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Cinnamomum burmanni serves as a principal arboreal species utilized for the 
extraction of essential oils, and its foliage and branches contain a wide array of 
terpenoid compounds. These compounds are extensively utilized in the cosmetic 
and pharmaceutical sectors. However, the organ-specific distribution of 
phytohormones and the underlying molecular regulatory mechanisms in C. 
burmanni have not been fully elucidated. Consequently, this study presents the 
first comprehensive metabolomic, transcriptomic, and full-length transcriptomic 
analyses aimed at systematically elucidating the organ-specific hormone

distribution and molecular regulatory networks within the leaves, stems, and 
roots of borneol-type C. burmanni. The research identified 70 significantly 
differential hormones, including 32 cytokinin (CTK)-related hormones, 19 auxin-
related hormones, and seven gibberellin (GA)-related hormones, uncovering 
distinct organ-specific patterns: indole-3-acetic acid (IAA) predominantly 
accumulated in leaves, while GA and CTK were highly expressed in stems. 
Additionally, 812 differentially expressed genes (DEGs) were identified among 
different organs, including 50 hormone signaling-related DEGs pinpointed via 
weighted gene co-expression network analysis (WGCNA). Further investigations 
indicated that several putative transcription factors (TFs), including ARF, bHLH 
(PIF3/4), GRAS (DELLA), G2-like (GLK/KAN1/2/HH2O/APL/FT), and ARR-B, may 
constitute a core regulatory module that mediates hormone-dependent growth, 
development, and terpenoid biosynthesis. This study establishes the first multi­

omics-driven hormonal interaction network framework for the molecular 
breeding of C. burmanni while developing a gene editing target atlas to 
elucidate synergistic regulatory mechanisms underlying medicinal secondary 
metabolite biosynthesis. 
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1 Introduction 

Cinnamomum burmanni is an essential oil tree species 
belonging to the Lauraceae family (Singh et al., 2021). It has 
aromatic properties (Ma et al., 2021; Liu et al., 2023; Zhang et al., 
2024), and its leaves and stems contain abundant terpenoids (Yang 
et al., 2020; Li et al., 2022; Ma et al., 2022; Huang et al., 2024), which 
are widely utilized in the pharmaceuticals and cosmetics industries 
(Al-Dhubiab, 2012). However, we encountered difficulties in the 
root formation of C. burmanni when using the cutting and tissue 
culture propagation methods for Cinnamomum camphora, which 
likewise belongs to the Lauraceae family (Huang et al., 1998; Babu 
et al., 2003; Asare et al., 2014). Several phytohormones have been 
reported to promote the formation of adventitious roots and buds 
of Lauraceae plants. Luo et al. (2024) reported that auxin, ethylene, 
and the signaling pathways of plant wound play crucial roles in 
the process of adventitious root growth in Cinnamomum 
parthenoxylon cuttings. Luo et al. (2025) reported that zeatin 
riboside (ZR), abscisic acid (ABA), gibberellin (GA), and the 
[indole-3-acetic acid (IAA) + GA + ZR]/ABA ratio play vital 
roles in the  formation of adventitious buds  and  roots of  C. 
parthenoxylon. Hence, we performed multi-omics analysis to 
identify genes that are involved in hormone signal transduction 
in C. burmanni, which offer the foundation for further 
investigations of adventitious root induction and growth regulation. 

Phytohormones, including auxin, cytokinins (CTKs), GAs, 
and ABA, are key signaling compounds biosynthesized by 
plants (Waadt et al., 2022). They can be translocated at extremely 
low concentrations and modulate the differential processes of 
development, growth, and response to stress in plants (Anfang 
and Shani, 2021; Zhang et al., 2023). Auxin, GA, and CTK, which 
are three crucial plant hormones, influence plant developmental 
processes and growth (Powell and Heyl, 2023). IAA, which is the 
most prevalent bioactive form (Friml, 2022), participates in the 
processes of growth and development in plants, including organ 
development, phototropism, directional root growth, and stress 
response  (Anfang  and  Shani,  2021).  In  Moso  bamboo  
(Phyllostachys edulis), the overexpression of PedARF23 activates 
signal transduction, which enhances auxin biosynthesis (Hu et al., 
2025). Conversely, the mutation of ARFTF17 reduces IAA content 
in the pericarp of Zea mays seeds and inhibits auxin biosynthesis, 
leading to the phenotype of flint-like seeds (Wang et al., 2024). GAs 
participate in stem elongation, leaf senescence, floral development, 
and seed germination (Guo et al., 2022; Zhang et al., 2023), but only 
gibberellin A1 (GA1), gibberellin A3 (GA3), gibberellin A4 (GA4), 
and gibberellin A7 (GA7) display biological activity (Rizza and 
Jones, 2019; Wu et al., 2021; Zhou et al., 2022). In Solanum 
lycopersicum, the overexpression of DoDELLA1 significantly 
suppresses endogenous GA1 and GA3 levels while downregulating 
GA metabolic genes, ultimately leading to dwarfism and delaying 
flowering in transgenic tobacco (Zhou et al., 2022). CTKs 
orchestrate key physiological processes in plants, including shoot 
meristem maintenance, cambial activity, cell division, cell 
differentiation, vascular development, secondary growth, organ 
development, and stress adaptation (Abdel Latef et al., 2021; 
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Powell and Heyl, 2023; Svolacchia and Sabatini, 2023). In Lolium 
perenne, LpARR10 may transactivate the SOS1 and SOS3 genes, 
which are two salt overly sensitive (SOS) genes, via CTK signal 
transduction to enhance salinity tolerance (Yang et al., 2024). 

Plant hormone signaling pathways interact antagonistically or 
synergistically to determine the downstream signaling events that 
are activated by hormones (Berens et al., 2017). The crosstalk of 
hormone signaling is formed by the interactions of plant hormones, 
mediating the immune responses and growth processes under 
abiotic stress (Pieterse et al., 2009; Spaepen and Vanderleyden, 
2011; Shigenaga and Argueso, 2016). The transduction of auxin 
signaling in plants is governed by three key signaling constituents: 
transcription factors auxin response factors (ARFs), transcriptional 
repressor auxin/IAA (Aux/IAA), and receptor Transport Inhibitor 
Response 1/Auxin Signaling F-box Protein (TIR1/AFB) (Figure 1A) 
(Salehin et al., 2015; Leyser, 2018; Matthes et al., 2019; Niemeyer 
et al., 2020). Auxin acts as the key agent determining the proteins 
that bind to Aux/IAA proteins in this process (Yu et al., 2022). Aux/ 
IAAs combine with ARFs at low auxin concentrations, repressing 
the transcriptional activity of downstream auxin-responsive genes. 
When exhibiting a certain concentration, auxin leads to the 
establishment of the TIR1–auxin–Aux/IAA complex after 
entering the pocket of TIR1 (Tan et al., 2007; Calderón Villalobos 
et al., 2012; Wang and Estelle, 2014). The complex triggers the 
degradation of Aux/IAA via the ubiquitination of the 26S 
proteasome, which releases the ARF to stimulate the expression 
of auxin-responsive genes (Weijers and Wagner, 2016). The signal 
transduction of GA is related to the degradation of DELLA 
transcription regulators, which is initiated through the process by 
which bioactive GAs are recognized by the GA receptor that is 
encoded by GIBBERELLIN INSENSITIVE DWARF1 (GID1) 
(Figure 1B) (Blázquez et al., 2020). The GA receptor is present in 
the nucleus and cytoplasm (Ueguchi-Tanaka et al., 2005; Shimada 
et al., 2008), which features a flexible structural motif in N-terminal 
extension (N-ex) and a GA-binding pocket in the C-terminal 
domain (Ueguchi-Tanaka and Matsuoka, 2010; Livne and Weiss, 
2014). Upon binding to the C-terminal pocket, bioactive GAs 
induce the folding of the N-ex over this pocket, thereby exposing 
a surface on GID1 that enables binding to the DELLAs (Murase 
et al., 2008). The DELLA subfamily belongs to the GRAS family 
(Vera-Sirera et al., 2016; Li et al., 2024), which possesses a DELLA 
domain that is recognized by GID1 and required for GA-induced 
degradation in the N-terminal (Ueguchi-Tanaka et al., 2007; Zhou 
et al., 2024b). After bioactive GAs are recognized by GID1, the 
complex binds to DELLA proteins to facilitate their degradation 
(Claeys et al., 2014; Hernández-Garcıa et al., 2021). CTK signaling ́
is perceived and transduced by the two-component system 
(TCS) (Zameer et al., 2021), composed of two key constituents: a 
response regulator that mediates downstream interactions upon 
phosphorylation-dependent activation by the receptor and a 
receptor kinase that undergoes autophosphorylation after 
perceiving the signal (Figure 1C) (Hwang and Sheen, 2001; 
Gruhn and Heyl, 2013; Kieber and Schaller, 2018; Wang et al., 
2025a). Cytokinin is sensed by hybrid histidine kinase receptors 
(CHKs), which contain the cyclase/histidine kinase-associated 
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sensing extracellular (CHASE) domain at the endoplasmic 
reticulum (ER) membrane and plasma membrane (PM) 
(Romanov et al., 2018; Antoniadi et al., 2020; Kubiasová et al., 
2020; Powell and Heyl, 2023). Next, CHKs relay the signal to the 
histidine-containing phosphotransfer (HPt) proteins by 
autophosphorylating (Hutchison et al., 2006). Once the 
phosphorylated HPts move into the nucleus from the cytoplasm, 
they transfer the phosphorylation signal, leading to the 
phosphorylation of the response regulators (Punwani et al., 2010). 
In plants, CTK signaling involves two distinct types of response 
regulators: B-type response regulators (ARR-Bs) and A-type 
response regulators (ARR-As) (Lai et al., 2021). ARR-Bs, which 
are  MYB  transcription  factors,  are  phosphorylated  by  
phosphorylated HPts, activating the expression of genes that 
respond to a cytokinin signal, including ARR-As (Powell and 
Heyl, 2023). In contrast, ARR-As, which compete with ARR-Bs 
for the phosphorylation signal of phosphorylated HPts, negatively 
regulate cytokinin signal transduction (Hwang and Sheen, 2001). 

Transcription factors (TFs), which are crucial protein factors, 
serve a pivotal function in the hormone signal transduction 
pathways by modulating the transcriptional regulation level of 
target genes to regulate the growth and development of plants and 
response (Yoon et al., 2020; Shrestha et al., 2021; Donovan and 
Larson, 2022; Li et al., 2023b; Thilakarathne et al., 2025), including 
ARF, bHLH, GRAS, G2-like, and ARR-B (Chen et al., 2020; Wang 
et al., 2020a, b; Li et al., 2021; He et al., 2022). The transcriptional 
activity of auxin-responsive genes is activated by ARF proteins and 
inhibited by Aux/IAA proteins by binding to ARFs (Yang et al., 2022; 
Li et al., 2023a). In Bambusa emeiensis, PedARF23 regulates lignin 
biosynthesis by activating the signaling pathway of auxin to promote 
Frontiers in Plant Science 03 
the biosynthesis of auxin (Hu et al., 2025). In Dendrobium officinale, 
Aux/IAA proteins (DoIAA10, 13) and ARF proteins (DoARF2, 17) 
coordinately regulate auxin signal transduction to control floral 
development (Si et al., 2023). The DELLA proteins, which are 
positively regulated by GA biosynthesis (Ohama et al., 2025), 
predominantly inhibit GA signal transduction (Van De Velde 
et al., 2017). In Arabidopsis thaliana, bioactive GAs bind to GID1, 
facilitating the degradation of DELLA proteins to regulate 
GIBBERELLIN INSENSITIVE (GAI) (Murase et al., 2008). In 
wheat (Triticum aestivum), the photoreceptor CRY1 competitively 
inhibits DELLA proteins to suppress GA signal transduction, 
enhancing its inhibitory effect on plant growth (Yan et al., 2021). 
The CTK signaling pathway involves ARR-Bs and ARR-As (Lai et al., 
2021; Powell and Heyl, 2023). ARR-Bs positively regulate the CTK 
signaling pathway (Zhou et al., 2024a), and ARR-As negatively 
regulate the CTK signaling pathway (Tan et al., 2019; Lu et al., 
2023). In Medicago truncatula, the CTK signaling pathway 
mechanism relies on the TCS. After perceiving the phosphorylated 
signal from phosphorylated HPts, ARR-Bs are phosphorylated to 
positively regulate the transcriptional level of cytokinin response 
genes,  while ARR-As  compete for  the phosphorylation  signal
that generates negative feedback in cytokinin signal transduction 
(Tan et al., 2019). 

Notably, the processes of growth and development in Lauraceae 
are influenced by diverse phytohormone signal transductions (Guo 
et al., 2024a). In Cinnamomum bodinieri, Yu et al. (2025) reported 
that IAA, ABA, ZR, and GA play central roles in adventitious root 
(AR) formation, with IAA as the primary regulator. They identified 
28 differentially expressed genes (DEGs) of the hormone signaling 
pathway (including CYP94B3 and NAC82) and confirmed that 
FIGURE 1 

Plant hormone signal transduction processes in plants. (A) Auxin signaling transduction pathway, which has been adapted from Yu et al. (2022). (B) 
Gibberellin signaling transduction pathway, which has been adapted from Murase et al. (2008). (C) Cytokinin signaling transduction pathway, which 
has been adapted from Tan et al. (2019). 
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transcription factors (such as AUX1, GH3, ZFP, NAC, ARR-A, and 
ARR-B) participate in this process. In ancient C. camphora leaves, 
Liu et al. (2024) found that IAA, iP, and iPR positively influence 
regeneration after cutting. They also identified 57 DEGs of the 
hormone signaling pathway and revealed that transcription factors, 
including AUX1, GH3, SAUR, bAHP, CYCD3, SIMKK, EBF1/2, 
ARR-B, BKI1, BSK, JAZ, MYC2, TGA, and PR-1, play roles in 
hormone signal transduction. Currently, previous research has 
primarily focused on terpenoid biosynthesis in Lauraceae plants 
(Luo et al., 2022; Ma et al., 2022; Ju et al., 2023), whereas studies on 
hormone signaling pathways remain limited, with no reports 
specifically on C. burmanni. Furthermore, the distribution patterns 
and regulatory mechanisms of hormones across different organs 
remain largely unexplored in Lauraceae. Therefore, we integrated 
metabolomic, transcriptomic, and full-length transcriptomic 
analyses to systematically identify DEGs that engage in hormone 
signaling and differentially expressed hormones in differential plant 
organs of borneol-type C. burmanni. Furthermore, the functions of 
key genes in association with potential TFs were predicted. This 
study not only fills the knowledge gap in hormone distribution, 
signaling, and molecular regulation across multiple organs in 
Lauraceae but also provides a theoretical framework for future 
breeding strategies to improve C. burmanni cultivars and enhance 
stress tolerance. 
 

2 Materials and methods 

2.1 Plant materials 

Multiple organ plant materials were obtained from a 3-year-old 
borneol-type C. burmanni, which was cultivated at the Guangdong 
Academy of Forestry Sciences (113°37′37.36″N, 23°19′42.08″E, 
Guangzhou, China). The mother plant originated from a C. 
burmanni individual with a highly borneol-expressing chemotype, 
which was selectively bred by our research team in Tianlu Lake 
Forest Park (113°25′54″N, 23°15′33.4″E, Guangzhou, China). 
Among the propagated cuttings, this individual was one of the 
few successfully rooted branches and exhibited the most vigorous 
growth when sampled. The cuttings were cultivated in a potting mix 
that was composed of 90% peat soil and 10% perlite (v/v). A rooting 
powder (including naphthaleneacetic acid, indolebutyric acid, and 
talcum powder) that was developed by the research team was 
applied. The climatic conditions included the following: the 
annual mean temperature was 29.3°C, the mean relative humidity 
was 77%, extreme highs were 39°C, extreme lows were 3°C, annual 
precipitation was 1,353.5 mm, and the frost-free period was ≥340 
days. The Resource Management Department of Longdong Forest 
Farm granted permission for the collection of plant materials. The 
researchers performed hormone metabolomic and transcriptomic 
analyses on the roots, stems, and leaves, with three biological 
replicates prepared per tissue. Additionally, nine samples (roots, 
stems, and leaves) were pooled for full-length transcriptome 
sequencing. Upon collection, all specimens were swiftly frozen 
with liquid nitrogen and kept at −80°C. 
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2.2 Metabolomic analysis 

Metabo l i te  profi l ing  was  per formed  us ing  l iqu id  
chromatography–tandem mass spectrometry (LC-MS/MS), 
according to methods in Chen et al. (2013) with modifications 
(China). Nine samples were frozen, dried using a vacuum freeze-
dryer (Scientz-100F, Ningbo Scientz Biotechnology Co., Ltd., 
Ningbo, China), and pulverized into a fine powder using a 
grinding machine with zirconium oxide beads (30Hz, 1.5min). 
Powder (100 mg) was weighed and sequentially added with 1 mL 
methanol/water/formic acid (15:4:1, v/v/v) and 10 mL internal 
standard (100 ng/mL). After vortexing (10min) and centrifugation 
(12,000 rpm/min, 5min, 4°C), supernatants were concentrated, 
redissolved in 80% methanol (100 mL), and filtered using a 0.22­
mm membrane  filter (SCAA-104, 0.22-mm pore size; ANPEL, http:// 
www.anpel.com.cn/) for analysis. 

Chromatographic separation was achieved using a Waters 
ACQUITY UPLC HSS T3 C18 column (1.8 µm, 100 × 2.1mm) 
with mobile phases A (0.04% acetic acid in water) and B (0.04% 
acetic acid in acetonitrile) (Niu et al., 2014). The elution protocol 
was as follows: 0min, A:B = 95:5 (V:V); 1min, A:B = 95:5 (V:V); 
8min, A:B = 5:95 (V:V); 9min, A:B = 5:95 (V:V); 9.1min, A:B = 95:5 
(V:V); and 12min, A:B = 95:5 (V:V) (flow rate, 0.35 mL/min; 
injection volume, 2 mL; column temperature, 40°C). MS detection 
employed  a  QTRAP®6500+LC-MS/MS  system  (https://  
sciex.com.cn/) in multiple reaction monitoring (MRM) mode 
with an ESI Turbo ion spray interface (voltage, ± 5500/4500V; 
temperature, 550°C; curtain gas, 35psi) (Niu et al., 2014). Data were 
acquired using Analyst 1.6.3 (AB Sciex, Framingham, MA, USA) 
and analyzed using MultiQuant 3.0.3. According to the Metware 
Database, a triple quadrupole mass spectrometer was employed for 
qualitative analysis of the data, while quantitative analysis of the 
data was performed using the MRM mode in a triple quadrupole 
mass spectrometer (MS2 tolerance, 20 ppm; Retention Time (RT) 
error, 0.2min). 

Hormone standard solutions (0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 
100, 200, and 500 ng/mL) were prepared, with L-tryptophan (TRP) 
and salicylic acid 2-O-b-glucoside (SAG) standard curves ranging 
from 0.2 to 10,000 ng/mL (20 times dilution). The mass spectral 
peak intensities of the quantitative signals of hormone standards 
were recorded at each concentration, and standard curves were 
generated (Supplementary Table 1). 

To enhance the normal distribution, metabolite data were log2­
transformed for normalization. The prcomp statistical function 
from the R software (version 4.2.2) was employed for principal 
component analysis (PCA) (base package, version 3.5.1) of 
metabolites across nine samples. Subsequently, hierarchical cluster 
analysis (HCA) was conducted, and the ComplexHeatmap package 
(Gu et al., 2016) from the R software was utilized to construct 
heatmaps. In addition, the R software package MetaboAnalystR 
(https://gitcode.com/gh_mirrors/me/MetaboAnalystR) was

employed to construct an orthogonal partial least squares 
discriminant analysis (OPLS-DA) model to select significantly 
differential hormones among distinct samples, with Fold Change 
≥ 2 and Fold Change ≤ 0.5 as the selection thresholds. The Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) database (https:// 
www.genome.jp/kegg) was employed for the enrichment analysis of 
the significantly differential hormones. The absolute hormone levels 
were calculated based on the peak area ratios with a standard curve 
using the linear equation. Data visualization was conducted using 
GraphPad Prism v6.01 (https://www.graphpad.com). 
 

2.3 Full-length transcript sequencing and 
analysis 

The extraction of the total RNA of each sample was performed 
using the FastPure® Universal Plant Total RNA Isolation Kit. A 1% 
agarose gel electrophoresis (180V) was employed to assess RNA 
integrity and potential DNA contamination. The OD260/230 and 
OD260/280 values were measured using the NanoPhotometer 
spectrophotometer (IMPLEN, Westlake Village, CA, USA) to 
determine the purity of total RNA. Next, precise determination of 
the RNA concentration was conducted using the Qubit 2.0 
Fluorometer  (Life  Technologies, Carlsbad, CA,  USA), and

evaluation of RNA integrity was conducted employing the Agilent 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 

The Oligo(dT) magnetic bead approach was applied to construct 
a full-length transcriptome library in this research. The mRNAs that 
contained polyA were enriched with Oligo(dT) magnetic beads. 
Subsequently, a SMARTer PCR cDNA synthesis kit was utilized to 
transform mRNA to cDNA, which was further enriched for synthesis. 
The optimal conditions for downstream PCR were determined by 
optimizing experimental procedures. Large-scale PCR was performed 
using Oligo(dT) bead-selected fragments to construct a SMRTbell 
library. The cDNA of full-length was linked to sequencing adapters. 
Subsequent to the annealing process, the SMRTbell template was 
utilized as sequencing primers bound to the polymerase. The PacBio 
Sequel platform was subsequently employed to conduct a 10-hour 
sequencing run, which utilized P6-C4 chemistry. The raw data of the 
full-length sequencing have been deposited in the NCBI Sequence 
Read Archive (SRA) with project number PRJNA1287254. 

The initial sequencing data were filtered using the PacBio 
official software package SMRTlink v8.0 (https://www.pacb.com/ 
support/software-downloads/) with the following parameters: the 
minimum length was configured as 50 bp, the maximum length was 
adjusted to 15,000 bp, and the minimum number of full passes was 
set to one. After correcting the subreads, Circular Consensus 
Sequences (CCSs) were obtained. CCSs were categorized as Full-
Length (FL) sequences and non-Full-Length (nFL) sequences based 
on the presence of 5′, 3′ primers and polyA tail signals. Within the 
FL sequences, the Full-Length Non-Chimeric (FLNC) sequences 
corresponding to the same transcript were analyzed using a 
hierarchical clustering algorithm [hierarchical nlog(n)] to 
facilitate the removal of redundant sequences and the derivation 
of cluster consensus sequences. Subsequently, cluster consensus 
sequences were polished and yielded consensus sequences with high 
fidelity. Consensus sequences with high accuracy were utilized via 
the Arrow (Chin et al., 2013) for the generation of polished 
consensus sequences for subsequent analyses. 
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The polished consensus sequences were employed using the 
GMAP v2017-06-20 (Genomic Mapping and Alignment Program) 
software to align to the reference genome. The structurally annotated 
transcripts were subsequently employed for functional annotation 
using five primary databases. Fictional annotations of these 
transcripts were performed against KEGG, NR (Non-Redundant 
Protein Database), and Swiss-Prot (a manually annotated and 
reviewed protein sequence database) using Diamond blastx v0.8.36 
(https://github.com/bbuchfink/diamond). An annotation of Pfam 
(Protein Family Analysis and Modeling) was performed utilizing 
Hmmscan v3.1b2 (http://hmmer.org/download.html). Functional 
annotation of Gene Ontology (GO) was performed by applying NR 
annotation data and the Blast2GO software (Wu and Watanabe, 
2005). Finally, the number of successfully annotated transcripts was 
statistically analyzed. 

The TAPIS (Conesa et al., 2005) software was applied to classify 
and characterize the full-length transcripts of C. burmanni. After 
aligning to the polished consensus reference genome, the high-
quality isoforms were obtained by further correction, clustering, 
and redundancy removal. Subsequently, transcript characteristics, 
novel gene and novel transcript identification, novel gene database 
annotation, and transcription factor analysis and prediction were 
conducted. The prediction of plant transcription factors was 
achieved using iTAK (https://github.com/kentnf/iTAK/) (Abdel-

Ghany et al., 2016). Coding potential prediction of PacBio 
sequencing data was carried out using CNCI (Sun et al., 2013), 
PLEK (Li et al., 2014), the CPC software (Kong et al., 2007), and the 
Pfam database (Finn et al., 2016). 
2.4 Transcriptome sequencing and analysis 

The integrity and potential DNA contamination of the RNA 
sample were assessed employing 1% agarose gel electrophoresis 
(180V). Subsequently, the NanoPhotometer spectrophotometer 
(IMPLEN, Westlake Village, CA, USA) was employed to ascertain 
the OD260/230 and OD260/280 ratios to assess the purity of 
the RNA. Accurate quantification of RNA concentration was 
performed using the Qubit 2.0 Fluorometer (Life Technologies, 
Carlsbad, CA, USA), and precise quantification of RNA integrity 
was performed using the Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). 

In this study, 1 mg of total RNA was utilized as the primary 
sample to construct the sequencing library of transcriptome 
utilizing the NEBNext® Ultra™ RNA Library Prep Kit (Illumina). 
Before library construction, the Qubit 2.0 Fluorometer was used to 
carry out initial quantification and then dilute the library to 1.5 ng/ 
mL. The effective concentration of the library was precisely 
quantified via qRT-PCR. Upon passing quality control, the 
Illumina sequencing pipeline was initiated. The raw data of the 
RNA sequencing have been deposited in the NCBI SRA with project 
number PRJNA1286930. 

To generate clean reads for further analysis, raw sequencing data 
were treated to filter out sequences of adapters and reads of poor 
quality using Fastp v0.19.3 (Chen et al., 2018). After downloading the 
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reference genome and its annotation files, the index was generated 
using the software HISAT v2.1.0 (Kim et al., 2015). Subsequently, the 
clean reads were aligned against the reference genome. Fragments Per 
Kilobase per Million mapped reads (FPKM) was used to evaluate the 
expression level of genes. DESeq2 v1.22.1 and edgeR v1.22.1 were 
utilized to assess differentially expressed genes among the sample 
groups. The Benjamini and Hochberg procedure was executed to 
correct for multiple hypothesis testing by adjusting the probability 
values (p-values) to yield the false discovery rate (FDR). The 
threshold for DEGs was determined in accordance with the 
following criteria: |log2(fold change)| ≥ 1 and q-value < 0.05. 

The numbers of DEGs were counted for pairwise comparisons 
among roots, stems, and leaves as the three groups. The NR, GO, 
KEGG, Swiss-Prot, and Pfam databases were utilized to annotate all 
DEGs. Next, the DAVID database (https://david.ncifcrf.gov/ 
home.jsp) was employed for the functional enrichment analysis of 
GO and KEGG pathways of all DEGs. 

To forecast putative TFs that connected with DEGs, which were 
relevant to hormone signal transduction within three organs in C. 
burmanni, the protein sequences of these DEGs were loaded into 
PlantTFDB v5.0 (https://planttfdb.gao-lab.org/prediction.php). 
This database identifies TFs that were based on input sequences, 
family classification rules, and predefined thresholds (Tian 
et al., 2020). 

Based on transcriptomic data, the cor() function within the stats 
package of the R software (version 4.2.2) was utilized to predict 
Pearson’s product-moment correlation coefficients (PCCs) between 
TFs and DEGs (Bai et al., 2022). The correlations with statistical 
significance (p < 0.05) and absolute values > 0.8 were retained. Co­
expression networks were visualized using Cytoscape (version 3.9.1) 
(Kohl et al., 2011). This study details the comprehensive 
bioinformatics workflow, as depicted in Supplementary Figure 1, 
which encompasses analyses of full-length transcriptomics, 
transcriptomics, and metabolomics. 
2.5 Weighted gene co-expression network 
analysis 

The 10 most abundant hormones, including GA1, GA3, 
gibberellin A20 (GA20), indole-3-acetyl-L-valine methyl ester 
(IAA-Val-Me), N6-isopentenyl-adenine-9-glucoside (iP9G), meta­

topolin-9-glucoside (mT9G), ortho-topolin-9-glucoside (oT9G), 2­
oxindole-3-acetic acid (OxIAA), 4-[[(9-beta-D-glucopyranosyl-9H­

purin-6-yl)amino]methyl]phenol (pT9G), and TRP, of different 
organs were selected for weighted gene co-expression network 
analysis (WGCNA) using the WGCNA 1.71 package from the R 
software (version 4.2.2), with FPKM values (R2 > 0.85) set at an 
appropriate threshold (Wang et al., 2022). A hierarchical clustering 
tree was generated based on the correlation of intergenic expression 
levels between gene expression and the abundance of hormones. 
Dynamic tree cutting analysis was utilized to segregate genes 
exhibiting significant association with the 10 selected hormones 
into discrete modules, followed by the amalgamation of 
analogous modules. 
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2.6 qRT-PCR analysis 

The investigation utilized the FastPure® Universal Plant Total 
RNA Isolation Kit for the extraction of RNA and employed the 
HiScript III RT SuperMix for qPCR (+gDNA wiper) for the reverse 
transcription process. A total of 12 differentially expressed genes 
associated with auxin, gibberellin, and cytokinin were randomly 
chosen and confirmed through qRT-PCR experiments. Root, stem, 
and leaf samples were collected, and triplicate technical and 
biological replicates were conducted. The qRT-PCR assay used 
Actin7 as the internal standard gene. The primer sequences were 
designed based on the study by Shi et al. (2024). A specific primer 
was designed using the PrimerQuest™ Tool (https://sg.idtdna.com/ 
pages/products/qpcr-and-pcr). The detailed sequences of the 
primer are presented in Supplementary Table 2. The  reaction
condition was set as follows: 10 µL 2× ChamQ Universal SYBR 
qPCR Master Mix, 1.0 µL cDNA, 1.0 µL Primer1 (10 µM), 1.0 µL 
Primer2 (10 µM), and 8.2 µL ddH2O. The procedures of qRT-PCR 
cycling were configured in the following manner: pre-denaturation 
at 95°C for 30 seconds, denaturation at 95°C for 10 seconds, and 
annealing at 60°C for 30 seconds, with 40 cycles. The comparative 
level of DEG expression was quantified through the 2−DDCT 

approach (Livak and Schmittgen, 2001). 
3 Results 

3.1 Screening of significantly differential 
hormones in C. burmanni by metabolomic 
analysis 

Metabolomic analysis was conducted to comprehensively 
identify the significantly differential hormones present in the root, 
stem, and leaf tissues of C. burmanni. Differential hormones were 
observed in the roots, stems, and leaves based on the PCA 
(Figure 2B). In our investigation, 72 differential hormones were 
identified (Supplementary Table 3), including 32 CTK hormones 
(44.44%), 19 auxin hormones (26.38%), seven GA hormones 
(9.7%), nine jasmonic acid (JA) hormones (12.5%), two salicylic 
acid (SA) hormones (2.8%), two ABA hormones (2.8%), and one 
ethylene (ETH) hormone (1.4%). Hormones exhibiting a Fold 
Change of ≥2 or  ≤0.5 were deemed to be significantly 
differentially expressed, resulting in the identification of a total of 
70 such hormones. In this study, auxin hormones exhibited 
significant enrichment within the LEAF category, with a total of 
11 instances, while cytokinin hormones were predominantly found 
in the STEM category, with 14 instances. Additionally, gibberellin 
hormones were significantly enriched in STEM, with a count of 
three (refer to Figure 2D). Notably, differential metabolites 
tryptamine (TRA) and trans-zeatin riboside (tZR) were not 
categorized as significantly differential hormones, as indicated in 
Supplementary Table 4. Venn diagram analysis of significantly 
differential hormones enriched in the three differential organs 
showed that 21 significantly differential hormones were 
commonly enriched across all three tissues (Figure 2A), including 
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10 CTK hormones [6-benzyladenine (BAP), 6-benzyladenosine 
(BAPR), cis-zeatin (cZ), cis-zeatin-O-glucoside riboside (cZROG), 
N6-isopentenyladenine (IP), kinetin (K), mT9G, oT9G, pT9G, and 
trans-zeatin-O-glucoside (tZOG)], five IAA hormones [IAA, 
Frontiers in Plant Science 07 
indole-3-acetyl-L-tryptophan (IAA-Trp), 3-indoleacetamide 
(IAM), 3-indolebutyric acid (IBA), and indole-3-carboxaldehyde 
(ICAld)], two GA hormones [GA3 and gibberellin A24 (GA24)], 
two JA hormones [JA and 3-oxo-2-(2-(Z)-pentenyl) (OPC-4)], and 
FIGURE 2 

Metabolomic analysis of Cinnamomum burmanni. (A) Venn diagram illustrating the comparative analysis of differential hormones in distinct tissues of 
C. burmanni. (B) Principal component analysis (PCA) of metabolomic features from three organs. (C) Contents and proportions of 10 highly 
expressed phytohormones (symbols * and *** indicate p < 0.05 and p < 0.01 quantified through one-way ANOVA as well as t-test, respectively). 
Salmon color represents indole-3-acetic acid (IAA) hormones, spring green denotes cytokinin (CTK) hormones, and sky blue corresponds to 
gibberellin (GA) hormones. (D) Histogram of differential metabolites across various tissues of C. burmanni. 
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two SA hormones (SA and SAG). Notably, 3-indoleacetonitrile 
(IAN) was a unique, significantly differential hormone in the 
LEAFvsROOT group. 

The metabolic pathways enriched by significantly differential 
metabolites in the three organs were revealed through KEGG 
enrichment analysis. All groups exhibited enrichment in the 
following hormone-related pathways: “alpha-Linolenic acid 
metabolism” (ko00592), “Diterpenoid biosynthesis” (ko00904), 
“Plant hormone signal transduction” (ko04075), “Tryptophan 
metabolism” (ko00380), and “Zeatin biosynthesis” (ko00908). 
However, the pathways “Carotenoid biosynthesis” (ko00906) and 
“Phenylalanine, tyrosine and tryptophan biosynthesis” (ko00400) 
were exclusively accumulated in ROOTvsLEAF and ROOTvsSTEM 
(Supplementary Figures 2A–C). To further investigate the 
variations in hormone content across differential organs, 10 
hormones that were relatively highly expressed in three distinct 
organs were selected for comparative analysis, including GA1, GA3, 
GA20, IAA-Val-Me, iP9G, mT9G, oT9G, OxIAA, pT9G, and TRP. 
The results demonstrated that LEAF contained higher levels of 
GA20, iP9G, mT9G, and TRP compared to other organs. STEM 
exhibited higher levels of GA1, IAA-Val-Me, OxIAA, and 
pT9G, while ROOT showed higher levels of GA3 and oT9G 
(Figures 2C, D). 
3.2 Construction of the full-length 
transcriptome of C. burmanni 

This investigation performed full-length transcriptome analysis 
to obtain high-quality and as complete as possible transcript 
sequences in C. burmanni. After sequencing, 43.79-GB raw data 
and 384,075 polymerase reads were obtained, with a polymerase 
read N50 of 2,931 bp. The distribution of polymerase read lengths is 
demonstrated in Figure 3A. After filtering raw data, 18,738,519 
subread sequences were obtained. Upon self-alignment correction 
of each subread sequence, 354,555 CCSs were acquired. The length 
distribution of CCSs matched the expected pattern, as illustrated in 
Supplementary Figure S3A. According to the 5′, 3′ primers and tail 
signals of polyA, the CCSs were categorized into FL and nFL 
sequences. A total of 316,567 FL sequences and 37,988 nFL 
sequences were obtained. 

Among the FL sequences, 315,605 FLNC and 962 Full-Length 
Chimeric (FLC) sequences were separated. The distribution of FLNC 
sequence lengths is depicted in Supplementary Figure S3B. First, after  
clustering and deduplicating, FLNC sequences were utilized to obtain 
consensus sequences. Subsequently, consensus sequences were 
adjusted using the Arrow software; 34,245 polished consensus 
sequences were obtained, and the distribution of polished consensus 
sequence lengths is displayed in Figure 3B, which demonstrates that 
the majority of these sequences were approximately 2,000 bp in length. 
The Genomic Mapping and Alignment Program (GMAP) was 
employed to align between polished consensus sequences and the 
reference genome, resulting in 30,027 (87.68%) successfully mapped 
consensus sequences (total mapped). 
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Among the 15,483 structurally annotated transcripts, 15,043 
(97.16%) had annotations no fewer than one within the NR, GO, 
KEGG, Pfam, or Swiss-Prot database (Supplementary Table 5). As 
illustrated in Figure 3C, the annotated transcripts of the highest 
quantity are in the NR database, and those of the lowest quantity are 
in the GO database. Additionally, 10,122 (65.37%) transcripts were 
annotated in all five databases (NR, GO, KEGG, Swiss-Prot, and 
Pfam) (Figure 3D). 

In the NR database, 14,934 transcripts (96.45%) were 
annotated. The alignment results of these transcripts with C. 
burmanni revealed that the four species with the highest 
similarity were Nelumbo nucifera (7,157, 20.90%), Vitis vinifera 
(1,272, 8.22%), Elaeis guineensis (1,151, 7.43%), and Phoenix (817, 
5.28%) (Supplementary Figure 4A). To uniformly describe gene 
functions, 10,785 transcripts (69.66%) were subdivided into three 
GO categories: biological process (BP), cellular component (CC), 
and molecular function (MF). In the BP category, the top three 
subgroups were “cellular process” (GO:0009987), “metabolic 
process” (GO:0008152),  and  “single-organism  process” 
(GO:0044699). In the CC category, the top three subgroups were 
“cell” (GO:0005623), “cell part” (GO:0044464), and “organelle” 
(GO:0043226). In the MF category, the top three subgroups were 
“binding” (GO:0005488), “catalytic activity” (GO:0003824), and 
“transporter activity” (GO:0005215) (Supplementary Figure 4B). 

A total of 14,868 (96.02%) transcripts were successfully 
annotated in the KEGG database, which were classified into six 
branches: Cellular Processes, Environmental Information 
Processing, Genetic Information Processing, Human Diseases, 
Metabolism, and Organismal Systems, which elucidated the roles 
and metabolism routes of gene expression products in cells. The five 
most abundant subgroups were “Signal transduction” (ko02010, 
ko04016, ko04070, and ko04075) under Environmental 
Information Processing, “Carbohydrate metabolism” (ko01200) 
under Metabolism, “Transport and catabolism” (ko04136, 
ko04144, ko04145, and ko04146) under Cellular Processes, and 
“Folding, sorting and degradation” (ko03018, ko03050, ko03060, 
ko04120, ko04122, and ko04141) and “Translation” (ko00970, 
ko03008, ko03010, ko03013, ko03015, and ko03040) under 
Genetic Information Processing (Supplementary Figure 4C). 

TFs represent a class of protein molecules that specifically 
occupy the promoter of target genes to quantitatively modulate 
the expression of genes with temporal precision and spatial 
specificity. They currently serve as potent tools widely applied in 
genetic engineering. We utilized the iTAK software (Zheng et al., 
2016) to perform predictive analysis of transcription factors, which 
identified 922 TFs from 29 gene families (Figure 4). The bHLH 
family exhibited the highest membership (63 members, 6.83%), 
followed by WRKY (53 members, 5.75%), C3H (48 members, 
5.21%), MYB-related (47 members, 5.09%), and NAC families (44 
members, 4.77%). In contrast, the AUX/IAA, HSF, and C2C2-Dof 
families all displayed the lowest representation, which contained 14 
members (1.51%). These findings will provide significant 
implications for the investigation of transcriptional regulation 
in related biological processes and facilitate the construction 
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of an accurate, high-quality, and comprehensive transcription 
factor library. 
3.3 Screening of differentially expressed 
genes in hormone signal transduction 
through C. burmanni transcriptome 
analysis 

Transcriptome sequencing analysis of RNA samples from three 
organs was performed to discover the DEGs that are associated with 
hormone signal transduction in the root, stem, and leaf organs of C. 
burmanni, with three biological repeats, which were performed to 
confirm the validity of the data. The sequencing yielded raw reads 
ranging from 40.13 to 47.94 Mb. After quality filtering, error 
frequency examination, and Guanine-Cytosine (GC) composition 
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allocation assessment, clean reads from the nine cDNA libraries 
ranged from 38.72 to 47.77 Mb, totaling 61.04 Gb of clean bases, 
with an average of 6.78 G per sample. The Q20 base percentage for 
all samples consistently exceeded 97%, and the Q30 base percentage 
exceeded 93% (Supplementary Table 6). For each library, the count 
of reads that demonstrated successful alignment to the reference 
genome varied between 30,110,309 (70.76%) and 43,870,063 
(93.60%), while uniquely mapped reads ranged from 29,131,403 
(68.46%) to 41,971,195 (89.55%) (Supplementary Table 7). PCA 
(Figure 5B) demonstrated statistically significant separation among 
samples from distinct organs, with specimens derived from 
identical tissues clustering together, which indicated substantial 
divergence between the three differential groupings. Correlation 
analysis of C. burmanni organs revealed excellent reproducibility 
across all sample groups (Supplementary Figure S5A). Additionally, 
812 DEGs were commonly enriched in all three comparative groups 
FIGURE 3 

Full-length transcriptome analysis of Cinnamomum burmanni roots, stems, and leaves. (A) The length distribution of polymerase reads. (B) The 
length distribution of Circular Consensus Sequence (CCS) length. (C) Functional annotation of structurally annotated transcripts in NR, Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam, and Swiss-Prot databases. (D) Venn diagram of annotation results for full-
length transcripts in NR, GO, KEGG, Pfam, and Swiss-Prot databases. 
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(Figure 5A). In the ROOTvsLEAF group, 7,479 DEGs exhibited 
significantly differential expression, including 4,422 upregulated 
(59.13%) and 3,057 downregulated (40.87%) (Supplementary 
Figure S5B). The STEMvsLEAF group contained 4,264 DEGs, 
with 1,661 upregulated (38.95%) and 2,603 downregulated 
(61.05%) (Supplementary Figure S5C). The ROOTvsSTEM group 
displayed 5,061 DEGs, comprising 2,792 upregulated (55.17%) and 
2,269 downregulated (44.83%) (Supplementary Figure S5D). 

The enrichment analyses of GO and KEGG were implemented to 
elucidate the biological implications of DEGs in this study. The 
enrichment analysis of GO categorized the functions of DEGs, which 
demonstrated that 20 GO terms with the greatest enrichment 
classified into three major GO categories: BP, CC, and MF. 
Specifically, the BP category contained 14 substantially enriched 
GO terms, the CC category comprised four, and the MF category 
included two. Within the three differential groups, the highest 
quantity of DEGs was enriched in the CC term “cellular 
anatomical entity” (GO:0110165), followed by the BP term “cellular 
process” (GO:0009987), the MF term “binding” (GO:0005488), the 
BP term “metabolic process” (GO:0008152), and the MF term 
“catalytic activity” (GO:0003824) (Supplementary Figures 6A–C). 
The KEGG pathway analysis provided additional functional 
insights into the pathways linked to DEGs. The KEGG results 
revealed that these functional pathways were primarily categorized 
into five major categories: Cellular Processes, Environmental 
Information Processing, Genetic Information Processing, 
Metabolism, and Organismal Systems. Among three distinct 
groups, the most abundant subpopulations were “Metabolic 
pathways” (ko01100) and “Biosynthesis of secondary metabolites” 
(ko01110) under the Metabolism category, as well as “Plant 
−pathogen interaction” (ko04626) under the Organismal Systems 
category (Supplementary Figures 7A–C). KEGG enrichment analysis 
revealed that the DEGs were predominantly enriched in the following 
pathways: “Biosynthesis of secondary metabolites” (ko01110), 
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“Photosynthesis” (ko00195), “Photosynthesis-antenna proteins” 
(ko00196), and “Porphyrin metabolism” (ko00860) (Figures 5C–E). 
3.4 Identification of differentially expressed 
genes in plant hormone signal 
transduction via WGCNA 

To investigate the DEGs that are associated with hormone 
signal transduction across differential organs, this study selected 
10 highly expressed hormones from multiple organs, including 
three IAA hormones (IAA-Val-Me, OxIAA, and TRP), three GA 
hormones (GA1, GA3, and GA20), and four CTK hormones (iP9G, 
mT9G, oT9G, and pT9G). Based on transcriptome profiling data, 
WGCNA was applied with a filtering threshold set at 0.85 (85% of 
genes were excluded, retaining 15% of the data for analysis). By 
applying hierarchical clustering analysis, all genes were partitioned 
into 10 modules, each containing genes with similar expression 
patterns and labeled with distinct colors (Figure 6A). The five 
largest modules were turquoise (845 genes), blue (576 genes), 
brown (340 genes), yellow (329 genes), and green (261 
genes) (Figure 6B). 

Seven modules exhibiting significant correlations with the 
hormone signaling pathway were identified from the WGCNA 
results. Specifically, the green module demonstrated a significantly 
positive correlation with TRP (p < 0.01) and displayed strongly 
negative correlations with GA1, IAA-Val-Me, OxIAA, and pT9G (p 
< 0.01). The turquoise module demonstrated a positive correlation 
with TRP (p < 0.05); exhibited significantly positive correlations 
with GA20, iP9G, and mT9G (p < 0.01); and displayed negative 
correlations with GA1, OxIAA, and pT9G (p < 0.05) and a strongly 
negative correlation with IAA-Val-Me (p < 0.01). The yellow 
module demonstrated a significantly positive correlation with 
GA3 and oT9G (p < 0.01). The blue module displayed positive 
FIGURE 4 

Statistics of transcription factor families identified from full-length transcriptome analysis across differential organs of Cinnamomum burmanni. 
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correlations with OxIAA and pT9G (p < 0.05), exhibited strongly 
positive correlations with GA1 and IAA-Val-Me (p < 0.01), and 
demonstrated a negative correlation with TRP (p < 0.05). The black 
module exhibited negative correlations with GA20, iP9G, and 
mT9G (p < 0.05). The brown module displayed significantly 
positive correlations with GA1 and pT9G (p < 0.01) and 
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exhibited positive correlations with IAA-Val-Me and OxIAA (p < 
0.05). The pink module demonstrated strongly positive correlations 
with OxIAA and pT9G (p < 0.01), exhibited positive correlations 
with GA1 and IAA-Val-Me (p < 0.05), and displayed a negative 
correlation with TRP (p < 0.05) (Figure 6B). Furthermore, seven 
significantly correlated modules were subjected to the KEGG 
FIGURE 5 

Transcriptomic analysis of Cinnamomum burmanni. (A) Venn diagram of differentially expressed genes (DEGs) within distinct organs. (B) Principal 
component analysis (PCA) of transcriptomic profiles. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment statistics of DEGs in 
ROOTvsLEAF. (D) KEGG enrichment plot of DEGs in STEMvsLEAF. (E) KEGG enrichment statistics of DEGs in ROOTvsSTEM. 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1662457
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1662457 
pathway analysis using the graphics package of R (version 3.5.1). 
The results demonstrated that the turquoise module (13 genes) 
contained the highest count of DEGs connected to hormone signal 
transduction, whereas the yellow module (three genes) exhibited the 
lowest quantity of DEGs associated with hormone signaling 
pathways (Figure 6C). 
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3.5 Integrated analysis of differentially 
expressed genes of hormone signaling 
pathway and differential hormones 

Transcriptomic and metabolomic analyses were integrated to 
construct a heatmap, which was linked to phytohormone signal 
FIGURE 6 

Weighted gene co-expression network analysis (WGCNA) results of differentially expressed genes (DEGs) associated with 10 specific hormones in 
Cinnamomum burmanni. (A) Hierarchical clustering dendrogram of gene modules. (B) Heatmap of correlations between DEG modules and traits. 
The red labels represent indole-3-acetic acid (IAA) hormones on x-axis, green labels represent cytokinin (CTK) hormones, blue labels represent 
gibberellin (GA) hormones, and purple labels represent seven high correlation modules. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of significantly correlated modules in highly correlated modules. 
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transduction and metabolic regulation pathways to explore DEGs 
across three organs of C. burmanni. A total of 50 DEGs related to 
hormone signal transduction were determined (Supplementary 
Table 8). Specifically, 19 DEGs were linked to auxin, with eight 
upregulated in leaves, seven in stems, and four in roots; 12 DEGs 
were associated with cytokinin, including four with highly 
expressed levels in leaves, five in stems, and three in roots; 19 
DEGs were related to gibberellin, among which six exhibited 
elevated expression in leaves, two in stems, and 11 in roots 
(Figure 7A). Twelve candidate DEGs were randomly chosen to 
perform qRT-PCR assays for validating the patterns of gene 
expression. The experimental results confirmed consistency 
between the observed expression profiles and bioinformatics 
predictions (Figure 7B). 
 

3.6 Correlation analysis of DEGs among C. 
burmanni’s differential organs and their 
relationship with phytohormones 

The Mantel test correlation heatmap analysis revealed that the 
association patterns of three phytohormones (IAA, CTK, and GA) 
with significantly DEGs in the root, stem, and leaf organs exhibited 
remarkable tissue specificity. In leaves (LEAF), GA demonstrated 
the most prominent correlation effects, showing highly significant 
associations with nine DEGs (p < 0.01) and significant correlations 
with eight DEGs (p < 0.05), with the number of significantly 
correlated genes substantially exceeding that of IAA and CTK. 
IAA exhibited significant correlations with only two genes (p < 
0.05) (Figure 8A). In roots (ROOT), both GA and CTK displayed 
extensively regulatory capacities. GA correlated with 10 DEGs at 
highly significant levels (p < 0.01) and five DEGs at significant levels 
(p < 0.05), while CTK showed one DEG at highly significant levels 
(p < 0.01) and nine DEGs with significant correlations (p < 0.05). 
The number of IAA-associated genes was fewer, with only six 
exhibiting significant/highly significant levels (Figure 8B). In 
stems (STEM), GA dominated the regulatory network, which 
exhibited highly significant correlations with 10 DEGs (p < 0.01) 
and significant associations with two DEGs (p < 0.05). CTK 
displayed significant correlations with only two genes (p < 0.05), 
but IAA showed no significant DEG associations (Figure 8C). 
3.7 Co-expression network comprehensive 
analysis of differentially expressed genes, 
transcription factors, and phytohormones 

The DEGs that were associated with the three hormones (IAA, 
CTK, and GA) were employed to predict and screen TFs using 
PlantTFDB v5.0 (Tian et al., 2020) (Supplementary Table 9). 
Among these, TRI1, AUX/IAA, GH3, SAUR, CRE1, AHP, A­
ARR, and GID1 were excluded during the prediction process 
since they function as auxiliary regulatory proteins instead of 
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transcription factors. The prediction results encompassed five 
transcription factor families, including ARF, bHLH (PIF3/4), G2­
like (DELLA), GRAS (GLK/KAN1/2/HH2O/APL/FT), and ARR-B. 

To investigate the relationships among DEGs, phytohormones, 
and TFs in the IAA, GA, and CTK signaling pathways, correlation 
analysis was conducted. The screening criteria for analysis were 
established at p < 0.05, and the absolute correlation coefficient 
surpassed 0.8. The results revealed 39 differential phytohormones 
and 46 DEGs. Specifically, 15 phytohormones and 18 DEGs were 
associated with IAA, four phytohormones and 18 DEGs were linked 
to GA, and 20 phytohormones and 10 DEGs were correlated with 
CTK. Among the six DEGs participating in the IAA signaling 
pathway, the expression of Cbur03G008810, Cbur03G017910, 
Cbur04G003980 , Cbur10G012060 , Cbur10G026020 , and

Cbur11G010450 exhibited positive correlations with the ARF 
transcription factor. For the nine DEGs engaged in the GA 
signaling pathway, Cbur05G008030 and Cbur10G025060 showed 
positive correlations with the bHLH transcription factor, whereas 
Cbur03G007900 and Cbur10G008890 displayed negative 
correlations with bHLH. Additionally, Cbur02G000190 , 
Cbur04G005370, and  Cbur05G003960 demonstrated positive 
correlations with the GRAS transcription factor, while 
Cbur01G019820 and Cbur07G013060 exhibited negative 
correlations with GRAS. Among the eight DEGs that participated 
in the CTK signaling pathway, Cbur12G017510, Cbur11G010330, 
Cbur01G030160 , Cbur03G017710 , Cbur07G000830 , and

Cbur04G006160 showed positive correlations with G2-like, 
whereas Cbur04G007700 displayed a negative correlation with the 
ARR-B transcription factor. Conversely, Cbur01G029630 exhibited 
a positive correlation with ARR-B (Figure 9). 
4 Discussion 

Hormones play a key role in growth and secondary metabolism. 
Through integrated metabolomic and transcriptomic analyses of C. 
burmanni, this study reveals organ-specific hormonal signatures and 
signaling pathways for root, stem, and leaf development. The main 
findings show that auxin (IAA) mainly accumulates in leaves, CTK 
accumulates in stems, and GA has a dynamic tissue-specific 
distribution, which is related to the differential expression of 
hormone signaling genes (e.g., ARF, Aux/IAA, DELLA, and ARR­
B) in different organs. Importantly, the research identifies a complex 
transcription factor network (including ARF, DELLA, PIF3/4, and 
ARR-B families) that can modulate organ development and 
potentially coordinate terpenoid biosynthesis (e.g., borneol) via 
hormone signaling crosstalk. These results establish a molecular 
framework connecting hormone dynamics with morphology and 
specialized metabolism, providing basic knowledge for improving 
stress resilience and bioactive compound production in this 
economically important species. 

Auxin, as a master regulator of plant growth, participates in 
regulating cell elongation promotion, apical dominance 
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maintenance, and root differentiation (Woodward and Bartel, 
2005). Our study demonstrates that auxin hormones are highly 
concentrated in leaves (Figure 2D, Supplementary Table 4). 
Observing auxin signaling genes exhibiting organ-specific 
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expression profiles in C. burmanni (Figure 7A), we speculated 
that this phenomenon may be associated with the DEGs (ARF, 
Aux/IAA, GH3, and SAUR) in leaves (Figure 7A). As previously 
reported, auxin signal transduction regulates the development of 
FIGURE 7 

(A) Heatmap of differentially expressed genes (DEGs) in plant hormone signal transduction and metabolic regulation pathways. Red demonstrates 
high expression level in the organ, while blue represents low expression level. DEG names in red denote association with ARF family transcription 
factors, orange with bHLH family, green with GRAS family, blue with G2-like family, and purple with ARR-B family. Pink arrows indicate genes 
validated by qRT-PCR experiments. (B) Quantitative real-time polymerase chain reaction (qRT-PCR) used ACTIN as the internal reference control. 
Symbols * and *** indicate p-value < 0.05 and p-value < 0.01, respectively, as determined by one-way ANOVA followed by t-test. 
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plants through ARF and Aux/IAA, modulating the expression of 
downstream genes (Li et al., 2023a). Mei et al. (2022) described that 
MsARF5 mediates the auxin signaling pathway to increase 
Magnolia sieboldii plant height, stem diameter, and leaf width. Xu 
et al. (2022) reported that the elevated expression of CgARF1 
accelerated leaf aging and diminished the content of chlorophyll 
in Cymbidium goeringii. Li et al. (2023a) revealed that ARF1 
modulates the transcriptional process of YUC2-mediated auxin 
biosynthesis through the auxin signaling pathway. Seventeen 
auxin (IAA) signal transduction genes involved in the regulation 
of adventitious root formation in C. bodinieri have been identified 
(Yu et al., 2025). Luo et al. (2025) indicated that IAA biosynthesis 
and its signaling pathways control the development of adventitious 
buds and roots of C. parthenoxylon. Therefore, we hypothesized 
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that the coordinated high expression of ARFs and their Aux/IAA 
repressors may function as critical regulators, affecting leaf 
development, including the expression of hormone biosynthesis 
genes in the leaves to trigger high concentrations of hormones. 

GA participates in regulating multiple developmental processes 
in plants, such as photomorphogenesis (Alabadı ́ et al., 2004) and

stress responses (Navarro et al., 2008). Our research indicates that GA 
hormonal disparities across different organs are not substantial 
(Figure 2D, Supplementary Table 4). We speculate that it may be 
associated with the GDI1 and DELLA genes exhibiting highly similar 
organ-specific expression patterns in C. burmanni (Figure 7A), as 
well as the GA-GID1-DELLA module in GA signal transduction. GA 
signal transduction modulates plant development by DELLA 
transcription factors and other proteins that regulate downstream 
FIGURE 8 

The Mantel test correlation heatmap. The pairwise comparisons of hormone signal transduction differentially expressed genes; the color gradient 
indicates Spearman’s correlation coefficients. Partial (geographic distance-corrected) Mantel test showing correlations among indole-3-acetic acid 
(IAA), gibberellin (GA), cytokinin (CTK), and organ [leaf (A), root (B), and stem (C)] differentially expressed genes. Line thickness indicates correlation 
strength; color represents significance (red, positive; blue, negative). 
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gene expression (Phokas and Coates, 2021; Xue et al., 2022). The 
receptor GID1 perceives GA, which subsequently interacts with the 
DELLA protein and facilitates its degradation to alter transcription 
factor activity (Hernández-Garcıa et  al.,  2021). Guan et al. (2021) ́
reported that DELLA proteins negatively regulate the GA signaling 
pathway to influence stem elongation and bolting processes in 
Brassica campestris. Ritonga et al. (2023) revealed that DELLA 
negatively regulates cell elongation, leaf senescence, and leaf head 
formation by suppressing GA biosynthesis gene expression. Thus, we 
speculated that strong expression of GID1s and  DELLAs in  some

organs may regulate the growth and development of these organs by 
modulating the expression of GA biosynthesis genes to influence the 
GA signal transduction pathway and GA content. Furthermore, 
based on our research, the DEGs of “TF” in the GA signaling 
pathway were predicted as belonging to the PIF family (PIF3/PIF4) 
(Supplementary Table 9). Root tissues and leaves exhibited DELLA­
PIF-mediated signaling (Figure 7A). Li et al. (2016) revealed that 
DELLA proteins in A. thaliana inhibit PIF3 and PIF4 by promoting 
ubiquitin-proteasome degradation. Guo et al. (2024b) reported that 
PIF3 or PIF4 can interplay with DELLA proteins that suppress GA 
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signal transduction to modulate hypocotyl growth. Therefore, we 
hypothesized that these genes may participate in the developmental 
regulation of roots and leaves via interaction, leading to the 
higher expression. 

Cytokinins are involved not only in plant growth (Kieber and 
Schaller, 2018) but also in responses to biotic and abiotic stresses 
(Cortleven et al., 2019). This investigation demonstrates that CTK 
hormones are highly concentrated in stems (Figure 2D, 
Supplementary Table 4), exhibiting CTK signaling genes that 
possessed organ-specific transcriptional profiles in C. burmanni 
(Figure 7A). We speculated that the elevated levels of cytokinin 
hormones in stems may be associated with the DEGs (B-ARR) in
the stems (Figure 7A). The regulation of plant development by the 
CTK signaling pathway may be associated with the ARR-B 
transcription factors and ARR-A modulator proteins (Lai et al., 
2021). ARR-As, which are activated by ARR-Bs, compete with 
ARR-Bs for phosphorylation signal to negatively modulate the 
CTK signaling pathway (Hwang and Sheen, 2001; Tan et al., 
2019). In A. thaliana, ARR10, ARR12, and ARR18 of type B cause 
an increased quantity of mutant plants of bud regeneration, 
FIGURE 9 

Co-expression network analysis of differentially expressed genes (DEGs), transcription factors (TFs), and phytohormones. Salmon circles denote 
predicted TFs; light blue circles denote identified phytohormones; light yellow circles denote identified DEGs. Red edges represent positive 
correlations between DEGs and TFs; blue edges represent negative correlations between DEGs and TFs. 
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hypocotyl elongation, and development of axillary meristem (Zhu 
et al., 2022). Ou et al. (2022) revealed that ARR1-b positively 
regulates cytokinin signal transduction to promote root and stem 
elongation and inhibit leaf senescence and stem thickening in 
Flowering Chinese cabbage (Brassica rapa). Thus, we supposed 
that high expression of ARR-Bs in stems may regulate the growth 
and development of stems by transmitting the signal of CTK to 
influence the CTK hormone level. 

As an essential oil-producing plant, C. burmanni’s terpenoid 
biosynthesis is potentially regulated by hormone signaling 
pathways. Previous studies have shown that ARF-related genes 
(including miRNAs and ARF transcription factors) of auxin 
signaling and DELLA of GA signaling participate in terpenoid 
metabolism. Wang et al. (2025b) reported that HcARF8 and the 
auxin receptor HcTIR1 negatively regulate floral scent compound 
synthesis in Hedychium coronarium, with HcARF8 directly binding 
to the promoter of the terpene synthase gene HcTPS8 to modulate 
terpenoid biosynthesis. Zhang et al. (2020) demonstrated that 
miR167 targets the ARF6 transcription factor to regulate TPS1 
and TPS5 expression in H. coronarium, influencing terpenoid 
biosynthesis. Hong et al. (2012) demonstrated that GA signaling 
repressor DELLA inhibits the function of sesquiterpene synthase 
genes in A. thaliana (including TPS11 and TPS21) via interaction 
with MYC2 transcription factor. Notably, Danova et al. (2018) 
observed that CTK treatment boosts sesquiterpene production in 
Artemisia alba Turra. Therefore, with the treatment of CTK, the 
identified ARF and DELLA gene families may be involved in 
modulating terpenoid biosynthesis in C. burmanni. 
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5 Conclusions 

This study integrated metabolomics, transcriptomics, and full-
length transcriptomics to elucidate the molecular mechanisms 
underlying the hormone distribution and expression regulation of 
genes in differential organs (roots, stems, and leaves) of C. 
burmanni. Metabolomic data revealed 70 differential hormones 
across the three organs, with IAA hormones significantly 
enriched in leaves, while GA and CTK hormones were highly 
expressed in stems. This distribution pattern was closely linked 
to the regulatory modes of organ-specific DEGs discovered by 
the transcriptomic data (Supplementary Table 8). Utilizing 
transcriptomics and full-length transcriptomics, we identified 812 
key DEGs, including 50 related to hormone signal transduction, and 
we validated 12 DEGs through qPCR experiments. This study 
identified 10 transcription factors that participate in hormone 
signal transduction, highlighting the central roles of ARF, bHLH 
(PIF3/4), GRAS (DELLA), G2-like (GLK/KAN1/2/HH2O/APL/ 
FT), and ARR-B transcription factors in the hormone signaling 
pathway. These factors belonged to five gene families, forming 
a molecular regulatory network of hormones, genes, and TFs 
(Figures 10). The discovery of these DEGs and TFs further 
clarified the regulatory role of hormone signaling networks in 
organ development and environmental adaptation. Future 
research could employ gene editing or transgenic technologies to 
verify the roles of these pivotal genes and investigate the latent 
applications of hormone interaction networks in stress resistance 
breeding of C. burmanni using multi-omics data. 
FIGURE 10 

Regulatory model diagram of hormones and predicted transcription factors (TFs) in differential organs of Cinnamomum burmanni. Chartreuse 
represents TFs and proteins in Solanum lycopersicum, spring green represents TFs and proteins in Arabidopsis thaliana, and other colors represent 
predicted TFs in C. burmanni. 
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