
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

William Underwood,
Agricultural Research Service (USDA),
United States

REVIEWED BY

Simon Peter Abah,
National Root Crops Research Institute
(NRCRI), Nigeria
Kenneth Fafa Egbadzor,
Ho Polytechnic, Ghana

*CORRESPONDENCE

Daniel Kwadjo Dzidzienyo

ddzidzienyo@wacci.ug.edu.gh

RECEIVED 06 July 2025

ACCEPTED 21 August 2025
PUBLISHED 10 September 2025

CITATION

Olayinka AF, Dzidzienyo DK, Mbanjo EGN,
Offei SK, Tongoona PB, Danquah EY, Egesi C
and Rabbi IY (2025) Genome-wide
association study identifies novel genes
for plant architecture and yield traits in
cassava (Manihot esculenta Crantz).
Front. Plant Sci. 16:1660789.
doi: 10.3389/fpls.2025.1660789

COPYRIGHT

© 2025 Olayinka, Dzidzienyo, Mbanjo, Offei,
Tongoona, Danquah, Egesi and Rabbi. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 10 September 2025

DOI 10.3389/fpls.2025.1660789
Genome-wide association
study identifies novel genes
for plant architecture
and yield traits in cassava
(Manihot esculenta Crantz)
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Cassava (Manihot esculenta Crantz) cultivars with compact plant types and

moderate plant heights are required for mechanical farming to boost

productivity. Plant architecture is a complex trait controlled by environmental

and genetics factors. However, little is known about the genetic basis of cassava

plant architecture. This research sought to bridge the knowledge gap by

elucidating the genetic basis of traits related to plant architecture, yield, and

productivity in cassava. A panel of 453 cassava clones developed at the

International Institute of Tropical Agriculture was genotyped using two distinct

genotyping platforms: low-density DArTseq and DArTag. Plant architecture,

yield, and productivity-related traits were evaluated at three locations across

two growing seasons in Nigeria. Following data filtering, 420 clones, 54,574

DArTSeq, and 2,527 DArTag single-nucleotide polymorphism (SNP) markers

were used for genome-wide association studies (GWAS). Of the 16 SNPs

identified by GWAS using DArTSeq markers, only one was detected during

validation, and the remaining SNPs may be false positives. Sixteen SNPs were

found to be significant using DArTag markers. Fifteen of these were associated

with 21 putative candidate genes for five plant architecture traits (17 genes) and

three yield traits (four genes). Six of the identified candidate genes were novel.

The identified candidate genes were associated with various metabolic

processes, including plant architecture, adaptation, root development, plant

growth, and stress response. The limited number of significant markers

identified using DArTSeq markers could be explained by the large gaps and

uneven marker distribution observed across the genome with the DArTseq

platform compared to DArTag. The findings of this study provide new insights
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into the genetic basis of plant architecture and yield in cassava. Cassava breeders

could leverage this knowledge to optimize plant architecture and yield in cassava

through marker-assisted selection and targeted manipulat ion of

candidate genes.
KEYWORDS

SNP markers, Manihot esculenta Crantz, mechanical farming, DArTseq, DArTag,
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Introduction

Cassava is Africa’s second most important food crop. Over 40%

of the continent’s population relies on it to fulfil their daily caloric

and nutritional needs (Alves, 2002; Nweke, 2004; FAO, 2020).

Cassava starch is a versatile raw material for food, feed, and

industrial applications (Li et al., 2017). Despite the huge prospects

of its value chain, cassava production in Nigeria remains low at

approximately 10 tons per hectare, while demand is increasing

(FAO, 2021). The increasing demand for cassava-based products

necessitates the drive to increase crop performance to

boost productivity.

Plant architecture plays a crucial role in agriculture. It affects

crop growth, yield, and stress resistance (Lauri and Lespinasse,

2001; Rymaszewski et al., 2017; Mansaray et al., 2020). Cassava

cultivars with appropriate plant architecture are needed to

maximize cassava yield potential, mechanize cassava farming, and

boost productivity per unit area (Patiño et al., 2002; FAO, 2013).

Plant architecture and yield are complex traits known to be

controlled by both environmental and genetic factors (Zhang

et al., 2017; Yu et al., 2020). Several studies have attempted to

dissect the genetic basis of cassava plant architecture-related traits

and their effects on cassava yield using biparental populations, with

limited breakthroughs (OkogBenin and Fregene, 2003; Mora

Moreno et al., 2016; Srisawad et al., 2023).

Genome-wide association studies (GWAS), which use a

diversity panel, are gaining popularity for marker-trait

associations (Dash et al., 2021; Uffelmann et al., 2021). GWAS

has helped unravel the genetic architecture of important crop plant

traits, including yield and quality traits, early bulking and storage

root formation, and nitrogen use efficiency in cassava (Abah et al.,

2024; Aghogho et al., 2024; Mbe et al., 2024), plant architecture in

maize (Lu et al., 2024), and drought tolerance in wheat (Yang et al.,

2024). Single-nucleotide polymorphisms (SNPs) have been the

marker of choice for GWAS analyses owing to their stable

inheritance patterns, low mutation rates, and compatibility with

high-throughput genotyping technologies (Morgil et al., 2020;

Panahi et al., 2024).

The reliability and effectiveness of GWAS could be influenced

by the density and distribution of SNP markers throughout the

genome (Spindel et al., 2015; Uffelmann et al., 2021; Aalborg et al.,
02
2024). Information on the impact of marker density and

distribution on GWAS output is limited. Two genotyping

platforms, DArTseq and DArTag, were used to conduct GWAS

analyses. This study aimed to investigate the genetics of plant

architecture and yield-related traits in cassava, as well as how

marker density and distribution affect GWAS effectiveness

and reliability.
Materials and methods

The cassava genotypes used in this study included 453

genotypes from a preliminary yield trial (PYT) developed at the

IITA and five commercial varieties used as checks. The details of the

accessions, crosses, and parents are reported in Supplementary

Table S1. Descriptions of the commercial check varieties are

provided in Supplementary Table S2. The trial was conducted in

three locations in Nigeria: Ikenne (Lat 6.8718° N, Long 3.7106° E,

humid forest zone), Onne (Lat 4.7363° N, Long 7.1545° E, humid

forest zone), and Mokwa (Lat 9.2934° N, Long 5.0493° E, Southern

Guinea Savannah zone) across two planting seasons (2020/2021,

and 2021/2022). The trial was laid out in an augmented block

design with two replications per location for each season. Each plot

comprised three rows with three plants planted on ridges per row. A

spacing of 1m was maintained between ridges, while a spacing of

0.8m was observed within plants in a row.
Phenotypic data collection

Ten above-ground plant traits: stem diameter (STMDI9), shoot

weight (SHTWT), plant height at 9 months after planting

(PLTHT9), number of lodged plants per plot (LODG), branching

habit at 9 months after planting (BRNHB9), angle of branching

(ANGBR9), number of plants per stand (PPSTD9), height at first

branch at 9 months after planting (BRNHT9), plant height at 6

months after planting (PLTHT6), top yield (TYLD), height at first

branch at 6 months after planting (BRNHT6), and eight yield-

related traits: fresh root yield (FYLD), dry yield (DYLD), starch

content (SC), dry matter content (DM), number of harvested roots

(RTNO), fresh root weight (RTWT), and harvest index (HI), were
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measured at specific phenological stages of the crop (3, 6, 9, and 12

months after planting). The phenological stage and method used to

assess the traits were based on the parameters described by (Fukuda

et al., 2010). The details of the traits evaluated and the evaluation

procedures are presented in Supplementary Table S3.
SNP genotyping and marker filtering

Leaf samples were collected from a single plant per cassava

clone, 4–6 leaf discs of 6mm in diameter were collected from

healthy young leaves. The leaf discs were placed in the

corresponding wells of the DNA plate on ice in a sampling bag.

The plate was immediately transferred to the laboratory, where it

was covered with Parafilm and kept at -80°C in a freezer prior to

freeze-drying. The samples were freeze-dried at the IITA Bioscience

Centre using a lyophilizer (LABCONCO FreeZone 18 Liter -50°C

freeze-dryer) operated at -51°C and 5.0 pa for a minimum of 72 hrs.

The freeze-dried leaf samples were shipped to Diversity Arrays

Technology in Canberra, Australia, where genotyping was

performed using low-density DArTseq and DArTag technology.

Upon receipt, the raw SNP data were filtered using PLINK 1.9

software (Purcell et al., 2007; Chang et al., 2015). SNP markers with

less than 5% minor allele frequency (MAF) of more than 10%

missing call rate were pruned.
Statistical analyses of phenotypic data

Plant architecture and yield-related traits were analyzed using

the spatial single-trial model fitted using the R package `SpATS`

(Rodriguez-Alvarez et al., 2018). The mathematical formula for the

adopted model is as follows:

yijk = m + gi + rj + bk + s(xijk,   yijk) + eijk

where yijk is the phenotypic value of the i
th genotype in the jth

block and kth incomplete block, m is the overall mean, gi is the

random effect of the ith genotype, rj is the random effect of the jth

block, bk is the random effect of the kth incomplete block, s(xijk, yijk)

is the smooth bivariate function of the row and column coordinates

of the plot, and eijk is the residual error. The best linear unbiased

prediction (BLUP) values derived from this model were used as

phenotypic values in the marker-trait association analysis.

The linear mixed model for the analysis of the pooled data

(obtained from the three test environments) was fitted as follows

using the lmer function from the lme4 package (Bates et al., 2015) of

the R software (R Core Team, 2020).

hijklm = m + ai + bij + gk + dik + eijl + eijkl

where hijklm is the yield value for the mth plot in the lth block of

the jth replicate of the ith environment for the kth accession; m is the

overall mean; ai is the fixed effect of the ith environment; bij is the
fixed effect of the interaction between the ith environment and

the jth replicate; gk is the random effect of the kth accession; dik is the
random effect of the interaction between the ith environment and
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the kth accession; eijl is the random effect of the interaction between

the ith environment, the jth replicate, and the lth block; and eijkl is the

random residual error.

The random effects gk, dik, and eijl are assumed to be

independent and normally distributed with a mean of 0 and

variance components s2a, s2ea, and s2b, respectively. The

residual error eijkl is also assumed to be independent and

normally distributed with a mean of 0 and variance component s2e.
The best linear unbiased prediction (BLUP) values derived from

this model were used as the pooled phenotypic values across

environments. The broad-sense heritability (H2) values were

calculated as follows:

H2 =
s 2
g

s2
g +

s 2
ge

e + s2
e
er

Where H2 is the broad-sense heritability estimate, s2g is the

genetic variance component of the accession effect, s2e is the

variance component of the residual error, and r is the number

of replicates.

Genotypic correlation analysis for the plant architecture and

yield-related traits was performed using the statistical software

Meta-R Version 6.0 (Alvarado et al., 2020). Variance components

were estimated through a mixed linear model fitted using Restricted

Maximum Likelihood (REML) to obtain estimates of genotypic

variance, variance due to genotype-by-environment interaction,

and residual variance prior to the computation of the genotypic

correlations among traits.

The formula for the mixed linear model is as follows:

yijk = m + ai + bj + (ab)ij + gk + eijk

yijk is the observation for the i-th genotype in the j-th block and

the k-th replication

m is the overall mean

ai is the fixed effect of the i-th genotype

bj is the random effect of the j-th block

(ab)ij is the random interaction effect of the i-th genotype and

the j-th block

gk is the random effect of the k-th replication within the block

eijk is the residual error.

The estimates of the genetic correlation coefficient values were

obtained using the variance components from the mixed linear

model:

y = Xb + Zu + e

y is the vector of observations

b is the vector of fixed effects

u is the vector of random effects

e is the vector of residuals

X and Z are design matrices.

The genetic correlation between the two traits was calculated as

follows:

rg =
sg1g2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
g1s 2

g2

q
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sg1g2 is the covariance between the random effects of the two

traits. s2g1 and s2g2 are the variances of the random effects of the

two traits, respectively. Data visualization was performed with the R

package ‘corrplot’ version 0.92 (Wei and Simko, 2021). Path

Analysis was performed using the R package ‘lavaan’ version 0.6-

17 (Rosseel, 2012) and visualized using the R package ‘semPlot’

(Epskamp et al., 2019).
Marker coverage, SNP density, and linkage
disequilibrium

Marker coverage and SNP density were visualized using the

SRplot platform (Tang et al., 2023). Linkage Disequilibrium (LD)

analysis was conducted using PLINK v1.9 (Purcell et al., 2007).

Marker pairs exhibiting perfect LD scores (r2=1) were excluded

before further analysis. An LD decay plot was created utilizing R

software (R Core Team, 2020).
Population structure analysis

Population structure analysis was performed using

ADMIXTURE (Alexander et al., 2009), which uses the maximum

likelihood estimate to assign genotypes to putative populations (K).

Cross-validation was performed to determine the optimal number

of clusters. The results of the population structure analysis were

visualized using the R package “ggplot2” (Wickham, 2016). Ward’s

minimum variance method (ward.D2) was utilized for hierarchical

clustering on the Q-matrix produced by ADMIXTURE. The R

package “dendextend” (Galili , 2015) was used to plot

the dendrogram.
Genetic association analysis

GWAS analysis was performed with the BLUP values obtained

from the trials conducted in each of the three test environments as

well as the pooled data across all the environments through the

Mixed Linear Model (MLM) described in (Zhang et al., 2010), using

the R package Genome Association and Prediction Integrated Tools

(GAPIT) (Lipka et al., 2012). This model decomposes the observed

phenotype (y) into fixed effects (Xb), random genetic effects (Zu),

and residual effects (e). The formula is:

y = Xb + Zu + e

where X is the design matrix for fixed effects, Z is the design

matrix for random effects, b is the vector of fixed effects, u is the

vector of random effects, and e is the vector of residuals.

In addition to the MLM model, the Fixed and random model

Circulating Probability Unification (FarmCPU) model outlined in

(Liu et al., 2016) was used for GWAS carried out using DArTseq

markers. FarmCPU uses a modified MLM method, Multiple Loci

Mixed Model (MLMM), and incorporates multiple markers

simultaneously as covariates in a stepwise MLM to partially
Frontiers in Plant Science 04
remove the confounding effects between testing markers and

kinship. The formula is:

y = Xb + Z1u1 + Z2u2 + e

where X is the design matrix for fixed effects, Z1 is the design

matrix for random effects from kinship, Z2 is the design matrix for

random effects from multiple markers, b is the vector of fixed effects,

u1 is the vector of random effects from kinship, u2 is the vector of

random effects frommultiple markers, and e is the vector of residuals.

These models deployed different approaches in accounting for

the effects of population structure and environmental variation

thereby precluding any possibility of false discovery. However, the

following criteria were used in calling SNPs that share a significant

correlation with the plant architecture and yield traits: Bonferroni

correction, the threshold of the P-value, Manhattan plot and the

QQ plot.

The Bonferroni-corrected p-value [log10(0.05/number of SNPs)]

was used as a cutoff value for identifying significant SNPs. Manhattan

plots were generated to visualize the results, while quantile-quantile

(QQ) plots showed the distribution of observed p-values against those

predicted under the null hypothesis and captured potential inflation

or deflation of the test statistic. Additionally, we used the mixed linear

model, which excludes (MLMe) and includes (MLMi) candidate

markers in the genetic relationship matrix (GRM) via a leave-one

chromosome-out analysis implemented in GCTA (Yang et al., 2011;

Yang et al., 2014). The exclusion of the tested SNP from the

relationship matrix (GRM) used in the random effect reduces

proximal contamination or overcorrection, thereby preventing

deflating associations on the same chromosome as the tested SNP.

This helped verify the authenticity of the significant SNPs identified

using the other two models.
Candidate gene analysis

The significant SNPs were mapped onto genes within the 5,000

bp windows using Manihot esculenta v7.1 of the Phytozome

genome browser (Goodstein et al., 2014). The UniProt

Consortium database (Aleksander et al., 2023) was used for gene

ontology annotation.
Results

Marker coverage and SNP density

A total of 2,527 DArTag SNP markers, uniformly distributed

over the 18 chromosomes, were retained after marker filtering

(Figure 1). The average number of SNPs per 1MB window across

the genome ranged from 1 to 26 SNPs for most of the genomic

regions. Chromosome 8 had the highest number of SNPs (164),

whereas chromosome 18 had the lowest (106).

The 54,574 filtered DArTSeq SNP markers were not evenly

distributed across the 18 chromosomes (Figure 2). Some genomic

regions, especially those close to the centromeric and telomeric
frontiersin.org
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regions, showed very low SNP densities, and in some cases, no

markers, whereas other regions displayed a dense clustering of SNPs

(>50 SNPs per 1 Mb window). Chromosome 1 had the highest

number of SNPs (7235), with an average of 207 SNPs/Mb, whereas

chromosome 7 had the fewest (1588), with approximately 59

SNPs/Mb.
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Linkage disequilibrium

The extent of LD decay was compared between the two marker

types used (Figures 3, 4). A rapid LD decay was observed using

DArTag markers. The LD between two SNPs fell to 0.2 (the

standard threshold that indicates the end of LD) at a relatively
FIGURE 1

SNP distribution of the DArTAG markers across the 18 chromosomes of the Manihot esculenta genome.
FIGURE 2

SNP distribution of the DArTSeq markers across the 18 chromosomes of the Manihot esculenta genome.
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more rapid rate, approximately 229 kbp (Figure 3), contrary to the

output obtained with the DArTSeq markers (Figure 4), where the

LD between two SNPs fell to 0.2 at a longer distance of

approximately 790 kbp.
Population structure analysis

Population structure analyses revealed five subgroups

(Figure 5). The cassava accessions were developed from crosses

made using parents with diverse genetic backgrounds

(Supplementary Table S1). The plot also shows that there is a

balance between the extent of admixture and homogeneity within

the population. This shows that there exists enough genetic

diversity within the population to capture the variation in the

plant architecture and yield traits.
Variance Components and broad-sense
heritability of plant architecture and yield-
related traits

All 18 traits exhibited greater genotypic variance than both the

error variance and the variance due to the interaction between

genotype and environment (Table 1). Both genetic and interaction

factors had a strong influence on the performance of the accessions

for all measured traits (p< 0.001). The broad-sense heritability

varied from moderately high (0.62; SHTWT) to high (0.88;

BRNHT9). The broad-sense heritability for key plant architecture
Frontiers in Plant Science 06
traits, viz., ANGBR9 (0.78), STMDI9 (0.73), PLTHT9 (0.80),

PLTHT6 (0.83), and BRNHT6 (0.86) were found to be high,

while the following yield-related traits, including DM (0.68), SC

(0.70), FYLD (0.67), and HI (0.86) had relatively high broad-sense

heritability values (Table 1). The phenotypic and genotypic

coefficients of variation ranged from 8.30% and 6.84% (DM),

respectively, to 78.28% and 65.03% (LODG) (Table 1).

The exploratory analysis revealed the interrelationships

between plant architecture and yield-related traits. The genetic

correlation coefficient matrix revealed positive and significant

relationships between FYLD and DYLD (r = 0.70 – 0.89, p <

0.001), PLTHT6 and PLTHT9 (r = 0.93 – 1.00, p < 0.001), STDMI9

and PLTHT6 (r = 0.49 – 0.63, p < 0.001), and STDMI9 and

PLTHT9 (r = 0.51 – 0.68, p < 0.001) (Figures 6–8). Negative and

significant relationships were observed between BRNHT6 and

BRNLEV9 (r = -0.03 – (-0.83), p < 0.001) and BRNHT9 and

BRNLEV9 (r = -0.81 – (-0.82), p < 0.001) (Figures 6–8). In

addition to these, significant negative relationships were observed

between LOGD and FYLD (r = -0.18 - (-0.65), p < 0.001), RTNO (r

= -0.19 – (-0.57), PPSTD9 (r = -0.04 - (-0.30), p < 0.001) and HI (r =

-0.40 – (-0.73), p < 0.001) respectively. Similarly, there was a strong

negative and significant correlation between HI and some crucial

plant architecture traits, viz., STMDI9 (r = -0.38 – (-0.61), p <

0.001), PLTHT6 (r = -0.36 – (-0.52), p < 0.001), and PLTHT9 (r =

-0.33 – (-0.42), p < 0.001) (Figures 6–8).

Path coefficient analysis demonstrated that plant architectural

traits had both direct and indirect effects on fresh root yield and

fresh root weight in cassava. For the trials conducted in all three test

environments (Figures 9–11), RTWT had an absolute (1.0) positive

contribution to FYLD. However, HI had a strong positive
FIGURE 3

LD decay plot of the DArTag markers generated using PLINK and
visualized in R.
FIGURE 4

LD decay plot of the DArTSeq markers performed with PLINK and
visualized in R.
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FIGURE 5

Population structure within the cassava accessions for DArTSeq markers and DArTag markers.
TABLE 1 Estimates of variance components and broad-sense heritability for plant architecture and yield-related traits in 438 cassava accessions
evaluated across three locations in Nigeria.

Trait Mean s2g s2GxE s2e H2 PCV(%) GCV(%)

STMDI9 24.00 5.56 0.81 1.28 0.73 11.52 9.82

FYLD 23.00 37.20 9.00 9.32 0.67 32.40 26.52

DYLD 7.80 3.70 0.97 1.08 0.64 30.74 24.66

SC 19.80 5.84 1.71 0.85 0.70 14.63 12.21

DM 32.60 4.97 1.53 0.80 0.68 8.29 6.84

RTWT 19.20 25.50 6.67 6.43 0.66 32.36 26.30

SHTWT 21.00 21.80 4.73 8.50 0.62 28.19 22.23

PLTHT9 176.90 507.80 40.83 84.67 0.80 14.23 12.74

HI 0.47 0.01 0.00 0.00 0.86 22.98 21.28

BRNHB9 2.60 0.17 0.04 0.03 0.71 18.78 15.86

ANGBR9 81.00 60.70 6.00 10.93 0.78 10.88 9.62

RTNO 44.60 131.40 29.87 41.58 0.65 31.93 25.70

PPSTD9 2.00 0.10 0.01 0.05 0.63 19.90 15.81

BRNHT9 83.80 580.00 33.63 48.00 0.88 30.69 28.74

PLTHT6 158.00 459.00 30.57 64.67 0.83 14.90 13.56

TYLD 25.90 31.50 6.40 13.17 0.62 27.59 21.67

BRNHT6 74.00 477.60 36.00 44.93 0.86 31.94 29.53

BRLEV9 2.30 0.34 0.06 0.03 0.78 28.62 25.35
F
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contribution to RTWT (0.69) in the trials conducted at Ikenne and

Mokwa (Figures 9, 10), whereas it had no contribution to the output

of this trait in the trial conducted at Onne. The contributions of

PLTHT9 to FYLD through RTWT were also positive across the

three test environments, where a near absolute contribution (0.99)

was recorded in the trial conducted at Onne (Figure 11). In contrast,

irregular relationships were observed across the test environments

for LODG and PLTHT6 with respect to their contributions to

RTWT. For LODG, a negative contribution with a low magnitude

(-0.14) was reported in two test environments (Figures 9, 10),

whereas the contribution was positive (0.13) in the third test

environment (Figure 11). Similar results were obtained for

PLTHT6, which had a positive contribution (0.23) to RTWT in

the Ikenne trial (Figure 9), but negative effects on this trait in the

Mokwa (-0.08) and Onne (-0.35) trials (Figures 10, 11).
Marker-trait analysis

Four hundred and twenty (420) accessions, 2,527 DArTag, and

54,574 DArTSeq SNP markers were used in GWAS analyses. The

GWAS conducted using the DArTag markers and the mixed linear
Frontiers in Plant Science 08
model revealed 16 significant marker-trait hits for eight plant

architecture traits (ANGBR9, BRNHB9, PLTHT6, PLTHT9,

BRNLEV3, BRNLEV9, SHTWT, and TYLD) and three yield traits

(RTWT, FYLD, and DYLD) (Table 2; Figure 12). Some of the

significant SNP hits were location specific while some were detected

across all the locations (Table 3). Significant SNPs were found on

chromosomes 1, 2, 6, 8, 11, 12, 14, and 15. ANGBR9 had significant

SNPs on chromosomes 12 and 14, while three chromosomes had

significant marker-trait associations (MTAs) for more than one

trait: chromosome 8 for PLTHT9, FYLD, and RTWT; chromosome

6 for SHTWT and TYLD; and chromosome 12 for ANGBR9 and

BRNHB9. The remaining traits, DYLD, BRNLEV3, BRNLEV9, and

BRNHB9, only had significant MTAs on chromosomes 2, 1, 15, and

12, respectively (Table 2; Figure 12). Further analyses of the 16

significant SNP hits led to the identification of 21 putative candidate

genes for nine traits (Table 4). These included ANGBR9 (7),

PLTHT9 (2), BRNLEV3 (1), BRNLEV9 (6), FYLD (1), RTWT

(1), SHTWT (1), TYLD (1), and DYLD (3) (Table 4).

Only eight traits had significant SNP hits when DArTseq

markers and the FarmCPU model were used (Table 5; Figure 13).

These included six plant architecture traits (ANGBR9, PT, VR,

BRNLEV6, BRNLEV9, and PPSTD9) and two yield traits (HI and
FIGURE 6

Genotypic correlation coefficient plot of plant architecture and yield traits in Ikenne trial. NOHAV, number of harvested plants per plot; RTNO,
number of harvested roots per plot; SHTWT, shoot weight; SC, starch content; FYLD, fresh root yield; DYLD, dry yield; HI, harvest index; LODG,
number of lodged plants per plot; PLTHT6, plant height at 6 months after planting; BRNHT6, height at first branch at 6 months after planting;
PLTHT9, plant height at 9 months after planting; BRNHT9, height at first branch at 9 months after planting; BRNLEV9, level of branching at 9 months
after planting; BRNHB9, branching habit at 9 months after planting; ANGBR9, angle of branching; PPSTD9, number of plants per stand, and STMDI9,
stem diameter.
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DM). The 17 significant SNPs recorded for these traits were found

on chromosomes 1, 3, 4, 5, 6, 8, 9, 11, 12, 15, and 16. A total of 19

putative candidate genes were identified near the significant SNPs

(Table 6). Significant SNP were validated using MLMe analysis. The

validation procedure confirmed the genuineness of each significant

DArTag marker as a result of the mixed linear model performed in

GAPIT, and the validation analyses performed in GCTA were

identical. In contrast, only one of the significant SNPs on

chromosome 6 detected using DArTSeq markers and the

FarmCPU model (S6_21336567) was detected by the MLMe

analysis conducted in GCTA. The Q-Q plots revealed a huge

deflection from the observed to expected variation when

DArTSeq markers and the FarmCPU model were used, whereas

little or no deflection was observed when using DArTag markers

and the mixed linear model. This suggests that both the SNPs and

candidate genes discovered through the GWAS conducted using the

DArTSeq markers and the FarmCPUmodel were probably artifacts.
Discussion

Plant height and stem diameter are primary plant architectural

traits that significantly influence the position and alignment of
Frontiers in Plant Science 09
other plant architectural traits (Laurans et al., 2024). The negative

correlation between FYLD, the primary predictor of yield, and

PLTH is consistent with the conclusions of (Edet et al., 2015), who

also reported a negative relationship between the two traits. This

implies that sustainable improvement in FYLD productivity in

cassava could be achieved by attaining a balance in the expression

of these inversely related traits.

Heritability is an essential parameter in plant breeding, as it

indicates the potential for the genetic improvement of a trait

through selection. A couple of plant architecture and yield-related

traits were reported to have moderately high to high broad-sense

heritability, including FYLD (0.67), DM (0.68), HI (0.86), BRNHT6

(0.86), BRNHT9 (0.88), PLTHT9 (0.80), and SC (0.70). Similar

results were reported (Santos et al., 2023) for FYLD and for DM.

High SC content is one of the selling points of cassava varieties

targeted for industrial use. The high value of broad-sense

heritability recorded for SC in this study corroborated the

findings of (Namakula and Nuwamanya, 2022), who reported a

heritability value of 0.76. Given that PLTHT9, PLTHT6, STMDI9,

HI, FYLD, SC, and LODG have high values of broad sense

heritability (0.80), (0.83), (0.73), (0.86), (0.67), (0.7), and (0.69),

respectively, there is significant potential for genetic improvement

of these traits in cassava through selection, thereby making it
FIGURE 7

Genotypic correlation coefficient plot of plant architecture and yield traits in Mokwa trial. NOHAV, number of harvested plants per plot; RTNO,
number of harvested roots per plot; SHTWT, shoot weight; SC, starch content; FYLD, fresh root yield; DYLD, dry yield; HI, harvest index; LODG,
number of lodged plants per plot; PLTHT6, plant height at 6 months after planting; BRNHT6, height at first branch at 6 months after planting;
PLTHT9, plant height at 9 months after planting; BRNHT9, height at first branch at 9 months after planting; BRNLEV9, level of branching at 9 months
after planting; BRNHB9, branching habit at 9 months after planting; ANGBR9, angle of branching; PPSTD9, number of plants per stand; STMDI9,
stem diameter.
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feasible to modify these traits to develop cassava varieties with

optimal architecture and increased yield.
Marker coverage and SNP density

The DArTseq marker system uses a genome complexity

reduction approach, whereby restriction enzymes randomly cut at

regions with high frequencies of cutting sites, resulting in an uneven

SNP distribution across the genome (Kilian et al., 2012).

This results in the omission and underrepresentation of certain

genomic regions, such as repetitive sequences, heterochromatic

regions, and areas lacking restriction enzyme recognition sites,

leading to observed gaps in genome coverage (Wenzl et al., 2004;

Kilian et al., 2012; Sánchez-Sevilla et al., 2015). In contrast, DArTag

employs a targeted genotyping approach, where pre-selected SNPs

are evenly distributed across the genome, ensuring uniform

coverage and minimizing gaps (Hardenbol et al., 2003; Hardigan
Frontiers in Plant Science 10
et al., 2023). Large gaps, as observed with DArTseq markers, have a

significant impact on GWAS results. Regions with sparse SNP

coverage may not capture causal variants or nearby loci in linkage

disequilibrium (LD), leading to missed associations with traits

(Kilian et al., 2012; Sánchez-Sevilla et al., 2015).
Marker-trait association analysis

Subsequent to the output of the significant SNPs validation, the

discussion on the GWAS would be limited to the results obtained

through the GWAS conducted using the DArTag markers and the

mixed linear model. GWAS is a crucial method for investigating the

genetic underlining of complex plant traits (Zhu et al., 2008; Bentley

et al., 2022; Susmitha et al., 2023). Of the 11 traits with significant SNPs,

only ANGBR9 had significant SNPs on multiple chromosomes

(chromosomes 12 and 14). This suggests that this trait is complex

and influenced by multiple genes. A similar result was recorded for the
FIGURE 8

Genotypic correlation coefficient plot of plant architecture and yield traits in Onne trial. NOHAV, number of harvested plants per plot; RTNO,
number of harvested roots per plot; SHTWT, shoot weight; SC, starch content; FYLD, fresh root yield; DYLD, dry yield; HI, harvest index; LODG,
number of lodged plants per plot; PLTHT6, plant height at 6 months after planting; BRNHT6, height at first branch at 6 months after planting;
PLTHT9, plant height at 9 months after planting; BRNHT9, height at first branch at 9 months after planting; BRNLEV9, level of branching at 9 months
after planting; BRNHB9, branching habit at 9 months after planting; ANGBR9, angle of branching; PPSTD9, number of plants per stand; STMDI9,
stem diameter.
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angle of branching in a GWAS experiment conducted on cotton across

three test environments (Shao et al., 2022) and for fresh root yield in

cassava (Hohenfeld et al., 2022).

We found evidence of pleiotropy with some significant SNPs

associated with multiple traits (e.g., CassV7_chr12_674448), which

were recorded on chromosome 12 for both ANGBR9 and BRNHB9.

This implies that the genes controlling these traits could co-segregate

and be inherited together (Abah et al., 2024). reported a similar

outcome for cassava, where a significant SNP (S4_8840623) was

associated with the productivity of dry yield and bulking index. He

also reported that these SNPs (S10_2319500, S2_1937678, and

S3_3324735) independently influenced both the starch and dry

matter contents.

Similarly, significant MTAs for PLTHT9, FYLD, and RTWT were

found on chromosome 8, validating the results of the path coefficient

analysis, where PLTHT9 had a significant positive contribution to

FYLD through RTWT across the test environments with an almost

absolute contribution (0.99) to FYLD in the trial at Onne (Figure 11)

(Rabbi et al., 2017). also reported the colocalization of SNPs that

control chromameter value, colour chart, and dry matter content in

fresh cassava roots, while (Villwock et al., 2025) reported similar results

for total carotenoid and dry matter contents.

Plant height is an essential component of plant architecture that

influences crop productivity through its effects on planting density,
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amount of insolation received, and resistance to lodging (Fei et al.,

2022). The efficiency of mechanical harvesting can be influenced by

plant height (Yan et al., 2019). The crux of this research is based on

identifying genomic regions that could be exploited to develop cassava

varieties with ideal plant architecture and improved yield. The

identification of these important genomic regions on chromosome 8

that control plant height (CassV7_chr08_17260363) and fresh root

yield (CassV7_chr08_6710616 and CassV7_chr08_7101298)

constitutes a huge leap towards the realization of the core objective

of this research, aimed at unraveling the genetics of plant architecture

and its effects on yield in cassava, as well as suitability for

mechanized farming.
Putative candidate genes linked to marker
loci for traits associated with plant
architecture and yield

Of the 21 putative candidate genes identified, six were found to

promote yield, plant growth, and development. These include two

genes identified on the angle of branching: Manes.12G003900, which

encodes a legume lectin domain-containing protein (Aleksander et al.,

2023) that promotes plant growth and development and enhances

plant defence mechanisms against pathogens (Katoch and Tripathi,
FIGURE 9

Path coefficient analysis plot of plant architecture and yield traits in Ikenne trial. NOH, number of harvested plants per plot; RTN, number of
harvested roots per plot; RTW, root weight; SC, starch content; FYL, fresh root yield; HI, harvest index; LOD, number of lodged plants per plot;
PLTHT6, plant height at 6 months after planting; PLTHT9, plant height at 9 months after planting; ANG, angle of branching; STM, stem diameter.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1660789
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Olayinka et al. 10.3389/fpls.2025.1660789
2021), and Manes.12G007000, which encodes a glutaredoxin domain-

containing protein (Aleksander et al., 2023) that regulates gene

expression and signal transduction and contributes to plant growth

and development (Rouhier et al., 2006). Similarly, for plant height, we

identified Manes.08G075800, which encodes an oligopeptide

transporter 1-like protein (Aleksander et al., 2023). This gene is

involved in plant development and adaptation to stress (Liu et al.,

2012; Zhai et al., 2014). The level of branching, a measure of flowering

events that the plant has undergone, is a fundamental aspect of plant

architecture that influences the plant’s ability to capture light, distribute

nutrients, and overall biomass production and yield potential (Pineda

et al., 2020). The candidate gene associated with the level of branching,

Manes.01G130800, encodes a PH (Pleckstrin Homology) domain-

containing protein (Aleksander et al., 2023), which influences root

development in plants through its interactions with phosphoinositides

and phosphatidic acid (Lemmon, 2010). Similar to the study by

(Baguma et al., 2024), on chromosome 15, we identified a genomic

region linked with this trait that was approximately 3,783,500 bp apart

from the one reported by (Baguma et al., 2024). The candidate gene

Manes.15G171966, identified in this region in this study, is a novel

candidate gene, while those reported by (Baguma et al., 2024) have
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well-documented functions. This novel candidate gene presents a

prospect for the validation of genes involved in plant architecture

and flowering in cassava breeding. Yield improvement is a critical

component of all crop improvement programs. Plant breeders are

continually developing new strategies and technologies to enhance crop

productivity and ensure global food security. Fresh root yield and root

weight are important metrics for evaluating cassava yield. The

candidate gene Manes.08G058000 identified in FYLD and RTWT

encodes an MYB-like (myeloblastosis) DNA-binding protein

(Goodstein et al., 2014). MYB is a transcription factor that plays a

crucial role in regulating various cellular processes in plants, including

the cell cycle and cell morphogenesis (Ambawat et al., 2013), biotic and

abiotic stress responses (Roy, 2016), secondary metabolism, such as

anthocyanin biosynthesis (Roy, 2016), and plant development (Katiyar

et al., 2012; Roy, 2016). Similarly, Manes.02G069600, a candidate gene

identified in DYLD, encodes a C2H2-type domain-containing protein

(Aleksander et al., 2023). C2H2-type domain-containing proteins affect

the metabolic pathways involved in photosynthetic processes

(Lakshmanan et al., 2014; Habibpourmehraban et al., 2022).

The discovered novel candidate genes Manes.12G007100

(ANGBR9), Manes.08G075650 (PLTHT9), Manes.08G058000 (FYLD
FIGURE 10

Path coefficient analysis plot of plant architecture and yield traits in Mokwa trial. NOH, number of harvested plants per plot; RTN, number of
harvested roots per plot; RTW, root weight; SC, starch content; FYL, fresh root yield; HI, harvest index; LOD, number of lodged plants per plot;
PLTHT6, plant height at 6 months after planting; PLTHT9, plant height at 9 months after planting; ANG, angle of branching, and STM, stem diameter.
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FIGURE 11

Path coefficient analysis plot of plant architecture and yield traits in Onne trial. NOH, number of harvested plants per plot; RTN, number of harvested
roots per plot; RTW, root weight; SC, starch content; FYL, fresh root yield; HI, harvest index; LOD, number of lodged plants per plot; PLTHT6, plant
height at 6 months after planting; PLTHT9, plant height at 9 months after planting; ANG, angle of branching; STM, stem diameter.
TABLE 2 Summary of top significant SNPs for plant architecture and yield traits of cassava.

Trait SNP_ID
Chromosome

number
Position Value of P

Minor allele
frequency

Phenotypic
variance
explained

ANGBR9

CassV7_chr12_436985 12 436985 2.37E-06 0.0782 10.01

CassV7_chr12_674448 12 674448 1.43E-06 0.0687 4.62

CassV7_chr14_18810275 14 18810275 1.65E-05 0.3949 7.53

PLTHT6 CassV7_chr08_17260363 8 17260363 9.89E-06 0.4866 21.01

PLTHT9 CassV7_chr08_17260363 8 17260363 8.56E-06 0.4866 19.57

FYLD
CassV7_chr08_6710616 8 6710616 1.70E-05 0.3165 0

CassV7_chr08_7101298 8 7101298 6.80E-06 0.2918 12.7

BRNLEV3 CassV7_chr15_15530801 15 15530801 1.40E-05 0.491 16.18

BRNLEV9

CassV7_chr01_27643909 1 27643909 1.06E-05 0.2737 0

CassV7_chr01_28103607 1 28103607 5.42E-06 0.2737 0

CassV7_chr01_28262168 1 28262168 6.50E-06 0.3431 5.06

CassV7_chr01_29155618 1 29155618 9.29E-06 0.4982 9.22

(Continued)
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FIGURE 12

Manhattan and quantile–quantile (Q-Q) plots of significant MTAs for one of the nine plant architecture and yield-related traits (FYLD) from the GWAS
analysis conducted on 420 cassava accessions and 2,527 SNP markers.
TABLE 2 Continued

Trait SNP_ID
Chromosome

number
Position Value of P

Minor allele
frequency

Phenotypic
variance
explained

CassV7_chr01_29944386 1 29944386 9.97E-07 0.3303 0

CassV7_chr01_30312867 1 30312867 9.97E-07 0.3303 10.54

DYLD CassV7_chr02_6125643 2 6125643 1.76E-05 0.3859 12.57

RTWT
CassV7_chr08_6710616 8 6710616 1.70E-05 0.3165 0

CassV7_chr08_7101298 8 7101298 6.80E-06 0.2918 12.7

BRNHB9 CassV7_chr12_674448 12 674448 1.14E-05 0.0691 21.72

SHTWT CassV7_chr06_25850871 6 25850871 7.15E-06 0.1906 23.81

TYLD CassV7_chr06_25850871 6 25850871 7.15E-06 0.1906 23.81
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TABLE 3 Matrix of traits by environments of significant SNPs for plant architecture and yield traits of cassava across the test environments.

Traits/environments Ikenne Mokwa Onne MET

Level of Branching at 3
Months after Planting

⋄

Level of Branching at 9
Months after Planting

⋄ ⋄

Fresh Root Yield ⋄

Fresh Root Weight ⋄

Shoot Weight ⋄

Top Yield ⋄

Dry Yield ⋄ ⋄

Plant Height at 6
Months after Planting

⋄ ⋄

Plant Height at 9
Months after Planting

⋄ ⋄

Angle of Branching ⋄

Branching Habit ⋄
MET, Multi-Environment Trial.
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and RTWT), Manes.02G069700 (DYLD), Manes.01G142400, and

Manes.15G171966 (BRNLEV3 and BRNLEV9) provide insights into

the genetic pathways through which these traits could be improved.
Conclusion

The genetic underpinnings of plant architecture and yield-

associated traits in cassava were examined in this study through a

genome-wide association study (GWAS). This investigation involved
Frontiers in Plant Science 15
420 cassava accessions and employed two genotyping platforms,

DArTseq and DArTag, across three distinct environments. Sixteen

significant, validated marker-trait associations were discovered using

the DArTag markers, compared to only one reported using the

DarTseq markers. This highlights the importance of maintaining a

balance between the density and distribution of markers for more

reliable GWAS results.

The significant marker-trait associations were linked to

important genomic regions that could enhance marker-assisted

selection for suitable plant architecture and increased yield in
TABLE 4 Gene annotation of the significant SNPs for plant architecture and yield traits.

Trait SNP_ID
Chromosome

number
Gene ID Gene annotation

PLTHT9
CassV7_chr08_17260363 8 Manes.08G075800 Oligopeptide transporter 1-like

CassV7_chr08_17260363 8 Manes.08G075650 Uncharacterized protein

ANGBR9

CassV7_chr12_436985 12 Manes.12G003700 Thaumatin-like protein

CassV7_chr12_436985 12 Manes.12G003900 Legume lectin domain-containing protein

CassV7_chr12_436985 12 Manes.12G003600 Protein TIC 20

CassV7_chr12_436985 12 Manes.12G003800 Thaumatin-like protein

CassV7_chr12_674448 12 Manes.12G007000 Glutaredoxin domain-containing protein

CassV7_chr12_674448 12 Manes.12G007100 Uncharacterized protein

CassV7_chr12_674448 12 Manes.12G006900 Exocyst subunit Exo70 family protein

CassV7_chr14_18810275 14 NA

BRNLEV3 CassV7_chr15_15530801 15 Manes.15G171966 Uncharacterized protein

BRNLEV9

CassV7_chr01_27643909 1 Manes.01G122000
Zinc finger ZPR1-type domain-

containing protein

CassV7_chr01_28103607 1 Manes.01G128600 BED-type domain-containing protein

CassV7_chr01_28262168 1 Manes.01G130800 PH domain-containing protein

CassV7_chr01_29155618 1 Manes.01G142400 Uncharacterized protein

CassV7_chr01_29944386 1 Manes.01G154200 K04523 - ubiquilin (UBQLN, DSK2)

CassV7_chr01_30312867 1 Manes.01G159600 SMP-LTD domain-containing protein

FYLD
CassV7_chr08_7101298 8 Manes.08G058000 Uncharacterized protein

CassV7_chr08_6710616 8 NA

RTWT
CassV7_chr08_7101298 8 Manes.08G058000 Uncharacterized protein

CassV7_chr08_6710616 8 NA

SHTWT CassV7_chr06_25850871 6 Manes.06G122900 Membrane-anchored ubiquitin-fold protein

DYLD CassV7_chr02_6125643 2 Manes.02G069600 DUF4005 domain-containing protein

CassV7_chr02_6125643 2 Manes.02G069700 Uncharacterized protein MANES_02G069700

CassV7_chr02_6125643 2 Manes.02G069800 C2H2-type domain-containing protein

TYLD CassV7_chr06_25850871 6 Manes.06G122900 Membrane-anchored ubiquitin-fold protein
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cassava breeding. These include putative candidate genes for angle

of branching (7), plant height (2), level of branching (7), fresh root

yield and weight (1), fresh shoot weight and top yield (1), and dry

yield (3). These candidate genes exhibit various functions related to
Frontiers in Plant Science 16
plant architecture, adaptation, yield (root development), plant

growth, and stress response. Out of the 21 putative candidate

genes identified in this study, six novel genes (Manes.08G075650,

Manes.12G007100, Manes.15G171966, Manes.01G142400,
FIGURE 13

Manhattan and quantile–quantile (Q-Q) plots of significant MTAs for one of the nine plant architecture and yield-related traits (DM) from the GWAS
analysis conducted on 420 cassava accessions and 54,574 SNP markers.
TABLE 5 Summary of top significant SNPs for plant architecture and yield traits of cassava.

Trait SNP_ID
Chromosome

number
Position Value of P

Minor allele
frequency

Phenotypic
variance
explained

ANGBR9 S1_19494690 1 19494690 6.77E-07 0.15944 0.85688

S1_23883230 1 23883230 4.58E-07 0.19515 18.5628

PLTTP S3_1388806 3 1388806 1.17E-07 0.46495 0

S5_10702830 5 10702830 1.80E-08 0.44393 3.88491

S15_10073295 15 10073295 2.78E-07 0.1729 1.60299

VR S4_5944464 4 5944464 2.94E-08 0.42523 1.12237

S16_2295914 16 2295914 2.73E-08 0.30958 1.87443

S17_17302312 17 17302312 5.68E-08 0.43107 5.10115

BRNLEV6 S8_27519983 8 27519983 5.53E-07 0.15278 18.6092

S11_16097795 11 16097795 5.67E-08 0.10301 15.8714

BRNLEV9 S5_22148410 5 22148410 1.20E-09 0.45718 0.61819

S11_16097795 11 16097795 3.30E-08 0.10301 22.6755

DM S16_24715889 16 24715889 1.33E-08 0.14419 24.3844

HI S9_3493565 9 3493565 1.32E-13 0.31481 5.37937

S12_29499402 12 29499402 1.81E-07 0.4456 5.60214

S16_22907596 16 22907596 1.43E-08 0.06134 7.05957

NOHAV S6_21336567 6 21336567 9.00E-07 0.08912 32.7769
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Manes.08G058000, Manes.02G069700) were discovered. This

represents a significant contribution to the existing knowledge.

These findings provide a gateway for exploring the genetic

control of cassava plant architecture and yield. This research

output will provide cassava breeders with the genetic and

molecular leverage required to fast-track cassava improvement in

terms of yield, productivity, and adaptation for mechanized

cultivation and industrial use.
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TABLE 6 Gene annotation of the significant SNPs for plant architecture and yield traits.

Trait Marker Position Chromosome Gene ID Gene annotation

ANGBR9

S1_19494690 19494690 1 Manes.01G056000 glucan endo-1,3-beta-D-glucosidase

Manes.01G056100 Ubiquitin carboxyl-terminal hydrolase

S1_23883230 23883230 1 Manes.01G077800 Nitrate-transporting ATPase

Manes.01G077900 Uncharacterized Manes.01G077900

PLTTP

S3_1388806 1388806 3 Manes.03G016100 DYW domain-containing protein

Manes.03G016200 AAA+ ATPase domain-containing protein

Manes.03G016300 Adenine Nucleotide Transporter

S15_10073295 10073295 15 Manes.15G122400 9-cis-epoxycarotenoid dioxygenase

VR
S4_5944464 5944464 4 Manes.04G041500 RBR-type E3 ubiquitin transferase

S16_2295914 2295914 16 Manes.16G020700 F-box domain-containing protein

BRNLEV6 S11_16097795 16097795 11 Manes.11G089900 Triosephosphate isomerase

BRNLEV9

S5_22148410 22148410 5 Manes.05G148900
Cytokinin riboside 5’-monophosphate

phosphoribohydrolase

Manes.05G148800 Endoglucanase

Manes.05G148700 Myb/SANT-like domain-containing protein

S11_16097795 16097795 11 Manes.11G089900 Triosephosphate isomerase

DM S16_24715889 24715889 16 NA NA

HI

S9_3493565 3493565 9 Manes.09G018900 Glycosyltransferase

S12_29499402 29499402 12 Manes.12G109600 RING-type E3 ubiquitin transferase

S16_22907596 22907596 16 Manes.16G062600 JmjC domain-containing protein

NOHAV S6_21336567 21336567 6 Manes.06G073700 TauD/TfdA-like domain-containing protein
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