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AFOLU-based climate change
mitigation
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Juyeong Kim and Suyoung Woo*

Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
Introduction: Perennial orchard systems are emerging as important yet

underrepresented carbon sinks within the AFOLU sector, which contributes

20–24% of global GHG emissions. Many countries still rely on Tier 1 default

values that fail to capture the structural and management characteristics of

orchard species. Accurate biomass and carbon estimation, particularly through

species-specific allometric equations, is essential for improving Tier 2–3 GHG

reporting and recognizing orchards as meaningful contributors to climate-smart

land management.

Methods: A systematic literature review was conducted using five major databases

(2008–2024), following PRISMA guidelines. From 240 initial records, 53 studies met

the inclusion criteria. These were categorized into three domains: (i) biometric

modeling of fruit-tree biomass, (ii) species-specific allometric equation

development, and (iii) carbon-sequestration assessments. Methodological trends,

model performance, and research gaps were synthesized to inform an IPCC-aligned

framework for orchard-specific emission and removal factors.

Results: Most studies were concentrated in Asia and the Mediterranean and

focused on citrus, mango, apple, grape, and olive systems. Power-law allometric

models dominated and generally showed high predictive performance (R² >

0.90) with variables such as diameter, height, and crown dimensions. However,

major gaps remained: limited data for belowground biomass, juvenile trees,

grafted architectures, vineyards, and uncertainty quantification—all of which

restrict Tier 2–3 applicability.

Discussion: Based on these findings, this review proposes a standardized

methodological framework linking biometric measurements, species-specific

allometric modeling, remote-sensing integration, and uncertainty analysis to

derive orchard-specific emission and removal factors consistent with IPCC

guidance. Broader adoption of such protocols would improve transparency

and accuracy in national AFOLU inventories and strengthen recognition of

perennial orchards as viable nature-based climate solutions that support

national net-zero targets.
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1 Introduction

1.1 The role of the AFOLU sector in climate
change mitigation

Climate change, driven by the increasing concentration of

greenhouse gases (GHG) in the atmosphere, remains one of the

most pressing global environmental challenges. Among the sectors

contributing significantly to anthropogenic GHG emissions, the

Agriculture, Forestry, and Other Land Use (AFOLU) sector sector is

particularly important. It is responsible for approximately 20–24%

of global GHG emissions, primarily through deforestation, land

conversion, and unsustainable agricultural practices (IPCC, 2019).

At the same time, the AFOLU holds substantial potential for climate

change mitigation through the enhancement of terrestrial carbon

sinks—particularly in biomass and soils (de Coninck et al., 2018;

Keith et al., 2009; Lee and Lee, 2022).

Beyond forest ecosystems, the contribution of trees outside

forests (TOF) and urban green infrastructure is increasingly

recognized as a critical component of terrestrial carbon storage.

The TOF systems, including roadside trees, windbreaks, home

gardens, and scattered trees on agricultural land, play a vital role

in capturing atmospheric CO2 and maintaining landscape−level

carbon balance (Nandal et al., 2023a; Nandal et al., 2023b; Nandal

et al., 2024). Similarly, urban soils and vegetation serve as localized

carbon sinks, where improved soil structure, organic−matter

accumulation, and vegetation management can significantly

enhance long−term carbon sequestration potential in cities and

peri−urban landscapes.

While much of the mitigation focus within the AFOLU has

historically centered on forest ecosystems, perennial orchard

systems have emerged as an important but underrepresented

component of the global carbon balance. As long-lived

agroecosystems, fruit orchards accumulate and store carbon over

multiple decades in aboveground woody biomass, root systems, and

increasingly, soil organic carbon. Unlike annual crops, these

perennial systems contribute to carbon sequestration

continuously throughout their lifespan. Empirical studies in

regions such as China and the Mediterranean have demonstrated

that mature orchards—including apple, citrus, and olive—can

function as substantial carbon sinks, often rivaling young or

secondary forests in sequestration potential (Scandellari et al.,

2016; Wu et al., 2012; Yang et al., 2020; Zanotelli et al., 2015;

Zhang et al., 2025).
1.2 Challenges in carbon accounting for
orchards

The AFOLU sector plays a pivotal role in both contributing to

and mitigating anthropogenic GHG emissions. Within this broader

AFOLU context, orchard systems remain poorly integrated into

national GHG inventory frameworks. The Intergovernmental Panel

on Climate Change (IPCC) Guidelines for National Greenhouse
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Gas Inventories (IPCC, 2006, 2019) offer structured methodologies

for estimating emissions and removals, with Tier 2 and Tier 3 levels

requiring country-specific or species-specific data and models.

However, many countries continue to rely on Tier 1 default

values—which are typically derived from forest species or

generalized land-use categories—and do not adequately reflect the

unique structural, physiological, and management characteristics of

fruit orchards.

Estimating biomass and carbon stocks in orchard systems is

particularly challenging due to a range of factors. Among these,

distinct management practices—such as seasonal pruning and

canopy training—can significantly influence aboveground biomass

allocation and alter canopy architecture, thereby complicating the

applicability of standard estimation models (Barbault et al., 2024;

Brym and Ernest, 2018). Species-specific growth patterns and

grafted tree architectures require tailored modeling approaches

(Quiñones et al., 2013). Differences in planting density and tree

age heterogeneity within orchard systems are major factors that

complicate the accurate extrapolation of individual tree biomass or

carbon stock estimates to area-based units (e.g., per hectare)

(Laužikė et al., 2020). Consequently, direct application of forest-

derived allometric models to orchard systems can result in

substantial bias, undermining the accuracy and transparency of

national reporting and mitigation planning.
1.3 Importance of greenhouse gas
inventories in the LULUCF sector

Among the five major sectors defined by the IPCC—energy,

industrial processes, agriculture, waste, and LULUCF (Land Use,

Land-Use Change, and Forestry)—the LULUCF sector uniquely

functions as both a source and a sink of greenhouse gases. Its

inclusion in national GHG inventories is vital for reflecting the

mitigation potential of forests, croplands, wetlands, and

increasingly, perennial orchard systems such as fruit trees and

vineyards. Several countries have recently advanced their

inventory approaches for perennial cropping systems, applying

differentiated Tier methodologies to enhance transparency and

accuracy in carbon accounting (UNFCCC, 2024): Switzerland

reported carbon stock changes in low-stem orchards and

vineyards using Tier 2 methodologies with country-specific

emission and removal factors, improving the resolution of land-

use subcategories in the inventory. Germany relied on Tier 1 default

values for orchards including apple, cherry, and plum trees, without

deploying species-specific models. Australia applied Tier 2 and Tier

3 methods under its National Carbon Accounting System (NCAS)

to assess carbon changes in perennial crops such as apples, oranges,

almonds, and macadamias, incorporating remote sensing and

allometric modeling. Netherlands combined Tier 1 and Tier 2

approaches for orchards, vineyards, and nurseries under the

Cropland category, emphasizing uncertainty reduction through

stratified land-use classification. These examples reflect a broader

international trend toward improving transparency, accuracy, and
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completeness in LULUCF reporting. As orchard systems gain

recognition for their potential role in carbon sequestration, there

is growing need to integrate species-specific data, allometric

equations, and advanced remote sensing tools to support Tier 2

and Tier 3 inventory development. Given the increasing emphasis

on Tier 2 and Tier 3 inventory development under global climate

frameworks, there is an urgent need for accurate, orchard-based

methods to estimate carbon stock changes.
1.4 The role of allometric modeling and the
need for a dedicated review

To address these limitations, recent years have seen a growing

body of research focused on the development of species-specific

allometric equations for fruit trees. These models establish

empirical relationships between easily measured biometric

variables (e.g., diameter at breast height, tree height, canopy

volume) and aboveground biomass. Importantly, they enable

non-destructive estimation of carbon stocks at both the individual

tree and orchard scales. Studies in citrus (Quiñones et al., 2013;

Sahoo et al., 2021), apple (Wu et al., 2012; Zanotelli et al., 2013),

mango (Ganeshamurthy et al., 2016; Rupa et al., 2020), and even

vineyards (Zhang et al., 2021) have illustrated the feasibility and

importance of such models, especially under the growing demand

for Tier 2 reporting accuracy. However, the existing literature

remains fragmented, with many models developed in isolation,

applied only to specific cultivars, or lacking full validation and

uncertainty estimates. There is also limited synthesis of how

different modeling approaches perform across species, regions,

and management regimes, creating barriers to broader policy

adoption and standardization. Given these methodological

challenges, this review aims to synthesize recent progress in

orchard allometry.
1.5 Objectives and contributions

This review responds to the urgent need for a structured

synthesis of biomass estimation and carbon accounting

methodologies tailored to perennial orchard systems. It aims to:

(1) Provide a comprehensive overview of published allometric

equations for major fruit species, including methodological

diversity and performance metrics; (2). Present a transparent,

IPCC-aligned framework for developing orchard-specific

biomass-based emission and removal factors, emphasizing model

validation and uncertainty quantification; (3) Offer representative

case studies to highlight species- and system-specific insights in

carbon modeling; and (4) Support countries in transitioning from

default to Tier 2 reporting by demonstrating feasible, empirically

grounded approaches for orchard carbon accounting.

By consolidating and critically analyzing the current state of

knowledge, this review contributes to the scientific foundation

necessary for integrating perennial orchard systems into national

GHG inventories. It also aims to facilitate international
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harmonization efforts, helping to elevate the role of orchard

agroecosystems in global climate change mitigation strategies

under the AFOLU framework.
2 Materials and methods

2.1 Research objectives and questions

This review evaluates species-specific allometric models for

perennial fruit trees to improve the accuracy and reliability of

biomass and carbon stock estimation in orchard systems. The

primary goal is to pinpoint key predictor variables and

methodological best practices that can enhance modeling

reliability—information that is essential for strengthening GHG

inventories and national-level carbon accounting efforts.

To structure the review, the following research questions were

formulated: (1) What are the most commonly used variables for

estimating biomass in perennial fruit trees? (2) How does the

predictive accuracy of existing allometric equations for forest

trees compare with those tailored for fruit trees? (3) What

methodological approaches are most effective for developing and

validating species-specific allometric equations for orchard systems?
2.2 Literature search strategy

A systematic literature search was conducted to identify peer

−reviewed studies aligned with the review’s scope, specifically

focusing on biomass estimation, allometric modeling, and carbon

sequestration in perennial fruit−tree systems. Databases included

Google Scholar, Web of Science, Scopus, Wiley Online Library, and

ScienceDirect, selected for their comprehensive coverage of

environmental science, forestry, and agricultural literature. The

search covered the period from January 1, 2008, to December 31,

2024, and was restricted to English-language publications only (see

Table 1 for full query details). Search strings combined key terms

such as “allometric equations” AND “fruit trees”, “biomass

estimation” AND “orchards”, and “carbon sequestration” AND

(“vineyards” OR “perennial fruit crops”), using Boolean operators

(“AND”, “OR”) and, where applicable, truncation to capture word
TABLE 1 Overview of the literature search strategy.

Component Details

Databases Searched
Google Scholar, Web of Science, Scopus, Wiley
Online Library, ScienceDirect

Keywords Used
“allometric equations,” “fruit trees,” “biomass
estimation,” “carbon sequestration,” “orchards”

Search Logic
Boolean operators “AND” and “OR” used to refine
keyword combinations

Publication Years 2008 to 2024

Document Types Included
Peer-reviewed journal articles, conference
proceedings, technical reports
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variants. Screening and data−extraction tasks were conducted

independently by three team members (the lead author and two

co−authors), and any discrepancies were resolved through joint

discussion and consensus.

Although this review primarily targeted peer−reviewed journal

articles, it is important to note that SCI−indexed papers on

perennial fruit−tree systems remain relatively limited compared

to forestry studies. Therefore, relevant high−quality conference
Frontiers in Plant Science 04
proceedings and technical reports were also incorporated to

ensure comprehensive coverage of available research. Studies

focusing exclusively on forest trees or annual crops were

excluded. The main exclusion criteria at the full−text stage

included: not focused on perennial fruit trees or orchards, not

developing or applying allometric equations, and methodologically

irrelevant studies (e.g., forest biomass models). A PRISMA 2020

−style flow diagram (Figure 1) illustrates the number of records
FIGURE 1

PRISMA-style flow diagram showing identification, screening, eligibility, and inclusion with reasons for exclusions. This diagram illustrates the study
selection process conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines.
A total of 240 records were identified from electronic databases. After removing 42 duplicates, 198 unique records were screened for relevance. Of
these, 100 records were excluded during the initial screening due to irrelevance or insufficient information. Full-text retrieval was attempted for the
remaining 98 records, all of which were successfully assessed for eligibility (n = 53, including additional sources cited within retrieved reports).
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identified, duplicates removed, records screened, full−text articles

assessed for eligibility, excluded studies (with reasons), and final

studies included in the review.
2.3 Screening and selection criteria

A three-stage screening process was applied to ensure that only

studies directly relevant to perennial fruit-tree biomass modeling

were included. In the identification stage, titles and abstracts were

reviewed to determine topical relevance. During the screening stage,

full-text articles that explicitly developed or applied allometric

equations to perennial fruit-tree crops were retained. Finally, in

the eligibility stage, studies focusing solely on forest ecosystems or

annual crops were excluded. From an initial pool of approximately

240 records, 53 studies met all inclusion criteria and were selected

for review. These studies were subsequently classified into three

thematic domains: (i) biometric modeling of fruit-tree biomass, (ii)

development of species-specific allometric equations, and (iii)

carbon-sequestration potential in orchard systems.
2.4 Methods for estimating carbon stock
changes

The IPCC provides a hierarchical approach for estimating GHG

emissions and removals in the AFOLU sector. The IPCC Guidelines

outline Tier 1 to Tier 3 methodologies, with increasing levels of

specificity and accuracy. Tier 1 relies on globally averaged default

values, whereas Tier 2 and Tier 3 require country-specific emission/

removal factors or advanced modeling approaches (IPCC,

2006, 2019).

Carbon stock estimation in perennial orchard systems has

traditionally relied on a combination of tree allometry, destructive

biomass sampling, and soil carbon analysis, although recent trends

emphasize the integration of non-destructive techniques and Tier 2

IPCC-aligned methods. The estimation of carbon stock changes in

perennial orchard systems has historically been grounded in

empirical methods, including destructive biomass sampling,

allometric modeling based on tree dimensions, and direct

assessments of soil organic carbon. However, recent studies

emphasize the need for a broader methodological toolkit—

particularly as demonstrated in forest and agroforestry systems.

For instance, Nandal et al. (2023b) reviewed four primary

approaches for carbon stock estimation: allometric models, eddy

covariance, remote sensing, and computer-based models. These

include widely used tools such as i-Tree Eco (developed by the

United States Department of Agriculture (USDA) Forest Service),

Forest-PLUS 2.0 (a joint initiative by United States Agency for

International Development (USAID) and India’s Ministry of

Environment, Forest and Climate Change), and the Tree Carbon

Calculator (CTCC) developed by the Centre for Urban Forestry

Research (CUFR). The authors highlight that integrating multiple

methods not only reduces estimation uncertainty but also enhances
Frontiers in Plant Science 05
applicability across diverse contexts—including agroforestry, urban

forestry, and soil–carbon interaction studies.

Among the tools used in Tier 2 estimation, allometric equations

are particularly essential. These equations define relationships

between readily measurable biometric variables—such as diameter

at breast height (DBH), tree height, and canopy volume—and

aboveground biomass, thereby enabling non-destructive

estimation of carbon stocks. This approach is widely regarded as

one of the most reliable methods for quantifying carbon at both the

individual tree and site scales (Ioannidou et al., 2025; Walker et al.,

2016). Figure 2 shows how tree diameter and height change across

developmental stages, and how these biometric attributes are used

in allometric modeling to estimate biomass and carbon stocks. The

bottom panels depict the application of power function–based

regression models that relate stem diameter to aboveground

biomass accumulation. This visual integration helps reinforce the

empirical basis of carbon estimation methods under Tier 2 and Tier

3 approaches.

Furthermore, selecting models based on plot-level predictive

performance, rather than tree-specific performance, minimizes bias

and uncertainty when scaling up to hectare-level biomass

estimation (Picard et al., 2025). Furthermore, remote sensing

approaches—especially airborne Light Detection And Ranging

(LiDAR) and high-resolution satellite imagery such as QuickBird

—substantially augment the applicability of allometric models by

providing precise estimates of canopy height, crown volume, and

structural metrics that inform biomass estimation at expanded

spatial scales (Borsah et al., 2023). Integrative reviews further

highlight how multi-source remote sensing data improves the

accuracy and resolution of carbon stock assessments at plot and

landscape levels. At the highest precision level, Tier 3

methodologies integrate country-specific allometric models with

temporally disaggregated remote sensing and model-based

inventory systems, enabling dynamic and location-specific

biomass estimation tailored to national circumstances and

management practices (IPCC, 2019).
3 Results

3.1 Overview of selected literature

A total of 240 records were initially retrieved from five

electronic databases—Google Scholar, Web of Science, Scopus,

Wiley Online Library, and ScienceDirect—using predefined

search strings (Figure 1). After removing 42 duplicates, 198

unique studies were screened for relevance. During the initial

screening phase, 100 records were excluded due to insufficient

methodological detail or irrelevance to perennial fruit-tree

systems. Full texts were retrieved for the remaining 98 studies, all

of which were successfully assessed for eligibility.

After applying the inclusion and exclusion criteria, 53 studies

were retained. These included peer-reviewed journal articles,

conference papers, and technical reports that developed or
frontiersin.org
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applied allometric biomass models for perennial fruit orchards

(Table 1). The screening and selection process is illustrated in

Figure 1, following the PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses) 2020 guidelines.

Studies that focused exclusively on forest trees, shrub species, or

annual crops; that lacked biomass quantification or allometric

model development; or that reported biomass stocks without

equation-based estimation or methodological transparency were

explicitly excluded.

Although the review prioritized peer−reviewed articles,

SCI−indexed literature specifically addressing orchard-based

allometric modeling was found to be limited. This highlights a

broader research gap: while forest biomass modeling has advanced

significantly across temperate and tropical regions, fruit tree–based

models remain underrepresented, particularly within the context of

national GHG inventories. The 53 selected studies (summarized in

Table 2) span a wide range of species, modeling purposes, and

geographic regions, reflecting both regional needs and persistent

global gaps in orchard carbon accounting (Table 3).
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3.2 Study distribution and characteristics

Among the 53 peer−reviewed studies analyzed, the majority

originated from Asia—particularly India, China, and Thailand—

followed by Europe (notably Italy, Spain, and France) and Africa

(primarily Kenya and Burkina Faso). This geographic pattern

reflects a strong regional concentration of orchard biomass

research in Asia and the Mediterranean zone, with limited

representation from other tropical regions. The dominant

perennial fruit species investigated were mango (n = 5), citrus (n

= 5), apple (n = 3), grape (n = 4), olive (n = 2), guava (n = 2), and

single-study cases of pomegranate (n = 1), durian (n = 1), breadfruit

(n = 1), avocado (n = 1), and longan (n = 1). These studies applied a

variety of allometric functions—including power-law, logarithmic,

polynomial, and logistic models—reflecting methodological

diversity across different climatic regions and orchard

systems (Table 4).

Biometric predictors most frequently used in allometric

modeling included DBH, tree height, crown diameter or volume,
FIGURE 2

Conceptual framework for applying power functions in biomass estimation of perennial fruit trees in orchards and vineyards. The diagram illustrates
how power-law allometric equations (e.g., y=a·xb) are used to estimate aboveground biomass using biometric variables such as diameter at breast
height (DBH) and tree height (H). Power functions are widely adopted in orchard carbon modeling due to their alignment with biological growth
scaling, efficiency in field applications, and adaptability to species-specific orchard architectures.
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and basal diameter—corresponding with model inputs listed in

Table 2. The dominant model form was the power−law function

(y=axb), with mean R² values typically exceeding 0.90 for species

−specific models (e.g., Rathore et al., 2018; Ganeshamurthy

et al., 2016).

Model performance was assessed using R², the Root Mean

Square Error (RMSE), and Akaike Information Criterion (AIC) in

most cases, although < 20% of studies incorporated uncertainty

quantification or validation across multiple sites (Table 2). Notably,

studies using integrated approaches—combining destructive and

non-destructive measurements or linking allometry with remote

sensing—showed improved accuracy (R² > 0.95). Major

methodological gaps identified include (i) underrepresentation of

belowground biomass and soil−carbon pools, (ii) limited

cross−validation across sites or species, and (iii) lack of standard

uncertainty reporting consistent with IPCC Tier 2–3 protocols.
3.3 Use of power functions in allometric
biomass modeling

Allometric equations have long been utilized to estimate

biomass in forest and agroforestry systems, including perennial

fruit orchards. Among the various functional forms, power-law

models have emerged as the most prevalent due to their theoretical

grounding in biological growth processes and their empirical

reliability (Picard et al., 2012; Poorter and Sack, 2012).
Frontiers in Plant Science 07
The power function, typically expressed as y = axb, where y is

biomass and x is a predictor variable (e.g., stem diameter or tree

height), enables researchers to capture nonlinear relationships

between tree size and biomass accumulation. This form aligns

with the allometric scaling principles that govern plant growth

under physical and physiological constraints (Brym and Ernest,

2018; Luo et al., 2019).

As Zanotelli (2012) and Miranda et al. (2017) demonstrated,

power functions are especially effective in modeling the biomass of

vegetative structures in orchard species. The coefficients a and b

represent biologically meaningful parameters—namely, the scaling

constant and the scaling exponent—and their estimation provides

insights into species-specific growth behavior.

Panumonwatee et al. (2025) emphasized that while alternative

regression forms (e.g., linear, exponential, logistic) may be used, the

power function remains the default due to its simplicity and

robustness, especially in cases where destructive sampling

is impractical.

Similarly, Dao et al. (2021) reported that although both linear

and power models provided a superior fit for mango biomass data,

the power model outperformed the others when using variables

such as DBH and canopy diameter.

Additional studies, such as those by Ganeshamurthy et al. (2016),

have further validated the applicability of the power function in

commercial orchards, particularly for grafted fruit trees like mango,

where pruning practices significantly influence tree architecture. They

compared power, logistic, and Gompertz models and concluded that
TABLE 2 Categorized literature survey on allometric modeling and carbon sequestration in fruit orchards.

Category Description Number of studies

Orchard-
Based

Carbon and
Biomass
Modeling
Studies

Modeling
biomass using

variables such as
age, DBH, tree
height, crown
width, collar

diameter, trunk
base diameter,

etc.

[51]
Aguaron and Roberts (2013); Anthony (2013); Arkalgud et al. (2023); Boongla et al. (2025); Brunori et al. (2017); Bwalya (2013);

Callesen et al. (2023); Canaveira et al. (2018); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy et al. (2016); Génard et al.
(2008); Ioannidou et al. (2025); Ita (2020); Kuyah et al. (2024); Ledo et al. (2018); Liguori et al. (2009); Livingston and Lincoln

(2023); Mehta et al. (2016); Miranda et al. (2017); Morande (2015); Naik et al. (2018); Naik et al. (2019a); Naik et al. (2019b); Naik
et al. (2021); Nemeth et al. (2017); Nogueira et al. (2025); Oumasst et al. (2024); Pacchiarelli et al. (2022); Panumonwatee et al.
(2025); Peßler (2012); Plénet et al. (2022); Quiñones et al. (2013); Rathore et al. (2018); Rupa et al. (2020); Sahoo et al. (2021);

Salunkhe et al. (2021); Sasaki et al. (2021); Scandellari et al. (2016); Schindler et al. (2023); Song et al. (2023); Sorgonà et al. (2018);
Velázquez-Martı ́ et al. (2014); Vercambre et al. (2024); Wu et al. (2012); Yasin et al. (2021); Zanotelli (2012); Zanotelli et al. (2013);

Zanotelli et al. (2015); Zanotelli et al. (2018); Zhang et al. (2021)

Allometric
models in

fruit orchards

Creation of
species-specific
equations using

biometric
variables to

predict biomass

[23]
Arkalgud et al. (2023); Brunori et al. (2017); Canaveira et al. (2018); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy
et al. (2016); Ioannidou et al. (2025); Kuyah et al. (2024); Ledo et al. (2018); Liguori et al. (2009); Livingston and Lincoln (2023);

Mehta et al. (2016); Miranda et al. (2017); Naik et al. (2019a); Panumonwatee et al. (2025); Rathore et al. (2018); Rupa et al. (2020);
Sahoo et al. (2021); Song et al. (2023); Wu et al. (2012); Zanotelli (2012); Zanotelli et al. (2013); Zhang et al. (2021)

Carbon
sequestration
in orchards

Assessment of
fruit orchards’
roles in GHG
inventories and

mitigation

[53]
Adak et al. (2018); Akram et al. (2017); Anthony (2013); Arkalgud et al. (2023); Boongla et al. (2025); Bwalya (2013); Callesen et al.

(2023); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy et al. (2016); Génard et al. (2008); Granata et al. (2020);
Ioannidou et al. (2025); Ita (2020); Kuyah et al. (2024); Kwak et al. (2023); Liguori et al. (2009); Livingston and Lincoln (2023);

Mehta et al. (2016); Morande (2015); Murphy et al. (2013); Muthuri et al. (2024); Naik et al. (2018); Naik et al. (2019a); Naik et al.
(2019b); Naik et al. (2021); Nemeth et al. (2017); Nimbalkar et al. (2017); Nogueira et al. (2025); Pacchiarelli et al. (2022);

Panumonwatee et al. (2025); Peßler (2012); Plénet et al. (2022); Quiñones et al. (2013); Rathore et al. (2018); Rupa et al. (2020); Rupa
et al. (2022); Sahoo et al. (2021); Salunkhe et al. (2021); Sasaki et al. (2021); Scandellari et al. (2014); Scandellari et al. (2016);
Schindler et al. (2023); Song et al. (2023); Sorgonà et al. (2018); Vercambre et al. (2024); Wu et al. (2012); Yasin et al. (2021);

Zanotelli (2012); Zanotelli et al. (2013); Zanotelli et al. (2015); Zanotelli et al. (2018); Zhang et al. (2021)
Summary of 53 peer-reviewed studies, categorized according to their primary research focus. These studies are grouped into three categories: (i) [51 studies] orchard-based carbon and biomass
modeling using biometric variables (e.g., age, DBH, tree height, crown width, collar diameter, trunk base diameter); (ii) [23 studies] development of species-specific allometric equations in fruit
orchards; (iii) [53 studies] evaluation of carbon sequestration and greenhouse gas (GHG) mitigation potential in orchard systems. Some studies are classified into more than one category;
therefore, the category totals exceed the number of unique studies.
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the power formwasmore straightforward to apply across field data and

remained highly accurate.

In a broader context, power-law–based allometric models have

become a cornerstone of national and global carbon stock

inventories, including those used in IPCC Tier 2 and Tier 3

reporting. Schindler et al. (2023) note that such models facilitate

the quantification of carbon stocks in agroforestry systems,

providing essential input for climate mitigation strategies and the

valuation of ecosystem services.

Importantly, the power-law form is grounded in relative growth

theory, which posits that increases in biomass scale predictably with

other physical dimensions such as length, surface area, or volume

(Chen and Shiyomi, 2019; Niklas, 1994). These biological

underpinnings reinforce the model’s relevance across diverse crop

types, planting densities, and environmental conditions, including

high-density orchards and vineyards.

Ultimately, power-law models in biomass estimation are a

product of their biological realism, statistical performance, and

ease of use in field-based measurements (Brym and Ernest, 2018;

Luo et al., 2019). As such, they are indispensable in orchard carbon

accounting and provide a scalable tool for developing Tier 2 and

Tier 3 GHG inventories for the AFOLU sector.
3.4 Literature trends in allometric modeling
and carbon sequestration in fruit orchards

From the final pool of 53 studies, 51 were identified as

employing biometric variables to develop species-specific or

generalized allometric biomass equations (Table 2). These studies

varied in species composition, geographic coverage, and

modeling approaches.

Accurate estimation of carbon sources and sinks is essential for

effective climate-change mitigation, particularly within the AFOLU

sector, which accounts for approximately 20–24% of global

greenhouse gas emissions (IPCC, 2019). Perennial fruit orchards,

as long-lived agroecosystems, have substantial potential to sequester

carbon through long-term biomass accumulation. However, reliable
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quantification of this sink capacity requires robust methods for

estimating tree biomass and carbon content—tasks typically

achieved through species-specific allometric equations.

Allometric models describe empirical relationships between

easily measurable tree attributes such as trunk diameter, height,

and canopy volume and total biomass. These models enable non-

destructive estimation of carbon stocks and have become essential

tools in both ecological research and national carbon accounting.

While such models are well established in forestry, comparatively

fewer studies have addressed fruit-orchard systems, despite their

growing importance for Tier 2 GHG inventory reporting (Lee and

Lee, 2022).

Table 2 provides an overview of peer-reviewed studies that

developed or applied allometric models for perennial fruit-tree

systems. These studies employed biometric variables such as

diameter at breast height (DBH), tree height, crown width, collar

diameter, and trunk base diameter to estimate aboveground

biomass across diverse orchard species—including mango, citrus,

grape, olive, and apple—using both destructive and non-

destructive methods.

Out of these, 23 studies specifically focused on the development

of species-specific allometric equations, highlighting a growing

effort to improve model precision by accounting for species-

specific architecture, management practices, and growing

environments (e.g., Arkalgud et al., 2023; Dao et al., 2021;

Rathore et al., 2018). These models frequently adopt power

functions or other nonlinear regression forms, which have proven

effective in capturing the growth dynamics of fruit-bearing trees.

Additionally, 53 studies explored the potential of orchards in

carbon sequestration, either by directly quantifying biomass or by

integrating biomass estimates into national GHG inventories (e.g.,

Ledo et al., 2018; Panumonwatee et al., 2025; Schindler et al., 2023).

This illustrates the growing recognition of perennial orchard

systems as critical components in climate change mitigation

strategies, particularly within the IPCC’s AFOLU sector framework.

Taken together, the body of literature summarized in Table 2

highlights not only the methodological diversity of biomass

modeling approaches but also the growing scientific and policy
TABLE 3 Case studies on carbon sequestration estimates using allometric biomass models in perennial orchard systems.

Orchard
type

Reference Estimated carbon
sequestration

Key model variables Key insights

Citrus Quiñones et al. (2013) 11.4 Mg C ha−1 yr−1

(mature trees)
Canopy volume, LAI Non-destructive models enable broader application

across landscapes

Mango Rupa et al. (2020) 76.2–78.5 t C ha−1 Component-specific destructive
sampling, growth adjustment

Species-specific models critical for accuracy; varietal
diversity less influential

Argan Oumasst et al. (2024) 0.20 t CO2 ha
−1 yr−1

(2- to 6-year-old)
Diameter, height, age First allometric model for orchard-grown Argan;

foundational for expansion

Vineyard Song et al. (2023) 50.22–61.06 t C ha−1

(5- to 20-year-old)
Stem diameter Carbon storage increases with vine age; Perennial

organs hold most biomass carbon
Carbon values are presented as total or annualized carbon sequestration depending on the study. AGB, aboveground biomass; LAI, leaf area index. All cited studies applied allometric
relationships with varying levels of validation and uncertainty analysis, emphasizing the importance of species-specific modeling for Tier 2 reporting under IPCC guidance. This table presents
selected case studies demonstrating the application of allometric models for estimating aboveground biomass and carbon sequestration across representative perennial orchard types, including
citrus, mango, argan, and vineyards. Each example highlights the modeling variables used, estimated carbon stocks, and key methodological insights. These cases underscore the need for species-
specific modeling to improve the accuracy and transparency of Tier 2 GHG reporting under IPCC guidelines.
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TABLE 4 Summary of allometric equations for biomass estimation in perennial fruit trees.

Plant category Scientific name Allometric fit model R² Source

Pomegranate Punica granatum y=0.215x1.998 0.9790 Arkalgud et al. (2023)

Longan Dimocarpus longan y=1.1116(x2H)0.6537 0.7825 Brunori et al. (2017)

Olive Olea europaea y=0.1202x2.2159 0.9960 Brunori et al. (2017)

Grape Vitis vinifera y=4.01x0.697 0.7960 Miranda et al. (2017)

Olive Olea europaea y=
19:454

1 + e−1:886(a−5:143)
0.5860 Canaveira et al. (2018)

Grape Vitis vinifera y=
11:683

1 + e−2:232(a−10:439)
0.410 Canaveira et al. (2018)

Fruit trees 110 data entries y=
18:590

1 + e−2:906(a−4:968)
0.2320 Canaveira et al. (2018)

Mango Mangifera indica y=−2.6554+2.2630ln(D) 0.9546
Dao et al. (2021)

Panumonwatee et al. (2025)

Mango Mangifera indica y=0.083×mDPB2.184 0.93 Kuyah et al. (2024)

Avocado Persea americana y=0.0638×mDPB2.5435 0.86 Kuyah et al. (2024)

Durian Durio zibethinus y=exp[−2.134+2.53ln(D)] 0.86 Darul’aludin et al. (2024)

Mango Mangifera indica y=2.886(PBG×NPB)1.039 0.971
Ganeshamurthy et al. (2016)

Rupa et al. (2020)

Mango Mangifera indica y=2.93(DBGU)1.22 0.902 Ganeshamurthy et al. (2016)

Apple Malus domestica y=0.683(AGE)x1.76
Ioannidou et al. (2025)

Ledo et al. (2018)

Citrus y=0.395(AGE)x2.12 Ledo et al. (2018)

Orange Citrus sinensis y=1.2069x–19.201 0.9995 Liguori et al. (2009)

Breadfruit Artocarpus altilis y=−4.586+0.1635x+0.2229x2 0.98 Livingston and Lincoln (2023)

Citrus Citrus reticulata y=2.534+1.013(D) 0.986 Mehta et al. (2016)

Citrus Citrus reticulata y=7.011+0.019(D2H) 0.902 Mehta et al. (2016)

Citrus Citrus reticulata y=−3.628+6.956ln(D) 0.982 Mehta et al. (2016)

Citrus Citrus reticulata y=−3.016+2.705ln(D2H) 0.992 Mehta et al. (2016)

Mango Mangifera indica y=1.77x1.02 0.932 Naik et al. (2019a)

Guava Psidium guajava y=3.264x1.012 0.928 Naik et al. (2021)

Guava Psidium guajava y=0.0914x2.4507 0.998 Rathore et al. (2018)

Orange Citrus sinensis
y=(exp(0.79+0.20
(lnD2H)))×1.08

0.74 Sahoo et al. (2021)

Apple Malus domestica y=202.9x1.61 0.9105
Zanotelli (2012)

Zanotelli et al. (2013)

Grape Vitis vinifera y=0.8649x1.1208 0.9150 Zhang et al. (2021)

Apple Malus domestica y=0.124x1.234 0.984 Wu et al. (2012)

Grape Vitis vinifera y=0.0223x2.2023 0.9695 Song et al. (2023)
F
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Where appropriate, mathematical transformations such as natural logarithmic (ln), square (x²), and exponential (exp) functions were applied to improve model fit and linearize the relationship
between biomass and biometric variables. In the listed allometric equations, y denotes the estimated aboveground biomass (kg·tree−1 or kg·plant−1). x represents the independent predictor
variable, which varies depending on species characteristics and model structure. Commonly used variables include: a: crop age; D: Diameter at breast height (DBH), measured at 1.3 m above the
ground (cm); H: Total tree height (m); AGE: Age of the tree or age of the aboveground portion (years); DPB: Mean diameter at pruned branch base or main stem (cm), often used in orchard trees
with regular pruning; DBGU: Diameter below graft union (cm), particularly applicable to grafted fruit trees like mango; PBG: Primary branch girth (cm), i.e., the basal circumference of main
structural branches; NPB: Number of primary branches supporting the crown (count); Some equations employ natural logarithmic (ln) or exponential (exp) functions, or compound terms such
as D²H to improve model fit and better represent nonlinear growth patterns.
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interest in integrating orchard systems into national carbon

accounting frameworks and ecosystem service valuation strategies.

Table 3 presents a comparative summary of recent case studies

that have developed or applied allometric biomass models to

estimate carbon sequestration in perennial orchard systems.

These studies span a wide range of climates, species, and

management practices—including citrus, mango, argan, and

grapevine systems—demonstrating both the methodological

diversity and ongoing progress in integrating orchard systems

into national carbon accounting frameworks (Oumasst et al.,

2024; Quiñones et al., 2013; Rupa et al., 2020; Zhang et al., 2021;

Song et al., 2023).

Across these examples, allometric models have been tailored to

species-specific morphological traits and orchard management

regimes. Methodological approaches vary from non-destructive

canopy-based estimation to component-wise destructive

sampling, depending on the research objective and developmental

stage of the trees. For instance, Quiñones et al. (2013) employed

canopy volume and LAI in mature citrus trees, while Oumasst et al.

(2024) developed allometric functions for young cultivated argan

trees based on age, height, and diameter. Rupa et al. (2020) used

destructive sampling to differentiate biomass allocation in mono-

and multi-varietal mango systems, whereas Zhang et al. (2021) and

Song et al. (2023) demonstrated the long-term carbon storage

potential of vineyards, with carbon accumulation increasing with

vine age.

These case studies collectively underscore the importance of

context-specific modeling to improve the accuracy of biomass and

carbon estimates in orchard ecosystems. Such models are

increasingly essential for supporting Tier 2 reporting under the

IPCC guidelines, where species- and management-specific

emission/removal factors are required to enhance transparency,

consistency, and accuracy in GHG inventories (IPCC, 2006, 2019;

Smith et al., 2014).
3.5 Overview of allometric equations for
biomass estimation in perennial fruit trees

Table 4 summarizes a diverse set of published allometric

equations that apply a range of functional forms—including

power functions, logarithmic models, polynomial regressions, and

sigmoid growth curves—for estimating aboveground biomass and

carbon stocks in perennial fruit orchards. While power-law models

such as y=axb remain dominant due to their biological grounding

(e.g., y=0.215x1.998, y=0.124x1.234), other forms including log-

transformed (y=−2.6554+2.2630lnD), polynomial ((y=−4.586

+0.1635x+0.2229x²), and logistic sigmoid functions (y =19.454/[1

+e(1.886(x-5.143))]) are also widely used depending on species, regional

context, and measurement variables such as diameter, tree height,

age, or crown dimensions. These equations span diverse species,

including mango (Mangifera indica), citrus (Citrus spp.), olive

(Olea europaea), apple (Malus domestica), grape (Vitis vinifera),

and others. The diversity of functional forms and biometric
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variables used reflects species-specific growth characteristics,

pruning practices, and the need for tailored carbon accounting in

orchard systems.

In most equations, the dependent variable (y) represents the

aboveground biomass (typically in kg·tree−1 or kg·plant−1), and the

independent variables (x) include biometric traits such as diameter

at breast height (D, cm), total tree height (H, m), tree age (AGE,

years), diameter below graft union (DBGU, cm), and mean

diameter at pruned branch base (DPB, cm). Additional variables

such as primary branch girth (PBG) and number of primary

branches (NPB) are especially relevant in orchard trees with

complex crown architecture or intensive management (e.g.,

Ganeshamurthy et al., 2016; Kuyah et al., 2024).

Several models adopt power-law or exponential forms to

capture the nonlinear relationship between biomass and tree

dimensions. For example, Rathore et al. (2018) reported a highly

accurate guava model using a power function of stem diameter with

an R² of 0.998, while Mehta et al. (2016) employed compound terms

such as D²H and logarithmic transformations to model biomass in

Citrus reticulata. These functional forms are common in allometric

modeling as they help linearize biomass relationships and improve

model fit (Ledo et al., 2018; Dao et al., 2021). Figure 3 illustrates the

general structure and conceptual basis of the power function

commonly used in allometric biomass models for perennial

fruit trees.

Some studies also applied logistic functions to describe biomass

accumulation over time, especially for trees such as mango and

grapevine where growth tends to saturate with age (Canaveira et al.,

2018; Song et al., 2023). These models are particularly useful in

perennial systems where tree age significantly influences

biomass dynamics.

While species-specific models demonstrated high predictive power

(e.g., Liguori et al., 2009 for orange, R² = 0.9995), generalized models

based on pooled datasets from multiple fruit tree species yielded lower

R² values (e.g., Canaveira et al., 2018; R² = 0.2320), emphasizing the

importance of targeted model development.

Collectively, this synthesis illustrates the importance of

allometric equations in enabling accurate and scalable biomass

estimation for orchard-based systems. The inclusion of these

equations in national carbon accounting frameworks may

contribute to more refined Tier 2 and Tier 3 reporting for the

AFOLU sector under the IPCC guidelines.
4 Discussion

4.1 Advancing carbon accounting in
perennial orchard systems: toward a
standardized methodological framework

The global intensification of climate change has underscored the

importance of robust and transparent national GHG inventories. The

2015 Paris Agreement requires all signatory countries to submit

updated Nationally Determined Contributions (NDCs) every five
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years and to publish annual National Inventory Reports (NIRs) to track

their emissions and progress toward mitigation targets

(UNFCCC, 2015).

As emphasized throughout this review, the development and

application of species-specific allometric equations are essential for

improving the accuracy of biomass and carbon stock estimations in

perennial orchard systems. To operationalize this improvement,

Figure 4 introduces a structured methodological framework

designed to support the development of orchard-specific carbon

emission and removal factors in accordance with IPCC Tier 2 and

Tier 3 guidance (IPCC, 2006, 2019). Anchored in the IPCC’s core

principles of transparency, consistency, comparability,

completeness, and accuracy (TCCCA), this framework outlines a

robust and replicable process from empirical data collection

through model development to inventory integration.

In particular, long-lived perennial orchard systems, such as

apple or persimmon orchards, act as stable carbon sinks over

multiple decades due to sustained structural biomass and root

turnover. Their sequestration potential can be further enhanced

by climate-smart practices including pruning residue retention,

inter-row grass cover, and optimized planting density. However,

these contributions remain insufficiently quantified in national

GHG inventories, largely due to the lack of species-specific and

age-stratified data.

While mature orchard trees dominate current datasets, juvenile

trees often exhibit disproportionately higher root-to-shoot ratios and
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distinct allocation patterns, particularly in early establishment phases.

Neglecting these dynamics may lead to systematic bias in estimating

carbon accumulation trajectories across orchard lifecycles.

Empirical data on belowground biomass (BGB) remain extremely

limited, primarily due to the destructive and labor-intensive nature of

root excavation. As a result, even well-established orchard systems

often lack direct root measurements, which introduces significant

uncertainty into biomass estimates during early and mature growth

phases. This lack of empirical data hinders progress toward Tier 3

approaches, especially in systems where root biomass plays a central

role in long-term carbon sequestration.

Geographically, the reviewed datasets are heavily concentrated

in East Asia (e.g., Korea, Japan, and China) and Southern Europe

(e.g., Italy and Spain), with notable gaps in data from sub-Saharan

Africa, Central Asia, and Latin America. Moreover, orchard form

and training styles—such as bush-type, espalier, or multi-leader

systems—vary by country, further complicating model applicability

across different agroecological settings.

Furthermore, grafted orchard trees—which dominate most

commercial fruit production—introduce structural discontinuities

between rootstock and scion, affecting wood density, hydraulic

conductance, and biomass partitioning. Despite their prevalence,

few allometric models explicitly account for such graft-induced

variations, potentially leading to systematic under- or over-

estimation of carbon stocks. As countries increasingly adopt

enhanced inventory approaches under Tier 2 and Tier 3
FIGURE 3

Relationships between tree age, stem diameter, and carbon dynamics. This figure illustrates the relationships among tree age, height, and diameter
development (top), along with the corresponding increases in aboveground biomass and carbon stock (bottom left and right), as modeled using
allometric power functions. The regression plots highlight nonlinear growth trajectories, showing how biomass accumulation scales with stem
diameter across various developmental stages in orchard systems.
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methodologies, the development of robust, empirically grounded

protocols for orchard-based carbon accounting has become a

pressing need (Smith et al., 2014; Henry et al., 2011).

The proposed methodology initiates comprehensive field

measurements at representative orchard sites, capturing biometric

attributes such as DBH, tree height, and canopy volume, along with

detailed site metadata (e.g., soil type, climate zone, management

practices, and tree age class) (Henry et al., 2011; Schindler et al.,

2023). For example, Schindler et al. (2023) surveyed 70 wild cherry

(Prunus avium) trees in southwestern Germany using terrestrial

laser scanning and quantitative structure models—meticulously

measuring DBH, tree height, and canopy volume, while also

documenting management regimes and tree age classes—to

develop allometric models with high predictive precision

(adjusted R² ≥ 0.97). Collected datasets undergo rigorous quality

assurance/quality control (QA/QC) procedures, including unit

harmonization, outlier detection, and metadata validation, as

outlined by the IPCC (2006).

A suite of statistical modeling techniques—both linear and

nonlinear—is then applied to develop allometric equations

tailored to species and site conditions. Models are selected based

on their empirical performance, as evaluated by R², AIC, and

Bayesian Information Criterion (BIC) (Picard et al., 2012). The

predicted biomass is converted into carbon stock estimates using

species-specific or default carbon fractions (commonly 0.47 for

woody biomass) in accordance with IPCC defaults (IPCC, 2006).

Model validation follows, using independent datasets to test

prediction accuracy with statistical indicators such as RMSE and

Mean Error (ME). In parallel, uncertainty quantification is

conducted using error propagation techniques recommended in

IPCC guidance, enabling the derivation of 95% confidence intervals

and combined uncertainty estimates (IPCC, 2019). These steps are

critical to enhancing credibility and comparability of the derived

emission/removal factors for national reporting.

To support transparency and stakeholder engagement, model

outputs are visualized through interpretable tools such as biomass–
Frontiers in Plant Science 12
age curves, DBH–carbon relationships, and site-specific response

functions. These visualizations facilitate peer review, decision support,

and scenario refinement under national inventory frameworks.

Ultimately, the framework culminates in the derivation of Tier

2-specific emission/removal factors, fully documented with spatial

and temporal boundaries, methodological justifications, and

associated uncertainty ranges. This standardized yet flexible

protocol offers a science-based pathway to formally integrate

perennial orchard systems into national AFOLU inventories,

advancing GHG mitigation strategies in alignment with

international climate commitments.
4.2 Integrating perennial orchards into
IPCC reporting and national inventory
systems

The framework presented in this review has important

implications for countries seeking to improve the accuracy,

transparency, and representativeness of their GHG inventories

under the LULUCF sector. In particular, the inclusion of

perennial orchard systems within Tier 2 and Tier 3 reporting

frameworks addresses a long-standing omission of perennial

agricultural systems from national carbon accounting.

Several countries, such as Switzerland, Australia, and the

Netherlands, have begun to incorporate differentiated emission

factors for orchard systems based on species-specific allometric

equations and remote sensing–based stratification (UNFCCC,

2024). However, many national inventories continue to rely on

Tier 1 default values, which do not capture the variability

introduced by species traits, pruning intensity, planting density,

and management regimes.

Notably, vineyard systems present unique challenges for allometric

modeling due to their multi−stemmed architecture, renewal pruning

cycles, and high inter−annual variability. Despite their wide

geographical distribution and long−term presence in Mediterranean
FIGURE 4

Methodological frameworks for developing biomass-based carbon emission and removal factors for perennial orchard systems in accordance with
IPCC guidelines. The six-step process includes data collection, quality assurance and quality control (QA/QC), statistical analysis, model
development, validation and uncertainty assessment, and final visualization with expert review. This approach ensures transparency, accuracy, and
representativeness for national greenhouse gas inventories.
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and temperate zones, vineyards remain underrepresented in AFOLU

inventories, highlighting the need for tailored modeling frameworks

that reflect their structural and physiological distinctiveness.

Furthermore, a persistent bias exists in the dominant use of

power-law and log-linear allometric models—these forms are

favored for their statistical robustness, ease of linearization, and

relatively good fit with limited datasets. Yet, such choices often

prioritize empirical stability over biological realism, potentially

obscuring nonlinear growth trajectories or physiological

thresholds inherent in tree development.

The implications of grafted tree structures, commonly found in

orchard systems, further complicate model development.

Rootstock–scion interactions may alter resource allocation

patterns, hydraulic conductance, and wood density, introducing

additional uncertainty into biomass predictions. However, few

existing models explicitly account for graft-induced structural

discontinuities, leading to a potential underestimation or

misrepresentation of true carbon stocks.

Age structure is another under-addressed factor in allometric

modeling. A substantial number of existing studies focus on mature

orchard trees (typically older than 7 years), while data on juvenile or

early-stage trees remain scarce. This limits the predictive

applicability of models to younger orchards or newly established

systems, where growth dynamics differ significantly.

Although perennial orchards are increasingly recognized as

important carbon sinks, significant data gaps persist regarding

tree form, root biomass, and age-specific allocation, particularly

when considering geographic and species-specific variability.

Tree architecture and orchard management practices vary

widely across countries and regions due to differing cultivars,

pruning styles, planting densities, and training systems. For

instance, espalier-trained apple trees in Europe present markedly

different biomass allocation patterns than free-standing persimmon

trees in East Asia. This spatial heterogeneity is rarely captured in

current carbon estimation protocols, introducing regional

uncertainty in inventory extrapolations.

In addition, root biomass (i.e., BGB) remains among the least

characterized carbon pools. Root-to-shoot ratios—often used as proxy

estimators for belowground biomass—fluctuate considerably

depending on growth stage, species physiology, and seasonal

phenology, especially in deciduous orchards where leaf presence and

allocation shift throughout the year. While BGB is a critical contributor

to long-term soil carbon storage, its direct measurement is highly

impractical due to the labor-intensive, destructive nature of complete

root excavation. As a result, country- or forest type-specific allometric

equations for roots are scarce, and indirect estimations using

aboveground biomass remain the only practical option in many

inventory frameworks.

Juvenile orchard trees, though underrepresented in empirical

datasets, often display disproportionately higher root-to-shoot

ratios and distinct carbon allocation patterns compared to mature

trees, especially during early establishment. Overlooking these

developmental phases can introduce systematic bias in estimating

carbon accumulation across orchard lifespans.
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Although the 2006 and 2019 IPCC Guidelines recommend

stratifying carbon stock change estimates by age class and

rotation cycles, most country-level inventories lack adequate field

data for young or newly planted orchards. Such data gaps—if

unaddressed—can compromise the accuracy of Tier 2 and Tier 3

carbon accounting, particularly in countries aiming to include

perennial orchards in their AFOLU inventories with greater

spatial and temporal resolution.

Despite accounting for an estimated 30–40% of ecosystem

carbon stocks, root biomass remains underrepresented in species-

specific carbon models used in national inventories. This modeling

gap constrains the accuracy of Tier 2 and Tier 3 carbon accounting,

especially in orchard systems with high site and species variability.

Root-to-shoot ratios also vary by species traits, seasonal phenology,

and orchard management stages—especially in deciduous systems. Yet,

fewer than 10% of reviewed studies include empirical root data, with

most relying on generalized ratios that fail to account for cultivar- or

site-specific variability. This represents a major source of error in Tier 2

national inventories.

Geographically, existing datasets are concentrated in East Asia

(China, Korea, and Japan) and Southern Europe (Italy and Spain),

creating a regional bias that undermines the transferability of

derived models to underrepresented zones such as sub-Saharan

Africa, South America, and Central Asia. Such gaps pose challenges

to global inventory comparability and hinder capacity building in

developing regions.

By implementing standardized, empirically derived allometric

protocols, countries can significantly reduce estimation bias and

uncertainty margins in their national inventory reports. Moreover,

this framework aligns with emerging trends in the AFOLU-based

mitigation strategies, enabling countries to recognize orchard

systems not only as production systems but also as climate

mitigation assets. To this end, future research must expand to

encompass biologically meaningful model forms, incorporate graft-

specific architecture, include juvenile tree stages, and invest in

belowground sampling, while actively addressing geographical

disparities and methodological blind spots.

Integrating these systems into national inventories would allow

policymakers to quantify co-benefits, such as soil carbon

enhancement, biodiversity conservation, and sustainable land

management. This, in turn, can improve access to climate finance,

enhance reporting credibility under the United Nations Framework

Convention on Climate Change (UNFCCC), and support nature-

based solutions to climate change.

The application of orchard-specific carbon emission factors

offers a range of policy-relevant benefits—including improved

alignment with the IPCC’s TCCCA principles (transparency,

comparability, accuracy, completeness, and consistency), enhanced

resolution in the AFOLU subcategory reporting, a solid foundation

for incentive mechanisms such as carbon payments and forestry

support, and stronger support for achieving national net-zero targets

—while the development of Tier 2-specific emission/removal factors

enables more accurate and representative greenhouse gas inventories

that reflect country-specific ecological and management conditions,
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thereby serving as a critical foundation for enhancing the credibility

of LULUCF sector reporting and its alignment with international

reporting frameworks.

While this review advances the methodological framework for

orchard−specific carbon accounting, several significant limitations

merit discussion. First, review bias may have arisen because our

search was restricted to English−language publications and

peer−reviewed journals only, which excludes grey literature and

non−English research, introducing a language bias and potential

under−representation of studies from low−income regions. Second,

there are clear geographical data gaps: while most allometric studies

have been conducted in Europe, North America, and East Asia,

tropical and low-income regions including Africa, South Asia, and

Latin America remain critically underrepresented. This imbalance

limits the global applicability and transferability of emission and

removal factors in carbon accounting frameworks.

Third, belowground biomass pools—including roots,

rhizodeposition, and soil organic carbon—are still poorly

quantified in orchard systems. These components are often

omitted or inferred using forest-based ratios, introducing

substantial uncertainties into national inventory estimates.

From a policy perspective, adopting orchard-specific Tier 2

emission/removal factors (Japanese Government, 2024; Australian

Government, 2024) enables more accurate and transparent

estimation of carbon removals in the cropland-remaining-

cropland subcategory, compared to generic Tier 1 defaults

(IPCC, 2006).

This shift improves the scientific robustness of national inventories,

strengthens the credibility of mitigation reporting, and lays the

foundation for carbon crediting and incentive mechanisms in

perennial horticulture (IPCC, 2019; UNFCCC, 2024).

In summary, integrating orchard-specific allometric protocols will

enhance the accuracy and credibility of national AFOLU inventories.
5 Conclusion

Perennial orchard systems constitute an important yet

underrepresented component in national strategies for climate

change mitigation. This review underscores the need to develop

orchard-specific biomass models and emission/removal factors that

accurately reflect their carbon sequestration potential. The use of

species-specific allometric equations—grounded in empirical field

measurements and supported by rigorous validation and

uncertainty analysis, enables countries to advance from Tier 1

defaults to Tier 2 reporting under the IPCC framework.

By consolidating existing studies and presenting a standardized

methodological framework, this review contributes to the scientific

foundation necessary for integrating orchard systems into national

GHG inventories. Such integration not only enhances inventory

precision and transparency but also facilitates the recognition of

fruit orchards as viable nature-based solutions in climate policy.

Ultimately, the inclusion of perennial orchard systems in carbon

accounting frameworks will help support climate-smart agricultural
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transitions and strengthen efforts toward achieving national and

global carbon neutrality targets.
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