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Genomic selection (GS) using whole-genome sequencing (WGS) data has

potential to improve breeding value accuracy in fruit trees, but previous studies

have reported limited gains compared to high-density marker sets. Incorporating

preselected variants identified through genome-wide association studies (GWAS)

is a promising strategy to enhance the predictive power of WGS data. We

investigated whether incorporating GWAS-preselected variants and fixed-effect

markers into genomic best linear unbiased prediction (GBLUP) models improves

predictive ability for fruit blush color (FBC), average fruit weight (AFW), fruit

firmness (FF), and trunk circumference (TC) in mango (Mangifera indica L.). The

study used 225 gene pool accessions from the Queensland Department of

Primary Industries in Australia, with phenotypes collected between 1999 and

2024. Predictive ability was assessed using models that ignored or accounted for

population structure using fixed principal components. Accounting for

population structure led to substantial reduction in predictive ability across all

traits, suggesting that initially high predictive abilities may have been partly driven

by genetic differences between subpopulations. GWAS-preselected variants

improved predictive abilities compared to using all WGS data, especially when

population structure was accounted for in both parental and 5-fold cross-

validation. Gains under parental validation reached 0.28 for AFW (from 0.30 to

0.58) and 0.06 for FBC (from 0.44 to 0.50). In 5-fold cross validation, gains were

up to 0.16 for AFW (from 0.32 to 0.48) and 0.10 for FBC (from 0.35 to 0.45). This

suggests that prioritizing markers that better capture relationships at causal loci

can improve predictive ability. Fixed-effect SNPs improved predictive ability of

WGS data, particularly for FBC, with increases of up to 0.18 (from 0.44 to 0.62).

The combination of GWAS-preselected variants and fixed-effect markers yielded

the highest improvements in predictive ability for FBC and TC. GWAS identified 5
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trait-associated SNPs for FBC, 11 for AFW, and 8 for TC. These results

demonstrate that leveraging GWAS-preselected variants and fixed-effect SNPs

improves predictive ability, potentially enhancing breeding efficiency in

fruit trees.
KEYWORDS

genomic prediction, mango, GWAS-preselected variants, genome-wide association
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1 Introduction

Mango (Mangifera indica L.), the world’s fifth most produced

fruit crop, holds major economic value due to its global

consumption and diverse applications (Srivastav et al., 2023).

While global production exceeds 50 million tons, Australia

contributes less than 0.2%, with an estimated 61,474 tons

produced annually, 89% of which is consumed domestically (Bally

and De Faveri, 2021; Bally et al., 2021). Genetic improvement of

mango is essential to enhance productivity and to meet evolving

market demands. Key breeding goals include dwarf or semi-dwarf

tree architecture suitable for high-density orchards (Mahmud et al.,

2023; Reddy et al., 2003), attractive skin color, and market-specific

fruit weight (Bally et al., 2009). Genetic gain in conventional mango

breeding is primarily constrained by lengthy breeding cycles

exceeding 20 years, with juvenility alone accounting for nearly

half of this duration (Bally and Dillon, 2018). New breeding

approaches that can reduce the breeding cycle length are greatly

needed to accelerate genetic gains in mango breeding programs.

Genomic selection (GS) has great potential to shorten breeding

cycles in horticultural fruit trees by predicting genetic values

(breeding or clonal) of unphenotyped individuals at the juvenile

stage using statistical models trained on a training set with both

genotypic and phenotypic data (Meuwissen et al., 2001). Proof of

concept studies in apple (Muranty et al., 2015; Roth et al., 2020),

macadamia (O’Connor et al., 2021), and eucalyptus (Suontama

et al., 2019) have demonstrated that GS can accelerate genetic gain

per unit of time compared to conventional breeding by shortening

the cycle length, primarily through skipping progeny testing.

However, in oil palm, GS did not yield sufficient prediction

accuracy for some key traits to justify skipping progeny testing

(Cros et al., 2017), underscoring the importance of accurate genetic

value prediction for effectively implementing GS in tree crops.

The genomic best linear unbiased prediction (GBLUP) model

(VanRaden, 2008) is one of the most widely used approach for

genomic prediction due to its flexibility and computational

efficiency (Barreto et al., 2024). The GBLUP model estimates

breeding values of selection candidates using a genomic

relationship matrix (GRM), which aims to capture relationships

among individuals at quantitative trait loci (QTLs). However, it

assumes that all markers contribute equally to genetic variance
02
(Meuwissen and Goddard, 2010), a limitation when a few major loci

account for a substantial portion of trait variation. This can lead to

underestimation of the contribution of major loci to genetic

variation, and consequently, reduced genetic gain from GS

(Bernardo, 2014). To address this, several studies have

incorporated key trait-associated markers as fixed or random

effects in GBLUP models, resulting in improved prediction

accuracy (Bernardo, 2014; Chen et al., 2023; Hardner et al., 2022;

Kostick et al., 2023).

Whole-genome sequencing (WGS) data has been proposed to

improve the accuracy of genomic prediction by capturing QTL

variants directly rather than relying on the linkage disequilibrium

(LD) between markers and unobserved QTLs (Meuwissen et al.,

2016). However, prior research has demonstrated that to enhance

genomic prediction accuracy with WGS data, predictions should

utilize preselected variants based on their association with target

traits, such as those identified through genome-wide association

studies (GWAS) (Liu et al., 2023; Raymond et al., 2018; Warburton

et al., 2020; Wei et al., 2023; Ye et al., 2020). This is because not all

markers in WGS data are causative or in strong LD with causative

mutations for the target trait (van Binsbergen et al., 2015); instead,

many may introduce noise into the prediction model, ultimately

reducing prediction accuracy (Raymond et al., 2018). GWAS-

preselected variants from WGS data may enhance prediction

accuracy in GBLUP models by enabling the construction of trait-

specific GRMs that prioritize causative mutations or markers in LD

with them, thereby better capturing genetic relationships at causal

loci. Although GWAS-preselected variants from WGS data have

shown improved prediction accuracy in livestock (Jang et al., 2023a;

Raymond et al., 2018; Veerkamp et al., 2016), this approach remains

largely unexplored in fruit trees, including mango.

Genome-wide association studies (GWAS) remain the most

widely used approach for identifying trait-associated single

nucleotide polymorphisms (SNPs) and prioritizing markers for

genomic prediction based on their potential causal effects.

However, most studies employed single-locus GWAS (SL-GWAS)

models, which test markers individually and have limited detection

power for polygenic traits (Wang et al., 2016). The ability to detect

causal variants is further influenced by factors such as effective

population size (Ne), LD structure, GWAS sample size, and the

statistical model used (Jang et al., 2023b). For instance, detection
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power is enhanced and sample size requirements are reduced for

GWAS in populations with high Ne and low LD (Misztal et al.,

2021), whereas small Ne increases long-range LD and noise,

reducing detection power. To date, Ne has not been estimated in

mango. In addition, most genomic prediction studies using GWAS-

preselected variants have relied on a single GWAS methodology for

variant discovery, limiting comparison across models. This

represents a key research gap. To address this, we evaluate

genomic prediction performance using GWAS-preselected

variants identified from three multi-locus GWAS methods:

Bayesian-information and Linkage-disequilibrium Iteratively

Nested Keyway (BLINK) (Huang et al., 2019), the Fixed and

random model Circulating Probability Unification (FarmCPU)

(Liu et al., 2016) and the Multi-loci Mixed Linear Model

(MLMM) (Segura et al., 2012). We also compare these with a

single-locus approach, the general linear mixed model (GLMM).

A key challenge in genomic prediction is population structure,

defined as the presence of genetically distinct subgroups with

divergent allele frequencies (Jacquin et al., 2025). If unaccounted

for, population structure can bias genomic estimated breeding values

(GEBVs) and inflate estimates of selection accuracy (Riedelsheimer

et al., 2013; Werner et al., 2020). Addressing population structure is

especially critical in perennial tree crops, where training populations

often represent broad genetic diversity to minimize phenotyping

demands across populations or generations, given the long breeding

cycles and extended juvenile phases (Brault et al., 2022). Despite its

potential to confound predictions, population structure is frequently

overlooked, especially when perceived to be weak. A common

strategy used to account for population structure is to include

principal components (PCs) derived from principal component

analysis (PCA) of the GRM as fixed-effect covariates in prediction

models (Hayatgheibi et al., 2024).

To the best of our knowledge, there are currently no published

reports of genomic prediction in mango, and the use of GWAS-

preselected variants from WGS data remains largely unexplored in

tree crops. This represents a significant gap in the application of GS in

mango and other fruit trees. To address this, we aimed to develop and

evaluate strategies for improving genomic predictive ability for key

traits in mango using WGS data. Specifically, we: (i) assessed the

power of GWAS using multi-locus and single-locus models, (ii)

evaluated the impact of increasing marker density to WGS level on

predictive ability, (iii) evaluated whether predictive ability could be

increased by using GWAS preselected variants, (iv) assessed the

impact of incorporating significant GWAS loci as fixed effects in

GBLUP models on predictive ability, and (v) investigated the impact

of population structure on predictive ability. Together, these analyses

inform strategies for optimizing genomic selection in mango.
2 Materials and methods

2.1 Germplasm and trial design

This study used 225 mango (Mangifera indica L.) accessions

from the gene-pool collection of the Queensland Mango Breeding
Frontiers in Plant Science 03
Program (QMBP), maintained by the Queensland Department of

Primary Industries (DPI) in Australia. This collection comprises

historical cultivars from 24 countries and progenies from advanced

selections, capturing a broad spectrum ofMangifera indica’s genetic

diversity (Wilkinson et al., 2025). The accessions exhibit strong

population structure, divided into two primary sub-populations: 33

individuals of Southeast Asian origin and 192 of Indian ancestry

(Wilkinson et al., 2022). Among the 225 gene-pool accessions, 41

are used as parents for the QMBP breeding population

(Supplementary Table 1). None of these parental accessions

originated from Southeast Asia. The trees were grown at the

Walkamin Research Station (WRS) and assessments of fruit

quality traits and tree growth were conducted from 1999 to 2024.
2.2 Phenotypic data

2.2.1 Trunk circumference
Trunk circumference (TC), an indicator of tree vigor, was

measured using a tape measure positioned 10 cm above the graft

union. Due to differences in planting times, the trees were assessed

at different ages, resulting in unbalanced data. We used TC data for

trees assessed at the ages of 9 (TC9, 200 unique accessions) and 12

(TC12, 199 unique accessions) years (total of 207 unique

accessions) due to the availability of a relatively large number of

individuals assessed in these years.

2.2.2 Fruit quality traits
Physiologically mature fruits were harvested from the outer tree

canopy, where they were exposed to sunlight. The fruits were

washed thoroughly with a detergent, treated with a fungicide dip

(1.0 ml L-1 Fludioxonil (230g/L)) for five minutes at 52 °C to

control anthracnose. They were then stored in a ripening room

maintained at 22°C until they developed a soft texture. Fruit blush

color (FBC) was assessed in 220 accessions over at least two seasons,

using ten ripe fruits from each accession. FBC of the ripened fruit

was rated on a categorical scale, in order from least to most

desirable: no blush, orange, pink, pink-red, red, and burgundy.

FBC categorical data was converted to a numerical scale as: no blush

or yellow = 0, orange = 1, pink = 2, pink-red = 3, red = 4, and

burgundy = 5.

The average fruit weight (AFW) in grams (g) was calculated

across 222 accessions using the weight of ten fruits at the eating

ripeness stage. Fruit firmness (FF) was measured in 221 mango

accessions using an analogue firmness meter. Not all accessions

were assessed for the three fruit quality traits in every season due to

the irregular bearing of some cultivars and differences in planting

seasons, resulting in unbalanced data.
2.3 Molecular data

Genomic DNA extraction, whole genome sequencing and variant

calling followed the protocols outlined by Wilkinson et al. (2025),

using the same set of 225 mango gene-pool accessions utilized in this
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study. Briefly, genomic DNA was extracted from young mango leaf

tissues using the modified cetyltrimethylammonium bromide

(CTAB) method. Whole genome sequencing (WGS) was

performed on all 225 accessions, with the 41 parental accessions

sequenced at 40X coverage and the remaining 184 individuals at a

depth of 15X. Joint SNP calling was performed using GATK4

software (Poplin et al., 2018), and trimmed paired-end reads were

aligned to the M. indica ‘Alphonso’ reference genome (Wang et al.,

2020) to identify physical position. This resulted in a total of

44,125,383 SNPs.

To generate a high-quality SNP dataset, a series of quality

filtering steps using VCFtools (Danecek et al., 2011) were applied.

Data points with a read depth below five were set to missing, and

SNPs exhibiting more than 20% missing data across the population

were discarded. To ensure the inclusion of only the most reliable

variants, we imposed a maximum mean read depth of 50, removed

SNPs with a minor allele frequency (MAF) below 0.05, and applied

a Hardy-Weinberg equilibrium p-value cut-off of 1e-6 to eliminate

potential genotyping errors. Following these stringent quality

control measures, 10,172,985 SNPs remained for downstream

analyses. Missing markers in the final dataset were imputed using

the Hidden Markov Model (HMM) implemented in Beagle 5.4

(Browning et al., 2018).
2.4 Estimation of effective population size
(Ne) and linkage disequilibrium

To assess genetic diversity within the QMBP gene-pool

collection, we estimated recent historical Ne for the 225 accessions

based on LD between pairs of markers, as implemented in GONE

software (Santiago et al., 2020). This method estimates the Ne from

the variance of progeny number, which is equal to the number of

breeding individuals (N). To minimize downward bias in Ne

estimates due to elevated LD (Waples et al., 2016), we used

815,255 independent SNPs derived by pruning the initial set of

~10 million SNPs. Pruning was performed in PLINK 2.0 (Purcell

et al., 2007) by removing one SNP from each pair with a squared

correlation coefficient (r²) > 0.2 within a 35-SNP sliding window.

Additionally, Ne was estimated for each of the two sub-populations

defined by Wilkinson et al. (2022), as population structure can bias

Ne estimates (Santiago et al., 2020). Furthermore, Ne was estimated

for the parental accessions in the QMBP to evaluate whether

sufficient genetic diversity exists to sustain long-term genetic

gains within the breeding program. Analyses were conducted

using default GONE software parameters.

To evaluate LD decay with physical distance among the 225

gene-pool accessions, pairwise estimates of LD were calculated

using the squared correlation of allele frequencies (r²) for all SNP

pairs within 1 Mbp windows across the entire set of 10,172,985

SNPs. The distance at which r² decayed to 0.2, commonly regarded

as the minimum threshold for high genomic prediction accuracy

(Calus et al., 2008), was determined separately for each

chromosome using PopLDdecay (Zhang et al., 2019).
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2.5 GBLUP model implementation and
parameter estimation

Linear mixed models were used to fit residual maximum

likelihood (REML) as implemented in the R package ASReml-R 4

(Butler et al., 2023), within a GBLUP framework to estimate model

parameters and predict random and fixed effects for all traits. When

a GRM was ill-conditioned (i.e. not positive-definite), bending was

applied to allow for matrix inversion, as implemented in the

ASRgenomics R package (Nazarian and Gezan, 2016). The linear

mixed model used to predict the genomic estimated breeding values

(GEBVs) of mango individuals is given in Equation 1:

y = Xb + Za + e (1)

Where y was the vector of phenotypic measurements, X was the

design matrix relating phenotypic records to the vector of fixed

effects (the intercept for all traits, age of tree at assessment for trunk

circumference, significant markers for models that included these as

fixed effects, and the first six principal components for models that

accounted for population structure) denoted by b, Z was the design

matrix linking phenotypic records to the additive genomic effects of

the mango accessions, a was the vector of additive genomic effects,

and e represented the random residual effects. We assumed the

following distributions for the four traits: a  
e   N(0,s

2
aG) and e   e

  N(0,   Is2
e ), where G was an n  �n symmetric and positive-definite

additive GRM which described the additive genomic relationships

among all pairs of individuals in both the training and validation

sets. The additive genomic variance explained by the set of SNPs in

each analysis was denoted by s2
a . The residual variance was denoted

by s2
e , and I was an n  �n identity matrix. For trunk circumference,

s2
a   was replaced by the additive genomic-by-age-at-assessment

covariance matrix, GA�Age, and the 2  �2 variance-covariance

matrix of residual effects were modelled using a CORGH variance

structure, assuming correlated heterogeneous variances among

observations across the two ages of assessment (age 9 and 12). In

this case, s2
e was replaced with the residual variance-covariance

matrix capturing both the heterogeneous residual variances and the

residual correlation between ages. The additive genomic

relationship matrix (G) for each marker set was estimated using

the method described by Yang et al. (2010). Individual narrow-

sense heritability (ĥ 2) for each specific trait was estimated as ĥ 2 =

s2
a=(s 2

a + s 2
e ). The Akaike Information Criteria (AIC) was used to

assess the quality of model fit.

2.5.1 Model validation
Two approaches were used to validate genomic prediction

models in this study. In the first cross-validation approach

(parental validation), own phenotypes of the 41 gene-pool

accessions that are being used as parents in the QMBP served as

an independent dataset for model validation, while the remaining

gene-pool accessions served as the training population. Predictive

ability was estimated as the Pearson correlation between the

phenotypes predicted by the linear mixed models (GEBVs) and

the observed phenotypes of parental accessions, r( ^y,     y).
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To provide a more robust evaluation of model performance, a

second validation approach involving random 5-fold cross-

validation (5-fold CV) was also implemented. In this approach,

the entire gene pool collection was randomly partitioned into five

subsets in which each subset consisted of 20% of the accessions. For

each fold, four subsets (80% of total individuals) were used for

model training and the remaining fold (20% of the accessions) for

model validation. Predictive ability was calculated as the Pearson

correlation between the GEBVs and the observed phenotypes after

each 5-fold CV run. To ensure stability and reliability of the

predictive ability estimates, the 5-fold CV procedure was repeated

five times. Thus, 25 correlation values were calculated for each

model. For trunk circumference, only phenotypic data collected

from trees aged 12 years were used for validation. The bias of

predictions was calculated as the regression of phenotypes on

GEBVs for individuals in the validation set.
2.6 Linkage disequilibrium pruning of WGS
data

To evaluate whether increasing marker density to WGS level

enhances genomic predictive ability, we performed GP using the full

set of available WGS markers (~10 million SNPs) and lower-density

marker sets (~2 million, ~800k, ~80k, ~20k, and ~10k SNPs). These

reduced marker sets were generated by pruning correlated markers

based on LD thresholds. The LD pruning thresholds were chosen

arbitrarily to generate a range of marker densities. LD pruning was

performed using PLINK 2.0 (Purcell et al., 2007) to remove one

SNP from each pair if their squared correlation (r²) exceeds a user-

defined threshold within a specified window. For example, the ~2

million SNP dataset (LD_2mil) was created by pruning one of each

pair of SNPs if their r2 value exceeded 0.2 within a window size of 15

SNPs, shifting the window 10 SNPs forward and repeating the

procedure. More stringent LD thresholds were applied to derive

lower-density marker sets, as detailed in Table 1. The final datasets -

LD_2mil (~2 million SNPs), LD_800k (~800k SNPs), LD_80k

(~80k SNPs), LD_20k (~20k SNPs), and LD_10k (~10k SNPs)

were used to assess the impact of marker density on

predictive ability.
Frontiers in Plant Science 05
2.7 Accounting for population structure

To evaluate the impact of population structure on predictive

ability, the top six principal components (PCs) derived from

principal component analysis (PCA) of the GRM were included

as fixed effects in GBLUP models. Since LD can affect PCA analysis

(Campoy et al., 2016), we conducted PCA using a GRM constructed

using a set of ~80k (LD_80k) unlinked markers derived from LD

pruning of the ~10 million WGS markers. We selected the top six

PCs to represent population structure based on their relative

contributions to global molecular variance. Individually, these

PCs accounted for between 2.5% and 10% of the molecular

variance, and together they explained 33% of the total variation

in the mango gene pool collection. The predictive ability of models

that included fixed PCs was compared to that for models that did

not include this adjustment.
2.8 Genome-wide association study

We performed GWAS using the LD_2mil marker set to identify

trait-associated markers and establish an association-based

criterion for preselecting SNPs from WGS data for use in

genomic prediction. Although GWAS for the same traits and

phenotypic data was conducted in the original study by

Wilkinson et al. (2025), our reanalysis aimed to enhance

statistical power by leveraging a denser marker set and multi-

locus GWAS methods. In this study, we evaluated three multi-

locus GWAS methods: (1) the MLMM (Segura et al., 2012), (2)

BLINK (Huang et al., 2019), and (3) FarmCPU (Liu et al., 2016).

The MLMM employs a stepwise regression approach to iteratively

incorporate the most influential markers (pseudo quantitative trait

nucleotides: pseudo-QTNs) as covariates to account for population

structure. The BLINK approach accounts for population structure

using pseudo-QTNs selected using LD information and optimized

for Bayesian information criterion (BIC), while FarmCPU employs

the fixed-bin approach to select pseudo-QTNs, assuming a uniform

distribution of pseudo-QTNs across the genome. All three multi-

locus GWAS methods were implemented using GAPIT 3 (Wang

and Zhang, 2021). For comparison, a single-locus GWAS was
TABLE 1 Description of marker sets including whole-genome sequencing (WGS) data and LD-pruned markers.

Scenario R2 Window size Number of SNPs R2 between adjacent SNPs

WGS NA NA 10, 172, 985 0.33

LD_2mil 0.2 15 2,016,911 0.11

LD_800k 0.2 35 815,255 0.08

LD_80k 0.2 1,500 82,504 0.03

LD_20k 0.1 8,000 20,523 0.01

LD_10k 0.1 100,000 10,068 0.01
PLINK 2.0 was used to prune one of each pair of correlated SNPs at an arbitrarily chosen LD threshold using WGS data. For example, the LD_2mil scenario was created by pruning one of each
pair of SNPs if their r2 value exceeded 0.2 within a window size of 15 SNPs, shifting the window 10 SNPs forward and repeating the procedure again.
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performed using a GLMM implemented in PLINK 2.0 (Purcell

et al., 2007).

To account for population structure in GWAS analyses, both

multi-locus and single-locus methods incorporated the first six PCs

derived from PCA of the GRM as fixed effects as described above. A

marker was considered significant if it surpassed the Bonferroni

threshold (-log(p) = 7.61). For TC, GWAS was conducted

separately for trees assessed at the ages of 9 and 12 years. To

perform GWAS for variant preselection or the identification of

fixed-effect SNPs, GWAS analyses were exclusively conducted using

individuals from the training population. This exclusion was

implemented to minimize the bias in GEBVs that could arise

from discovering markers in the same population used for

model validation.
2.9 Incorporation of GWAS results in
GBLUP models

To evaluate whether predictive ability using WGS data can be

improved by prioritizing markers based on potential LD with QTLs,

we created marker subsets containing preselected variants identified

using GWAS approaches described earlier. Markers were first

ranked in descending order of estimated effect from GWAS

(-log10(p-value)), with the most statistically significant SNPs

selected first. Different densities of preselected variants were

evaluated as top 1,000, 10,000, 15,000, 20,000, 30,000, 50,000, and

100,000 SNPs. Markers preselected through GWAS conducted

using BLINK, FarmCPU, MLMM, and the GLMM methodologies

are referred to as TOP-BLINK, TOP-FarmCPU, TOP-MLMM, and

TOP-GLMM, respectively. Genomic predictive ability from GBLUP

models using additive GRMs based on preselected variants from

different GWAS models and unselected marker sets (WGS data and

LD-pruned data) were compared.

To test the hypothesis that fitting significant SNPs from GWAS

as fixed effects enhances predictive ability, the additive genetic

effects of significant markers identified by at least two GWAS

methods, hereafter referred to as reliable SNPs, were added to

GBLUP models as fixed effects. These reliable SNPs were identified

using GWAS in the training population. In models incorporating

fixed-effect SNPs, reliable SNPs were excluded from GRM

construction, and their best linear unbiased estimates (BLUEs)

were added to the GEBVs prior to model validation. The fixed-

effect SNPs were added to models based on GWAS-preselected

variants, WGS data, and LD-pruned marker sets.
3 Results

3.1 Effective population size and linkage
disequilibrium

The effective population size (Ne) varied considerably between

sub-populations within the QMBP’s mango gene-pool collection.

The overall Ne for the entire gene-pool collection was estimated to
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be 113. Subpopulation-specific estimates revealed relatively high Ne

values for non-Southeast Asian accessions (Ne = 129) and for

individuals currently used as parents in the QMBP (Ne = 104). In

contrast, the Southeast Asian accessions exhibited a markedly lower

effective population size (Ne = 29).

Linkage disequilibrium (LD) decayed sharply with increasing

physical distance between markers. The r2 estimates between pairs

of SNPs dropped below the widely accepted critical threshold for

accurate genomic prediction (r2 = 0.20) within 3.6 kb (Figure 1).

The mean genome-wide r2 between adjacent SNPs across all

chromosomes in WGS dataset was 0.33. In contrast, the mean r2

values for the LD-pruned marker subsets (LD_2mil, LD_800k,

LD_80k, LD_20k, and LD_20k, and LD_10k) were substantially

lower (Table 1).
3.2 Phenotypic analysis

We observed substantial to relatively low phenotypic variation

across the evaluated traits in the mango gene pool (Supplementary

Table 2). The greatest variability was observed for FBC and AFW,

with coefficients of variation (CV) of 88.5% and 42.4%, respectively,

indicating pronounced differences in pigmentation and fruit weight

among accessions. In contrast, FF showed moderate variability (CV

= 28.3%), while TC at ages 9 and 12 showed relatively lower

variation (CV = 21.1% and 19.3%, respectively), with mean values

of 50.4 cm and 56.06 cm. The density distributions of TC

(Supplementary Figure 1) reveal a rightward shift from age 9 to

12, reflecting overall tree growth.
3.3 Heritability

Estimates of narrow-sense heritability (ĥ 2) based on the full

marker set (WGS data) varied widely across traits and models,

revealing notably high heritabilities for FBC (ĥ 2=0.98) and AFW

(ĥ 2 = 0.95), but considerably lower estimates for FF (ĥ 2=0.26) and
FIGURE 1

Linkage disequilibrium (LD) decay in the mango gene pool. The X-
axis shows the physical distance between SNPs in kilobases (kb), and
the Y-axis represents the squared correlation (r²) between allele
frequencies. The dotted line marks the threshold of r² = 0.2.
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TC (ĥ 2=0.33) (Supplementary Table 3). Marker density exerted

minimal overall impact on heritability estimates; however, contrary

to expectations, an increase in marker density from ~10k (LD_10k)

to full WGS coverage led to a reduction in heritability estimates for

TC from 0.40 to 0.33. Incorporation of the first six principal

components derived from the GRM as fixed effects intended to

control for population structure resulted in only subtle changes in

ĥ 2 across all traits (Supplementary Table 4).

Optimal model fits as indicated by lower AIC values were

generally observed with intermediate to high marker densities,

suggesting that an optimal balance exists between capturing

genetic variation and avoiding over-parameterization. Moreover,

prediction models employing GRMs constructed from GWAS-

preselected variants consistently had better model fit than models

based on the full WGS dataset.
3.4 Genomic prediction using WGS data

3.4.1 Predictive ability with WGS data and effect
of marker density on predictive ability

Genomic predictive ability varied across traits, marker density,

and validation strategy (Table 2, Supplementary Table 7), and

generally aligned with the narrow-sense heritability estimates (ĥ 2

). When considering predictions based on WGS data and baseline

GBLUP models (i.e., models without population structure

correction or fixed-effect SNPs), higher predictive abilities (PA)

were observed for highly heritable traits and lower predictive

abilities for traits with lower ĥ 2. Under the parental validation

strategy, the highest predictive abilities were observed for FBC and

AFW (PA = 0.67 for both traits), followed by TC (PA = 0.54), with

FF showing the lowest predictive ability (PA = 0.41). A similar trend

was observed in the 5-fold cross-validation (CV) strategy, where

predictive abilities for AFW (0.65) and TC (0.57) were comparable

to those from the parental validation (Supplementary Table 7).

However, the predictive ability for FBC increased substantially

under the 5-fold CV strategy (0.80), while that for FF decreased

markedly (0.28), relative to the parental validation results.

Results from the evaluation of marker density effects under the

parental validation strategy using baseline GBLUP models revealed

that predictive ability varied with density. Predictive ability ranged

from 0.60 to 0.67 for FBC, 0.59 to 0.67 for AFW, 0.35 to 0.41 for FF,

and 0.51 to 0.54 for TC (Supplementary Table 5). Across all traits,

predictive ability generally increased with marker density but

plateaued beyond LD_20k (~20,000 SNPs), indicating little gains

at higher SNP densities. Models incorporating a GRM estimated

from the lowest-density marker set (LD_10k) exhibited

substantially lower predictive ability compared to those using

higher-density marker sets (LD_20k to WGS), which showed only

marginal variation in predictive ability among themselves. For TC,

differences in predictive ability were relatively stable across marker

densities, with a maximum difference of just 0.03 between LD_10k

and WGS. Under the 5-fold CV, differences in predictive ability

across marker densi t ies were minimal for a l l t ra i t s

(Supplementary Table 7).
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3.4.2 Effect of population structure on predictive
ability

Incorporating the top six principal components (PCs) as fixed

effects to account for population structure resulted in substantial

reductions in predictive ability for all traits (Table 2). The decrease

in predictive ability ranged from 0 to over 100% depending on

marker set and validation approach employed, highlighting the

dominant influence of population structure on genomic prediction

within this gene-pool for these traits. Under parental validation,

predictive ability based on WGS data decreased from 0.67 to 0.44

for FBC, from 0.67 to 0.30 for AFW, and from 0.41 to 0.30 for FF

when population structure was accounted for (Supplementary

Table 6). The exception was TC, where a slight increase in

predictive ability was observed, rising from 0.54 to 0.57. Notably,

while population structure correction reduced predictive ability for

FBC, this decline was substantially mitigated when the FBC-

associated SNP on chromosome 15 was fitted as a fixed effect in

GBLUP models. When only the top six PCs were included as fixed

effects, predictive ability for FBC dropped by 34%. However, when

both the first six PCs and the most significant GWAS-identified

SNP were jointly fitted as fixed effects, the reduction in predictive

ability was mitigated to just 7%.

Similarly, results from 5-fold cross validation revealed a marked

decline in predictive ability after correcting for population structure

(Supplementary Table 8). However, unlike in the parental

validation strategy where the predictive ability for TC remained

stable despite population structure correction, the predictive ability

in the 5-fold cross-validation declined sharply, dropping from 0.57

to 0.45 when using WGS data.
3.5 Genome-wide association studies

Utilizing three multi-locus GWAS approaches and one single-

locus GWAS method on ~2 million SNPs, we identified 24 unique

associations across three traits (Table 3): fruit blush color (FBC, n =

5; Supplementary Figure 2), average fruit weight (AFW, n = 11;

Supplementary Figure 3), and trunk circumference (TC, n = 8;

Supplementary Figure 4). Notably, the FBC-associated SNPs on

chromosome 15 identified by the GLMM were in very strong LD

with each other (mean r2 = 0.94), forming a distinct peak. FarmCPU

identified the most trait-associated SNPs among the four GWAS

methods evaluated, identifying 20 significant associations, followed

by BLINK (7), and the MLMM (2). In contrast, the GLMM only

detected one association. For TC, all significant marker-trait

associations were detected in trees assessed at 9 years of age,

whereas no significant SNPs were identified in trees assessed at 12

years of age. The comparison of SNP positions with the annotated

‘Alphonso’ genome suggested that some SNPs were associated with

regions containing putative loci for FBC, AFW, and TC previously

identified in mango and other tree species (Table 4).

3.5.1 Genotype and GEBVs relationship
Reliable trait-associated SNPs (identified by at least two GWAS

methods) showed clear effects on phenotypic variation, as revealed
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TABLE 2 Genomic predictive abilities for fruit blush color (FBC), average fruit weight (AFW), fruit firmness (FF) and trunk circumference (TC) across different marker sets and prediction models under parental
validation.

Marker set

D_800k LD_2mil WGS TOP-BLINK TOP_FarmCPU TOP-MLMM TOP-GLM

0.66 0.66 0.67 0.70 0.71 0.67 0.66

– – 0.44 0.45 0.50 0.37 0.33

– – 0.74 0.77 0.74 0.68 0.70

– – 0.62 0.69 0.64 0.51 0.48

0.67 0.67 0.67 0.78 0.68 0.70 0.68

– – 0.30 0.37 0.58 0.48 0.54

– – 0.68 0.78 0.69 0.71 0.69

– – 0.30 0.36 0.59 0.48 0.55

0.41 0.41 0.41 0.43 0.43 0.40 0.45

– – 0.30 0.34 0.34 0.27 0.35

0.54 0.54 0.54 0.59 0.59 0.54 0.58

– – 0.57 0.61 0.61 0.55 0.60

– – 0.58 0.64 0.64 0.61 0.64

– – 0.61 0.66 0.66 0.62 0.65

e optimum density of GWAS-Preselected Variants (TOP-BLINK, TOP-FarmCPU, TOP-MLMM, TOP-GLMM) for each GWAS-method-by-trait
(2) GBLUP with a fixed-effect SNP (GBLUP + fixed SNP), (3) GBLUP with top six Principal Components as fixed effects (GBLUP + fixed PCs), and (4)
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Trait Scenario
LD_10k LD_20k LD_80k L

FBC

GBLUP 0.60 0.65 0.65

GBLUP + fixed PCs – – –

GBLUP + fixed-SNPs – – –

GBLUP + fixed-SNPs + fixed PCs – – –

AFW

GBLUP 0.59 0.65 0.66

GBLUP + fixed PCs – – –

GBLUP + fixed-SNPs – – –

GBLUP + fixed-SNPs + fixed PCs – – –

FF
GBLUP 0.35 0.38 0.40

GBLUP + fixed PCs – – –

TC

GBLUP 0.51 0.52 0.53

GBLUP + fixed PCs – – –

GBLUP + fixed-SNPs – – –

GBLUP + fixed-SNPs + fixed PCs – – –

Marker Sets Include: Whole-Genome Sequence (WGS) data, LD Pruned SNP Sets (LD_2mil to LD_10k), and th
combination. Prediction models include: (1) Base GBLUP (without population structure control or fixed-effect SNPs),
GBLUP with both fixed-effect SNP and fixed PCs (GBLUP + fixed PCs + fixed SNP).
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by GEBVs for the three genotypic classes: homozygous reference,

heterozygous, and homozygous alternate allele (Supplementary

Figure 5-Supplementary Figure 7). For FBC, the SNP on

chromosome 15 (G/A) showed that cultivars with the GG

genotype (e.g., ‘Ah Ha!’, ‘Tommy Atkins’, and ‘Irwin’) had

significantly higher FBC ratings (p < 0.0005, mean GEBV = 2.0)

compared to those carrying the A allele either in homozygous form

(mean GEBV = 1.2; e.g., ‘Dashehari’, ‘Mallika’, and ‘Arumanis A’)

or heterozygous form (mean GEBV = 1.0; e.g., ‘Maha Chanook’,

‘Alphonso’, and ‘Carabao Pep’). For AFW, the SNP on chromosome

17 (A/G) revealed that cultivars with the A allele in homozygous

form had significantly lower fruit weight (p< 0.0005; mean GEBV =

322.0 g) than the heterozygous cultivars (mean GEBV = 415.2 g).

For TC, the SNP on chromosome 7 (T/A) revealed that AA

genotypes (e.g., ‘Manjeera’, ‘Lippens’) had significantly lower

trunk circumference (p < 0.0005; mean GEBV = 45.5 cm)
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compared to cultivars carrying the T allele either in homozygous

form (mean GEBV = 56.5 cm) or heterozygous form (mean GEBV

= 52.4 cm). Notably, heterozygous (T/A) genotypes also had

significantly smaller trunk circumference (p < 0.0005) than

homozygous TT genotypes.
3.6 Incorporation of GWAS results in
GBLUP models

3.6.1 Preselected variants from GWAS increased
predictive ability

Models incorporating a GRM derived from variants preselected

based on the highest ranked probability of effect as estimated using

GWAS improved predictive ability across all traits, with

improvements of up to 93% under parental validation (Table 2).
TABLE 3 Significant marker-trait associations for average fruit weight (AFW), fruit blush color (FBC), and trunk circumference (TC).

Trait Marker name Chr Pos (bp) P-value MAF GWAS method

AFW

NC_058139.1_14599216 3 14599216 2.19e-10 0.08 BLINK

NC_058143.1_71757 7 71757 7.70e-10 0.3 BLINK

NC_058151.1_3295704 15 3295704 1.42e-10 0.17 BLINK

NC_058153.1_7169193 17 7169193 2.12e-20 0.13 BLINK, FarmCPU

NC_058156.1_9929325 20 9929325 1.33e-10 0.37 BLINK

NC_058138.1_17016987 2 17016987 1.78e-10 0.49 FarmCPU

NC_058146.1_6357250 10 6357250 8.97e-09 0.09 FarmCPU

NC_058149.1_10041368 13 10041368 1.99e-13 0.38 FarmCPU

NC_058151.1_14147173 15 14147173 1.91e-11 0.11 FarmCPU

NC_058153.1_2108313 17 2108313 2.10e-09 0.44 FarmCPU

NC_058156.1_9195450 20 9195450 1.21e-10 0.27 FarmCPU

FBC

NC_058151.1_10729807 15 10729807 3.32e-22 0.35 BLINK, FarmCPU, GLMM

NC_058140.1_17796415 4 17796415 1.92e-20 0.06 FarmCPU

NC_058143.1_10454361 7 10454361 2.28e-09 0.46 FarmCPU

NC_058143.1_15901033 7 15901033 1.87e-12 0.47 FarmCPU

NC_058148.1_6029563 12 6029563 8.04e-10 0.18 FarmCPU

NC_058151.1_10744410 15 10744410 4.12e-11 0.36 MLMM

TC

NC_058143.1_14357156 7 14357156 2.23e-14 0.35 BLINK, FarmCPU, MLMM

NC_058137.1_13654943 1 13654943 5.37e-09 0.09 FarmCPU

NC_058138.1_3215561 2 3215561 1.50e-09 0.36 FarmCPU

NC_058138.1_9666205 2 9666205 2.04e-08 0.07 FarmCPU

NC_058139.1_20457585 3 20457585 7.01e-11 0.16 FarmCPU

NC_058148.1_14363648 12 14363648 1.66e-10 0.19 FarmCPU

NC_058149.1_5010618 13 5010618 7.26e-10 0.16 FarmCPU

NC_058154.1_7179850 18 7179850 2.44e-10 0.12 FarmCPU
Table legend: The table displays trait, marker name, chromosome (Chr), position (Pos) in base pairs, GWAS-derived p-value, minor allele frequency (MAF) of the trait-associated SNP, and
GWAS Method.
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The magnitude of these improvements varied depending on the

trait, density of GWAS-preselected variants, GWAS method

applied, and whether population structure was accounted for.

When using base models (i.e., models without population

structure correction or fixed-effect SNPs) under the parental

validation strategy, preselecting variants based on GWAS showed

an advantage depending on the GWAS method used to identify

variants, particularly for AFW and to a lesser extent for FBC, FF,

and TC (Figure 2A). The predictive ability for AFW was markedly

higher when using 20,000 TOP-BLINK GWAS-preselected

variants, reaching 0.78, compared to 0.67 using the complete

WGS dataset. In contrast, improvements in predictive ability for

other traits were more modest, increasing from 0.67 to 0.71 for FBC

using 100,000 SNPs from the TOP-FarmCPU set, from 0.54 to 0.59

for TC using either 20,000 or 50,000 SNPs from the TOP-BLINK or

TOP-FarmCPU set, and from 0.41 to 0.45 for FF using 1,000 SNPs

from the TOP-GLMM set. However, under 5-fold cross-validation

using models that did not account for population structure, GWAS-

based SNP preselection did not lead to improvements in predictive

ability across any of the traits (Figure 3A, Supplementary Table 7).

The increases in predictive ability observed with GWAS-

preselected variants relative to WGS data were much larger when

population structure was accounted for (Figure 2B). Under the

parental validation strategy, adjusting for population structure in

GBLUP models led to a 93% improvement in predictive ability for

AFW, increasing from 0.30 to up to 0.58 when 15,000 variants from

the TOP-FarmCPU set were used instead of WGS data. Similar

improvements in predictive ability were observed for FBC and FF,

rising from 0.44 to 0.50 using either 50,000 or 100,000 TOP-

FarmCPU SNPs for FBC, and from 0.30 to 0.35 using top 1,000

SNPs selected by GLMM for FF. In contrast, there was little
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variation in predictive ability for TC between models that

included GWAS pre-selected variants with or without adjustment

for population structure.

A comparable pattern was observed under the 5-fold cross-

validation strategy in GBLUP models that included population

structure correction (Figure 3B). Specifically, predictive ability

increased by up to 29% for FBC (from 0.35 to 0.45), 50% for

AFW (from 0.32 to 0.48), and 150% for FF (from 0.08 to 0.20), while

TC showed a modest improvement of 11% (from 0.45 to 0.50). The

highest predictive abilities under 5-fold cross validations were

achieved using 10,000 SNPs from TOP-GLM for FBC, 1,000

SNPs from TOP-MLMM for AFW, 1,000 SNPs from all GWAS

methods for FF, and 10,000 or more SNPs from either TOP-

FarmCPU or TOP-GLMM for TC (Supplementary Table 8).

Notably, for FF and TC, the predictive abilities obtained using

GWAS-preselected variants were comparable to those achieved

using LD-pruned marker sets (LD_10k to LD_2mil).

Predictive abilities using GWAS-preselected variants showed

substantial variation depending on marker density and validation

strategy, with no consistent trend across traits (Supplementary

Tables 5, 7). Under the parental validation strategy in models

ignoring population structure, the highest predictive abilities were

achieved using 20,000 SNPs from BLINK for AFW, 100,000 SNPs

from FarmCPU for FBC, 1,000 SNPs from GLMM for FF, and

either 20,000 or 50,000 SNPs from BLINK or FarmCPU for TC. In

contrast, under 5-fold cross validation, predictive abilities remained

relatively stable across different marker densities (Supplementary

Table 7). Differences in maximum predictive ability between GWAS

models were generally small (< 0.03), except for FBC and AFW in

models that accounted for population structure (Supplementary

Table 8). In these cases, the highest predictive abilities were
TABLE 4 Candidate genes identified near significant SNP markers associated with fruit blush color (FBC), average fruit weight (AFW), and trunk
circumference (TC) in mango.

Trait Chr MAF
Distance from SNP
(kb)

Candidate gene
Functional
role

Reference

FBC 15 0.35 0.52 kb MYB114-like transcription factor Fruit coloration (Kanzaki et al., 2020; Plunkett et al., 2019)

AFW 2 0.49 158 kb Cell division control protein Fruit size
(Devoghalaere et al., 2012; Karim et al., 2022;
Zhang et al., 2006)

AFW 7 0.30 110 kb
Two cell division control
proteins

Fruit size
(Devoghalaere et al., 2012; Karim et al., 2022;
Zhang et al., 2006)

AFW 13 0.38 12 kb Two auxin response factors Fruit size (Devoghalaere et al., 2012)

AFW 13 0.38 26 kb
Ethylene-responsive transcription
factor

Fruit size (Bally et al., 2021)

AFW 15 0.17 33 kb GDSL esterase/lipase Fruit size (Bally et al., 2021)

AFW 15 0.17 160 kb Cell number regulator Fruit size (Devoghalaere et al., 2012)

TC 2 0.07 21 kb Growth regulating factor gene
Tree trunk
diameter

(Wu et al., 2021)

TC 2 0.36 6 kb and 16 kb Two auxin efflux carrier genes Tree growth (Qi et al., 2020; Zhang et al., 2015)

TC 7 0.35 68 kb GATA transcription factor Tree growth (An et al., 2014)
Candidate genes were identified based on alignment with the annotated ‘Alphonso’ reference genome. The Table lists the associated Trait, Chromosome (Chr), minor allele frequency (MAF) of
the trait-associated SNP, distance between the SNP and candidate gene, the candidate gene or transcription factor, its functional role, and supporting references where the gene or transcription
factor’s role has previously been reported.
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achieved using 10,000 and 1,000 SNPs from TOP-GLM and TOP-

MLMM, respectively. All subsequent results are based on the

parental validation strategy using both the full WGS dataset and

the optimal set of GWAS-preselected variants for each trait.

3.6.2 Fixed-effect SNPs increased predictive
ability for fruit blush color and trunk
circumference

The impact of incorporating reliable markers as fixed effects on

predictive ability varied depending on the trait, marker set, and

whether population structure was accounted for (Figure 4,

Supplementary Table 9, Supplementary Table 10). Our findings

indicate that incorporating a reliable SNP as a fixed effect in

prediction models markedly improved predictive ability for FBC

and TC, with gains of up to 0.26 and 0.07, respectively.

For FBC, incorporating the reliable trait-associated SNP on

chromosome 15 as a fixed effect in GBLUP models without

accounting for population structure resulted in an improvement

in predictive ability ranging from 0.01 to 0.07 compared to models

without the fixed-effect SNP. Notably, predictive ability increased

from 0.67 to 0.74 with WGS data and from 0.70 to 0.77 using

100,000 TOP-BLINK markers when the FBC-reliable marker was

included as a fixed effect. Strikingly, under population structure

correction, the enhancement in predictive ability due to the

inclusion of the FBC-reliable marker as a fixed effect was even
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more pronounced, with gains ranging from 0.12 to 0.26. In these

population structure corrected models, predictive ability increased

from 0.44 to 0.62 with WGS data, from 0.45 to 0.69 using 50,000

TOP-BLINK markers, from 0.50 to 0.62 using either 50,000 or

100,000 TOP-FarmCPU markers, from 0.37 to 0.51 using 15,000

TOP-MLMM markers, and from 0.33 to 0.48 using 10,000 TOP-

GLMM markers. Further analysis using ~ 2 million SNPs showed

that this FBC-associated SNP accounted for 36% of the genetic

variance (results not shown).

Incorporating the reliable TC-associated SNP on chromosome

7 as a fixed effect in GBLUP models also improved predictive

ability, with gains of up to 0.07 in models without population

structure control, and up to 0.06 when population structure was

accounted for. For example, predictive ability increased from 0.54

to 0.58 with WGS data, from 0.59 to 0.64 using 20,000 or 50,000

SNPs from either BLINK or FarmCPU, and from 0.54 to 0.61 with

20,000 TOP-MLMM markers when the reliable TC-associated

SNP was included as a fixed effect in models without population

structure correction. A similar pattern was observed when

population structure was accounted for, with the predictive

ability for WGS data increasing from 0.57 to 0.61, from 0.61 to

0.66 using 50,000 SNPs from either BLINK or FarmCPU, and

from 0.55 to 0.62 using 15,000 TOP-MLMM markers. In contrast,

for AFW, adding fixed-effect markers to the prediction models did

not improve predictive ability.
FIGURE 2

Predictive ability of breeding population parent phenotypes: (A) without accounting for population structure and (B) while accounting for population
structure, using models without fixed-effect SNPs. Bars represent predictive abilities across marker sets: WGS data and GWAS-preselected variants
(TOP-BLINK, TOP-FarmCPU, TOP-MLMM, TOP-GLMM). Notably, under scenario A, predictive ability for AFW increased from 0.67 to 0.78 when
20,000 TOP-BLINK SNPs were used instead of WGS data.
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3.6.3 Improved prediction via combined use of
GWAS-preselected variants and fixed-effect SNPs

Combining GWAS-preselected variants with fixed-effect SNPs

substantially improved predictive ability for FBC and TC compared

to models using WGS data alone or GWAS-preselected variants

alone. The highest predictive abilities for these traits were achieved

using this integrated approach both with and without population

structure correction (Table 2; Figure 4). For example, substituting

WGS data with TOP-BLINK markers improved predictive ability

for FBC from 0.67 to 0.70 (Figure 2A). Incorporating the FBC-

associated reliable SNP on chromosome 15 as a fixed effect

increased predictive ability with WGS data from 0.67 to 0.74 (a

0.07 increase). Notably, combining 100,000 GWAS-preselected

variants from BLINK with the fixed-effect SNP yielded a

substantial improvement, boosting predictive ability by 0.10 (from

0.67 with WGS data to 0.77 using a combination of GWAS-

preselected variants and the fixed-effect SNP). A similar trend was

observed when population structure was accounted for, with the

highest predictive ability (0.69) achieved by incorporating the FBC-

reliable SNP as a fixed effect in a GBLUP model based on a GRM

derived from 50,000 TOP-BLINK markers. This predictive ability

represents a substantial improvement, exceeding that of WGS data

alone by 0.25 and that of TOP-BLINK markers alone by 0.24, and

surpassing WGS data with a fixed-effect SNP by 0.07.
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A similar trend was observed for TC, where the highest

predictive abilities were achieved by integrating GWAS-

preselected variants with fixed-effect SNPs in a single GBLUP

model. Specifically, including 20,000 or 50,000 GWAS-preselected

variants from TOP-FarmCPU or TOP-BLINK alongside fixed-

effect SNPs improved predictive ability by 0.1, increasing from

0.54 with WGS data to 0.64. This enhancement in predictive ability

surpasses the gains of 0.06 and 0.05 obtained when using either

WGS data plus fixed-effect SNPs or GWAS-preselected variants

alone. Notably, a comparable pattern emerged in GBLUP models

that accounted for population structure, with predictive abilities

remaining nearly identical to those observed in models without

population structure correction.

When considering the optimal marker density for GWAS-

preselected variants under parental validation, defined as the

density yielding the highest predictive ability, TOP-BLINK and

TOP-FarmCPU both achieved the highest predictive abilities in

eight of the fourteen trait-by-scenario combinations (four traits and

four scenarios [GBLUP, GBLUP + fixed SNP, GBLUP + fixed PCs,

and GBLUP + fixed PCs + fixed SNP]). TOP-GLMM produced the

highest predictive ability in three combinations, while MLMM did

not result in the highest predictive ability in any of the scenarios. In

contrast, the performance of GWAS models under 5-fold cross-

validations was comparable across all traits when population
FIGURE 3

Predictive ability of gene pool individuals under 5-fold cross-validation: (A) without accounting for population structure and (B) with population
structure correction, using models without fixed-effect SNPs. Bars represent predictive abilities across different marker sets, including WGS data
(WGS) and GWAS-preselected variants (TOP-BLINK, TOP-FarmCPU, TOP-MLMM, TOP-GLMM). Notably, under scenario B, predictive ability for AFW
increased from 0.32 to 0.48 when 1,000 TOP-FarmCPU SNPs were used instead of WGS data.
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structure was ignored. However, under models that accounted for

population structure, GWAS-preselected variants identified using

the MLMM and GLMM yielded the highest predictive ability for

AFW and FBC, respectively.
4 Discussion

4.1 Effective population size and linkage
disequilibrium

Our results indicate that estimates of effective population size

(Ne) in the QMBP gene-pool collection (Ne = 129, excluding

accessions from Southeast Asia) and the parental population (Ne

= 104) are well above the recommended minimum of 50 required to

minimize short-term inbreeding (Clarke et al., 2024). These large

estimates of Ne indicate a high number of independently

segregating chromosome segments, suggesting that high density

marker sets are needed to ensure marker-QTL LD for accurate

genomic prediction (Grattapaglia, 2014). The estimates of Ne in

both the gene-pool collection and parental population suggest that

these populations maintain sufficient genetic diversity to sustain

long-term genetic gains (White et al., 2007) in the QMBP.
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Mango is an outcrossing and highly heterozygous species

(Wilkinson et al., 2022) and thus would be expected to have

rapid LD decay (Vos et al., 2017). The rapid LD decay observed in

our study likely reflects the substantial genetic diversity within the

gene-pool collection (Wilkinson et al., 2022), in agreement with

the high Ne estimates. Specifically, LD decay of r2 = 0.2 (the

commonly considered minimum LD threshold for accurate

genomic prediction) occurred at 3.6 kb in our study using WGS

data. This is comparable to estimates in other outcrossing species

like Eucalyptus (4 kb; Butler et al., 2022) and Populus (3–6 kb;

Slavov et al., 2012) but lower than reported in a diverse historical

apple population (0.1 kb; Migicovsky et al., 2016). The rapid LD

decay observed in this study should increase the resolution of

GWAS studies by allowing for accurate identification of causal

variants. This improvement stems from the presence of short

haplotype blocks which mitigate the confounding effects of strong

LD between causal mutations and numerous non-causal loci,

thereby reducing the noise-to-signal ratio and improving GWAS

resolution (Jang et al., 2023b). The mean r2 between adjacent WGS

SNPs in our study (0.33) is comparable to values reported in apple

(0.32; Kumar et al., 2012) and pear (0.33; Minamikawa et al.,

2018), indicating a strong potential for implementing genomic

selection in mango.
FIGURE 4

Predictive ability of breeding population parent phenotypes: (A) without population structure control and including fixed-effect SNPs, and (B) with
population structure correction and fixed-effect SNPs. Bars represent predictive abilities across marker sets: WGS data (WGS), WGS with fixed-effect
SNP (WGS + fixedSNP), and GWAS-preselected variants with fixed-effect SNP (TOP-BLINK + fixedSNP, TOP-FarmCPU + fixedSNP, TOP-MLMM +
fixedSNP, TOP-GLMM + fixedSNP). Notably, under scenario B, predictive ability for FBC increased from 0.44 to 0.69 when using 50,000 TOP-BLINK
SNPs with fixed-effect SNP instead of using WGS data alone.
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4.2 Genome-wide association studies

4.2.1 Fruit blush color
This study identified five distinct and statistically significant

associations for FBC (Table 3, Supplementary Figure 2). Notably, a

MYB114 transcription factor was located just 0.5 kb from a key

FBC-associated marker on chromosome 15, consistently identified

by three different GWAS methods. MYB transcription factors are

widely reported to regulate fruit skin color in multiple fruit tree

species, including mango (Kanzaki et al., 2020; Wilkinson et al.,

2025), apple (Plunkett et al., 2019; Sun et al., 2021), pear (Cong

et al., 2021; Zhang et al., 2021) and kiwifruit (Ampomah-Dwamena

et al., 2019). These genes are central regulators of the anthocyanin

biosynthesis pathway, which plays a critical role in pigmentation of

fruit peels (Gao et al., 2021). The well-established role of

anthocyanin accumulation in contributing to red skin coloration

in fruits is consistent with previous findings in mango. Wang et al.

(2020) demonstrated that anthocyanin biosynthesis genes were

significantly upregulated in the peel of red-skinned mango

cultivars compared to yellow- or green-skinned types.

Additionally, Kanzaki et al. (2020) reported that exposure to light

stimulus increased the expression of MiMYB1 and MiMYB4

transcription factors in reddened mango fruit, further

highlighting the involvement of MYB transcription factors and

light exposure in regulating peel coloration.

4.2.2 Fruit weight
This study identified 11 novel SNPs significantly associated with

AFW (Table 3, Supplementary Figure 3), a key trait for influencing

consumer appeal and market value, and therefore a major target for

improvement in mango breeding programs (Bally et al., 2021). Our

results support the role of hormone-mediated cell division in

determining fruit weight, consistent with findings in other

horticultural fruit tree species (Karim et al., 2022; Li et al., 2024;

Zhang et al., 2006). Notably, two auxin response factors were

identified within 12 kb of an AFW-associated SNP on

chromosome 13, suggesting a likely regulatory role of auxin

signaling in fruit weight variation. Auxin response factors have

previously been implicated in apple fruit weight variation through

modulation of cell division and expansion (Devoghalaere et al.,

2012). Additionally, an AFW-associated SNP on chromosome 7

was located ~110 kb from two cell division control proteins,

reinforcing the mechanistic link between cell division during

mango fruit development and fruit size. Similar associations have

been reported in sweet cherry (Prunus avium L.), where a fruit size

QTL was closely linked to a gene governing cell number,

underscoring the conserved nature of these genetic mechanisms

across species (De Franceschi et al., 2013).

4.2.3 Trunk circumference
We identified eight unique marker-trait associations for TC

across seven chromosomes (Table 3, Supplementary Figure 4). Our

analyses identified a GATA transcription factor located within 70

kb of a TC-associated SNP on chromosome 7. GATA transcription

factors have been reported to regulate tree growth in Populus
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(An et al., 2020). BLAST analysis revealed that the GATA

transcription factor identified in our study shares 86% sequence

similarity with the one reported in Populus (An et al., 2020),

suggesting similar regulatory mechanisms in mango tree growth.

GATA transcription factors are known to modulate the expression

of auxin efflux carrier genes, facilitating the basipetal movement of

auxins to the roots (An et al., 2020, An et al., 2014). In our study,

two auxin efflux carrier genes were located just 6 kb and 16 kb from

TC-associated SNPs on chromosome 2, further supporting the

potential regulatory role of auxin transport in mango tree growth.

Prior studies strongly support a model in which plant dwarfism

results from reduced expression of PIN genes (auxin efflux carriers)

in stem bark tissues, leading to impaired auxin transport to the

roots. This disruption limits root growth and cytokinin

biosynthesis, ultimately constraining shoot development (An

et al., 2017; Li et al., 2018). These mechanisms align with

previous studies in apple, where use of dwarfing inter-stock (M9)

led to decreased expression of auxin efflux carrier genes in stem bark

tissues, suppressing the basipetal movement of auxins and leading

to reduced root and shoot development (Zhang et al., 2015). Similar

findings in pear demonstrated significantly higher expression levels

of the PcPIN-L auxin efflux carrier gene in standard-size trees

compared to dwarf types (Qi et al., 2020), further reinforcing the

role of auxin transport in tree growth regulation.

In addition to the GATA transcription factor and auxin efflux

carrier proteins, we identified a growth-regulating factor gene

located approximately 21 kb from a TC-associated SNP on

chromosome 2. This, together with the proximity of auxin efflux

carrier genes and the GATA transcription factor to TC-associated

SNPs, suggests the involvement of a coordinated regulatory

network governing tree growth in mango. The trait-associated

markers identified for FBC, AFW and TC in this study represent

a valuable resource for marker-assisted breeding in mango, pending

validation in independent populations.
4.2.4 Multi-locus GWAS are powerful at
detecting trait-associated SNPs

Our findings underscore the superior statistical power of multi-

locus GWASmethods compared to single-locus approaches. Consistent

with previous studies (Cebeci et al., 2023; Huang et al., 2019;

Minamikawa et al., 2018), multi-locus GWAS methods, particularly

BLINK and FarmCPU, identified more significant marker-trait

associations than the single-locus GWAS approach (GLMM). The

increased power of multi-locus GWAS stems from their ability to

account for LD between SNPs (as in BLINK) while simultaneously

testing multiple markers, enhancing the detection of small-effect loci

associated with a trait (Segura et al., 2012; Wang et al., 2016). BLINK

and FarmCPU, which use multi-locus strategies and iterative inclusion

of pseudo-QTNs, tend to capture both large- and small-effect loci more

robustly, especially in polygenic traits. In contrast, MLMM’s stepwise

regression approach appears to underperform, likely due to over-

adjustment for population structure and the inherent sensitivity of its

sequential covariate inclusion, which may mask genuine signals.

Our results, particularly for AFW where BLINK and FarmCPU

identified more significant marker-trait associations, highlight the
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value of this multi-method GWAS strategy. These findings are

consistent with reports by Minamikawa et al. (2018) and Kumar

et al. (2019), who identified a higher number of trait-associated

SNPs in pears (Pyrus pyrifolia) by employing multiple GWAS

methods rather than relying on a single approach. Integrating

results across multiple GWAS methods is a powerful strategy to

identify additional marker-trait associations as no single method is

optimal for all traits. Moreover, loci detected by the different

methods do not completely overlap (Zhou et al., 2023). The use

of a combination of complementary GWAS methods not only

strengthens statistical robustness but also strengthens confidence

in associations consistently detected across analyses, making these

associations strong candidates for marker development and

functional validation.
4.3 Genomic prediction

4.3.1 Simply increasing marker density to WGS
level does not increase predictive ability

In our study, we observed that increasing marker density

beyond a certain threshold, even up to WGS level, did not yield

further improvements in predictive ability (Table 2). These findings

are consistent with previous studies (Bedhane et al., 2021;

Moghaddar et al., 2019; Raymond et al., 2018b, Raymond et al.,

2018c; van Binsbergen et al., 2015; VanRaden et al., 2017) that also

found little or no improvement in prediction accuracy when using

WGS variants compared to lower density or high-density SNP

chips. A plausible explanation is that WGS data include many

variants that are not in strong LD with the causative loci (van

Binsbergen et al., 2015). These non-informative markers may not

capture the QTL effects or accurately reflect genetic relationships at

causal loci, potentially undermining the performance of GP models

through over-shrinkage of QTL effects. This phenomenon likely

reflects the balance between capturing true causal variation and

overfitting to random, non-informative variation. Our analyses

using different LD-pruned subsets (e.g. LD_2mil, LD_800k, etc.)

indicated that predictive ability tended to plateau or even decline

when the number of markers exceeded an optimal threshold. This

threshold is inherently linked to the underlying LD structure and

genetic architecture of the trait in question.
4.3.2 Marker preselection could enhance
genomic predictive ability

This study showed that GRMs constructed using GWAS-

preselected variants resulted in higher predictive abilities across

the four studied traits compared to GRMs built using all WGS

variants (Table 2, Figures 2, 3). These findings highlight that

preselecting WGS markers likely to be in LD with causal

mutations, while excluding those that do not capture genetic

relationships at causal loci, can improve genomic predictive

ability. Thus, it appears that including markers not in LD with

causative mutations in GRM construction may cause the realized

genetic relationships to diverge from true relationships at causal
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loci, thereby reducing the performance of GBLUP models.

However, when markers preselected for their potential causal

effects are used, the GRM is dominated by SNPs in high LD with

QTL for the target trait. Thus, the trait-specific GRM may better

capture the genetic relationships among individuals at unobserved

causal loci, potentially enhancing the accuracy of genomic

predictions. Our results are consistent with those of Tan and

Ingvarsson (2022) who showed that when the top 1% of markers

from GWAS are selected, the accuracy of genomic predictions can

be increased significantly. Chen et al. (2023) also showed that

performing GP using a GRM built using 100 preselected markers

resulted in improved prediction accuracies compared to models

based on all markers.

While our results clearly demonstrate that the integration of

GWAS-preselected variants improves predictive ability, we

acknowledge that validation confined to a single, relatively small

dataset may limit the external applicability and generalizability of

our findings. Such internal validation alone does not adequately

account for potential biases introduced by population-specific

genetic structure or unique environmental factors. Although we

employed a 5-fold cross-validation strategy to strengthen

robustness of our model assessment, external validation in large,

independent datasets such as a full-sib population remains essential.

Such validation would verify whether the observed improvement in

predictive performance genuinely reflects enhanced capture of

causal genetic variation.

4.3.3 Fixed-effect SNPs improve predictive ability
While the use of GWAS-preselected variants increased genomic

predictive ability in our analyses, this approach still suffers from the

assumption of the GBLUP model that all markers contribute an

equal and individually small proportion of the total genetic variance

(Meuwissen and Goddard, 2010). However, increasing evidence

supports the hypothesis that SNPs in high LD with causal mutations

explain more genetic variance than those in low LD (Meuwissen

et al., 2024). Incorporating fixed-effect SNPs into GBLUP models

appeared to improve predictive ability for both FBC and TC, likely

by capturing variation associated with major QTLs (Figure 4). This

strategy enabled us to account explicitly for the effects of markers

with large estimated effects, potentially helping to separate their

contribution from those assumed under the infinitesimal model.

While these results suggest benefits from including such markers, it

remains important to recognize that the identified SNPs may not

represent true causal variants, and further validation in an

independent population such as a full-sib family would be needed

to confirm their functional significance. The differentiation between

large- and small-effect QTLs appears to model better the true

genetic architecture of traits, leading to more accurate prediction

models. This is especially true when markers in LD with major

genes are treated as fixed effects (Li et al., 2019). Our findings are

consistent with prior studies. For example, Kostick et al. (2023)

demonstrated a substantial improvement in the predictive ability of

‘percent red overcolor’ in apple, which increased from 0.33 to 0.80

upon inclusion of a fixed-effect SNP at a fruit color locus. Similarly,
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Nsibi et al. (2020) reported a 25.8% increase in prediction accuracy

for apricot (Prunus armeniaca) fruit color (hue angle) after

incorporating two major QTLs as fixed effects.

Critically, the effectiveness of using fixed-effect SNPs relies on

their LD with a QTL, as reported by Li et al. (2019). In this study,

the fixed-effect SNPs that enhanced predictive abilities were

consistently identified by three GWAS methods (reliable SNPs),

strengthening the evidence that these SNPs are likely in LD with

underlying QTLs.

4.3.4 Combining preselected variants and fixed-
effect SNPs further enhances predictive ability

In our study, we demonstrated that while the utilization of

GWAS-preselected variants or fixed-effect SNPs can enhance

predictive ability, further improvements can be achieved through

the integration of preselected variants with fixed-effect SNPs

(Table 2, Figure 4). Traditional GBLUP models employing a

single GRM constructed from GWAS-preselected variants do not

fully capitalize on the predictive potential of large-effect SNPs due

to the inherent assumptions of the infinitesimal model, which

overly constrains their contribution to the total genetic variance.

By contrast, our approach, combining preselected variants and

fixed-effect SNPs, benefits from more accurate estimation of

genomic relationships at causative loci. If all markers explain the

same proportion of the total genetic variance, as is the assumption

of the infinitesimal model, there would be no notable reduction in

heritability when significant SNPs from GWAS are fitted as fixed

effects in GBLUP models. However, our analyses demonstrated a

notable reduction in additive genetic variance due to the

anonymous markers and heritability when the fixed-effect SNP

for FBC was included in GBLUP models, suggesting that a

substantial portion of the additive genetic variance was explained

by this SNP potentially due to its LD with the causative mutation.

For mango breeding, fixed SNPs associated with FBC and TC

provide particularly strong gains in predictive ability and should

be prioritized for marker-assisted prediction pipelines.

While our findings demonstrate that integrating GWAS-

preselected variants with fixed-effect SNPs can enhance genomic

predictive ability, several limitations warrant discussion. First, the

relatively modest training population size used in our study may

limit statistical power to detect small-effect loci and increase the risk

of overfitting, raising concerns about the external validity of this

approach. Additionally, the specific population structure of our

study may not fully represent the broader genetic landscape of

mango germplasm, potentially affecting the transferability of our

findings to more diverse populations. If between-subpopulation

genetic variance differs across populations, the benefits of marker

preselection and fixed-effect SNP integration may not be universally

applicable. Future studies should validate these results in larger,

independent datasets and assess the approach’s robustness across

different genetic backgrounds to ensure broader applicability.

Several inconsistencies in predictive ability across varying

densities of GWAS-preselected SNPs and different GWAS models

highlight the practical challenges of selecting an appropriate GWAS

method for variant preselection and determining the optimal
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number of SNPs to include. Such inconsistencies have important

downstream implications, as the choice of GWAS method and

preselected variants directly influences the construction of the GRM

and the inclusion of fixed-effect SNPs in prediction models,

ultimately affecting prediction accuracy. To address these

inconsistencies and leverage the complementary strengths of

individual GWAS methods, an ensemble-based approach that

aggregates summary statistics from multiple GWAS models may

offer a more robust solution. Such an approach could combine p-

values, effect sizes, or marker rankings to prioritize SNPs that are

consistently identified across methods, thereby balancing both

sensitivity and specificity. Although ensemble GWAS has

primarily been applied to the identification of causative variants

(Zhou et al., 2023), its potential for SNP preselection in genomic

prediction remains untapped. Meanwhile, ensemble genomic

prediction models which aggregate predictions from multiple

methods, have demonstrated improved accuracy in maize

(Tomura et al., 2025), common bean (Chiaravallotti et al., 2025),

and across cattle, wheat, and human datasets (Gu et al., 2024),

underscoring the potential of model integration at various stages of

the genomic prediction pipeline. While ensemble GWAS remains

underexplored, a practical strategy for breeders is to prioritize

markers consistently identified across multiple GWAS methods

and benchmark the resulting models through cross-validation. This

ensures that selected SNPs are both reproducible and practically

useful in applied breeding programs.

4.3.5 Multi-locus GWAS are powerful approaches
for variant preselection

Our findings demonstrate that the predictive ability of models

based on GWAS-preselected variants varies depending on the

GWAS methodology employed. The superior performance of

BLINK and FarmCPU compared to MLMM and the GLMM

indicates their greater power in ranking markers based on LD

with QTLs, thereby enabling the selection of more informative

SNPs for genomic prediction. Beyond detecting a higher number of

trait-associated SNPs than the MLMM and GLMM, these methods

likely provide a more refined prioritization of markers with strong

trait relevance. This superior performance can be attributed to their

ability to effectively eliminate confounding effects between testing

markers and both population structure (Q) and kinship (K) by

dividing the multi-locus linear mixed model (MLMM) into

components using either a fixed-effects model (FEM) and a

random effects model (REM, pseudo-QTNs) in FarmCPU, or a

fixed-effects model (FEM, for selecting pseudo-QTNs) and Bayesian

Information Criterion (BIC) in BLINK (Huang et al., 2019; Liu

et al., 2016). The use of pseudo-QTNs selected using REM in

FarmCPU and FEM in BLINK as covariates effectively control

false positives while retaining power to detect true associations.

These features likely increase the probability of detecting SNPs that

surpass the Bonferroni threshold as well as prioritizing biologically

informative variants for use in genomic prediction.

The observation that, in some cases, differences in predictive

ability across GWAS methods and varying densities of preselected

SNPs were minimal suggests possible redundancy among SNP sets,
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shared association signals across GWAS methods, or the inherently

polygenic architecture of the traits. One possible explanation is that

methods such as BLINK and FarmCPU initially fit a general linear

model (GLM), and when no significant associations are detected,

they may default to reporting GLM results (Zhiwu Zhang, personal

communication). This can result in overlapping sets of preselected

SNPs across methods, which may explain the similar or comparable

predictive abilities observed among BLINK, FarmCPU, and the

GLMM for fruit firmness and trunk circumference under parental

validation. A second contributing factor to the minor differences in

predictive ability may be the presence of shared association signals

across GWAS methods, where overlapping SNPs are selected due to

consistently low p-values, suggesting potential relevance to the trait

despite not reaching strict statistical significance. A third

contributing factor is marker redundancy, which may occur even

when the sets of GWAS preselected variants differ, if the SNPs are in

LD and tag the same underlying QTLs. As a result, different sets of

preselected SNPs may contribute similar genetic information to the

prediction model, resulting in minimal variation in predictive

ability. These modest differences are also consistent with the

polygenic architecture of fruit quality traits and tree growth,

where predictive ability is distributed across many loci rather

than being driven by a few large-effect variants (Dong et al., 2024;

Srivastav et al., 2023).

4.3.6 Accounting for population structure
reduces predictive ability in mango gene-pool

Our analysis revealed a marked decline in predictive ability

when population structure was accounted for in prediction models

(Figures 2, 3), a pattern consistent with that reported by Guo et al.

(2014) for wheat and rice. Our findings indicate that, for these traits

in the gene-pool population, a considerable portion of predictive

ability is derived from across sub-population genetic variance (i.e.

the model’s ability to classify individuals into their respective sub-

populations), rather than solely from within sub-population genetic

variance (i.e. predictive ability attributable to LD between markers

and QTLs). This result is consistent with the observations of

Daetwyler et al. (2012), who reported a decline in GEBV accuracy

when population structure was accounted for and argued that the

reduced accuracy reflects the predictive power attributable to LD

between markers and QTLs.

The relatively larger gains in predictive ability with GWAS-

preselected variants when population structure was accounted for,

compared to models without control for population structure, likely

reflect the greater contribution of LD information once the

confounding effects of population structure are minimized. A

previous study in the Australian mango breeding population

found that TC, FBC and fruit blush intensity are strongly

associated to population structure (Wilkinson et al., 2022). To

avoid spurious associations, separating trait-associated loci from

loci associated to ancestry is particularly important in this

population. Because population structure was already accounted

for during GWAS (through inclusion of PCs as fixed effects), the

preselected variants are more likely to tag causative QTLs or be in

meaningful LD with them, rather than merely reflecting population
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stratification. In contrast, WGS data contain many markers that

may not be in LD with causative loci but can still contribute to

predictive ability by capturing population structure. When

population structure is explicitly controlled for in the prediction

model, these markers provide little useful genetic signal and may

introduce noise, leading to a sharper decline in predictive ability

compared to models using trai t - informative GWAS-

preselected variants.

While our findings demonstrate a marked decline in predictive

ability after accounting for population structure using fixed PCs,

this sharp reduction may reflect over-correction for population

structure arising from double-counting population structure effects

(Hong et al., 2025). As argued by Janss et al. (2012), incorporating

fixed PCs derived from the same GRM used in the random

component of the model can redundantly adjust for population

structure, thereby diminishing predictive ability by removing

genuine genetic signals alongside confounding effects. Future

studies should evaluate methods that address this issue, such as

the reparameterized GBLUP model of Janss et al. (2012), which

enables natural partitioning of across-subpopulation genetic

variance due to population structure and within-subpopulation

genetic variance that is of primary interest to breeders. Hong

et al. (2025) advocated for accounting for population structure

using PCs as random effects to avoid the over-correction that may

occur when PCs are fitted as fixed effects in GBLUP models.

However, in our study, fitting PCs as fixed effects provided

conservative estimates of predictive ability, which are likely more

transferable to homogeneous breeding populations or across-

population predictions.
5 Conclusion

Preselecting SNPs from WGS data based on their estimated

effects on target traits enhanced predictive ability in mango,

particularly when population structure was accounted for. In

contrast, limited improvements were observed when population

structure was ignored, likely due to inflated prediction estimates.

Integrating GWAS-preselected variants with fixed-effect SNPs

yielded superior predictive performance, especially for FBC,

across models both accounting for or ignoring population

structure. This combined approach outperformed models based

solely on WGS data, WGS plus fixed-effect SNPs, or GWAS-

preselected variants alone. These findings underscore the value of

strategic SNP selection and model refinement using prior biological

knowledge to maximize the utility of WGS data in genomic

prediction. While our results demonstrate the potential of

leveraging GWAS-preselected variants, further validation in

larger, more homogenous datasets, particularly those reflecting

practical breeding scenarios such as across-population or across-

generation predictions is recommended to assess robustness and

broader applicability. The sharp decline in predictive ability after

accounting for population structure highlights its dominant

influence in this mango gene pool, emphasizing the need to

account for this factor in genetic analysis to distinguish true LD-
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driven associations from spurious signals arising from

subpopulation differences. The identification of several markers

associated with key fruit quality traits and tree vigor provides a

valuable resource for future marker-assisted selection and

functional genomics research in mango. To ensure their reliability

and practical utility in breeding programs, these markers should be

further validated under realistic breeding scenarios, such as

selection within full-sib families. Overall, this research contributes

to the optimization of genomic selection strategies in fruit tree

breeding programs, offering a promising pathway to accelerate

genetic gain in long-lived species where conventional breeding

remains time-consuming and resource-intensive. Once validated

in practical breeding populations, the use of GWAS-preselected

variants in genomic prediction could enable earlier and more

accurate selection, thereby reducing breeding cycle length and

accelerating cultivar development in mango.
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Quero-Garcıá, J., et al. (2016). Genetic diversity, linkage disequilibrium, population
structure and construction of a core collection of Prunus avium L. landraces and bred
cultivars. BMC Plant Biol. 16, 49. doi: 10.1186/s12870-016-0712-9
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