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Introduction: Perennial orchard systems are emerging as important yet
underrepresented carbon sinks within the AFOLU sector, which contributes
20-24% of global GHG emissions. Many countries still rely on Tier 1 default
values that fail to capture the structural and management characteristics of
orchard species. Accurate biomass and carbon estimation, particularly through
species-specific allometric equations, is essential for improving Tier 2-3 GHG
reporting and recognizing orchards as meaningful contributors to climate-smart
land management.

Methods: A systematic literature review was conducted using five major databases
(2008-2024), following PRISMA guidelines. From 240 initial records, 53 studies met
the inclusion criteria. These were categorized into three domains: (i) biometric
modeling of fruit-tree biomass, (ii) species-specific allometric equation
development, and (i) carbon-sequestration assessments. Methodological trends,
model performance, and research gaps were synthesized to inform an IPCC-aligned
framework for orchard-specific emission and removal factors.

Results: Most studies were concentrated in Asia and the Mediterranean and
focused on citrus, mango, apple, grape, and olive systems. Power-law allometric
models dominated and generally showed high predictive performance (R? >
0.90) with variables such as diameter, height, and crown dimensions. However,
major gaps remained: limited data for belowground biomass, juvenile trees,
grafted architectures, vineyards, and uncertainty quantification—all of which
restrict Tier 2—-3 applicability.

Discussion: Based on these findings, this review proposes a standardized
methodological framework linking biometric measurements, species-specific
allometric modeling, remote-sensing integration, and uncertainty analysis to
derive orchard-specific emission and removal factors consistent with IPCC
guidance. Broader adoption of such protocols would improve transparency
and accuracy in national AFOLU inventories and strengthen recognition of
perennial orchards as viable nature-based climate solutions that support
national net-zero targets.
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1 Introduction

1.1 The role of the AFOLU sector in climate
change mitigation

Climate change, driven by the increasing concentration of
greenhouse gases (GHG) in the atmosphere, remains one of the
most pressing global environmental challenges. Among the sectors
contributing significantly to anthropogenic GHG emissions, the
Agriculture, Forestry, and Other Land Use (AFOLU) sector sector is
particularly important. It is responsible for approximately 20-24%
of global GHG emissions, primarily through deforestation, land
conversion, and unsustainable agricultural practices (IPCC, 2019).
At the same time, the AFOLU holds substantial potential for climate
change mitigation through the enhancement of terrestrial carbon
sinks—particularly in biomass and soils (de Coninck et al.,, 2018;
Keith et al., 2009; Lee and Lee, 2022).

Beyond forest ecosystems, the contribution of trees outside
forests (TOF) and urban green infrastructure is increasingly
recognized as a critical component of terrestrial carbon storage.
The TOF systems, including roadside trees, windbreaks, home
gardens, and scattered trees on agricultural land, play a vital role
in capturing atmospheric CO, and maintaining landscape-level
carbon balance (Nandal et al., 2023a; Nandal et al., 2023b; Nandal
et al,, 2024). Similarly, urban soils and vegetation serve as localized
carbon sinks, where improved soil structure, organic—matter
accumulation, and vegetation management can significantly
enhance long—term carbon sequestration potential in cities and
peri—urban landscapes.

While much of the mitigation focus within the AFOLU has
historically centered on forest ecosystems, perennial orchard
systems have emerged as an important but underrepresented
component of the global carbon balance. As long-lived
agroecosystems, fruit orchards accumulate and store carbon over
multiple decades in aboveground woody biomass, root systems, and
increasingly, soil organic carbon. Unlike annual crops, these
perennial systems contribute to carbon sequestration
continuously throughout their lifespan. Empirical studies in
regions such as China and the Mediterranean have demonstrated
that mature orchards—including apple, citrus, and olive—can
function as substantial carbon sinks, often rivaling young or
secondary forests in sequestration potential (Scandellari et al,
2016; Wu et al, 2012; Yang et al, 2020; Zanotelli et al., 2015;
Zhang et al., 2025).

1.2 Challenges in carbon accounting for
orchards

The AFOLU sector plays a pivotal role in both contributing to
and mitigating anthropogenic GHG emissions. Within this broader
AFOLU context, orchard systems remain poorly integrated into
national GHG inventory frameworks. The Intergovernmental Panel
on Climate Change (IPCC) Guidelines for National Greenhouse
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Gas Inventories (IPCC, 2006, 2019) offer structured methodologies
for estimating emissions and removals, with Tier 2 and Tier 3 levels
requiring country-specific or species-specific data and models.
However, many countries continue to rely on Tier 1 default
values—which are typically derived from forest species or
generalized land-use categories—and do not adequately reflect the
unique structural, physiological, and management characteristics of
fruit orchards.

Estimating biomass and carbon stocks in orchard systems is
particularly challenging due to a range of factors. Among these,
distinct management practices—such as seasonal pruning and
canopy training—can significantly influence aboveground biomass
allocation and alter canopy architecture, thereby complicating the
applicability of standard estimation models (Barbault et al., 2024;
Brym and Ernest, 2018). Species-specific growth patterns and
grafted tree architectures require tailored modeling approaches
(Quinones et al, 2013). Differences in planting density and tree
age heterogeneity within orchard systems are major factors that
complicate the accurate extrapolation of individual tree biomass or
carbon stock estimates to area-based units (e.g., per hectare)
(Lauzike et al., 2020). Consequently, direct application of forest-
derived allometric models to orchard systems can result in
substantial bias, undermining the accuracy and transparency of
national reporting and mitigation planning.

1.3 Importance of greenhouse gas
inventories in the LULUCF sector

Among the five major sectors defined by the IPCC—energy,
industrial processes, agriculture, waste, and LULUCF (Land Use,
Land-Use Change, and Forestry)—the LULUCF sector uniquely
functions as both a source and a sink of greenhouse gases. Its
inclusion in national GHG inventories is vital for reflecting the
mitigation potential of forests, croplands, wetlands, and
increasingly, perennial orchard systems such as fruit trees and
vineyards. Several countries have recently advanced their
inventory approaches for perennial cropping systems, applying
differentiated Tier methodologies to enhance transparency and
accuracy in carbon accounting (UNFCCC, 2024): Switzerland
reported carbon stock changes in low-stem orchards and
vineyards using Tier 2 methodologies with country-specific
emission and removal factors, improving the resolution of land-
use subcategories in the inventory. Germany relied on Tier 1 default
values for orchards including apple, cherry, and plum trees, without
deploying species-specific models. Australia applied Tier 2 and Tier
3 methods under its National Carbon Accounting System (NCAS)
to assess carbon changes in perennial crops such as apples, oranges,
almonds, and macadamias, incorporating remote sensing and
allometric modeling. Netherlands combined Tier 1 and Tier 2
approaches for orchards, vineyards, and nurseries under the
Cropland category, emphasizing uncertainty reduction through
stratified land-use classification. These examples reflect a broader
international trend toward improving transparency, accuracy, and
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completeness in LULUCF reporting. As orchard systems gain
recognition for their potential role in carbon sequestration, there
is growing need to integrate species-specific data, allometric
equations, and advanced remote sensing tools to support Tier 2
and Tier 3 inventory development. Given the increasing emphasis
on Tier 2 and Tier 3 inventory development under global climate
frameworks, there is an urgent need for accurate, orchard-based
methods to estimate carbon stock changes.

1.4 The role of allometric modeling and the
need for a dedicated review

To address these limitations, recent years have seen a growing
body of research focused on the development of species-specific
allometric equations for fruit trees. These models establish
empirical relationships between easily measured biometric
variables (e.g., diameter at breast height, tree height, canopy
volume) and aboveground biomass. Importantly, they enable
non-destructive estimation of carbon stocks at both the individual
tree and orchard scales. Studies in citrus (Quifiones et al., 2013;
Sahoo et al,, 2021), apple (Wu et al., 2012; Zanotelli et al., 2013),
mango (Ganeshamurthy et al., 2016; Rupa et al,, 2020), and even
vineyards (Zhang et al.,, 2021) have illustrated the feasibility and
importance of such models, especially under the growing demand
for Tier 2 reporting accuracy. However, the existing literature
remains fragmented, with many models developed in isolation,
applied only to specific cultivars, or lacking full validation and
uncertainty estimates. There is also limited synthesis of how
different modeling approaches perform across species, regions,
and management regimes, creating barriers to broader policy
adoption and standardization. Given these methodological
challenges, this review aims to synthesize recent progress in
orchard allometry.

1.5 Objectives and contributions

This review responds to the urgent need for a structured
synthesis of biomass estimation and carbon accounting
methodologies tailored to perennial orchard systems. It aims to:
(1) Provide a comprehensive overview of published allometric
equations for major fruit species, including methodological
diversity and performance metrics; (2). Present a transparent,
IPCC-aligned framework for developing orchard-specific
biomass-based emission and removal factors, emphasizing model
validation and uncertainty quantification; (3) Offer representative
case studies to highlight species- and system-specific insights in
carbon modeling; and (4) Support countries in transitioning from
default to Tier 2 reporting by demonstrating feasible, empirically
grounded approaches for orchard carbon accounting.

By consolidating and critically analyzing the current state of
knowledge, this review contributes to the scientific foundation
necessary for integrating perennial orchard systems into national
GHG inventories. It also aims to facilitate international
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harmonization efforts, helping to elevate the role of orchard
agroecosystems in global climate change mitigation strategies
under the AFOLU framework.

2 Materials and methods
2.1 Research objectives and questions

This review evaluates species-specific allometric models for
perennial fruit trees to improve the accuracy and reliability of
biomass and carbon stock estimation in orchard systems. The
primary goal is to pinpoint key predictor variables and
methodological best practices that can enhance modeling
reliability—information that is essential for strengthening GHG
inventories and national-level carbon accounting efforts.

To structure the review, the following research questions were
formulated: (1) What are the most commonly used variables for
estimating biomass in perennial fruit trees? (2) How does the
predictive accuracy of existing allometric equations for forest
trees compare with those tailored for fruit trees? (3) What
methodological approaches are most effective for developing and
validating species-specific allometric equations for orchard systems?

2.2 Literature search strategy

A systematic literature search was conducted to identify peer
—reviewed studies aligned with the review’s scope, specifically
focusing on biomass estimation, allometric modeling, and carbon
sequestration in perennial fruit—tree systems. Databases included
Google Scholar, Web of Science, Scopus, Wiley Online Library, and
ScienceDirect, selected for their comprehensive coverage of
environmental science, forestry, and agricultural literature. The
search covered the period from January 1, 2008, to December 31,
2024, and was restricted to English-language publications only (see
Table 1 for full query details). Search strings combined key terms
such as “allometric equations” AND “fruit trees”, “biomass
estimation” AND “orchards”, and “carbon sequestration” AND
(“vineyards” OR “perennial fruit crops”), using Boolean operators
(“AND?”, “OR”) and, where applicable, truncation to capture word

TABLE 1 Overview of the literature search strategy.

Component Details

le Scholar, Web of Science, , Wil
Databases Searched Goog e SF olar 'eb o Sgence Scopus, Wiley
Online Library, ScienceDirect

“allometric equations,” “fruit trees,” “biomass

Keywords Used
A estimation,” “carbon sequestration,” “orchards”

Boolean operators “AND” and “OR” used to refine

Search Logi
carch Sogic keyword combinations

Publication Years 2008 to 2024

Peer-reviewed journal articles, conference
Document Types Included . .
proceedings, technical reports
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variants. Screening and data—extraction tasks were conducted
independently by three team members (the lead author and two
co—authors), and any discrepancies were resolved through joint
discussion and consensus.

Although this review primarily targeted peer—reviewed journal
articles, it is important to note that SCI-indexed papers on
perennial fruit—tree systems remain relatively limited compared
to forestry studies. Therefore, relevant high—quality conference

10.3389/fpls.2025.1663283

proceedings and technical reports were also incorporated to
ensure comprehensive coverage of available research. Studies
focusing exclusively on forest trees or annual crops were
excluded. The main exclusion criteria at the full-text stage
included: not focused on perennial fruit trees or orchards, not
developing or applying allometric equations, and methodologically
irrelevant studies (e.g., forest biomass models). A PRISMA 2020
—style flow diagram (Figure 1) illustrates the number of records

Identification of studies via databases and registers

c Records removed before
o screening:
"é Records identified from: Duplicate records removed
O o (n=42)
& Databases (n = 240) " R d ked as ineligible b
= Registers (n = 0) ecords marked as ineligible by
5 automation tools (n = 0)
o) Records removed for other
= reasons (n = 0)
Records screened »| Records excluded
(n = 198) (n = 100)
Reports sought for retrieval »| Reports not retrieved
o | (=09 (n = 0)
c
=
3 '
&
A Reports assessed for Reports excluded:
eligibility —»| Not focused on perennial fruit
(n = 98) trees or orchards (n = 15)
Did not develop or apply
allometric equations (n = 17)
Methodologically irrelevant (e.g.,
forest biomass models) (n = 13)
etc.
Studies included in the review
5 (n = 53)
© Reports of included studies
= (h = 53)
c — Allometric modelling of fruit tree biomass (n = 51 studies referenced)
- — Species-specific equation development (n = 23)
— Carbon sequestration in orchards (n = 53)

FIGURE 1

PRISMA-style flow diagram showing identification, screening, eligibility, and inclusion with reasons for exclusions. This diagram illustrates the study
selection process conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines
A total of 240 records were identified from electronic databases. After removing 42 duplicates, 198 unique records were screened for relevance. Of
these, 100 records were excluded during the initial screening due to irrelevance or insufficient information. Full-text retrieval was attempted for the
remaining 98 records, all of which were successfully assessed for eligibility (n = 53, including additional sources cited within retrieved reports).
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identified, duplicates removed, records screened, full-text articles
assessed for eligibility, excluded studies (with reasons), and final
studies included in the review.

2.3 Screening and selection criteria

A three-stage screening process was applied to ensure that only
studies directly relevant to perennial fruit-tree biomass modeling
were included. In the identification stage, titles and abstracts were
reviewed to determine topical relevance. During the screening stage,
full-text articles that explicitly developed or applied allometric
equations to perennial fruit-tree crops were retained. Finally, in
the eligibility stage, studies focusing solely on forest ecosystems or
annual crops were excluded. From an initial pool of approximately
240 records, 53 studies met all inclusion criteria and were selected
for review. These studies were subsequently classified into three
thematic domains: (i) biometric modeling of fruit-tree biomass, (ii)
development of species-specific allometric equations, and (iii)
carbon-sequestration potential in orchard systems.

2.4 Methods for estimating carbon stock
changes

The IPCC provides a hierarchical approach for estimating GHG
emissions and removals in the AFOLU sector. The IPCC Guidelines
outline Tier 1 to Tier 3 methodologies, with increasing levels of
specificity and accuracy. Tier 1 relies on globally averaged default
values, whereas Tier 2 and Tier 3 require country-specific emission/
removal factors or advanced modeling approaches (IPCC,
2006, 2019).

Carbon stock estimation in perennial orchard systems has
traditionally relied on a combination of tree allometry, destructive
biomass sampling, and soil carbon analysis, although recent trends
emphasize the integration of non-destructive techniques and Tier 2
IPCC-aligned methods. The estimation of carbon stock changes in
perennial orchard systems has historically been grounded in
empirical methods, including destructive biomass sampling,
allometric modeling based on tree dimensions, and direct
assessments of soil organic carbon. However, recent studies
emphasize the need for a broader methodological toolkit—
particularly as demonstrated in forest and agroforestry systems.
For instance, Nandal et al. (2023b) reviewed four primary
approaches for carbon stock estimation: allometric models, eddy
covariance, remote sensing, and computer-based models. These
include widely used tools such as i-Tree Eco (developed by the
United States Department of Agriculture (USDA) Forest Service),
Forest-PLUS 2.0 (a joint initiative by United States Agency for
International Development (USAID) and India’s Ministry of
Environment, Forest and Climate Change), and the Tree Carbon
Calculator (CTCC) developed by the Centre for Urban Forestry
Research (CUFR). The authors highlight that integrating multiple
methods not only reduces estimation uncertainty but also enhances
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applicability across diverse contexts—including agroforestry, urban
forestry, and soil-carbon interaction studies.

Among the tools used in Tier 2 estimation, allometric equations
are particularly essential. These equations define relationships
between readily measurable biometric variables—such as diameter
at breast height (DBH), tree height, and canopy volume—and
aboveground biomass, thereby enabling non-destructive
estimation of carbon stocks. This approach is widely regarded as
one of the most reliable methods for quantifying carbon at both the
individual tree and site scales (Ioannidou et al., 2025; Walker et al.,
2016). Figure 2 shows how tree diameter and height change across
developmental stages, and how these biometric attributes are used
in allometric modeling to estimate biomass and carbon stocks. The
bottom panels depict the application of power function-based
regression models that relate stem diameter to aboveground
biomass accumulation. This visual integration helps reinforce the
empirical basis of carbon estimation methods under Tier 2 and Tier
3 approaches.

Furthermore, selecting models based on plot-level predictive
performance, rather than tree-specific performance, minimizes bias
and uncertainty when scaling up to hectare-level biomass
estimation (Picard et al, 2025). Furthermore, remote sensing
approaches—especially airborne Light Detection And Ranging
(LiDAR) and high-resolution satellite imagery such as QuickBird
—substantially augment the applicability of allometric models by
providing precise estimates of canopy height, crown volume, and
structural metrics that inform biomass estimation at expanded
spatial scales (Borsah et al., 2023). Integrative reviews further
highlight how multi-source remote sensing data improves the
accuracy and resolution of carbon stock assessments at plot and
landscape levels. At the highest precision level, Tier 3
methodologies integrate country-specific allometric models with
temporally disaggregated remote sensing and model-based
inventory systems, enabling dynamic and location-specific
biomass estimation tailored to national circumstances and
management practices (IPCC, 2019).

3 Results
3.1 Overview of selected literature

A total of 240 records were initially retrieved from five
electronic databases—Google Scholar, Web of Science, Scopus,
Wiley Online Library, and ScienceDirect—using predefined
search strings (Figure 1). After removing 42 duplicates, 198
unique studies were screened for relevance. During the initial
screening phase, 100 records were excluded due to insufficient
methodological detail or irrelevance to perennial fruit-tree
systems. Full texts were retrieved for the remaining 98 studies, all
of which were successfully assessed for eligibility.

After applying the inclusion and exclusion criteria, 53 studies
were retained. These included peer-reviewed journal articles,
conference papers, and technical reports that developed or
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Power Function-Based Biomass Modeling of
Perennial Fruit Trees in Orchards and Vineyards
POWER FUNCTION
Second: ffold branch —\ ; jum— . b
A\A‘ y=a-Xx
,}/\\
P y = aboveground biomass (kg-tree™)
m\» B x = predictor variable (DBH, H)
7 a = scaling constant
ABOVEGROUND BIOMASS b = scaling exponent
= Commonly utilized in allometric y
models for biomass estimation
= Captures fundamental principles
of biological growth scaling
= Efficient, reliable, and tailored for —_—
perennial orchard systems X
ABOVEGROUND BIOMASS
FIGURE 2

Conceptual framework for applying power functions in biomass estimation of perennial fruit trees in orchards and vineyards. The diagram illustrates
how power-law allometric equations (e.g., y=a‘><b) are used to estimate aboveground biomass using biometric variables such as diameter at breast
height (DBH) and tree height (H). Power functions are widely adopted in orchard carbon modeling due to their alignment with biological growth
scaling, efficiency in field applications, and adaptability to species-specific orchard architectures.

applied allometric biomass models for perennial fruit orchards
(Table 1). The screening and selection process is illustrated in
Figure 1, following the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) 2020 guidelines.

Studies that focused exclusively on forest trees, shrub species, or
annual crops; that lacked biomass quantification or allometric
model development; or that reported biomass stocks without
equation-based estimation or methodological transparency were
explicitly excluded.

Although the review prioritized peer—reviewed articles,
SCI-indexed literature specifically addressing orchard-based
allometric modeling was found to be limited. This highlights a
broader research gap: while forest biomass modeling has advanced
significantly across temperate and tropical regions, fruit tree-based
models remain underrepresented, particularly within the context of
national GHG inventories. The 53 selected studies (summarized in
Table 2) span a wide range of species, modeling purposes, and
geographic regions, reflecting both regional needs and persistent
global gaps in orchard carbon accounting (Table 3).
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3.2 Study distribution and characteristics

Among the 53 peer—reviewed studies analyzed, the majority
originated from Asia—particularly India, China, and Thailand—
followed by Europe (notably Italy, Spain, and France) and Africa
(primarily Kenya and Burkina Faso). This geographic pattern
reflects a strong regional concentration of orchard biomass
research in Asia and the Mediterranean zone, with limited
representation from other tropical regions. The dominant
perennial fruit species investigated were mango (n = 5), citrus (n
=5), apple (n = 3), grape (n = 4), olive (n = 2), guava (n = 2), and
single-study cases of pomegranate (n = 1), durian (n = 1), breadfruit
(n=1), avocado (n = 1), and longan (n = 1). These studies applied a
variety of allometric functions—including power-law, logarithmic,
polynomial, and logistic models—reflecting methodological
diversity across different climatic regions and orchard
systems (Table 4).

Biometric predictors most frequently used in allometric
modeling included DBH, tree height, crown diameter or volume,
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TABLE 2 Categorized literature survey on allometric modeling and carbon sequestration in fruit orchards.

Category @ Description Number of studies

Modeling
biomass using

Orchard-
Based variables such as
asel
age, DBH, tree
Carbon and K
A height, crown
Biomass .
. width, collar
Modeling R
i diameter, trunk
Studies K
base diameter,
etc.
Creation of
species-specific
Allometric P i P .
equations usin
models in 4 &

biometric
fruit orchards .
variables to

predict biomass

Assessment of
fruit orchards’
roles in GHG
inventories and

Carbon
sequestration
in orchards
mitigation

[51]

Aguaron and Roberts (2013); Anthony (2013); Arkalgud et al. (2023); Boongla et al. (2025); Brunori et al. (2017); Bwalya (2013);
Callesen et al. (2023); Canaveira et al. (2018); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy et al. (2016); Génard et al.
(2008); Toannidou et al. (2025); Ita (2020); Kuyah et al. (2024); Ledo et al. (2018); Liguori et al. (2009); Livingston and Lincoln
(2023); Mehta et al. (2016); Miranda et al. (2017); Morande (2015); Naik et al. (2018); Naik et al. (2019a); Naik et al. (2019b); Naik
et al. (2021); Nemeth et al. (2017); Nogueira et al. (2025); Oumasst et al. (2024); Pacchiarelli et al. (2022); Panumonwatee et al.
(2025); PefSler (2012); Plenet et al. (2022); Quifiones et al. (2013); Rathore et al. (2018); Rupa et al. (2020); Sahoo et al. (2021);
Salunkhe et al. (2021); Sasaki et al. (2021); Scandellari et al. (2016); Schindler et al. (2023); Song et al. (2023); Sorgona et al. (2018);
Velazquez-Marti et al. (2014); Vercambre et al. (2024); Wu et al. (2012); Yasin et al. (2021); Zanotelli (2012); Zanotelli et al. (2013);
Zanotelli et al. (2015); Zanotelli et al. (2018); Zhang et al. (2021)

[23]

Arkalgud et al. (2023); Brunori et al. (2017); Canaveira et al. (2018); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy
et al. (2016); Ioannidou et al. (2025); Kuyah et al. (2024); Ledo et al. (2018); Liguori et al. (2009); Livingston and Lincoln (2023);
Mehta et al. (2016); Miranda et al. (2017); Naik et al. (2019a); Panumonwatee et al. (2025); Rathore et al. (2018); Rupa et al. (2020);
Sahoo et al. (2021); Song et al. (2023); Wu et al. (2012); Zanotelli (2012); Zanotelli et al. (2013); Zhang et al. (2021)

[53]

Adak et al. (2018); Akram et al. (2017); Anthony (2013); Arkalgud et al. (2023); Boongla et al. (2025); Bwalya (2013); Callesen et al.
(2023); Dao et al. (2021); Darul’aludin et al. (2024); Ganeshamurthy et al. (2016); Génard et al. (2008); Granata et al. (2020);
Toannidou et al. (2025); Ita (2020); Kuyah et al. (2024); Kwak et al. (2023); Liguori et al. (2009); Livingston and Lincoln (2023);
Mehta et al. (2016); Morande (2015); Murphy et al. (2013); Muthuri et al. (2024); Naik et al. (2018); Naik et al. (2019a); Naik et al.
(2019b); Naik et al. (2021); Nemeth et al. (2017); Nimbalkar et al. (2017); Nogueira et al. (2025); Pacchiarelli et al. (2022);
Panumonwatee et al. (2025); Pef3ler (2012); Plénet et al. (2022); Quifones et al. (2013); Rathore et al. (2018); Rupa et al. (2020); Rupa
et al. (2022); Sahoo et al. (2021); Salunkhe et al. (2021); Sasaki et al. (2021); Scandellari et al. (2014); Scandellari et al. (2016);
Schindler et al. (2023); Song et al. (2023); Sorgona et al. (2018); Vercambre et al. (2024); Wu et al. (2012); Yasin et al. (2021);
Zanotelli (2012); Zanotelli et al. (2013); Zanotelli et al. (2015); Zanotelli et al. (2018); Zhang et al. (2021)

Summary of 53 peer-reviewed studies, categorized according to their primary research focus. These studies are grouped into three categories: (i) [51 studies] orchard-based carbon and biomass
modeling using biometric variables (e.g., age, DBH, tree height, crown width, collar diameter, trunk base diameter); (ii) [23 studies] development of species-specific allometric equations in fruit

orchards; (iii) [53 studies] evaluation of carbon sequestration and greenhouse gas (GHG) mitigation potential in orchard systems. Some studies are classified into more than one category;

therefore, the category totals exceed the number of unique studies.

and basal diameter—corresponding with model inputs listed in
Table 2. The dominant model form was the power—law function
(y=ax"), with mean R values typically exceeding 0.90 for species
—specific models (e.g., Rathore et al,, 2018; Ganeshamurthy
et al., 2016).

Model performance was assessed using R’ the Root Mean
Square Error (RMSE), and Akaike Information Criterion (AIC) in
most cases, although < 20% of studies incorporated uncertainty
quantification or validation across multiple sites (Table 2). Notably,
studies using integrated approaches—combining destructive and
non-destructive measurements or linking allometry with remote
sensing—showed improved accuracy (R*> > 0.95). Major
methodological gaps identified include (i) underrepresentation of
belowground biomass and soil-carbon pools, (ii) limited
cross—validation across sites or species, and (iii) lack of standard
uncertainty reporting consistent with IPCC Tier 2-3 protocols.

3.3 Use of power functions in allometric
biomass modeling

Allometric equations have long been utilized to estimate
biomass in forest and agroforestry systems, including perennial
fruit orchards. Among the various functional forms, power-law
models have emerged as the most prevalent due to their theoretical
grounding in biological growth processes and their empirical
reliability (Picard et al., 2012; Poorter and Sack, 2012).
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The power function, typically expressed as y = ax’, where y is
biomass and x is a predictor variable (e.g., stem diameter or tree
height), enables researchers to capture nonlinear relationships
between tree size and biomass accumulation. This form aligns
with the allometric scaling principles that govern plant growth
under physical and physiological constraints (Brym and Ernest,
2018; Luo et al., 2019).

As Zanotelli (2012) and Miranda et al. (2017) demonstrated,
power functions are especially effective in modeling the biomass of
vegetative structures in orchard species. The coefficients a and b
represent biologically meaningful parameters—namely, the scaling
constant and the scaling exponent—and their estimation provides
insights into species-specific growth behavior.

Panumonwatee et al. (2025) emphasized that while alternative
regression forms (e.g., linear, exponential, logistic) may be used, the
power function remains the default due to its simplicity and
robustness, especially in cases where destructive sampling
is impractical.

Similarly, Dao et al. (2021) reported that although both linear
and power models provided a superior fit for mango biomass data,
the power model outperformed the others when using variables
such as DBH and canopy diameter.

Additional studies, such as those by Ganeshamurthy et al. (2016),
have further validated the applicability of the power function in
commercial orchards, particularly for grafted fruit trees like mango,
where pruning practices significantly influence tree architecture. They
compared power, logistic, and Gompertz models and concluded that
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TABLE 3 Case studies on carbon sequestration estimates using allometric biomass models in perennial orchard systems.

Orchard Reference Estimated carbon Key model variables Key insights
type sequestration
Citrus Quinones et al. (2013) 114 Mg Cha'yr! Canopy volume, LAI Non-destructive models enable broader application
(mature trees) across landscapes
Mango Rupa et al. (2020) 76.2-78.5t C ha™' Component-specific destructive Species-specific models critical for accuracy; varietal
sampling, growth adjustment diversity less influential
Argan Oumasst et al. (2024) 0.20 t CO, ha ' yr! Diameter, height, age First allometric model for orchard-grown Argan;
(2- to 6-year-old) foundational for expansion
Vineyard Song et al. (2023) 50.22-61.06 t C ha™* Stem diameter Carbon storage increases with vine age; Perennial
(5- to 20-year-old) organs hold most biomass carbon

Carbon values are presented as total or annualized carbon sequestration depending on the study. AGB, aboveground biomass; LAI, leaf area index. All cited studies applied allometric
relationships with varying levels of validation and uncertainty analysis, emphasizing the importance of species-specific modeling for Tier 2 reporting under IPCC guidance. This table presents

selected case studies demonstrating the application of allometric models for estimating aboveground biomass and carbon sequestration across representative perennial orchard types, including
citrus, mango, argan, and vineyards. Each example highlights the modeling variables used, estimated carbon stocks, and key methodological insights. These cases underscore the need for species-
specific modeling to improve the accuracy and transparency of Tier 2 GHG reporting under IPCC guidelines.

the power form was more straightforward to apply across field data and
remained highly accurate.

In a broader context, power-law-based allometric models have
become a cornerstone of national and global carbon stock
inventories, including those used in IPCC Tier 2 and Tier 3
reporting. Schindler et al. (2023) note that such models facilitate
the quantification of carbon stocks in agroforestry systems,
providing essential input for climate mitigation strategies and the
valuation of ecosystem services.

Importantly, the power-law form is grounded in relative growth
theory, which posits that increases in biomass scale predictably with
other physical dimensions such as length, surface area, or volume
(Chen and Shiyomi, 2019; Niklas, 1994). These biological
underpinnings reinforce the model’s relevance across diverse crop
types, planting densities, and environmental conditions, including
high-density orchards and vineyards.

Ultimately, power-law models in biomass estimation are a
product of their biological realism, statistical performance, and
ease of use in field-based measurements (Brym and Ernest, 2018;
Luo et al., 2019). As such, they are indispensable in orchard carbon
accounting and provide a scalable tool for developing Tier 2 and
Tier 3 GHG inventories for the AFOLU sector.

3.4 Literature trends in allometric modeling
and carbon sequestration in fruit orchards

From the final pool of 53 studies, 51 were identified as
employing biometric variables to develop species-specific or
generalized allometric biomass equations (Table 2). These studies
varied in species composition, geographic coverage, and
modeling approaches.

Accurate estimation of carbon sources and sinks is essential for
effective climate-change mitigation, particularly within the AFOLU
sector, which accounts for approximately 20-24% of global
greenhouse gas emissions (IPCC, 2019). Perennial fruit orchards,
as long-lived agroecosystems, have substantial potential to sequester
carbon through long-term biomass accumulation. However, reliable
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quantification of this sink capacity requires robust methods for
estimating tree biomass and carbon content—tasks typically
achieved through species-specific allometric equations.

Allometric models describe empirical relationships between
easily measurable tree attributes such as trunk diameter, height,
and canopy volume and total biomass. These models enable non-
destructive estimation of carbon stocks and have become essential
tools in both ecological research and national carbon accounting.
While such models are well established in forestry, comparatively
fewer studies have addressed fruit-orchard systems, despite their
growing importance for Tier 2 GHG inventory reporting (Lee and
Lee, 2022).

Table 2 provides an overview of peer-reviewed studies that
developed or applied allometric models for perennial fruit-tree
systems. These studies employed biometric variables such as
diameter at breast height (DBH), tree height, crown width, collar
diameter, and trunk base diameter to estimate aboveground
biomass across diverse orchard species—including mango, citrus,
grape, olive, and apple—using both destructive and non-
destructive methods.

Out of these, 23 studies specifically focused on the development
of species-specific allometric equations, highlighting a growing
effort to improve model precision by accounting for species-
specific architecture, management practices, and growing
environments (e.g., Arkalgud et al,, 2023; Dao et al, 2021;
Rathore et al, 2018). These models frequently adopt power
functions or other nonlinear regression forms, which have proven
effective in capturing the growth dynamics of fruit-bearing trees.

Additionally, 53 studies explored the potential of orchards in
carbon sequestration, either by directly quantifying biomass or by
integrating biomass estimates into national GHG inventories (e.g.,
Ledo et al., 2018; Panumonwatee et al., 2025; Schindler et al., 2023).

This illustrates the growing recognition of perennial orchard
systems as critical components in climate change mitigation
strategies, particularly within the IPCC’s AFOLU sector framework.

Taken together, the body of literature summarized in Table 2
highlights not only the methodological diversity of biomass
modeling approaches but also the growing scientific and policy
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TABLE 4 Summary of allometric equations for biomass estimation in perennial fruit trees.

Plant category Scientific name Allometric fit model R2 Source
Pomegranate Punica granatum y=0.215x"%% 0.9790 Arkalgud et al. (2023)
Longan Dimocarpus longan y=11116(x*H)****” 0.7825 Brunori et al. (2017)
Olive Olea europaea y=0.1202x>% 0.9960 Brunori et al. (2017)
Grape Vitis vinifera y=4.01x°'697 0.7960 Miranda et al. (2017)
Olive Olea europaea :1 " 67119.;6(5:{5.143) 0.5860 Canaveira et al. (2018)
Grape Vitis vinifera = eélzgff o 0.410 Canaveira et al. (2018)
Fruit trees 110 data entries - 18.590 0.2320 Canaveira et al. (2018)
1+ 672.906(1174.968)
Mango Mangifera indica y=-2.6554+2.2630In(D) 0.9546 Dao et al. (2021)
Panumonwatee et al. (2025)
Mango Mangifera indica y=0.083xuDPB*>#* 0.93 Kuyah et al. (2024)
Avocado Persea americana y=0.063>8><},lDPB2'5435 0.86 Kuyah et al. (2024)
Durian Durio zibethinus y=exp[-2.134+2.53In(D)] 0.86 Darul’aludin et al. (2024)
Mango Mangifera indica y=2.886(PBGXNPB)"** 0971 Ga"e;‘z}’)‘;‘:ﬁi f;g;'o()zom)
Mango Mangifera indica y=2.93(DBGU)1'22 0.902 Ganeshamurthy et al. (2016)
Apple Malus domestica y=0‘683(AGE)x”6 Ioa;;ijo; th ‘212(512;))2 %)
Citrus y=0.395(AGE)x**? Ledo et al. (2018)
Orange Citrus sinensis y=1.2069x-19.201 0.9995 Liguori et al. (2009)
Breadfruit Artocarpus altilis y=—4.586+0.1635x+0.2229x" 0.98 Livingston and Lincoln (2023)
Citrus Citrus reticulata y=2.534+1.013(D) 0.986 Mehta et al. (2016)
Citrus Citrus reticulata y=7‘011+0.019(D2H) 0.902 Mehta et al. (2016)
Citrus Citrus reticulata y=-3.628+6.956In(D) 0.982 Mehta et al. (2016)
Citrus Citrus reticulata y=—34016+247051n(D2H) 0.992 Mehta et al. (2016)
Mango Mangifera indica y=1.77x"* 0.932 Naik et al. (2019a)
Guava Psidium guajava y=3.264x""? 0.928 Naik et al. (2021)
Guava Psidium guajava y=0.0914x>*°"7 0.998 Rathore et al. (2018)
Orange Citrus sinensis Y(:]flel))(flflo))iiioozso 0.74 Sahoo et al. (2021)
Apple Malus domestica y=202.9x1'6l 0.9105 Zaf(?tr:l)ltidelti ‘512 0(122)13)
Grape Vitis vinifera y=0.8649x "% 0.9150 Zhang et al. (2021)
Apple Malus domestica y=0.124x">** 0.984 Wu et al. (2012)
Grape Vitis vinifera y=0.0223x>2% 0.9695 Song et al. (2023)

Where appropriate, mathematical transformations such as natural logarithmic (In), square (x*), and exponential (exp) functions were applied to improve model fit and linearize the relationship
between biomass and biometric variables. In the listed allometric equations, y denotes the estimated aboveground biomass (kg-tree ™" or kg-plant™). x represents the independent predictor
variable, which varies depending on species characteristics and model structure. Commonly used variables include: a: crop age; D: Diameter at breast height (DBH), measured at 1.3 m above the
ground (cm); H: Total tree height (m); AGE: Age of the tree or age of the aboveground portion (years); DPB: Mean diameter at pruned branch base or main stem (cm), often used in orchard trees
with regular pruning; DBGU: Diameter below graft union (cm), particularly applicable to grafted fruit trees like mango; PBG: Primary branch girth (cm), i.e., the basal circumference of main
structural branches; NPB: Number of primary branches supporting the crown (count); Some equations employ natural logarithmic (In) or exponential (exp) functions, or compound terms such

as D’H to improve model fit and better represent nonlinear growth patterns.
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interest in integrating orchard systems into national carbon
accounting frameworks and ecosystem service valuation strategies.

Table 3 presents a comparative summary of recent case studies
that have developed or applied allometric biomass models to
estimate carbon sequestration in perennial orchard systems.
These studies span a wide range of climates, species, and
management practices—including citrus, mango, argan, and
grapevine systems—demonstrating both the methodological
diversity and ongoing progress in integrating orchard systems
into national carbon accounting frameworks (Oumasst et al,
2024; Quinones et al., 2013; Rupa et al., 2020; Zhang et al., 2021;
Song et al., 2023).

Across these examples, allometric models have been tailored to
species-specific morphological traits and orchard management
regimes. Methodological approaches vary from non-destructive
canopy-based estimation to component-wise destructive
sampling, depending on the research objective and developmental
stage of the trees. For instance, Quifiones et al. (2013) employed
canopy volume and LAI in mature citrus trees, while Oumasst et al.
(2024) developed allometric functions for young cultivated argan
trees based on age, height, and diameter. Rupa et al. (2020) used
destructive sampling to differentiate biomass allocation in mono-
and multi-varietal mango systems, whereas Zhang et al. (2021) and
Song et al. (2023) demonstrated the long-term carbon storage
potential of vineyards, with carbon accumulation increasing with
vine age.

These case studies collectively underscore the importance of
context-specific modeling to improve the accuracy of biomass and
carbon estimates in orchard ecosystems. Such models are
increasingly essential for supporting Tier 2 reporting under the
IPCC guidelines, where species- and management-specific
emission/removal factors are required to enhance transparency,
consistency, and accuracy in GHG inventories (IPCC, 2006, 2019;
Smith et al.,, 2014).

3.5 Overview of allometric equations for
biomass estimation in perennial fruit trees

Table 4 summarizes a diverse set of published allometric
equations that apply a range of functional forms—including
power functions, logarithmic models, polynomial regressions, and
sigmoid growth curves—for estimating aboveground biomass and
carbon stocks in perennial fruit orchards. While power-law models

such as y=ax"

remain dominant due to their biological grounding
(e.g., y=0.215x"%%, y=0.124x"?**), other forms including log-
transformed (y=-2.6554+2.2630InD), polynomial ((y=-4.586
+0.1635x+0.2229x?), and logistic sigmoid functions (y =19.454/[1
+e(1:8860-5-14301) are also widely used depending on species, regional
context, and measurement variables such as diameter, tree height,
age, or crown dimensions. These equations span diverse species,
including mango (Mangifera indica), citrus (Citrus spp.), olive
(Olea europaea), apple (Malus domestica), grape (Vitis vinifera),

and others. The diversity of functional forms and biometric
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variables used reflects species-specific growth characteristics,
pruning practices, and the need for tailored carbon accounting in
orchard systems.

In most equations, the dependent variable (y) represents the
aboveground biomass (typically in kgtree " or kg-plant '), and the
independent variables (x) include biometric traits such as diameter
at breast height (D, cm), total tree height (H, m), tree age (AGE,
years), diameter below graft union (DBGU, c¢m), and mean
diameter at pruned branch base (DPB, cm). Additional variables
such as primary branch girth (PBG) and number of primary
branches (NPB) are especially relevant in orchard trees with
complex crown architecture or intensive management (e.g.,
Ganeshamurthy et al.,, 2016; Kuyah et al., 2024).

Several models adopt power-law or exponential forms to
capture the nonlinear relationship between biomass and tree
dimensions. For example, Rathore et al. (2018) reported a highly
accurate guava model using a power function of stem diameter with
an R? 0f 0.998, while Mehta et al. (2016) employed compound terms
such as D’H and logarithmic transformations to model biomass in
Citrus reticulata. These functional forms are common in allometric
modeling as they help linearize biomass relationships and improve
model fit (Ledo et al., 2018; Dao et al,, 2021). Figure 3 illustrates the
general structure and conceptual basis of the power function
commonly used in allometric biomass models for perennial
fruit trees.

Some studies also applied logistic functions to describe biomass
accumulation over time, especially for trees such as mango and
grapevine where growth tends to saturate with age (Canaveira et al.,
2018; Song et al, 2023). These models are particularly useful in
perennial systems where tree age significantly influences
biomass dynamics.

While species-specific models demonstrated high predictive power
(e.g, Liguori et al,, 2009 for orange, R* = 0.9995), generalized models
based on pooled datasets from multiple fruit tree species yielded lower
R? values (e.g., Canaveira et al, 2018; R* = 0.2320), emphasizing the
importance of targeted model development.

Collectively, this synthesis illustrates the importance of
allometric equations in enabling accurate and scalable biomass
estimation for orchard-based systems. The inclusion of these
equations in national carbon accounting frameworks may
contribute to more refined Tier 2 and Tier 3 reporting for the
AFOLU sector under the IPCC guidelines.

4 Discussion

4.1 Advancing carbon accounting in
perennial orchard systems: toward a
standardized methodological framework

The global intensification of climate change has underscored the
importance of robust and transparent national GHG inventories. The
2015 Paris Agreement requires all signatory countries to submit
updated Nationally Determined Contributions (NDCs) every five
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Relationships between tree age, stem diameter, and carbon dynamics. This figure illustrates the relationships among tree age, height, and diameter
development (top), along with the corresponding increases in aboveground biomass and carbon stock (bottom left and right), as modeled using
allometric power functions. The regression plots highlight nonlinear growth trajectories, showing how biomass accumulation scales with stem

diameter across various developmental stages in orchard systems.

years and to publish annual National Inventory Reports (NIRs) to track
their emissions and progress toward mitigation targets
(UNFCCC, 2015).

As emphasized throughout this review, the development and
application of species-specific allometric equations are essential for
improving the accuracy of biomass and carbon stock estimations in
perennial orchard systems. To operationalize this improvement,
Figure 4 introduces a structured methodological framework
designed to support the development of orchard-specific carbon
emission and removal factors in accordance with IPCC Tier 2 and
Tier 3 guidance (IPCC, 2006, 2019). Anchored in the IPCC’s core
principles of transparency, consistency, comparability,
completeness, and accuracy (TCCCA), this framework outlines a
robust and replicable process from empirical data collection
through model development to inventory integration.

In particular, long-lived perennial orchard systems, such as
apple or persimmon orchards, act as stable carbon sinks over
multiple decades due to sustained structural biomass and root
turnover. Their sequestration potential can be further enhanced
by climate-smart practices including pruning residue retention,
inter-row grass cover, and optimized planting density. However,
these contributions remain insufficiently quantified in national
GHG inventories, largely due to the lack of species-specific and
age-stratified data.

While mature orchard trees dominate current datasets, juvenile
trees often exhibit disproportionately higher root-to-shoot ratios and
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distinct allocation patterns, particularly in early establishment phases.
Neglecting these dynamics may lead to systematic bias in estimating
carbon accumulation trajectories across orchard lifecycles.

Empirical data on belowground biomass (BGB) remain extremely
limited, primarily due to the destructive and labor-intensive nature of
root excavation. As a result, even well-established orchard systems
often lack direct root measurements, which introduces significant
uncertainty into biomass estimates during early and mature growth
phases. This lack of empirical data hinders progress toward Tier 3
approaches, especially in systems where root biomass plays a central
role in long-term carbon sequestration.

Geographically, the reviewed datasets are heavily concentrated
in East Asia (e.g., Korea, Japan, and China) and Southern Europe
(e.g., Italy and Spain), with notable gaps in data from sub-Saharan
Africa, Central Asia, and Latin America. Moreover, orchard form
and training styles—such as bush-type, espalier, or multi-leader
systems—vary by country, further complicating model applicability
across different agroecological settings.

Furthermore, grafted orchard trees—which dominate most
commercial fruit production—introduce structural discontinuities
between rootstock and scion, affecting wood density, hydraulic
conductance, and biomass partitioning. Despite their prevalence,
few allometric models explicitly account for such graft-induced
variations, potentially leading to systematic under- or over-
estimation of carbon stocks. As countries increasingly adopt
enhanced inventory approaches under Tier 2 and Tier 3
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FIGURE 4

Methodological frameworks for developing biomass-based carbon emission and removal factors for perennial orchard systems in accordance with
IPCC guidelines. The six-step process includes data collection, quality assurance and quality control (QA/QC), statistical analysis, model
development, validation and uncertainty assessment, and final visualization with expert review. This approach ensures transparency, accuracy, and

representativeness for national greenhouse gas inventories.

methodologies, the development of robust, empirically grounded
protocols for orchard-based carbon accounting has become a
pressing need (Smith et al., 2014; Henry et al., 2011).

The proposed methodology initiates comprehensive field
measurements at representative orchard sites, capturing biometric
attributes such as DBH, tree height, and canopy volume, along with
detailed site metadata (e.g., soil type, climate zone, management
practices, and tree age class) (Henry et al., 2011; Schindler et al,
2023). For example, Schindler et al. (2023) surveyed 70 wild cherry
(Prunus avium) trees in southwestern Germany using terrestrial
laser scanning and quantitative structure models—meticulously
measuring DBH, tree height, and canopy volume, while also
documenting management regimes and tree age classes—to
develop allometric models with high predictive precision
(adjusted R* >
assurance/quality control (QA/QC) procedures, including unit

0.97). Collected datasets undergo rigorous quality

harmonization, outlier detection, and metadata validation, as
outlined by the IPCC (2006).

A suite of statistical modeling techniques—both linear and
nonlinear—is then applied to develop allometric equations
tailored to species and site conditions. Models are selected based
on their empirical performance, as evaluated by R%, AIC, and
Bayesian Information Criterion (BIC) (Picard et al, 2012). The
predicted biomass is converted into carbon stock estimates using
species-specific or default carbon fractions (commonly 0.47 for
woody biomass) in accordance with IPCC defaults (IPCC, 2006).

Model validation follows, using independent datasets to test
prediction accuracy with statistical indicators such as RMSE and
Mean Error (ME). In parallel, uncertainty quantification is
conducted using error propagation techniques recommended in
IPCC guidance, enabling the derivation of 95% confidence intervals
and combined uncertainty estimates (IPCC, 2019). These steps are
critical to enhancing credibility and comparability of the derived
emission/removal factors for national reporting.

To support transparency and stakeholder engagement, model
outputs are visualized through interpretable tools such as biomass—
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age curves, DBH-carbon relationships, and site-specific response
functions. These visualizations facilitate peer review, decision support,
and scenario refinement under national inventory frameworks.

Ultimately, the framework culminates in the derivation of Tier
2-specific emission/removal factors, fully documented with spatial
and temporal boundaries, methodological justifications, and
associated uncertainty ranges. This standardized yet flexible
protocol offers a science-based pathway to formally integrate
perennial orchard systems into national AFOLU inventories,
advancing GHG mitigation strategies in alignment with
international climate commitments.

4.2 Integrating perennial orchards into
IPCC reporting and national inventory
systems

The framework presented in this review has important
implications for countries seeking to improve the accuracy,
transparency, and representativeness of their GHG inventories
under the LULUCF sector. In particular, the inclusion of
perennial orchard systems within Tier 2 and Tier 3 reporting
frameworks addresses a long-standing omission of perennial
agricultural systems from national carbon accounting.

Several countries, such as Switzerland, Australia, and the
Netherlands, have begun to incorporate differentiated emission
factors for orchard systems based on species-specific allometric
equations and remote sensing-based stratification (UNFCCC,
2024). However, many national inventories continue to rely on
Tier 1 default values, which do not capture the variability
introduced by species traits, pruning intensity, planting density,
and management regimes.

Notably, vineyard systems present unique challenges for allometric
modeling due to their multi-stemmed architecture, renewal pruning
cycles, and high inter—annual variability. Despite their wide
geographical distribution and long—term presence in Mediterranean
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and temperate zones, vineyards remain underrepresented in AFOLU
inventories, highlighting the need for tailored modeling frameworks
that reflect their structural and physiological distinctiveness.

Furthermore, a persistent bias exists in the dominant use of
power-law and log-linear allometric models—these forms are
favored for their statistical robustness, ease of linearization, and
relatively good fit with limited datasets. Yet, such choices often
prioritize empirical stability over biological realism, potentially
obscuring nonlinear growth trajectories or physiological
thresholds inherent in tree development.

The implications of grafted tree structures, commonly found in
orchard systems, further complicate model development.
Rootstock-scion interactions may alter resource allocation
patterns, hydraulic conductance, and wood density, introducing
additional uncertainty into biomass predictions. However, few
existing models explicitly account for graft-induced structural
discontinuities, leading to a potential underestimation or
misrepresentation of true carbon stocks.

Age structure is another under-addressed factor in allometric
modeling. A substantial number of existing studies focus on mature
orchard trees (typically older than 7 years), while data on juvenile or
early-stage trees remain scarce. This limits the predictive
applicability of models to younger orchards or newly established
systems, where growth dynamics differ significantly.

Although perennial orchards are increasingly recognized as
important carbon sinks, significant data gaps persist regarding
tree form, root biomass, and age-specific allocation, particularly
when considering geographic and species-specific variability.

Tree architecture and orchard management practices vary
widely across countries and regions due to differing cultivars,
pruning styles, planting densities, and training systems. For
instance, espalier-trained apple trees in Europe present markedly
different biomass allocation patterns than free-standing persimmon
trees in East Asia. This spatial heterogeneity is rarely captured in
current carbon estimation protocols, introducing regional
uncertainty in inventory extrapolations.

In addition, root biomass (i.e, BGB) remains among the least
characterized carbon pools. Root-to-shoot ratios—often used as proxy
estimators for belowground biomass—fluctuate considerably
depending on growth stage, species physiology, and seasonal
phenology, especially in deciduous orchards where leaf presence and
allocation shift throughout the year. While BGB is a critical contributor
to long-term soil carbon storage, its direct measurement is highly
impractical due to the labor-intensive, destructive nature of complete
root excavation. As a result, country- or forest type-specific allometric
equations for roots are scarce, and indirect estimations using
aboveground biomass remain the only practical option in many
inventory frameworks.

Juvenile orchard trees, though underrepresented in empirical
datasets, often display disproportionately higher root-to-shoot
ratios and distinct carbon allocation patterns compared to mature
trees, especially during early establishment. Overlooking these
developmental phases can introduce systematic bias in estimating
carbon accumulation across orchard lifespans.
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Although the 2006 and 2019 IPCC Guidelines recommend
stratifying carbon stock change estimates by age class and
rotation cycles, most country-level inventories lack adequate field
data for young or newly planted orchards. Such data gaps—if
unaddressed—can compromise the accuracy of Tier 2 and Tier 3
carbon accounting, particularly in countries aiming to include
perennial orchards in their AFOLU inventories with greater
spatial and temporal resolution.

Despite accounting for an estimated 30-40% of ecosystem
carbon stocks, root biomass remains underrepresented in species-
specific carbon models used in national inventories. This modeling
gap constrains the accuracy of Tier 2 and Tier 3 carbon accounting,
especially in orchard systems with high site and species variability.

Root-to-shoot ratios also vary by species traits, seasonal phenology,
and orchard management stages—especially in deciduous systems. Yet,
fewer than 10% of reviewed studies include empirical root data, with
most relying on generalized ratios that fail to account for cultivar- or
site-specific variability. This represents a major source of error in Tier 2
national inventories.

Geographically, existing datasets are concentrated in East Asia
(China, Korea, and Japan) and Southern Europe (Italy and Spain),
creating a regional bias that undermines the transferability of
derived models to underrepresented zones such as sub-Saharan
Africa, South America, and Central Asia. Such gaps pose challenges
to global inventory comparability and hinder capacity building in
developing regions.

By implementing standardized, empirically derived allometric
protocols, countries can significantly reduce estimation bias and
uncertainty margins in their national inventory reports. Moreover,
this framework aligns with emerging trends in the AFOLU-based
mitigation strategies, enabling countries to recognize orchard
systems not only as production systems but also as climate
mitigation assets. To this end, future research must expand to
encompass biologically meaningful model forms, incorporate graft-
specific architecture, include juvenile tree stages, and invest in
belowground sampling, while actively addressing geographical
disparities and methodological blind spots.

Integrating these systems into national inventories would allow
policymakers to quantify co-benefits, such as soil carbon
enhancement, biodiversity conservation, and sustainable land
management. This, in turn, can improve access to climate finance,
enhance reporting credibility under the United Nations Framework
Convention on Climate Change (UNFCCC), and support nature-
based solutions to climate change.

The application of orchard-specific carbon emission factors
offers a range of policy-relevant benefits—including improved
alignment with the IPCC’s TCCCA principles (transparency,
comparability, accuracy, completeness, and consistency), enhanced
resolution in the AFOLU subcategory reporting, a solid foundation
for incentive mechanisms such as carbon payments and forestry
support, and stronger support for achieving national net-zero targets
—while the development of Tier 2-specific emission/removal factors
enables more accurate and representative greenhouse gas inventories
that reflect country-specific ecological and management conditions,
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thereby serving as a critical foundation for enhancing the credibility
of LULUCEF sector reporting and its alignment with international
reporting frameworks.

While this review advances the methodological framework for
orchard-specific carbon accounting, several significant limitations
merit discussion. First, review bias may have arisen because our
search was restricted to English-language publications and
peer—reviewed journals only, which excludes grey literature and
non-English research, introducing a language bias and potential
under—representation of studies from low—income regions. Second,
there are clear geographical data gaps: while most allometric studies
have been conducted in Europe, North America, and East Asia,
tropical and low-income regions including Africa, South Asia, and
Latin America remain critically underrepresented. This imbalance
limits the global applicability and transferability of emission and
removal factors in carbon accounting frameworks.

Third, belowground biomass pools—including roots,
rhizodeposition, and soil organic carbon—are still poorly
quantified in orchard systems. These components are often
omitted or inferred using forest-based ratios, introducing
substantial uncertainties into national inventory estimates.

From a policy perspective, adopting orchard-specific Tier 2
emission/removal factors (Japanese Government, 2024; Australian
Government, 2024) enables more accurate and transparent
estimation of carbon removals in the cropland-remaining-
cropland subcategory, compared to generic Tier 1 defaults
(IPCC, 2006).

This shift improves the scientific robustness of national inventories,
strengthens the credibility of mitigation reporting, and lays the
foundation for carbon crediting and incentive mechanisms in
perennial horticulture (IPCC, 2019; UNFCCC, 2024).

In summary, integrating orchard-specific allometric protocols will
enhance the accuracy and credibility of national AFOLU inventories.

5 Conclusion

Perennial orchard systems constitute an important yet
underrepresented component in national strategies for climate
change mitigation. This review underscores the need to develop
orchard-specific biomass models and emission/removal factors that
accurately reflect their carbon sequestration potential. The use of
species-specific allometric equations—grounded in empirical field
measurements and supported by rigorous validation and
uncertainty analysis, enables countries to advance from Tier 1
defaults to Tier 2 reporting under the IPCC framework.

By consolidating existing studies and presenting a standardized
methodological framework, this review contributes to the scientific
foundation necessary for integrating orchard systems into national
GHG inventories. Such integration not only enhances inventory
precision and transparency but also facilitates the recognition of
fruit orchards as viable nature-based solutions in climate policy.
Ultimately, the inclusion of perennial orchard systems in carbon
accounting frameworks will help support climate-smart agricultural
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transitions and strengthen efforts toward achieving national and
global carbon neutrality targets.
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