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The nutritional and health-promoting properties of tomatoes (Solanum
lycopersicum), a highly significant crop, are attributed to their abundance of
beneficial components, such as flavonoids, phenolic compounds, and
carotenoids (including lycopene and B-carotene). The occurrence of these
bioactive molecules is influenced by genetic, environmental, and agronomic
factors, with ripening playing a critical role in their accumulation. This abstract
delves into the molecular machinery controlling phytochemical accumulation,
with a specific focus on the regulation of lycopene biosynthesis. The RIPENING-
INHIBITOR (RIN) transcription factor, a master regulator of fruit maturation,
exerts direct control over lycopene accumulation by binding to the promoters
of critical biosynthetic genes. RIN directly activates the expression of PHYTENE
SYNTHASE 1 (PSY1), the key rate limiting enzyme committing metabolic flux to
the carotenoid pathway, and PDS, encoding phytocene desaturase, thereby
orchestrating the massive lycopene synthesis characteristic of the ripening
transition. Strategies for the biofortification of tomato fruits have leveraged this
understanding through targeted genetic manipulation. Overexpression of key
enzymes, such as the bacterial CrtB (phytoene synthase) or manipulation of the
endogenous PSY1, has successfully enhanced lycopene flux. More profoundly,
the manipulation of transcription factors offers a powerful multi-gene approach.
For instance, the overexpression of fruit-specific promoters driving RIN or other
regulators like HYR (High Pigment) can simultaneously improve the entire
pathway, leading to substantial increases in lycopene content. Flavonoids and
phenolic compounds are produced by the phenylpropanoid pathway, which is
regulated by enzymes such as chalcone synthase (CHS) and phenylalanine
ammonialyase (PAL). Gene regulation of these pathways involves a complex
interplay of transcription factors (e.g., RIN, NOR, and HY5) and phytohormones
(e.g., ethylene and abscisic acid), which modulate expression patterns during fruit
development and stress responses. Phytochemical levels are also significantly
influenced by environmental factors; for instance, optimal lycopene synthesis
occurs at 20-25 °C, while higher temperatures above 30 °C inhibit lycopene
accumulation and promote beta-carotene synthesis, a shift mediated by the
temperature-sensitive expression of key genes, including those regulated by RIN.
Naturally occurring or induced mutations in genes such as DET1 and HP2, which
are negative regulators of light signal transduction, result in high pigment
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phenotypes with dramatically increased lycopene and flavonoid content. The
successful application of metabolic engineering and transcription factor
manipulation for biofortification holds immense promises for developing next-
generation tomato cultivars with amplified health-promoting properties, directly
linking agricultural science to improved human health outcomes through the
mitigation of chronic diseases like cancer and cardiovascular disorders.
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tomato, functional components, biosynthesis pathways, gene regulation, health
benefits, carotenoids, flavonoids

1 Introduction

The tomato (Solanum lycopersicum) is one of the most popular
and nutrient-dense vegetables in the world (Kumar et al., 2020). In
addition to their many culinary uses, tomatoes are a great source of
health promoting bioactive chemicals (Pinela et al., 2016).
Flavonoids (like quercetin and kaempferol), phenolic acids (like
chlorogenic acid), carotenoids (like lycopene and [B-carotene),
glycoalkaloids (like o-tomatine), and vitamins (like C and E) are
some examples of these bioactive components useful substances
(Szabo et al., 2025; Duma et al., 2018). These compounds exhibit
antioxidant, anti-inflammatory, anticancer, and cardioprotective
properties, making tomatoes a functional food with significant
health benefits. The occurrence of these phytochemicals varies
depending on genetic factors, environmental conditions, and
postharvest handling (Tiwari and Cummins, 2013). Their
biosynthesis is regulated by complex metabolic pathways
involving key enzymes and transcription factors (Li et al., 2025).
Understanding the genetic and molecular mechanisms behind their
production can help in developing biofortified tomato varieties with
enhanced nutritional value (Meng et al., 2022; Ofori et al., 2022).
This article provides an in-depth exploration of the functional
components in tomatoes, covering their; occurrence distribution
in different tomato tissues and varieties, biosynthesis pathways key
enzymatic steps in the production of carotenoids, flavonoids, and
other metabolites, gene regulation transcriptional and post-
transcriptional control of biosynthetic genes, and health benefits
evidence-based roles in disease prevention and health promotion.
By elucidating these aspects, we aim to highlight the importance of
tomatoes as a dietary source of bioactive compounds and discuss
potential strategies for enhancing their nutritional quality through
breeding and biotechnology.

Occurrence of functional components, tomatoes accumulate
various phytochemicals in different tissues; such as carotenoids
(lycopene, B-carotene, lutein) are predominantly found in the
ripened fruit (Chaudhary et al.,, 2018; Wang et al., 2023b), with
lycopene being the most abundant. Flavonoids (naringenin, rutin,
quercetin) are concentrated in the peel and outer pericarp. Phenolic
acids (chlorogenic acid, caffeic acid) are distributed throughout the
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fruit (Suleria et al., 2020). Glycoalkaloids (o.-tomatine) are more
abundant in green tomatoes and leaves (Kozukue et al, 2023).
Factors such as cultivar type, ripening stage, light exposure, and
agronomic practices influence their concentrations (Cervantes et al.,
2019). Biosynthesis pathways of key phytochemicals; carotenoid
biosynthesis derived from the methylerythritol phosphate (MEP)
pathway (Saadullah et al., 2025), leading to geranylgeranyl
pyrophosphate (GGPP) (Ezquerro, 2022). Phytoene synthase
(PSY) catalysis the first committed step, forming phytoene (Zhou
et al., 2022), the subsequent desaturation and isomerization
reactions produce lycopene, which can be cyclized into B-carotene
(Heymann et al., 2015), Figure 1 explain roles of transcription factor
(SIBEL11) in biosynthesis of carotenoids. Flavonoid biosynthesis
originates from the phenylpropanoid pathway, producing
precursors like p-coumaroyl-CoA. Chalcone isomerase (CHI) and
chalcone synthase (CHS) lead to naringenin chalcone, a precursor
for various flavonoids (Tong et al, 2021; Saltzman, 2023; Waki
et al., 2020). For glycoalkaloid biosynthesis derived from
cholesterol, undergoing glycosylation to form o-tomatine, which
decreases during fruit ripening. Gene regulation of biosynthetic
pathways through transcription factors (TFs) such as RIN
(Ripening Inhibitor), HY5 (Elongated Hypocotyl 5), and MYB
regulators control carotenoid and flavonoid production (Liu et al.,
2023; Xie et al, 2024). Epigenetic modifications (histone
acetylation, DNA methylation) induce gene expression during
ripening and the environmental signals (light, temperature)
modulates biosynthetic gene activity via photoreceptors like
phytochromes (Bianchetti et al., 2022; Li et al,, 2022; Anwar
et al,, 2021).

Health benefits of tomato bioactive compounds (lycopene,
flavonoids, vitamin C, and o-tomatine) can reduces oxidative
stress, lowers cardiovascular disease risk, and exhibit anticancer
properties (especially prostate cancer) (Pinela et al., 2016;
Friedman, 2013; Collins et al., 2022). Also, improve endothelial
function and possess anti-inflammatory effects, enhances immune
function and collagen synthesis, and shows antimicrobial and
cholesterol lowering effects (Wozniak et al., 2023). Tomatoes are
a powerhouse of bioactive compounds with significant health
promoting properties. While the targeted manipulation of gene
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regulation holds immense promise for enhancing functional
phytochemicals in tomatoes, the approach is not without its
significant current limitations. Scientifically, a primary concern
remains the potential for off-target effects, where gene-editing
tools like CRISPR-Cas9 could inadvertently alter unintended
sections of the genome, potentially disrupting other vital
metabolic pathways or plant functions, with consequences that
are difficult to fully predict. Beyond the laboratory, consumer
acceptance and complex regulatory landscapes present formidable
hurdles. Widespread public skepticism, particularly regarding
“GMO” technologies, and stringent, varying global regulations
could severely limit the commercial viability and market access of
these nutritionally enhanced tomatoes. Therefore, addressing these
dual challenges of technical precision and societal trust is as crucial
as the scientific breakthrough itself for the successful application of
gene regulation in creating the next generation of functional foods.
Advances in genomics and metabolic engineering offer
opportunities to enhance these functional components, paving the
way for improved dietary strategies and functional food
development. Further research into gene regulation and
bioavailability will maximize their therapeutic potential.
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2 Occurrence of functional
components in tomato

Tomatoes (Solanum lycopersicum) have a wide range of
bioactive chemicals with important nutritional and health
benefits. Carotenoids (including lycopene and P-carotene),
phenolic acids, flavonoids, vitamins C and E, and glycoalkaloids
are responsible for the fruit’s anti-inflammatory, anti-cancer, and
antioxidant qualities (Figure 1). Genetic cultivar, ripening stage, and
agronomic conditions all influence the composition and
concentration of these bioactive compounds, which are highly
variable. For instance, lycopene, the predominant carotenoid
responsible for tomatoes’ red colour, accumulates predominantly
during the later stages of ripening, while certain flavonoids and
chlorogenic acid levels may peak earlier. Environmental factors,
including light exposure, temperature, soil quality, and water
availability, further modulate phytochemical profiles, with organic
cultivation and stress conditions (e.g., drought or salinity) often
enhancing secondary metabolite production. Additionally,
postharvest handling and processing methods (e.g., thermal
treatment) can alter bioavailability and bioactivity. Understanding
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FIGURE 1
SIBEL11 and its roles in biosynthesis carotenoid in tomato (He et al., 2022).
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these dynamics is crucial for optimizing tomato production to
maximize health benefits and for developing functional foods or
nutraceuticals. The concentration of these phytochemicals varies
significantly between green and ripening stages, influenced by
biochemical and enzymatic changes during maturation as shown
in Table 1. Lycopene, the predominant carotenoid in ripe tomatoes,
increases dramatically during ripening due to the upregulation of
lycopene biosynthesis pathways (Bramley, 2002; Zhu et al., 2022),
while B-carotene levels may show a more gradual rise (Kozukue and
Friedman, 2003; Kapoor et al., 2022). Phenolic acids and flavonoids,
which are key antioxidants, often peak at intermediate ripening
stages, as their synthesis is modulated by both developmental cues
and environmental factors (Valero and Serrano, 2013). Vitamin C
(ascorbic acid) tends to accumulate progressively with ripening
(Fenech et al,, 2019), whereas vitamin E (tocopherols) may exhibit a
more stable or slightly declining trend (Galli and Azzi, 2010).
Glycoalkaloids, such as o-tomatine, are typically higher in green
tomatoes and decline as the fruit matures, meaning that
glycoalkaloids play a role like a defense mechanism shift
(Friedman, 2002; Faria-Silva et al., 2022). This dynamic profile of
bioactive compounds highlights the importance of harvest timing in
optimizing nutritional quality. Understanding these metabolic
changes provides insights into breeding strategies and postharvest
practices aimed at enhancing the health benefits of tomatoes for
human consumption.

2.1 Carotenoids

Carotenoids are a class of bioactive compounds widely
recognized for their antioxidant properties, with tomatoes
(Solanum lycopersicum) being one of the richest dietary sources
(Leon-Garcia et al, 2017). The major carotenoids in tomatoes
include lycopene, B-carotene, lutein, and zeaxanthin, each
contributing to the fruit’s vibrant color and nutritional value

10.3389/fpls.2025.1662388

(Ilahy et al., 2018). Among these, lycopene stands out as the most
abundant, accounting for approximately 80-90% of total
carotenoids, and is renowned for its potent antioxidant and anti-
inflammatory activities (Khan et al., 2021). Epidemiological and
clinical studies have linked lycopene consumption to a reduced risk
of chronic diseases, including cardiovascular disorders, certain
cancers, and age-related macular degeneration (Abir et al., 2023).
The biosynthesis of carotenoids in tomatoes is influenced by
genetic, environmental, and agronomic factors, such as cultivar
type, ripening stage, light exposure, and postharvest handling (Saini
and Keum, 2018; Nie et al.,, 2024). Recent advances in metabolic
engineering and breeding strategies have aimed to enhance
carotenoid content, particularly lycopene and (-carotene, to
improve nutritional quality. Additionally, the bioavailability of
tomato carotenoids is affected by food processing methods;
thermal treatment and lipid co-consumption have been shown to
increase their absorption in the human digestive system (Yan et al,,
2024; Rocha et al,, 2023). Despite their health benefits, carotenoid
stability is a challenge due to susceptibility to oxidative degradation.
Encapsulation techniques and antioxidant-rich dietary matrices are
being explored to preserve their bioactivity (Borah et al., 2023; Saini
et al,, 2022). Future research should focus on optimizing carotenoid
retention in processed tomato products, elucidating their molecular
mechanisms in disease prevention, and developing biofortified
tomato varieties to address global nutritional deficiencies.

2.2 Polyphenols

Polyphenols are a diverse group of bioactive compounds in
tomatoes (Solanum lycopersicum), these secondary metabolites,
including flavonoids (e.g., quercetin, kaempferol, and naringenin)
and phenolic acids (e.g, chlorogenic and caffeic acids), contribute
significantly to the fruit’s nutritional and functional value (Wang et al,,
2023b; Berni et al., 2018). The polyphenolic composition in tomatoes

TABLE 1 Summarizing the concentration changes of key bioactive compounds in green (unripe) and ripening (red) tomatoes (Solanum lycopersicum).

Ripening tomato

Green tomato i)

Compound

Change during
ripening

Carotenoids

Lycopene Low High Dramatic increase (Bramley, 2002; Kapoor et al., 2022)
Kozukue and Friedman, 2003,; Ka t al.,
B-Carotene Low Moderate Gradual increase (Kozukue and Friedman ipoor et &
2022)
Phenolic Acids High Moderate to Low Slight decrease (Valero and Serrano, 2013; Gupta et al,, 2022)
Flavonoids High Moderate Decreases slightly (Fenech et al., 2019)
Vitamins
) . . (Fenech et al., 2019; Mellidou and Kanellis,
Vitamin C Moderate High Increases
2023)
Vitamin E (o-
itamin E ( Low Moderate Slight increase (Galli and Azzi, 2010)
tocopherol)
High (e.g., 0- . .
Glycoalkaloids igh ( Ag Low Decreases significantly (Liu et al., 2023)
tomatine)
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like carotenoids varies depending on genetic factors, ripening stage,
agronomic practices, and post-harvest conditions (Tilahun et al., 2017).
These chemicals serve an important role in alleviating oxidative stress
by scavenging free radicals and altering cellular signaling pathways,
hence lowering the risk of chronic diseases such as cardiovascular
disorders, cancer, and diabetes. Additionally, polyphenols in tomatoes
exhibit antimicrobial and anti-proliferative activities, further enhancing
their potential as nutraceuticals (D’Angelo, 2021; Mutalib et al,, 2023).
Recent advances in metabolomics and biofortification strategies have
enabled the enhancement of polyphenol content in tomatoes, offering
improved dietary sources for health benefits. However, bioavailability
and metabolism of these compounds in humans remain critical areas of
research to fully exploit their therapeutic potential.

2.3 Vitamins

Tomatoes (Solanum lycopersicum) are particularly rich in vitamins,
which significantly increases their nutritional worth and health
promoting properties (Pinela et al., 2016; Faraone et al, 2021).
Among the most notable vitamins in tomatoes are vitamin C
(ascorbic acid), vitamin A (primarily as B-carotene, a provitamin A
carotenoid), vitamin E (o-tocopherol), and several B-complex
vitamins, including folate (B9), pyridoxine (B6), and niacin (B3)
(Amr and Raie, 2022; Ofoedu et al., 2021). These vitamins function
as potent antioxidants, coenzymes, and regulators of metabolic
processes, playing crucial roles in human health. Reactive oxygen
species (ROS) are scavenged by vitamin C, a water-soluble
antioxidant, enhances immune function, and aids in collagen
synthesis (IKhadim and Al-Fartusie, 2021). Lipophilic vitamins, such
as [3-carotene (a precursor to retinol) and o-tocopherol, protect cellular
membranes from oxidative damage and support vision, skin health,
and immune responses (Khadim and Al-Fartusie, 2021; Carazo et al.,
2021). Additionally, B vitamins in tomatoes contribute to energy
metabolism, DNA synthesis, and neurological function. The
bioavailability of these vitamins in tomatoes is influenced by factors
such as ripening stage, cultivar differences, postharvest handling, and
processing methods (Arah et al., 2015). Thermal processing, for
instance, may degrade heat-labile vitamins like vitamin C but can
increase the bioavailability of lipid-soluble vitamins by breaking down
cell walls. Recent research highlights the synergistic interactions
between tomato vitamins and other phytochemicals (e.g., lycopene,
flavonoids), amplifying their antioxidant and anti-inflammatory eftects.
Given their essential roles in disease prevention such as reducing the
risk of cardiovascular diseases, cancer, and age-related degeneration
tomato derived vitamins represent key functional food components.
Further studies on biofortification, optimized processing techniques,
and the mechanistic pathways of these vitamins could enhance their
therapeutic and nutraceutical applications.

2.4 Glycoalkaloids

The class of nitrogen-containing secondary metabolites known as
glycoalkaloids is mostly present in plants of the Solanaceae family,
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which includes tomatoes (Solanum lycopersicum) (Zhao et al., 2021).
Because of their antibacterial, antifungal, and insecticidal qualities,
these bioactive substances like o-tomatine and dehydrotomatine are
essential to plant defense mechanisms against diseases and pests
(Liu et al, 2023). Recent studies have highlighted their potential
pharmacological benefits, including anticancer, anti-inflammatory,
and cholesterol-lowering effects, making them promising candidates
for nutraceutical and therapeutic applications. However, glycoalkaloids
exhibit a dual nature, as excessive consumption may lead to toxic effects
such as gastro intestinal disturbances and neurotoxicity, necessitating
careful consideration of their dosage and bioavailability (Ahamad et al,,
2022). The biosynthesis of glycoalkaloids in tomatoes is influenced by
genetic, environmental, and postharvest factors, with ripening stages
significantly affecting their concentration (Zhao et al., 2023). Advanced
extraction and analytical techniques, such as HPLC-MS (ElShamey
et al, 2021) and NMR (EIShamey et al., 2021), have enabled
precise quantification and structural characterization, facilitating
research into their bioactivity and safety profiles. This review
comprehensively examines the biochemical properties, biological
functions, health implications, and potential applications of tomato
glycoalkaloids, while addressing challenges related to their toxicity and

regulatory aspects.

2.5 Other bioactive compounds

Tomatoes (Solanum lycopersicum) are a rich source of diverse
bioactive compounds beyond the well-studied carotenoids,
vitamins, polyphenols, and glycoalkaloids. These lesser explored
phytochemicals exhibit significant biological activities, contributing
to the health promoting properties of tomatoes. Among them,
terpenes (such as mono and sesquiterpenes) contribute to aroma
and possess antimicrobial and anti-inflammatory effects. Phytosterols
(e.g., B-sitosterol and stigmasterol) demonstrate cholesterol lowering
potential and may modulate cardiovascular health (Kumar et al,
2022; Lobo et al., 2018). Fatty acid derivatives, including oxylipins,
play roles in plant defense and exhibit anti-inflammatory and
antioxidant properties in humans (Savchenko et al., 2022).
Additionally, alkaloids like tomatidine (an aglycone of o-tomatine)
show emerging anticancer and antimicrobial activities (Friedman,
2013; Faria-Silva et al., 2022). Flavonoid glycosides (distinct from free
polyphenols) enhance bioavailability and exert antioxidant effects,
Plants package certain healthy compounds (flavonoids) with a sugar
molecule. This package job makes them more easily absorbed into
your body than their unpackaged versions. Once absorbed, they
help protect your cells from damage. Furthermore, nucleosides
and nucleotides in tomatoes may influence cellular metabolism
and immune function (Witte and Herde, 2024). The presence of
sulfur-containing compounds, such as glutathione derivatives,
contributes to redox regulation and detoxification processes.
These under investigated compounds, though present in smaller
quantities, may synergize with major phytochemicals to enhance
the nutraceutical value of tomatoes. To clarify their processes,
bioavailability, and possible health advantages in disease prevention
and the creation of functional foods, more investigation is required.
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3 Agricultural practices and
phytochemical concentrations

Recent research has demonstrated that tailored agricultural
practices can significantly enhance the biosynthesis and
accumulation of these valuable compounds as shown in Table 2.
This review explores key cultivation strategies that optimize light
exposure, precision nutrient management, and controlled stress
induction that can be employed to elevate phytochemical
concentrations in tomato fruits. Optimized light exposure plays a
critical role in modulating secondary metabolite production (Zhang
et al, 2021). Adjusting light quality (e.g., red, blue, and UV-B spectra),
intensity, and photoperiod can stimulate the phenylpropanoid and
carotenoid pathways, leading to increased synthesis of flavonoids,
anthocyanins, and lycopene (Wang et al, 2025). For instance,
supplemental blue light has been shown to enhance antioxidant
capacity, while UV-B exposure can trigger defense related
phytochemical accumulation (Bhattarai et al., 2025). Precision
nutrient management, particularly the modulation of macronutrients
(N, P, K) and micronutrients (Mg, Zn, Se), influences enzymatic
activities involved in phytochemical biosynthesis (Tariq et al., 2023).
Reduced nitrogen levels, coupled with balanced potassium and
phosphorus, have been linked to higher phenolic and carotenoid
content. Additionally, biofortification with selenium and zinc can
further augment antioxidant properties without compromising yield.

10.3389/fpls.2025.1662388

Controlled stress induction through moderate drought, salinity, or
biotic elicitors (e.g., jasmonic acid, chitosan) activates plant defense
mechanisms, resulting in the upregulation of secondary metabolites.
Abiotic stresses such as regulated deficit irrigation and saline conditions
have been found to boost lycopene and tocopherol levels, while elicitors
can enhance the production of polyphenols and glycoalkaloids.
Integrating these agronomic approaches offers a sustainable strategy
to enhance the nutraceutical value of tomatoes while maintaining crop
productivity. Future research should focus on genotype-specific
responses and the economic feasibility of large-scale implementation
to maximize phytochemical yields for functional foods and
pharmaceutical applications.

4 Biosynthesis pathways of key
functional components

4.1 Carotenoid biosynthesis

The biosynthesis of carotenoids in tomato fruits represents a
brilliantly orchestrated biochemical pathway, transitioning
chloroplasts into chromoplasts and painting the ripening fruit with
characteristic red and orange hues. This process is governed by a
precise genetic and enzymatic framework. The pathway initiates with
the condensation of geranylgeranyl pyrophosphate (GGPP) by

TABLE 2 Summarizing agricultural practices that can enhance the biosynthesis and accumulation of valuable compounds in green and ripening

tomatoes (Solanum lycopersicum).

Effect on

Key

Agricultural

practice

Effect on green
tomatoes

ripening
tomatoes

compounds
enhanced

Mechanism/notes

Optimized Light Exposure

Increases chlorophyll

Enhances lycopene and

Phenolics, flavonoids,

UV-B and red light stimulate

(Cervantes

and phenolic content carotenoid synthesis lycopene, B-carotene antioxidant pathways et al., 2019)
May increase phenolic Boosts lycopene and Lycopene, phenolics, Controlled drought stress enhances Rouphael
Water Stress (Moderate) Y K P yeop yeop P & . (Roup
acids sugar content sugars secondary metabolites et al., 2012)
. . Enhances color . . -
Nutrient Management (High = Improves early growth Lycopene, carotenoids, = Potassium promotes ripening; excess (Rouphael
development and . . .
K, Low N) and chlorophyll o vitamin C nitrogen delays it et al., 2012)
antioxidants
Organic Fertilization Increases phenolic and Improves lycopene and Flavonoids, lycopene, Microbes enhance nutrient uptake (Rouphael
(Compost, Biofertilizers) flavonoid content antioxidant capacity vitamin E and stress resilience et al., 2012)

Ethephon or Ethylene
Application

Temperature Modulation
(Warm days, cool nights)

Salinity Stress (Moderate)

Accelerates color
change (if applied late)

Slows degradation of
chlorophyll

May increase
osmoprotectants (e.g.,
proline)

Significantly boosts
lycopene synthesis

Promotes lycopene
accumulation

Enhances phenolic and
lycopene content

Lycopene, carotenoids

Lycopene, B-carotene

Phenolics, lycopene,
vitamin C

Ethylene triggers ripening-related
pathways

Optimal temps (~24 °C day, ~18 °C
night) favor pigment synthesis

Mild salt stress induces antioxidant
responses

(Kowsalya
et al,, 2025)

(Ferrante and
Mariani, 2018)

(Tariq et al.,
2023)

Use of Biostimulants
(Seaweed extracts, humic
acids)

Improves early growth
and stress tolerance

Enhances pigment and
nutrient content

Lycopene, flavonoids,
vitamin C

Stimulates plant defense and
metabolic activity

(Vardanian
et al., 2025)

Harvest Time (Breaker stage

Higher chlorogenic acid

Optimal lycopene if

Lycopene, flavonoids,

Longer vine retention increases

(Vardanian

vs. Mature green) if harvested early vine-ripened vitamin C phytonutrients et al., 2025)
Mulching (Plastic or Stabilizes root zone, Enhances sugar and Lycopene, phenolics, Regulates soil temp/moisture for (La Spada
Organic) improves early growth antioxidant levels sugars better nutrient uptake et al., 2024)
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phytoene synthase (PSY1), the first and major rate-limiting enzyme
encoded by the PSYI gene, which is exclusively and highly expressed
during fruit ripening. The colorless phytoene is then progressively
desaturated and isomerized by a series of enzymes, including
phytoene desaturase (PDS), {-carotene desaturase (ZDS), and the
carotenoid isomerase (CRTISO), to form the red pigment, lycopene.
This lycopene accumulation is the hallmark of ripe tomato fruit. The
cyclization of lycopene, catalyzed by lycopene B-cyclase (LCY-B) and
lycopene e-cyclase (LCY-E), branches the pathway towards the
production of B-carotene (provitamin A) and lutein. The critical
shift from chloroplastic to chromoplastic carotenoid accumulation is
tightly regulated by ripening transcription factors, most notably
the RIN (RIPENING INHIBITOR), NOR (NON-RIPENING),

10.3389/fpls.2025.1662388

and TAGLI proteins, which directly activate key genes like PSY1.
The production of the basic C5 isoprenoid units by the
methylerythritol 4-phosphate (MEP) pathway is the first in a series
of enzymatic mechanisms that tightly control the biosynthesis
of carotenoids in tomatoes, which primarily occurs in the
chromoplasts. The first committed carotenoid precursor, phytoene,
is created when phytoene synthase (PSY) condenses these units. A
number of desaturation, isomerization, and cyclization processes are
catalyzed by important enzymes such as phytoene desaturase (PDS),
-carotene desaturase (ZDS), carotenoid isomerase (CRTISO), and
lycopene B- and e-cyclases (LCYB, LCYE) as shown in Figure 2
(Llorente et al., 2016). The regulation of these pathways is influenced
by genetic factors (e.g., transcription factors RIN, NOR, and HYR),
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Schematic biosynthesis pathways for carotenoids in tomato fruits.
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environmental conditions (light, temperature), and hormonal signals
(ethylene, abscisic acid).

Recent advances in molecular biology have provided powerful
tools to dissect and manipulate this pathway with unprecedented
precision. While traditional Mutagenesis and QTL (Quantitative
Trait Loci) mapping identified foundational genes like old-gold
(responsible for B-carotene accumulation), modern techniques have
revolutionized our capabilities; CRISPR-Cas9 genome editing, this
has become the technique of choice for targeted metabolic
engineering. By knocking out specific genes, scientists can
precisely redirect metabolic flux. For instance, knocking out LCY-
B prevents the conversion of lycopene to [3-carotene, resulting in
tomatoes with significantly enhanced lycopene content. Conversely,
simultaneous editing can create novel profiles, such as high-f3-
carotene fruits. Transcriptomics (RNA-Seq), this allows for the
comprehensive profiling of gene expression throughout fruit
development and in response to various conditions. By
comparing transcriptomes of different tomato varieties or
ripening stages, researchers can identify novel genes and
regulatory networks involved in carotenoid control, beyond the
well-established pathway. Finally, metabolomics which coupled
with transcriptomics, metabolomics provides a complete snapshot
of the metabolic profile. This systems biology approach helps in
understanding the complex interactions between the carotenoid
pathway and other metabolic networks, revealing how engineering
one pathway might affect others.

In summary, the journey from a green to a red tomato is a vivid
demonstration of precise genetic control over a defined enzymatic
pathway, with PSY1 and LCY-B acting as critical gatekeepers. The
deployment of sophisticated molecular techniques, particularly
CRISPR-Cas9, has transitioned research from mere observation to
direct, precise engineering. These tools not only deepen our
fundamental understanding of plant metabolism but also hold
immense promises for biofortification, allowing us to design
tomato fruits with optimized nutritional value, enhanced visual
appeal, and improved health benefits to meet global dietary needs.

4.2 Flavonoid biosynthesis

The biosynthesis of flavonoids in tomato fruits is a meticulously
regulated biochemical pathway, resulting in a spectrum of beneficial
compounds ranging from colorless flavanones to brightly colored
anthocyanins. This pathway is orchestrated by a core set of
structural genes encoding enzymes that sequentially modify the
basic phenylpropanoid backbone. The journey begins with PAL
(Phenylalanine Ammonia-Lyase), which channels primary
metabolism into the pathway, and proceeds through key enzymes
like CHS (Chalcone Synthase), CHI (Chalcone Isomerase), and F3H
(Flavanone 3-Hydroxylase) to form the central intermediate,
dihydrokaempferol. The pathway then diverges, guided by the
action of DFR (Dihydroflavonol 4-Reductase), ANS
(Anthocyanidin Synthase), and various Glycosyltransferases and
Methyltransferases, to produce the final array of pigments and
compounds, such as the red anthocyanins in the fruit peel or
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flavonols like quercetin and kaempferol glycosides. Crucially, the
spatial and temporal expression of these structural genes is
governed by a complex of transcriptional regulators, primarily
from the R2R3-MYB, bHLH (basic Helix-Loop-Helix), and WDR
(WD-repeat) protein families (Li, 2014; Gao et al., 2018). In tomato,
the activation of anthocyanin biosynthesis, for instance, is often
dependent on the expression of specific MYB transcription factors
(e.g., ANT1, AN2-like), which interact with bHLH partners (e.g.,
ANI1) to form the MBW complex that activates the promoters of
late biosynthetic genes like DFR and ANS as shown in Figure 3
(Verhoeyen et al., 2002; Schijlen et al., 2006).

Recent advances in molecular biology have revolutionized our
ability to dissect and manipulate this pathway. CRISPR-Cas9 gene
editing has been instrumental, moving beyond correlation to direct
causation by knocking out specific genes (e.g., CHSI, DFR) to
confirm their function and create tomatoes with altered flavonoid
profiles. Conversely, the targeted activation of key transcription
factors like SIAN2 or SIMYB75 using CRISPR activation
(CRISPRa) systems or traditional transgenesis has successfully
engineered tomatoes with dramatically enhanced anthocyanin
accumulation, turning the fruit purple and boosting its
antioxidant capacity. Furthermore, RNA interference (RNAi) has
been used to silence specific genes, fine-tuning the pathway to
reduce undesirable compounds or shunt flux towards preferred
flavonoids. Beyond single-gene manipulation, multi-omics
approaches integrating genomics, transcriptomics, metabolomics,
and proteomics have provided a systems level understanding. By
analyzing the entire pathway simultaneously, researchers can
identify all players involved, uncover novel regulatory nodes, and
understand how environmental factors influence flavonoid output.
Virus-Induced Gene Silencing (VIGS) remains a rapid, powerful
tool for transiently knocking down gene expression in tomato fruits,
allowing for high-throughput functional screening of candidate
genes without the need for stable transformation. In summary,
the flavonoid pathway in tomato is a well-defined genetic and
enzymatic network. The synergy between classical biochemistry and
cutting-edge molecular techniques particularly CRISPR-Cas9 and
multi-omics integration has not only demystified the roles of key
genes and enzymes but has also empowered breeders and
biotechnologists to precisely engineer tomato fruits. This paves
the way for developing next generation tomato varieties with
enhanced nutritional value, improved stress resilience, and novel
visual and health-promoting traits tailored to meet consumer and
agricultural demands.

4.3 Vitamin C biosynthesis

The biosynthesis of vitamin C (L-ascorbic acid, AsA) in tomato
fruits is a complex and highly regulated process, primarily governed
by the L-galactose pathway. This pathway represents the dominant
route for de novo AsA production in plants, converting the
nucleotide sugar GDP-D-mannose into L-ascorbic acid through a
series of enzymatic steps. Key genes and enzymes central to this
pathway in tomato include; GMP (GDP-D-mannose

frontiersin.org


https://doi.org/10.3389/fpls.2025.1662388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

ElShamey et al.

10.3389/fpls.2025.1662388

SICHS2

OH
E o: \
naringeninchalcone

SICHI naringeninchal
SICHIL1 cone-glucoside

naringenin

SICHS11

SIF3H1
SIF'SH SIF3'H
DHM === DHK == DHQ

¥ SIDFR SIFLS1
LDel

T
& *SIANS [kaer‘r:pferol quercetin]
delphinidin (Del) (Kae) (Que)
¥ SlAnthopMT
petunidin (Pet)
¥ SlAntho
malvidin (Mav)

SIFOMT1
3-methylmyricetin
SIFOMT2 l

isorhamnetin
(IsoR)

3,4-dimethylmyricetin OMT

FIGURE 3
Schematic biosynthesis pathways for flavonoids in tomato fruits.

pyrophosphorylase) which encoded by genes like SIGMP, it
catalyzes the conversion of D-mannose-1-P to GDP-D-mannose,
serving as a critical early gatekeeper. GME (GDP-D-mannose-3’,5-
epimerase) which Encoded by SIGME, this enzyme performs a dual
epimerization, producing GDP-L-galactose, a crucial precursor.
GGP (GDP-L-galactose phosphorylase) which encoded by SIGGP,
this is often considered the major flux-controlling step of the
pathway. It catalyzes the conversion of GDP-L-galactose to L-
galactose-1-P, and its expression and activity are strongly
correlated with AsA accumulation in ripening fruits. GLDH (L-
galactono-1,4-lactone dehydrogenase) the final enzyme in the
pathway, encoded by SIGLDH, oxidizes L-galactono-1,4-lactone
to AsA in the mitochondria, linking AsA biosynthesis to the
mitochondrial electron transport chain. Beyond this main
pathway, recycling via the ascorbate glutathione cycle, involving
enzymes like MDHAR (Monodehydroascorbate Reductase) and
DHAR (Dehydroascorbate Reductase), is crucial for maintaining
the reduced pool of AsA by regenerating it from its oxidized forms,
thus influencing the final vitamin C content in the ripe fruit as
shown in Figure 4 (Castro et al., 2023).

Recent advances in molecular biology have provided powerful
tools to dissect and manipulate this biosynthetic network.
Techniques such as CRISPR-Cas9-mediated gene editing have
enabled the precise knockout of negative regulators or the fine-
tuning of key biosynthetic genes to create tomato lines with
enhanced AsA content without introducing foreign transgenes.
Furthermore, Virus-Induced Gene Silencing (VIGS) has been
instrumental as a rapid, high-throughput functional genomics
tool to transiently knock down target genes in planta, allowing
researchers to assess their role in AsA accumulation during fruit
development. The integration of multi-omics approaches
transcriptomics, proteomics, and metabolomics has been
particularly transformative. By analyzing global changes in gene
expression, protein levels, and metabolic fluxes, scientists can now
identify not only the core biosynthetic genes but also novel
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transcription factors and regulatory networks that orchestrate
AsA accumulation in coordination with fruit ripening and
environmental responses. For instance, transcriptomic studies
have revealed that several SIGGP and SIGME genes are
upregulated during the breaker and ripening stages, coinciding
with peak AsA levels. In summary, the vitamin C content in
tomato fruits is a quantifiable trait determined by the concerted
action of the L-galactose pathway genes and an efficient recycling
system. The application of sophisticated molecular techniques like
CRISPR-Cas9, VIGS, and multi-omics integration is rapidly
moving the field from a descriptive understanding to a predictive
and manipulative science. These tools are paving the way for the
development of next-generation tomato cultivars with nutritionally
enhanced levels of vitamin C, contributing to improved human
health and agricultural value.

5 Gene regulation of functional
components

Biosynthesis gene regulatory networks closely control the
manufacture and accumulation of these metabolites, and
transcription factors (TFs) are essential for modifying their
expression, as Table 3 illustrates. Key TFs, including R2R3-MYB,
bHLH, WRKY, and AP2/ERF families, orchestrate the
transcriptional activation or repression of structural genes
involved in carotenoid (e.g., PSY, LCY, CYCB) and flavonoid
pathways (e.g., CHS, F3H, FLS). Similarly, vitamin C (ascorbate)
levels are influenced by TFs regulating genes in the L-galactose
pathway (GGP, GalDH) and recycling enzymes (MDHAR, DHAR)
(Liang and Li, 2023; Wu et al, 2022; Stanley and Yuan, 2019).
Environmental stimuli, hormonal signals (such as ethylene and
abscisic acid), and light-responsive TFs (e.g., HY5) further fine-tune
these pathways, creating a dynamic interplay between genetic and
external factors (Mo et al., 2021). Advances in omics technologies
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and CRISPR-based genome editing have unveiled novel TF-target 5.1 Transcriptional regulation of
interactions, providing opportunities for metabolic engineering to  cgrotenoids

enhance tomato’s nutritional profile. This review synthesizes

current knowledge on TF-mediated regulation of carotenoids, The transcriptional regulation of carotenoid biosynthesis in
flavonoids, and vitamin C, highlighting potential strategies for  tomato (Solanum Iycopersicum) involves a complex interaction of
biofortification and improved stress resilience in tomato cultivars. transcription factors (TFs), hormone signals, and environmental cues

TABLE 3 Summarizing gene regulation and transcriptional factors (TFs) involved in the biosynthesis of carotenoids, flavonoids, and vitamin C in
tomato (Solanum lycopersicum).

. Key biosynthetic Transcriptional .
Metabolite Y Y P Regulatory mechanism
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ids (e.g., PSY1, PDS, ZDS, LCY-B, o lates ripening-associ i ) 4
Carotenoids (e.g S S. S, LC NOR (non-ripening) R'egu ates r'lpenlng associated carotenoid (Giovannoni et al., 2017)
Lycopene, B-carotene) CRTISO biosynthesis.
Enhances light-mediated carotenoid .
HY5 (Elongated Hypocotyl 5) . (Liu et al., 2018)
production.
MYB12 Directly activates flavonoid pathway genes
(CHS, CHI). (Mathews et al., 2003)
Flavonoids (e.g., CHS, CHI, F3H, FLS ; ”
Naringenin, Quercetin) SLMYB75 Induces anthocyanin/flavonoid biosynthesis.
ANT1 (Anthocyanin 1)
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acid) under high light. et al,, 2022)
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that modulate the expression of important biosynthetic genes (Wang
et al, 2023a; Li et al, 2023). The phytoene synthase 1 (PSYI) gene
initiates carotenoid production, while downstream enzymes like
lycopene B-cyclase (LCYB) and B-carotene hydroxylase (BCH)
impact lycopene and f-carotene accumulation. Key transcription
factors, including ripening inhibitor (RIN), non-ripening (NOR),
and colorless non-ripening (CNR), regulate carotenoid production
during fruit ripening by binding to the promoters of carotenogenic
genes. Additionally, phytochrome-interacting factors (PIFs) and HY5
(elongated hypocotyl 5) mediate light-dependent carotenoid
regulation, while apetala2/ethylene-responsive factors (AP2/ERF)
and mads-box proteins integrate ethylene and developmental signals
(Filyushin et al., 2024; Sun et al., 2022). DNA methylation and histone
acetylation are examples of epigenetic changes that make carotenoid
gene expression even more precise. Understanding these regulatory
networks provides insights into metabolic engineering strategies to
enhance carotenoid content in tomatoes, improving both nutritional
value and stress resilience, Biosynthesis of carotenoids in tomato
chloroplast and chromoplast were shown in Figure 5.

5.2 Regulation of flavonoid biosynthesis

There are a lot of transcription factors (TFs), hormones, and
environmental signals that work together to control the
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transcription of flavonoid biosynthesis. The dynamic MBW
(MYB-bHLH-WD40) complexes that are formed by the
proteins MYB, bHLH (basic Helix-Loop-Helix), and WD40
regulate the expression of structural genes in the flavonoid
pathway, such as flavonol synthase (FLS), chalcone synthase
(CHS), and flavonoid 3-hydroxylase (F3H). Recent studies
highlight the role of R2R3-MYB TFs (e.g., SIMYBI12, SIMYB75)
in activating flavonol and anthocyanin biosynthesis, while
ethylene and jasmonic acid signaling further fine-tune
flavonoid accumulation (Xu et al,, 2015). Light and abiotic
stresses (e.g., UV radiation, drought) also influence flavonoid
production by altering the expression of key regulators.
Epigenetic modifications, such as DNA methylation and
histone acetylation, add another layer of control. Advances in
CRISPR/Cas9-mediated genome editing and omics technologies
(transcriptomics, metabolomics) have deepened our
understanding of these regulatory networks. This review
synthesizes current knowledge on the transcriptional regulation
of flavonoids in tomatoes, emphasizing the potential for
metabolic engineering to enhance nutritional value and stress
resilience. Unraveling these mechanisms could pave the way for
developing improved tomato varieties with enriched flavonoid
content for better human health and agricultural sustainability,
Figure 6 shown flavonoid content and genes used in biosynthesis
in different tomato phenotypes.
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Biosynthesis of carotenoids in tomato chloroplast and chromoplast (Enfissi et al., 2019).
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5.3 Regulation of vitamin C biosynthesis

The transcriptional regulation of AsA biosynthesis, recycling,
and degradation plays a pivotal role in determining its
accumulation in tomato fruits. Among the most important
enzymes in the AsA metabolic pathway are GDP-L-galactose
phosphorylase (GGP), GDP-D-mannose epimerase (GME), and L-
galactono-1,4-lactone dehydrogenase (GLDH). They respond to
light, abiotic stress, and hormone cues and are tightly controlled
by transcription factors (TFs) such as SIHY5, SIAREB, and SINAC
(Castro et al., 2023; Asa, 2025). Recent advances in CRISPR/Cas9-
mediated genome editing and omics approaches have unveiled
novel regulatory networks, providing potential strategies for
enhancing vitamin C content in tomatoes.

5.4 Epigenetic and post-transcriptional
control

There are many layers of control on the manufacture and
accumulation of these functional parts in Tomato (Solanum
lycopersicum), such as epigenetic changes and post-transcriptional
regulatory mechanisms. Understanding these regulatory processes
is crucial for enhancing the nutritional quality of tomatoes through
breeding or biotechnological approaches.

Frontiers in Plant Science

5.4.1 Epigenetic regulation of carotenoids,
flavonoids, and Vitamin C

Heritable variations in gene expression that do not result from
modifications to the DNA sequence are referred to as epigenetics.
DNA methylation and histone alterations are important epigenetic
processes, and small RNA-mediated silencing, all of which influence
the biosynthesis of health-promoting compounds in tomatoes.

5.4.1.1 DNA methylation and carotenoid biosynthesis

Carotenoids, such as lycopene and 3-carotene, are synthesized via
the methylerythritol phosphate (MEP) and carotenoid pathways,
with key genes like PSYI (phytoene synthase 1) and LCYB
(lycopene B-cyclase) playing pivotal roles. DNA methylation in
promoter regions can suppress or activate carotenoid-related genes
(e.g., hypomethylation of the PSYI promoter is associated with
increased lycopene accumulation in ripening tomatoes) (Liu et al.,
2015b, 2016, 2015a). Environmental factors (light, temperature)
influence methylation patterns, affecting carotenoid levels.

5.4.1.2 Histone modifications and flavonoid production
Flavonoids, including quercetin, kaempferol, and naringenin
chalcone, are regulated by the phenylpropanoid pathway, with
genes such as CHS (chalcone synthase) and FLS (flavonol
synthase) being critical. Histone acetylation (e.g., H3K9ac) and
methylation (H3K4me3) enhance the expression of flavonoid
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biosynthetic genes (e.g., the MYBI12 transcription factor, which
activates flavonoid biosynthesis, is epigenetically regulated by
histone modifications) (Czemmel et al., 2017). Polycomb-group
proteins can repress flavonoid genes via H3K27me3 marks under
certain developmental conditions.

5.4.1.3 Small RNAs and vitamin C regulation

Vitamin C (ascorbate) biosynthesis involves the Smirnoff-
Wheeler pathway, with GGP (GDP-L-galactose phosphorylase)
being a key enzyme. MicroRNAs (miRNAs) and small interfering
RNAs (siRNAs) modulate ascorbate levels by degrading mRNA or
inhibiting translation (e.g., miR398 targets GGP, reducing ascorbate
accumulation under oxidative stress) (Lin et al, 2014). DNA
methylation in the GalUR (L-galactono-1,4-lactone
dehydrogenase) promoter can alter vitamin C content.

5.4.2 Post-transcriptional control mechanisms

Post-transcriptional regulation fine-tunes metabolite levels
through RNA stability, alternative splicing, and translational
control as shown in Figure 7.

5.4.2.1 Alternative splicing and carotenoid diversification
By generating many mRNA isoforms from a single gene,
alternative splicing (AS), a crucial post-transcriptional regulatory
step, enhances proteome diversity (Manuel et al., 2023). In plants,
AS plays a pivotal role in developmental processes, stress responses,
and metabolic regulation (Staiger and Brown, 2013). Carotenoids,
essential pigments involved in photosynthesis, photoprotection,
and phytohormone synthesis, contribute significantly to fruit
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quality and nutritional value in tomato (Solanum lycopersicum)
(Perveen et al., 2015). Recent studies have revealed that AS
modulates key genes in the carotenoid biosynthesis pathway,
influencing carotenoid composition and accumulation. For
instance, differential splicing of genes such as PSYI (Phytoene
Synthase 1), LCY-B (Lycopene Beta-Cyclase), and CCD
(Carotenoid Cleavage Dioxygenase) generates transcript variants
with distinct functional properties, thereby fine-tuning carotenoid
profiles (Ampomah-Dwamena et al., 2022; Palaniswamy et al,
2024). Understanding the role of AS in carotenoid metabolism
provides novel insights into the molecular mechanisms underlying
fruit ripening and offers promising strategies for crop improvement.

5.4.2.2 miRNA-mediated regulation of flavonoids

The flavonoids biosynthesis is tightly regulated at
transcriptional and post-transcriptional levels, with emerging
evidence highlighting the role of microRNAs (miRNAs) as key
modulators. Gene expression is controlled by translational
suppression or cleavage of mRNAs, which is targeted by small
non-coding RNAs known as miRNAs (Bawazeer, 2022; Ma et al,,
2022). Recent studies have identified several miRNAs (e.g., miR156,
miR828, miR858) that regulate flavonoid pathways by targeting
transcription factors (MYB, bHLH, WD40) and structural genes
(CHS, F3H, DFR). For instance, miR858 suppresses SIMYB7, a
positive regulator of anthocyanin biosynthesis, while miR156
modulates flavonol accumulation by targeting SPL genes (Yang
et al., 2022; Sun et al., 2017). Environmental stresses, such as UV
radiation and nutrient deficiency, alter miRNA expression, further
influencing flavonoid profiles. Understanding miRNA-mediated
regulation provides novel biotechnological avenues for enhancing
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tomato nutritional value and stress adaptation through miRNA
manipulation or CRISPR-based editing.

5.4.2.3 RNA editing and vitamin C homeostasis

RNA editing is a crucial post-transcriptional mechanism that
introduces nucleotide modifications in RNA molecules, enriching
transcriptomic and proteomic diversity (Nachtergaele and He,
2017). In plants, this process predominantly involves cytidine-to-
uridine (C-to-U) conversions (Bhakta and Tsukahara, 2022),
mediated by the pentatricopeptide repeat (PPR) protein family
and associated factors. Recent studies suggest that RNA editing
plays a vital role in plant development, stress responses, and
metabolic regulation. One such metabolic pathway influenced by
RNA editing is Vitamin C (ascorbate) homeostasis, a key
antioxidant system in plants that mitigates oxidative damage and
supports growth. In tomato (Solanum lycopersicum), Vitamin C
biosynthesis occurs primarily via the D-mannose/L-galactose
pathway, with GDP-L-galactose phosphorylase (GGP) being a
rate-limiting enzyme (Mellidou et al.,, 2021). Emerging evidence
indicates that RNA editing may fine-tune the expression or
functionality of genes involved in ascorbate metabolism,
potentially impacting fruit nutritional quality and stress resilience.
However, the precise interplay between RNA editing and Vitamin C
regulation in tomato remains underexplored. This study
investigates the potential crosstalk between RNA editing events
and Vitamin C homeostasis in tomato by analyzing RNA-editing
patterns in genes related to ascorbate biosynthesis, recycling, and
degradation. Utilizing high-throughput RNA sequencing and
bioinformatics tools, we identify conserved editing sites in
transcripts encoding GGP, ascorbate peroxidase (APX), and
monodehydroascorbate reductase (MDHAR). Furthermore, we
assess how RNA editing modulates enzyme efficiency and
transcript stability under varying ascorbate levels. Our findings
reveal that RNA editing dynamically influences key regulatory
nodes in Vitamin C metabolism, suggesting a novel layer of post-
transcriptional control. These insights could give the way for
enhancing tomato fruit nutritional quality through targeted
manipulation of RNA editing mechanisms. Understanding this
interplay may also have broader implications for improving stress
tolerance and antioxidant capacity in crops.

Epigenetic and post-transcriptional mechanisms play a crucial
role in controlling carotenoids, flavonoids, and vitamin C in
tomatoes. Advances in omics technologies (epigenomics,
transcriptomics) and genome editing provide powerful tools to
manipulate these pathways for improved nutritional content.
Future research should focus on tissue-specific epigenetic marks
and stress induced post-transcriptional regulation to develop
climate-resilient, nutrient-dense tomato varieties.

6 Health benefits of tomato bioactive
compounds

Research on functional phytochemicals in tomatoes holds
profound potential for societal impact by directly addressing the
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escalating burden of chronic diseases and fortifying public health.
Tomatoes are a rich source of bioactive compounds like lycopene,
flavonoids, and vitamin C, which have demonstrated potent
antioxidant and anti-inflammatory properties. By elucidating how
these compounds can help mitigate the risk of major conditions
such as cardiovascular disease, certain cancers, and
neurodegenerative disorders, this research can inform evidence-
based dietary guidelines and public health campaigns. Encouraging
the consumption of tomato-based products or guiding the breeding
of more nutritious varieties could empower individuals with
accessible, food-based strategies for prevention. This shift from
treatment to proactive, dietary-based wellness has the potential to
reduce healthcare costs, improve quality of life, and alleviate the
significant economic and social strains that chronic illnesses place
on communities worldwide. The antioxidant, anti-inflammatory,
anticancer, cardioprotective, and neuroprotective properties of
tomatoes’ bioactive compounds which include carotenoids
(lycopene, B-carotene), flavonoids, phenolic acids, vitamins C, E,
and K, and glycoalkaloids have a substantial positive impact on
human health (Chaudhary et al., 2018; Collins et al., 2022; Piccolo
etal, 2024). Figure 8 illustrates some of the variables influencing the
bio-accessibility and extraction of carotenoids during the digestive
process in humans. Their bioavailability during human digestion,
several factors affect the proportion that is liberated from the food
matrix and made available for intestinal absorption. This review
examines the key determinants affecting carotenoid bio-accessibility
and extraction, including food matrix properties (cell wall structure,
particle size, and mechanical processing); digestive conditions
(gastric pH, enzymatic activity, bile salts, and lipid co-ingestion);
and molecular interactions (binding with proteins, dietary fiber, and
encapsulation systems).

The food matrix plays a crucial role, as carotenoids in plant
chromoplasts are often bound to proteins or fibers, requiring
mechanical (e.g., chewing, homogenization) and thermal
processing to enhance release (Raikos, 2017). Digestive factors,
such as gastric lipase activity and emulsification by bile salts,
significantly influence carotenoid solubilization in mixed micelles,
which is essential for absorption (McClements, 2018). The presence
of dietary lipids (5-10 g per meal) is critical for carotenoid
dissolution, while excessive fiber may hinder micelle formation
(Verkempinck, 2018). Furthermore, processing techniques
(cooking, high-pressure homogenization, and fermentation) can
disrupt cell walls, improving carotenoid extractability.
Understanding these factors is essential for optimizing dietary
strategies and food processing methods to enhance
carotenoid bioavailability.

6.1 Key bioactive compounds in tomatoes
and their health benefits

6.1.1 Lycopene: the potent antioxidant

Lycopene, a red carotenoid pigment, is the most studied
bioactive compound in tomatoes, responsible for their vibrant
color. It exhibits strong antioxidant properties, neutralizing free
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Factors affecting the bio-accessibility and extraction of carotenoids during the human digestion process.

radicals and reducing oxidative stress, which is linked to chronic
diseases. The health benefits of lycopene are (Przybylska, 2020; Del
Giudice et al,, 2017; Imran et al., 2020); cardiovascular protection
reduces LDL cholesterol oxidation, lowers atherosclerosis risk,
improves endothelial function and reduces blood pressure,
inhibits platelet aggregation, and reducing thrombosis risk.
Anticancer properties reduce prostate cancer risk by modulating
cell proliferation and apoptosis. May protect against breast, lung,
and stomach cancers due to its anti-inflammatory effects. Skin
health protects against UV-induced skin damage by scavenging
free radicals. May delay skin aging by improving collagen synthesis.
Bone health reduces oxidative stress in bones, potentially lowering
osteoporosis risk.

6.1.2 B-carotene: provitamin A activity

Tomatoes contain P-carotene, a precursor to vitamin A,
essential for vision, immune function, and skin health. The health
benefits of B-Carotene (Tufail et al, 2024; Akram et al., 2021);
enhances immune function supports mucosal immunity and
reduces infection risk. Eye Health prevents age-related macular
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degeneration (AMD) and night blindness. Antioxidant effects work
synergistically with lycopene to combat oxidative stress.

6.1.3 Flavonoids (quercetin, kaempferol,
naringenin)

Tomatoes are rich in flavonoids, which have anti-inflammatory
and anticancer properties (Cuevas-Cianca et al., 2023; Ba et al,
2023). The health benefits of flavonoids are anti-inflammatory
effects inhibiting pro-inflammatory cytokines (e.g., TNF-o, IL-6).
Cardioprotective improves vascular function and reduces arterial
stiffness. Antidiabetic effects enhance insulin sensitivity and reduce
blood glucose levels.

6.1.4 Vitamin C (ascorbic acid)

Tomatoes provide a significant amount of vitamin C, an
essential water-soluble antioxidant (Muzolf-Panek et al., 2017).
The health benefits of Vitamin C are boosts immunity stimulates
white blood cell production. Collagen synthesis is essential for
wound healing and skin elasticity. Enhances iron absorption
reduces anemia risk by improving non-heme iron uptake.
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6.1.5 Phenolic acids (chlorogenic acid, coumaric
acid)

These compounds contribute to tomato’s antioxidant capacity
and disease prevention. The health benefits of phenolic acids are
(El-Nagar et al., 2020; Zarate-Martinez et al., 2021); neuroprotective
Effects may reduce Alzheimer’s and Parkinson’s disease risk by
preventing oxidative neuronal damage. Antidiabetic Properties
inhibit carbohydrate-digesting enzymes, lowering postprandial
glucose spikes.

6.1.6 Glycoalkaloids (tomatine)

Though toxic in high doses, tomatine in moderate amounts has
antimicrobial and cholesterol-lowering effects (Abdul Latif et al,
2018). The health benefits of glycoalkaloids are antimicrobial
activity effective against bacteria and fungi. Cholesterol reduction
binds to cholesterol in the gut, reducing absorption.

Tomatoes are a powerhouse of bioactive compounds with
multifaceted health benefits, ranging from cardiovascular
protection to cancer prevention. Regular consumption, especially
in processed forms with healthy fats, maximizes their therapeutic
potential. Further research continues to uncover novel mechanisms
by which these compounds promote health, reinforcing tomatoes as
a functional food in disease prevention and longevity, Figure 9
shows the impact of biotic and abiotic variables on tomato bioactive
components’ bio-accessibility and bioavailability.

7 Conclusion and future perspectives

Carotenoids (lycopene, B-carotene), flavonoids, phenolic acids,
and glycoalkaloids are among the essential nutritional components
of tomatoes (Solanum lycopersicum), which have a major positive
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FIGURE 9
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impact on human health. These bioactive compounds exhibit anti-
inflammatory, antioxidants, anticancer, and cardioprotective
properties, making them crucial in preventing chronic diseases
such as cardiovascular disorders, and diabetes. The biosynthesis of
these phytochemicals is tightly regulated by genetic and
environmental factors, with key genes (e.g., PSY, LCY, MYB,
HY5) playing pivotal roles in their metabolic pathways. Recent
developments in transcriptomics, metabolomics, and genomes
have expanded our knowledge of the molecular processes that
underlie the synthesis and control of phytochemicals. CRISPR-
Cas9 and other gene-editing technologies offer promising avenues
for enhancing the nutritional content of tomatoes by modulating
biosynthetic pathways. In summary, the tomato transcends its role
as a dietary staple to emerge as a powerful nexus of agricultural
science, molecular biology, and human health. The profound
health benefits conferred by its diverse phytochemical portfolio
are undeniable, yet we stand only at the frontier of fully harnessing
this potential. By systematically decoding and optimizing the
tomato’s genetic blueprint and its interaction with the
environment, we can purposefully engineer this vital crop into a
more potent, natural preventative healthcare solution. Ultimately,
the goal is to transform this everyday fruit into a cornerstone of
future functional foods, capable of delivering targeted,
scientifically validated health benefits to populations worldwide,
thereby redefining the connection between diet and disease
prevention. The compelling evidence for the diverse health-
promoting properties of functional phytochemicals in tomatoes,
from the cardioprotective effects of lycopene to the antioxidative
power of various flavonoids and carotenoids, must not remain
confined to academic journals. To truly unlock the potential of the
tomato as a functional food, a concerted and collaborative effort is
urgently needed. We therefore issue a strong call to action for
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Impact of biotic and abiotic variables on tomato bioactive components’ bio-accessibility and bioavailability.
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researchers, agricultural scientists, food technologists, and
industry stakeholders to bridge the gap between foundational
science and tangible application. By investing in and
collaborating on the identified research areas; such as optimizing
cultivation practices, enhancing bioavailability, and developing
novel, evidence-based food products, we can collectively
translate this promise into a new generation of health-focused
foods. Let us harness this synergistic potential to not only advance
scientific understanding but also to deliver meaningful health
benefits to consumers worldwide.
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