings demonstrate that the predictive ability of models
based on GWAS-preselected variants varies depending on the
GWAS methodology employed. The superior performance of
BLINK and FarmCPU compared to MLMM and the GLMM
indicates their greater power in ranking markers based on LD
with QTLs, thereby enabling the selection of more informative
SNPs for genomic prediction. Beyond detecting a higher number of
trait-associated SNPs than the MLMM and GLMM, these methods
likely provide a more refined prioritization of markers with strong
trait relevance. This superior performance can be attributed to their
ability to effectively eliminate confounding effects between testing
markers and both population structure (Q) and kinship (K) by
dividing the multi-locus linear mixed model (MLMM) into
components using either a fixed-effects model (FEM) and a
random effects model (REM, pseudo-QTNs) in FarmCPU, or a
fixed-effects model (FEM, for selecting pseudo-QTNs) and Bayesian
Information Criterion (BIC) in BLINK (Huang et al., 2019; Liu
et al, 2016). The use of pseudo-QTNs selected using REM in
FarmCPU and FEM in BLINK as covariates effectively control
false positives while retaining power to detect true associations.
These features likely increase the probability of detecting SNPs that
surpass the Bonferroni threshold as well as prioritizing biologically
informative variants for use in genomic prediction.

The observation that, in some cases, differences in predictive
ability across GWAS methods and varying densities of preselected
SNPs were minimal suggests possible redundancy among SNP sets,
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shared association signals across GWAS methods, or the inherently
polygenic architecture of the traits. One possible explanation is that
methods such as BLINK and FarmCPU initially fit a general linear
model (GLM), and when no significant associations are detected,
they may default to reporting GLM results (Zhiwu Zhang, personal
communication). This can result in overlapping sets of preselected
SNPs across methods, which may explain the similar or comparable
predictive abilities observed among BLINK, FarmCPU, and the
GLMM for fruit firmness and trunk circumference under parental
validation. A second contributing factor to the minor differences in
predictive ability may be the presence of shared association signals
across GWAS methods, where overlapping SNPs are selected due to
consistently low p-values, suggesting potential relevance to the trait
despite not reaching strict statistical significance. A third
contributing factor is marker redundancy, which may occur even
when the sets of GWAS preselected variants differ, if the SNPs are in
LD and tag the same underlying QTLs. As a result, different sets of
preselected SNPs may contribute similar genetic information to the
prediction model, resulting in minimal variation in predictive
ability. These modest differences are also consistent with the
polygenic architecture of fruit quality traits and tree growth,
where predictive ability is distributed across many loci rather
than being driven by a few large-effect variants (Dong et al., 2024;
Srivastav et al., 2023).

4.3.6 Accounting for population structure
reduces predictive ability in mango gene-pool

Our analysis revealed a marked decline in predictive ability
when population structure was accounted for in prediction models
(Figures 2, 3), a pattern consistent with that reported by Guo et al.
(2014) for wheat and rice. Our findings indicate that, for these traits
in the gene-pool population, a considerable portion of predictive
ability is derived from across sub-population genetic variance (i.e.
the model’s ability to classify individuals into their respective sub-
populations), rather than solely from within sub-population genetic
variance (i.e. predictive ability attributable to LD between markers
and QTLs). This result is consistent with the observations of
Daetwyler et al. (2012), who reported a decline in GEBV accuracy
when population structure was accounted for and argued that the
reduced accuracy reflects the predictive power attributable to LD
between markers and QTLs.

The relatively larger gains in predictive ability with GWAS-
preselected variants when population structure was accounted for,
compared to models without control for population structure, likely
reflect the greater contribution of LD information once the
confounding effects of population structure are minimized. A
previous study in the Australian mango breeding population
found that TC, FBC and fruit blush intensity are strongly
associated to population structure (Wilkinson et al, 2022). To
avoid spurious associations, separating trait-associated loci from
loci associated to ancestry is particularly important in this
population. Because population structure was already accounted
for during GWAS (through inclusion of PCs as fixed effects), the
preselected variants are more likely to tag causative QTLs or be in
meaningful LD with them, rather than merely reflecting population
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stratification. In contrast, WGS data contain many markers that
may not be in LD with causative loci but can still contribute to
predictive ability by capturing population structure. When
population structure is explicitly controlled for in the prediction
model, these markers provide little useful genetic signal and may
introduce noise, leading to a sharper decline in predictive ability
compared to models using trait-informative GWAS-
preselected variants.

While our findings demonstrate a marked decline in predictive
ability after accounting for population structure using fixed PCs,
this sharp reduction may reflect over-correction for population
structure arising from double-counting population structure effects
(Hong et al., 2025). As argued by Janss et al. (2012), incorporating
fixed PCs derived from the same GRM used in the random
component of the model can redundantly adjust for population
structure, thereby diminishing predictive ability by removing
genuine genetic signals alongside confounding effects. Future
studies should evaluate methods that address this issue, such as
the reparameterized GBLUP model of Janss et al. (2012), which
enables natural partitioning of across-subpopulation genetic
variance due to population structure and within-subpopulation
genetic variance that is of primary interest to breeders. Hong
et al. (2025) advocated for accounting for population structure
using PCs as random effects to avoid the over-correction that may
occur when PCs are fitted as fixed effects in GBLUP models.
However, in our study, fitting PCs as fixed effects provided
conservative estimates of predictive ability, which are likely more
transferable to homogeneous breeding populations or across-
population predictions.

5 Conclusion

Preselecting SNPs from WGS data based on their estimated
effects on target traits enhanced predictive ability in mango,
particularly when population structure was accounted for. In
contrast, limited improvements were observed when population
structure was ignored, likely due to inflated prediction estimates.
Integrating GWAS-preselected variants with fixed-effect SNPs
yielded superior predictive performance, especially for FBC,
across models both accounting for or ignoring population
structure. This combined approach outperformed models based
solely on WGS data, WGS plus fixed-effect SNPs, or GWAS-
preselected variants alone. These findings underscore the value of
strategic SNP selection and model refinement using prior biological
knowledge to maximize the utility of WGS data in genomic
prediction. While our results demonstrate the potential of
leveraging GWAS-preselected variants, further validation in
larger, more homogenous datasets, particularly those reflecting
practical breeding scenarios such as across-population or across-
generation predictions is recommended to assess robustness and
broader applicability. The sharp decline in predictive ability after
accounting for population structure highlights its dominant
influence in this mango gene pool, emphasizing the need to
account for this factor in genetic analysis to distinguish true LD-
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driven associations from spurious signals arising from
subpopulation differences. The identification of several markers
associated with key fruit quality traits and tree vigor provides a
valuable resource for future marker-assisted selection and
functional genomics research in mango. To ensure their reliability
and practical utility in breeding programs, these markers should be
further validated under realistic breeding scenarios, such as
selection within full-sib families. Overall, this research contributes
to the optimization of genomic selection strategies in fruit tree
breeding programs, offering a promising pathway to accelerate
genetic gain in long-lived species where conventional breeding
remains time-consuming and resource-intensive. Once validated
in practical breeding populations, the use of GWAS-preselected
variants in genomic prediction could enable earlier and more
accurate selection, thereby reducing breeding cycle length and
accelerating cultivar development in mango.
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