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Introduction: With the advancement of imaging technologies, the efficiency of

acquiring plant phenotypic information has significantly improved. The

integration of deep learning has further enhanced the automatic recognition of

plant structures and the accuracy of phenotypic parameter extraction. To enable

efficient monitoring of tomato water stress, this study developed a deep

learning-based framework for phenotypic trait extraction and parameter

computation, applied to tomato images collected under varying water

stress conditions.

Methods: Based on the You Only Look Once version 11 nano (YOLOv11n) object

detection model, adaptive kernel convolution (AKConv) was integrated into the

backbone’s C3 module with kernel size 2 convolution (C3k2), and a recalibration

feature pyramid detection head based on the P2 layer was designed.

Results and discussion: Results showed that the improved model achieved a

4.1% increase in recall, a 2.7% increase in mAP50, and a 5.4% increase in mAP50–

95 for tomato phenotype recognition. Using the bounding box information

extracted by the model, key phenotype parameters were further calculated

through geometric analysis. The average relative error for plant height was

6.9%, and the error in petiole count was 10.12%, indicating good applicability

and accuracy for non-destructive crop phenotype analysis. Based on these

extracted traits, multiple sets of weighted combinations were constructed as

input features for classification. Seven classification algorithms—Logistic

Regression, Support Vector Machine, Random Forest, Decision Tree, K-Nearest

Neighbors, Naive Bayes, and Gradient Boosting—were used to differentiate

tomato plants under different water stress conditions. The results showed that

Random Forest consistently performed the best across all combinations, with the

highest classification accuracy reaching 98%. This integrated approach provides

a novel approach and technical support for the early identification of water stress

and the advancement of precision irrigation.
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GRAPHICAL ABSTRACT
1 Introduction

Smart irrigation systems have increasingly become a key

strategy for improving water use efficiency and enhancing crop

productivity. Currently, such systems primarily rely on the

integration of soil moisture, meteorological data, and intelligent

algorithms to dynamically respond to crop water demands (Mason

et al., 2019; Jimenez et al., 2020). However, such irrigation strategies

are limited under complex field conditions. For instance, soil-

moisture-based irrigation control is highly susceptible to

interference from factors such as salinity and root distribution,

thereby reflecting only localized water status rather than the plant’s

actual physiological water needs. Similarly, irrigation methods

based on evapotranspiration or historical weather data often fail

to accommodate the dynamic water requirements of crops at

different growth stages, potentially leading to over irrigation or

under irrigation (Jamroen et al., 2020; Touil et al., 2022).

Furthermore, these approaches tend to overlook phenotypic

changes in crops, making it difficult to accurately detect early

signs of stress and thereby compromising the timeliness and

precision of irrigation management.

Recently, with the significant progress of applying image

recognition technologies in agriculture, the potential for early

identification of crop water stress and monitoring of physiological

status proposes a new methodology and a novel perspective. Image
Abbreviations: AKConv, Adaptive Kernel Convolution; C3k2, C3 Module with

2×2 Convolution Kernel; P2, Second-level Feature Map in FPN; LWA, Local

Window Attention; BRA, Bi-level Routing Attention; FPN, Feature Pyramid

Network; GFLOPs, Giga Floating Point Operations per Second; mAP, Mean

Average Precision; C3, Cross Stage Partial Bottleneck with 3 Convolutions;

YOLOv11n, You Only Look Once version 11 nano; LR, Logistic Regression;

SVM, Support Vector Machine; RF, Random ForestRandom Forest; DT, Decision

Tree; KNN, K-Nearest Neighbors; NB, Naive Bayes; GB, Gradient Boosting.
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recognition, as a non-contact, high-efficiency, and highly automated

monitoring method (Cen et al., 2020; Zhang et al., 2020), has

gradually become an important tool for acquiring phenotypic

data in agricultural research (Wang and Su, 2022; Kim, 2024).

Studies have shown that functional phenotyping methods from

complex system architectures, strong dephenotyping methods can

capture real-time physiological responses of plants under drought

conditions, enabling more accurate assessment of drought tolerance

(Hein et al., 2021; Mansoor and Chung, 2024). Meanwhile,

continuous advancements in field-based high-throughput

phenotyping platforms and multimodal imaging technologies

have enabled large-scale, multidimensional analyses of crop stress

responses under realistic agricultural environments (Langan et al.,

2022). These developments provide a solid technical foundation for

promoting the application of image-based technologies in

smart irrigation.

However, effectively applying image recognition in irrigation

management and crop water stress detection remains challenging,

especially under complex field conditions and suboptimal imaging

environments. On one hand, Phenotyping methods often rely on

3D reconstruction or manual measurements (Tong, 2022; Li, 2023).

which, although capable of extracting morphological traits to some

extent, suffependence on specialized hardware, cumbersome

processing workflows, and high deployment costs. On the other

hand, plants often exhibit complex structures and small-scale

targets under water stress conditions, which are easily affected by

variable lighting and background noise—reducing the precision and

stability of feature extraction. While technologies such as multi-view

stereo imaging and structured light laser scanning perform well in

generating point clouds and measuring panicle height, their high

sensitivity to lighting and plant motion, as well as their costly

equipment, limit their practical use in field environments

(Mohamed and Dudley, 2019). Moreover, most current plant

phenotyping studies remain confined to controlled environments,

and field-based phenotyping still faces significant challenges in
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image acquisition quality (Perez-Sanz et al., 2017) and real-time

data processing (Cao et al., 2021).

To address the aforementioned challenges, researchers have

increasingly shifted toward phenotyping approaches that integrate

image recognition and deep learning. For instance, Aich (Aich and

Stavness, 2017) proposed a deep neural network-based method for

leaf counting, enabling automatic identification and quantification

of plant leaves. Attri (Attri et al., 2023) integrated thermal imaging,

image processing, and deep learning to successfully detect drought

stress in maize, enabling efficient monitoring of crop water status.

Dong (Dong, 2024) utilized Micro-CT imaging combined with deep

learning to extract high-precision features of regenerated rice stems.

Zou (Zou, 2024) estimated tomato plant height and canopy

structure through image processing and 3D reconstruction,

effectively addressing the limitations of manual methods in

capturing spatial plant architecture. These studies highlight the

broad applicability of image recognition in quantifying structural

phenotypes in plants. On this basis, the integration of image

recognition and deep learning has further accelerated the

intelligent transformation of phenotypic analysis, making it

feasible to automatically identify structural traits of plants

(Kharraz and Szabó, 2023). For example, Li (Li et al., 2025)

developed the MARS-Phenobot system to achieve high-

throughput measurement of fruit-related traits such as blueberry

yield, maturity, and firmness, effectively reducing the reliance on

manual phenotyping. Similarly, Wang (Wang, 2021) constructed a

deep learning model based on VGG16-SSD to automatically

measure tomato plant height, addressing the low efficiency and

high error rates associated with traditional methods. These studies

provide reliable data for uncovering physiological responses and

structural changes during plant growth, promoting the

advancement of plant phenotyping analysis under stress conditions.

Among various deep learning models, the You Only Look Once

(YOLO) model has gained considerable attention in agricultural

contexts due to its excellent real-time performance and detection

accuracy. The model effectively identifies small objects and complex

plant structures while maintaining high inference speed, making it

particularly well-suited for scenarios with dense, overlapping plant

components. YOLO predicts both the spatial location and class of

targets in the form of bounding boxes—a fundamental approach

widely used in object detection tasks. It enables automated,

bounding-box-level detection and parameter extraction for

structural phenotypic traits such as leaves, petioles, and plant

height. For example, He (He, 2023) developed a soybean pod

detection and weight estimation system by integrating an improved

YOLOv5 model and BP neural network, enhancing the efficiency of

trait data acquisition. Xiang (Xiang, 2022) applied YOLOX to achieve

automatic detection and counting of strawberries, improving the

automation and accuracy of fruit-level phenotyping. These studies

demonstrate that integrating deep learning models with phenotypic

trait extraction can not only reduce manual intervention but also

significantly enhance measurement efficiency and data consistency

(Dong et al., 2022).Therefore, YOLO-based structural trait detection

presents a promising path for efficiently identifying plant responses to

water stress.
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Under drought-induced water stress conditions, the rapid and

accurate extraction of plant phenotypic traits is crucial for the

implementation of smart irrigation strategies. However, research on

the structural phenotypic changes of tomato plants under varying

water stress conditions remains limited. Tomato plants present unique

challenges for phenotypic analysis due to their small target size,

compact structure, and significant morphological responses under

drought conditions. Therefore, there is still a lack of automated

methods that are both highly accurate and adaptable to field

environments for identifying the dynamic phenotypic responses of

tomato plants under drought stress. To address this gap, the study

aims to develop a high-performance object detection model based on

YOLOv11 for the automatic recognition and quantification of key

tomato phenotypic traits under multiple water stress conditions. This

approach is expected to provide technical support for drought

response analysis and smart irrigation management. The specific

objectives of this study are as follows: 1) To develop an improved

YOLOv11n-based model for the automatic identification and precise

quantification of key structural traits in tomato plants, including plant

height, number of petioles, and number of leaves, with enhanced

detection capability for small objects and multi-scale features; 2) To

establish an efficient phenotypic parameter extraction framework

capable of synchronously extracting multiple traits, in order to

assess the impact of water stress on tomato phenotypes and ensure

both accuracy and practical applicability in parameter measurement.
2 Materials and methods

2.1 The potted experiment

The potted tomato experiment was conducted from October to

November 2024 at the Xinxiang Comprehensive Experimental Base of

the Chinese Academy of Agricultural Sciences (35°09′N, 113°47′E).
The cultivation environment was a greenhouse with potted plants,

ensuring no interference from climatic factors. An aluminum alloy

frame with dimensions of 120 cm in length, 60 cm in width, and

115 cm in height was set up. Three T8 LED tubes were placed on top

of the frame to provide artificial supplementary light (Figure 1). The

pots used in the experiment had a top diameter of 16 cm, a bottom

diameter of 14 cm, and a height of 10.5 cm.

The soil used in the experiment was collected from the 0–40 cm

plow layer of the open field. Prior to the experiment, ring knives were

inserted at depths of 0–10 cm and 20–30 cm in the soil surface to

measure the bulk density and field capacity. The measured field

capacity was 21.77% (mass water content), and the soil bulk density

was 1.35 g/cm³. The soil was exposed to sunlight for two days and

treated with wettable powder fungicide and carbendazim, for

sterilization. Afterwards, the soil was naturally air-dried with plant

residues and other impurities removed. Then, the soil was packed

into pots in batches. The tomato plants (Solanum lycopersicum L. cv.

‘Honghongdou’) were transplanted at the four-leaf stage.

Management was carried out according to the Organic Food

Tomato Facility Production Technical Specifications (Feng, 2021;

Lian and Le, 2023) combined with local farmer practices.
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The fertilization rates for N, P2O5, and K2O were 0.27 g/(kg dry soil),

0.11 g/(kg dry soil), and 0.27 g/(kg dry soil), respectively.

After transplanting the tomato seedlings, normal irrigation was

applied on October 6 to ensure their successful adaptation to the

environment. After a 16-day period of stable growth, different water

stress treatments were initiated on October 22. The stress treatment

was continuous and non-cyclical, lasting for 22 days until it ended on

November 13. The experimental design was based on the methodology

outlined in the literature (Zhuang, 2020) and combined with local

management practices. Three soil moisture gradients were established

for the experiment, named CK (90%-100% offield capacity),W1 (70%-

80% of field capacity), and W2 (50%-60% of field capacity). Soil water

content was measured using the oven-drying method, with samples

taken daily. When the soil moisture fell below the lower threshold,

irrigation was promptly applied to adjust the moisture back to the set

value, maintaining the soil moisture within the specified set range.

Tomato plants were manually measured once a week, including plant

height, number of petioles, and number of leaves.
2.2 Data collection and dataset
development

Phenotypic images of the tomato were captured using a

smartphone (iPhone 13, 12 MP camera with a dual-camera

system, including wide and ultra-wide lenses). The camera was

positioned at the same horizontal height as the potted plants, with a

horizontal distance of 60 cm during the capture periods. As shown

in Figure 2, the images were collected to capture the overall

characteristics of the tomato during the seedling and flowering-

fruit-setting stages, as well as the phenotypic information of the

plants. Based on actual conditions, images of the plants were

captured twice daily, at 9:00 AM and 6:00 PM, avoiding periods
Frontiers in Plant Science 04
of strong direct sunlight and low light to ensure relatively stable

lighting conditions. The image capture used fixed parameters (such

as exposure time and white balance) that remained constant

throughout the entire collection process. To reduce interference, a

white background plate was used for photography.

To develop the dataset, the LabelImg annotation tool (version

1.8.6, YOLO format) was used for manual annotation of the tomato

plant phenotypic features. Three different water treatments were

applied: CK group (596 images), W1 group (512 images), and W2

group (515 images). The phenotypic features annotated included

leaf, height, and petiole. The label format used was “txt,” with label

files sharing the same name as the image files. Each file contained

five types of information: label_index, x, y, w, and h. The dataset

was split into training, validation, and test sets in a 7:2:1 ratio.
2.3 Model selection and improvement

To effectively extract phenotypic features of the plants, we

introduced a phenotypic detection framework based on the YOLO

model. The optimized C3k2 module is integrated into the backbone

network to enhance feature representation ability. An attention

mechanism is incorporated to improve the model’s ability to capture

both local and global information. Additionally, the recalibration FPN-

P2345 detection head was used to enhance the accuracy and structural

modeling ability for detecting small-scale targets, such as plant height,

leaves, and petioles (Figure 3). Building on this, a parameter calculation

method based on the structural relationships of detection boxes was

proposed. By incorporating a calibration board for scale conversion,

this method enables the automated, non-destructive extraction of plant

height, petiole count, and leaf count. This framework provides stable

and reliable technical support for monitoring crop responses due to

water stress and conducting quantitative analysis of plant phenotypes.
FIGURE 1

Layout of the experimental setting.
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2.3.1 Model selection
To determine the optimal model, we conducted a performance

comparison of five versions of YOLOv11 (YOLOv11n, YOLOv11s,

YOLOv11m, YOLOv11l, YOLOv11x). Then, the YOLOv11 series

model was selected as the foundational framework for the object

detection algorithm in this study. YOLOv11 integrates multi-scale

receptive fields, enhanced feature fusion structures, and an

improved decoding head, providing excellent recognition

capability and high detection accuracy. It is well-suited for

tomato phenotypic structure recognition tasks in complex

agricultural environments.

The model experiment applied the following environment:

Ultralytics version 8.3.9, Python version 3.11.7, PyTorch version

2.1.2, GPU information: NVIDIA GeForce RTX 2080 Ti (11 GB

VRAM). To save training time and computational resources, an

Early Stopping=30 mechanism was introduced, and in subsequent

model training, hyperparameters remained consistent, without

loading a pretrained model. The model’s hyperparameters are

shown in Table 1.

2.3.2 Model improvement
As shown in Figure 4, the number of “height” targets is

significantly higher than that of “leaf” and “petiole,” indicating a

pronounced class imbalance in the dataset, which may adversely

affect model training. phenotypic structures such as leaves, petioles,
Frontiers in Plant Science 05
and overall plant height exhibit characteristics of numerous small

targets, relatively uniform spatial distribution, and a tendency to be

concentrated in the center of the image. Traditional detection

models often struggle with incomplete detection and high false

positive rates when extracting small and fine-grained structures.

Additionally, the target sizes are predominantly small, with a strong

positive correlation between width and height, suggesting structural

consistency across objects but also highlighting the high proportion

of small targets. To improve the model’s ability to perceive multi-

scale features of tomato plants, enhance detailed feature modeling,

and increase the accuracy of small target detection, attention

mechanisms and improved detection head structures were

introduced into the backbone of the YOLOv11n model.

2.3.2.1 Improved C3k2 module

In the backbone network, the C3k2 module is improved to the

C3k2_AKConv module (Figure 5). This improvement aims to

enhance the model’s ability to perceive small-scale and irregularly

shaped targets (Zhang et al., 2023). Unlike the fixed structure of

standard convolution, the convolution kernel of AKConv (Equation 1)

supports an arbitrary number and shape of sampling parameters,

allowing it to flexibly adapt to diverse target structures and scale

distributions. Overall, AKConv with its variable structure and adaptive

characteristics, provides more efficient feature extraction capability,

demonstrating superior detection performance, particularly in
FIGURE 2

Phenotypic characteristics of tomato under different water stress (A) Leaf images; (B) Petiole images; (C) Overall plant images.
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recognizing small-target phenotypes of tomato.

Y =o
n

i=1
ai · Convki(X), s : t :o

n

i=1
ai = 1 (1)

where, X represents the input features, Convki denotes the

convolution operation using a convolution kernel of size ki, ai is the
learnable weight computed by the attention mechanism, and Y is

the final output feature after fusion.

2.3.2.2 Add attention mechanism

To enhance the model’s ability to model small targets and fine-

grained structures, two attention mechanisms were introduced in

the backbone network: Local Window Attention (LWA, Figure 6A)

mechanism (Liu et al., 2021)and BiLevel Routing Attention (BRA,

Figure 6B) mechanism (Zhu et al., 2023).These two attention

mechanisms enhance feature extraction capabilities through local
Frontiers in Plant Science 06
perception and cross-region modeling, respectively. They are

particularly suitable for detecting complex, small-scale targets,

such as leaves and petioles, in crop images.

LWA divides the input feature map into multiple non-

overlapping local windows and independently performs self-

attention calculations within each window. It significantly reduces

the overall computational complexity while enhancing the ability to

model local structures (Equation 2). By maintaining computational

efficiency, it improves the model’s detection performance for locally

dense areas and small-sized targets, making it particularly suitable

for extracting fine-grained phenotypic features such as leaves and

petioles in tomato plant images.

BRA is widely used in image recognition and object detection

tasks. The mechanism is based on a strategy of hierarchical region

partitioning and routing information modeling, effectively

integrating global modeling capabilities with the efficiency of local

representations, It is particularly well-suited for dense object

scenarios and small object detection tasks. The BRA attention

distribution (Equation 3) significantly improves small target

detection accuracy while maintaining model inference efficiency,

especially in plant images with blurred edges or densely overlapping

areas, demonstrating stronger discriminative ability.

Attn(Q,K ,V) = Softmax (
QiK

T
iffiffiffi
d

p )V (2)

Attn(Q,K ,V) =o
N

i=1
pi · Softmax (

QiK
T
iffiffiffi
d

p )Vi (3)

Where Q, K, and V represent the query, key, and value vectors

within the i-th window, respectively, N denotes the number of
FIGURE 3

Structure of the improved YOLOv11 model.
TABLE 1 Model hyperparameters.

Parameter Value

Epoch 2000

batch size 4

Imgsz 640

lr0 0.01

momentum 0.937

lrf 0.01

Optimizer SGD
frontiersin.org
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attention heads or the number of groups, and the weight coefficient

of the i-th group. d is the dimension of each head, introduced to

prevent excessively large dot product results, which could lead to

vanishing gradients in the softmax function, thus serving a

normalization purpose.

2.3.2.3 Replace detection head

To enhance the model’s feature representation and localization

ability for small and weak-textured targets, such as the edges of

tomato leaves and the junctions of petioles, the original detection

head structure is replaced with Recalibration FPN-P2345

(Figure 5).This structure introduces a feature recalibration

mechanism (Lin et al., 2017) based on the traditional Feature

Pyramid Network (FPN) (Hu et al., 2020; Dong et al., 2021) and

extends the fusion scale to P2–P5 (Lin et al., 2017), enabling full

integration from shallow layer details to high-level semantic

features, which significantly improves the detection performance

of multi-scale targets. Unlike traditional detection heads that only

use P3–P5, P2-P5 incorporates the shallow high-resolution feature

P2 into the fusion path, allowing the network to maintain global

perception capability while enhancing its ability to model edge and

texture details for small-sized targets.

The structure mainly consists of the Recalibration module and

multi-scale fusion path (P2–P5). The Recalibration module assigns

significance weights to feature maps at each layer through a

lightweight attention mechanism, enhancing the response of key

regions and suppressing redundant background. The multi-scale

fusion path uses a bidirectional fusion strategy, combining bottom-
Frontiers in Plant Science 07
up and top-down approaches, to effectively integrate semantic

features from different levels, improving feature consistency and

semantic expression capability. Overall, this detection head

structure effectively improves the model’s detection accuracy in

dense regions and fine-grained structures while maintaining

computational efficiency. It is particularly suitable for phenotypic

feature extraction tasks in crop images, which involve high diversity

and significant scale variation.
2.3.3 Performance evaluation metrics
To comprehensively evaluate the performance of each detection

model in the task of plant phenotypic feature extraction (Equations

4–8), the following evaluation metrics were adopted in this study:

Precision (P), Recall (R), Mean Average Precision (mAP), and Giga

Floating-point Operations Per Second (GFLOPs). R measures the

proportion of correctly identified positive samples to the total

number of actual positive samples. mAP reflects the accuracy and

stability of the model’s detection results. GFLOPs are used to

evaluate the computational complexity of the neural network.

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
Z 1

0
P(r)dr (6)
FIGURE 4

Density map of phenotypic features.
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mAP =
1
No

N

i=1
APi (7)

FLOPs = 2xCinxCoutxK
2xHoutxWout (8)

where, TP refers to the number of correct matches between

predicted boxes and ground truth boxes; FP is the number of

negative samples incorrectly predicted as positive by the model; FN

is the number of positive samples incorrectly predicted as negative. P

(R) represents the Precision-Recall curve.APk denotes the Average

Precision for the k-th category, and N is the total number of categories.

Cn and Cout represent the number of input and output channels,

respectively; K is the kernel size; Hout and Wout are the height and

width of the output feature map. The factor of 2 accounts for both

multiplication and addition operations in each convolution.
2.4 Phenotypic traits calculation

To quantify the impact of different water stress conditions on

tomato plant growth, an automated and non-destructive plant height

measurement method was proposed based on the improved object

detectionmodel. This method estimates the pixel height by detecting the

upper and lower boundaries of the plant stem structure in the image.

Also, it uses a calibration board with known dimensions as a scale
Frontiers in Plant Science 08
reference to establish a conversion relationship between pixel values and

actual physical measurements, enabling accurate transformation of plant

height from image units to real-world units. Specifically, the detection

box of the calibration board is extracted from the image at first, and the

maximum relative height is selected. Combined with the actual height of

the image, the corresponding pixel height Hs is calculated. Based on this,

the number of pixels per centimeter can be determined (Equation 9).

Subsequently, the detection box of the plant stem is extracted, and its

relative height in pixels Hp is calculated. Finally, the actual plant height

(PH) is calculated by the following formula (Equation 10).

r =
Hs

1:0
(9)

PH =
Hp

r
(10)

where, r represents the number of pixels corresponding to each

centimeter in the image, 1.0 cm is the actual height of the calibration

board, PH is the actual plant height, and Hp is the pixel value

corresponding to the relative height, in centimeters.

This method relies solely on the detection box position information

to perform scale conversion and plant height estimation, without

requiring manual intervention or additional equipment. It is suitable

for comparing and quantifying the vertical growth status of plants

under different water treatment conditions.
FIGURE 5

Visualization of improved structure and key modules.
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Further extraction and analysis of the tomato plant petiole and leaf

features under different water stress conditions were conducted. A

petiole-leaf association method based on geometric positional

relationships was proposed to automatically count the number of

leaves on each petiole and calculate the total number of leaves and

petioles. First, the categories of leaves and petioles are read from the

object detection labels. By extracting the center point coordinates (x, y)

and the width and height (w,h) of the detection box, spatial position

datasets for both leaves and petioles are constructed. By traversing

each petiole bounding box in the detection results, a corresponding 2D

rectangular region is constructed. Based on this, it is determined

whether a leaf belongs to the corresponding petiole or not. This

method can be used to analyze the developmental characteristics of

tomato plant organs under different water stress. It helps assess the

impact of water stress on leaf distribution and growth structure,

providing data support for the correlation modeling between

phenotypic parameters and environmental factors.
3 Results

3.1 The performance of improved model in
tomato phenotypic detection

The model training was conducted under a unified dataset and

training parameter setup, with the results shown in Table 2.
Frontiers in Plant Science 09
YOLOv11x achieved higher recall and mAP50, but its

computational complexity reached 195.5 GFLOPs, resulting in

high demands on computational resources, slower inference speed

(Assunção et al., 2022), more energy consumption, and a relatively

large model size. These limitations restrict its performance in

practical agricultural environments, especially when deployed on

mobile or embedded devices (Ke et al., 2022; Liu et al., 2023). In

contrast, the YOLOv11n model, with relatively high accuracy,

demonstrated the best overall performance, making it more

suitable for deployment on edge devices and for real-time

applications in the field.

To further evaluate the contribution of each improvement

module to the model’s performance, an ablation experiment was

conducted by sequentially introducing the AKConv convolution,

LWA, and BRA attention mechanisms, as well as the detection head

module. The experiment focused on key metrics such as detection

accuracy and computational complexity, aiming to clarify the

impact of each module on small target detection capabilities and

overall model efficiency. It provides a basis for optimizing and

selecting the final model structure. The results of the ablation

experiment are shown in Table 3.

Based on the ablation experiment results (Table 3), the

performance of each improvement module—AKConv convolution,

LWA, BRA attention mechanisms, and RecalibrationFPN-P2345

detection head—was evaluated independently and in combination.

Models 1–4 validate the effectiveness of each individual module.
FIGURE 6

(A) Structure diagram of LWA mechanism; (B) Structure diagram of BRA mechanism.
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Model 4, which incorporates Recalibration FPN-P2345, performed the

best and achieved mAP50 and mAP50–95 values of 0.954 and 0.673,

respectively. This indicates that the structure significantly enhances

multi-scale feature fusion and small target detection. AKConv (Model

1), LWA (Model 2), and BRA (Model 3) all maintained a good balance

between precision and computational efficiency, improving mAP50

while keeping FLOPs relatively low.

In the comparison of combined modules, Models 5 and 6

achieved mAP50 values of 0.935 and 0.930, respectively, without

increasing computational complexity, demonstrating the synergistic

benefits of the attention mechanisms and dynamic convolution in

the feature extraction phase. Model 5 highlighted the collaborative

advantage of the two techniques in modeling local and adaptive

receptive fields, while Model 6 showed slightly lower performance,

suggesting some structural overlap between the two, limiting their

synergistic effect. On the other hand, combining the P2-P5

detection head with the attention mechanisms in Models 7 and 8

enhanced the depth of semantic fusion but led to a slight decrease in

precision. This decrease is likely to be due to information

redundancy or conflicts between the attention mechanisms and

the high-dimensional feature fusion paths, suggesting that further

structural adjustments are needed.

The results of Models 10 and 11 indicated that when all three

improvedmodules were integrated simultaneously, there may be some

redundancy or interference during the feature extraction and fusion

stages. In particular, the local attention mechanisms (LWA/BRA)
Frontiers in Plant Science 10
combined with deep fusion paths could lead to repeated or conflicting

feature information, affecting the overall feature consistency and

causing a decrease in detection accuracy. Additionally, the FLOPs of

these models were significantly higher than the basic combined

schemes, reaching 14.7 and 15.0, respectively. It should be noted

that the performance improvement is not substantial while

computational resource consumption increases, and may even result

in performance degradation.

The model combining AKConv and the detection head module,

Model 9, achieved the highest values in both precision and recall

(Precision 0.932, Recall 0.942, mAP50 0.954, mAP50-95 0.679),

validating the strong coupling between AKConv’s feature extraction

advantages and the P2345 detection head’s multi-scale recalibration

structure. According to the comparative analysis of the ablation

study, each improved module demonstrated independent

performance gains. Moreover, Model 9, which combines AKConv

and the detection head module, achieved the best overall

performance. Comparing the precision, recall, and mAP50 curves

of Model 9 and YOLO11n over the entire training process, it fully

demonstrated that the improved Model 9 significantly enhanced the

extraction of tomato plant phenotype features (Figure 7).

The results of the normalized confusion matrix (Figure 8A)

indicate that the model exhibited strong classification performance

across most phenotypic categories, with particularly outstanding

performance on the height class, suggesting that this trait possesses

distinct structural features that make it easier for the model to
TABLE 2 Performance comparison of different YOLOv11 models.

Model Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs MB

YOLOv11n 92.5 90.1 92.7 62.5 6.4 5.5

YOLOv11s 93.0 93.0 94.6 66.7 21.6 19.2

YOLOv11m 93.8 93.8 94.9 67.7 68.2 40.5

YOLOv11l 94.4 93.2 94.7 67.0 87.3 51.2

YOLOv11x 93.8 94.0 95.1 68.6 195.5 114.4
TABLE 3 Ablation experiment results.

Model AKConv LWA BRA P2345 Precision/% Recall/% mAP50/% mAP50-95/% FLOPS

1 ✓ — — — 91.7 91.0 93.2 64.7 6.4

2 — ✓ — — 92.4 90.6 93.3 64.8 6.5

3 — — ✓ — 92.3 90.9 93.1 64.7 6.7

4 — — — ✓ 92.8 93.8 95.4 67.3 18.0

5 ✓ ✓ — — 92.5 91.3 93.5 64.7 6.4

6 ✓ — ✓ — 92.4 89.9 93.0 63.5 6.6

7 — ✓ — ✓ 85.2 85.2 86.2 49.4 15.0

8 — — ✓ ✓ 84.7 83.2 85.9 48.4 15.1

9 ✓ — — ✓ 93.2 94.2 95.4 67.9 17.7

10 ✓ ✓ — ✓ 84.7 85.5 87.1 49.5 14.7

11 ✓ — ✓ ✓ 85.3 83.6 86.0 49.5 15.0
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distinguish. However, confusion was observed between the leaf and

petiole classes, likely due to morphological overlap or blurred

boundaries. The classification accuracy for the leaf class reached

89%, with 10% misclassified as background, possibly caused by edge

ambiguity or background interference. For the petiole class, the

accuracy was 98%, with misclassifications mainly to background

(5%) and leaf (1%). Two randomly selected samples (Figures 8B–D)

further illustrate the model’s detection performance under different

water treatments. The model effectively captured changes in leaf

and petiole distribution, and the recognition results closely matched

the phenotypic differences caused by water stress, demonstrating

the model’s robustness and biological interpretability.
3.2 The performance of improved model in
tomato phenotypic traits calculation

3.2.1 Phenotypic traits calculation
To provide a more intuitive illustration of the model

performance, 10 representative samples were randomly selected

from the total of 86 and are presented in Table 4. Additionally, the

errors for all samples were visualized to comprehensively reflect the

model’s prediction performance across the entire dataset. In this

study, the improved YOLOv11 model was primarily used to

efficiently recognize and extract key plant information from

images. Based on this, geometric analysis of the detection boxes

was performed through post-processing, which was then used to

calculate the phenotypic parameters of the plants. The results

showed that the model measurements were in good agreement

with the manually measured values for plant height and petiole

count. The average relative error for plant height was 6.9%, and the
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average relative error for petiole count was 10.12%, both of which

fall within an acceptable range. This indicates that the phenotypic

analysis framework, combining deep learning object detection

and image computation methods, can achieve relatively

accurate crop phenotypic parameter extraction without relying on

manual intervention, demonstrating high feasibility and

practical applicability.

To comprehensively evaluate the prediction performance of each

treatment group for plant height and petiole count, four metrics—

coefficient of determination (R²), Pearson correlation coefficient (r),

root mean square error (RMSE), and mean absolute error (MAE)—

were calculated, and the corresponding visualizations are presented in

Figure 9. Under different water treatment conditions, the modeling

performance of tomato plants exhibited notable differences between

the two phenotypic traits: plant height and petiole count. Overall,

plant height—as a continuous variable—demonstrated high

prediction accuracy under well-watered conditions, with both the

coefficient of determination (R²) and the Pearson correlation

coefficient (r) reaching relatively high values, indicating strong

agreement between predicted and observed values. However, as

water stress intensified, the model’s performance deteriorated

significantly; in some treatment groups, R² values even turned

negative, and both RMSE and MAE increased markedly, reflecting

greater variability in plant height under stress conditions. In contrast,

petiole count, as a discrete structural trait, exhibited consistently

weaker predictive performance across all treatments, characterized

by low R² values, high RMSE and MAE, and unstable correlation—

some groups even showed negative correlations. This suggests that

petiole count is more susceptible to nonlinear influences, making it

difficult to model effectively using a unified approach. Therefore,

jointly modeling plant height and petiole count may offer a more
FIGURE 7

Comparison of the model accuracy.
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comprehensive representation of plant responses to water stress and

improve the robustness and generalizability of phenotypic predictions.

Due to the large number of tomato plant leaves, as well as their

overlapping and complex shapes, manual counting faces significant

challenges. It is not only time-consuming and labor-intensive but

also prone to omissions or duplicate counts, which can affect the

accuracy of the results. Therefore, no manual measurements of leaf

count were conducted in this simulation, and only the model’s

predicted results were retained as a reference.
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3.2.2 Significance Analysis
To evaluate the effects of different water stress treatments on the

phenotypic traits of tomato plants, this study conducted a

systematic statistical analysis using plant height and petiole count

as core indicators. Given the assumptions of normality and

homogeneity of variances required by traditional one-way

ANOVA, preliminary tests were performed to examine the

distributional characteristics of the data. The Shapiro–Wilk test

indicated that most treatment groups did not significantly deviate
FIGURE 8

Evaluation of plant trait recognition performance using confusion matrix and object detection (A) Confusion matrix and normalized confusion
matrix; (B) Original tomato plant image; (C) Detection box results for plant trait recognition; (D) Final prediction results for plant trait recognition.
TABLE 4 Comparison of plant height measurement results.

Id height/cm petiole/cm height_pre/cm petiole_pre/cm REh/% REp/%

1 20.5 9.0 24.2 9.0 1.8 0

2 20.0 7.0 20.6 7.0 3.1 0

3 27.5 10.0 28.0 8.0 1.9 20

4 23.0 7.0 23.1 6.0 0.6 14.3

5 27.0 11.0 28.9 11.0 7.3 0

6 35.0 10.0 34.1 10.0 2.7 0

7 30.0 10.0 29.9 8.0 0.6 20.0

8 38.0 10.0 38.4 9.0 1.1 10.0

9 24.0 7.0 23.1 6.0 3.9 14.3

10 28.5 9.0 26.4 8.0 7.6 11.1
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from normality for both plant height and petiole count, although

slight skewness was observed in certain groups. Further analysis

using Levene’s test revealed significant heterogeneity of variances in

plant height across treatment groups (p = 0.012), suggesting that the

assumptions of ANOVA were not fully satisfied with this dataset. In

response to these violations, a more robust non-parametric method

was employed for group comparisons. The Kruskal–Wallis H test

showed highly significant effects of water treatment on both plant

height (p =1.23×10-8) and petiole count (p = 4.40×10-¹²). To

simultaneously evaluate the response patterns of multiple traits, a

multivariate analysis of variance (MANOVA) was conducted,

revealing statistically significant differences among treatment

groups in the combined variables (plant height + petiole count),

as indicated by Wilks’ Lambda (p< 0.0001). To further identify the

sources of variation between groups, pairwise comparisons were

performed using the Mann–Whitney U test. The pairwise

comparison results were visualized using a heatmap (Figure 10),

where the color intensity reflects the magnitude of the p-values,

providing an intuitive depiction of the distribution of significant

differences. Overall, water stress treatments had a significant impact

on both plant height and petiole count, with distinct and systematic

response differences observed across multiple indicators among

treatment groups. The integration of non-parametric tests and

multivariate approaches not only enhanced the robustness of the

analysis but also improved the reliability of statistical inferences.

Cohen’s d effect size offers a more intuitive measure of the

strength of between-group differences and facilitates the

interpretation of trait “sensitivity” rankings under water stress. As

shown in Figure 11, both plant height and petiole count exhibited

high sensitivity to water treatment, with most pairwise comparisons

demonstrating strong effects (d>0.8). By quantifying the magnitude

of these differences, Cohen’s d provides a more substantive

interpretation of treatment effects, reinforcing the conclusion that

both traits respond strongly to drought stress. Moreover, it offers a

robust quantitative basis for trait sensitivity ranking and supports

future investigations into underlying physiological mechanisms.

In summary, p-value analysis provided statistical evidence of

significant differences, while Cohen’s d further quantified the

practical magnitude of these differences. The combination of both
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approaches indicated that plant height and petiole count are highly

sensitive phenotypic indicators in response to water stress. This

integrated analysis not only strengthens the robustness of the

statistical conclusions but also offers a quantitative foundation for

future investigations into stress response mechanisms and for the

screening of drought-resistant cultivars.
3.3 Classification of weighted phenotypic
traits under different water stress

This study collected phenotypic data of tomato plants subjected

to different water stress treatments, with a primary focus on two key

traits: plant height and petiole number. To more comprehensively

reflect the growth status of the plants, a composite feature was

constructed using a weighted linear combination of these two traits,

which served as the input for classification modeling. During the

model training phase, 80% of the samples were used for training

and 20% for testing. The input features were standardized to

eliminate the influence of differing feature scales on model

performance. To investigate the effect of different weighting

schemes on classification accuracy, five combinations of petiole

number and plant height weights were defined: 0.5–0.5, 0.6–0.4,

0.7–0.3, 0.8–0.2, and 0.9–0.1.

The input variables primarily consisted of structured phenotypic

features, with a limited number of traits and samples. Given that the

dataset size does not support the advantages of deep learning models,

traditional machine learning algorithms were employed to reduce the

risk of overfitting while offering greater model interpretability.

Accordingly, seven classical machine learning classifiers were

selected: Logistic Regression (LR) and Support Vector Machine

(SVM), which are effective in handling linear and high-dimensional

data; Random Forest (RF) and Gradient Boosting (GB), representing

ensemble learning methods; Decision Tree (DT) and K-Nearest

Neighbors (KNN), known for their robustness and interpretability

on small to medium-sized structured datasets; and Naive Bayes (NB),

which performs well when conditional independence between features

is approximately satisfied and provides a useful benchmark for

comparison. Each model was iteratively trained, and the
FIGURE 9

Distribution of relative errors in plant trait predictions (A) Distribution of relative error in predicted plant height; (B) Distribution of relative error in
predicted petiole number.
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classification accuracy on the test set was evaluated and compared

(Table 5).The key hyperparameter settings for each model are

summarized in Table 6.

Figure 12A illustrates the classification accuracy trends of seven

mainstream models under different weighted combinations of

phenotypic features. It can be observed that tree-based models such

as Random Forest (RF), Decision Tree (DT), and Gradient Boosting

(GB) maintain consistently high accuracy across all combinations,

with values approaching saturation (>0.95), demonstrating strong

robustness to changes in feature proportions. In contrast, the

accuracy of Logistic Regression (LR) and Naive Bayes (NB) drops

sharply as the weight assigned to the petiole feature decreases,

indicating a stronger reliance on this feature during modeling. The

performance of the K-Nearest Neighbors (KNN) model fluctuates

moderately with feature weighting but remains relatively high overall,

suggesting moderate sensitivity. Figure 12B presents the feature

importance comparison across models based on the permutation
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importance method. Overall, tree-based models (DT, RF, GB)

exhibit a significantly greater reliance on the height feature than on

petiole. In contrast, LR and Support Vector Machine (SVM) show

more balanced importance between the two features. NB and KNN

models display relatively equal contributions from both features,

reflecting a more balanced sensitivity to the two inputs.

Figures 12A, B complement each other: the former reveals how

model performance responds to variations in feature weighting,

while the latter provides insight into the underlying feature

dependency structure that explains such performance changes.
4 Discussion

This study proposes a phenotypic analysis framework for tomato

plants that integrates deep learning-based recognition, phenotypic

parameter computation, and machine learning-based classification.
FIGURE 10

Trait-wise predictive modeling evaluation: R², RMSE, and MAE across Groups (A) Plant height prediction by treatment group; (B) Petiole number
prediction by treatment group; (C) Comprehensive evaluation metrics across treatment groups (R², r, RMSE, MAE).
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The framework enables automatic identification, quantitative

calculation, and stress-level classification of phenotypic traits under

varying water stress conditions. By incorporating the AKConv

convolutional module and the Recalibration FPN-P2345 detection

head, the model’s perception and localization capabilities for key

phenotypic structures—such as plant height, leaves, and petioles—

were significantly enhanced. While maintaining low computational

complexity, the model also achieved notable improvements in

detection accuracy and robustness. Specifically, the optimized model

yielded an approximate improvement of 2.7% in mAP@0.5 and 5.4%

in mAP@0.5:0.95, demonstrating strong overall performance.

Experimental results confirm that the model can achieve automated

and non-destructive extraction and computation of tomato

phenotypic parameters under different water stress scenarios.

Compared with 3D imaging approaches (Tong, 2022; Li, 2023), the

proposed method is more lightweight and efficient, offering greater

practicality and deploy ability. This study provides a novel approach

for evaluating plant water status based on intrinsic phenotypic traits,

thereby expanding the application potential of lightweight deep

learning models in smart irrigation management.

This study focuses on structural trait changes occurring during

the crop growth period and explores their potential for water stress
Frontiers in Plant Science 15
identification. Drought conditions often induce a series of

phenotypic adjustments, such as reduced plant height growth rate

and altered petiole posture (). The image recognition system

proposed in this study is capable of accurately capturing these

subtle yet critical changes. This finding expands the applicability of

image-based functional phenotyping methods in agricultural

practice. The model exhibited consistently high classification

performance across various phenotypic weight combinations,

further confirming the differential sensitivity of structural traits to

water stress and providing a basis for future development of

adaptive weighting strategies. Moreover, the study promotes a

deeper integration of structural phenotyping and classification

modeling, offering a framework for constructing more

interpretable diagnostic models by systematically analyzing the

contribution of individual traits. The proposed methodology also

shows strong potential for extension to other crops and stress types.

Overall, the system developed in this study demonstrates both

practical applicability and strong biological interpretability, enabling

water stress identification based on intrinsic plant features andmaking

it well-suited for smart irrigation management scenarios. Looking

ahead, this work lays the foundation for developing a closed-loop

smart agriculture system that integrates environmental sensing,
FIGURE 11

Differences in petiole count and plant height across treatment groups (A) Pairwise significance test (Mann–Whitney U) p-values for petiole count; (B)
Effect size (Cohen’s d) for petiole count; (C) Effect size (Cohen’s d) for plant height.
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phenotypic analysis, and intelligent decision-making. Future

experiments that incorporate real-time phenotypic monitoring may

enable a shift from reactive to predictive irrigation strategies, thereby

enhancing the proactivity and accuracy of agricultural management.

The model exhibited consistently high classification performance

across various phenotypic weight combinations, further confirming

the differential sensitivity of structural traits to water stress and

providing a basis for future development of adaptive weighting

strategies. Moreover, the study promotes a deeper integration of

structural phenotyping and classification modeling, offering a

framework for constructing more interpretable diagnostic models by

systematically analyzing the contribution of individual traits. The

proposed methodology also shows strong potential for extension to

other crops and stress types. Despite the promising outcomes, certain

limitations remain in this study. For instance, key physiological

indicators such as relative water content (RWC), leaf water

potential, and photosynthetic rate were not collected, resulting in a

lack of physiological validation for the model outputs. In addition, no

comparative experiments were conducted with traditional image

processing methods, making it difficult to systematically evaluate the

advantages of the proposed model. The experimental samples were

collected from a relatively limited range, and the classification of water

stress levels was relatively coarse, indicating that the model’s

robustness under complex field conditions requires further

improvement. Under challenging scenarios such as extreme lighting

or overlapping leaves, certain identification errors still occurred, and

the underlying mechanisms of these errors have not yet been
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systematically analyzed. Moreover, the current dataset was primarily

collected from a single experimental site during a specific season,

resulting in insufficient data diversity and representativeness. This, to

some extent, limits the model’s generalizability across different tomato

varieties, growing regions, and lighting conditions. Future work may

incorporate multi-source data fusion, cross-regional transfer learning,

and edge computing technologies to further enhance the model’s

robustness and deployment efficiency across different crops,

environments, and application scenarios, ultimately supporting the

advancement of smart agriculture and the development of stress-

resilient breeding systems.
5 Conclusion

The accurate extraction of phenotypic parameters based on

image recognition and deep learning approach provides a reliable

technology for non-destructive, image-based crop water monitoring

in smart irrigation. This study validated the effectiveness of a deep

learning approach based on the YOLOv11n model for extracting

phenotypic traits of tomato plants under varying water stress

conditions. By establishing a precise object detection framework,

the method not only enables automatic and accurate identification

of key traits such as plant height, leaves, and petioles but also

facilitates the subsequent calculation of various phenotypic

parameters based on the detection results. In sum, the study

achieved the following three key conclusions:
TABLE 5 Comparison of classification models for various phenotypic feature weight combinations.

Models 0.5-0.5 0.6-0.4 0.7-0.3 0.8-0.2 0.9-0.1

LR 0.66 0.55 0.39 0.36 0.27

SVM 0.82 0.65 0.65 0.63 0.52

RF 0.98 0.97 0.98 0.97 0.98

DT 0.98 0.96 0.97 0.96 0.97

KNN 0.98 0.91 0.93 0.90 0.98

NB 0.79 0.73 0.63 0.65 0.27

GB 0.97 0.96 0.98 0.96 0.97
TABLE 6 Main hyperparameter settings of different machine learning models.

Model name Python class name Hyperparameter

Logistic Regression LogisticRegression() penalty=‘l2’, solver=‘lbfgs’, max_iter=100

Support Vector Machine SVC(probability=True) kernel=‘rbf’, C = 1.0, gamma=‘scale’

Random Forest RandomForestClassifier() n_estimators=100, max_depth=None, criterion=‘gini’

Decision Tree DecisionTreeClassifier() criterion=‘gini’, max_depth=None

K-Nearest Neighbors KNeighborsClassifier() n_neighbors=5, metric=‘minkowski’

Naive Bayes GaussianNB() Under the assumption of Gaussian distribution

Gradient Boosting GradientBoostingClassifier() learning_rate=0.1, n_estimators=100, max_depth=3
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Fron
1. By integrating the C3k2_AKConv module into the backbone

network, an adaptive convolution kernel fusion mechanism

was implemented to improve the detection of small-scale and

irregularly shaped targets. Additionally, a Recalibration

feature pyramid detection head based on the P2 layer

(RecalibrationFPN-P2345) was designed to expand feature

fusion scope and incorporate a recalibration mechanism,

enhancing multi-scale feature integration and small target

localization. The improved model demonstrated excellent

performance in tomato phenotypic detection, achieving an

mAP50 of 0.954 and an mAP50–95 of 0.679, indicating

strong generalization across varying scales and complex

backgrounds. Supporting simultaneous multi-object

recognition, the model efficiently extracts multiple

phenotypic parameters in a single pass, significantly

improving data collection efficiency and providing robust

support for high-throughput plant phenotyping.

2. Plant height and petiole count, as key structural traits,

effectively reflect phenotypic changes induced by water

stress. The model performed low prediction errors, with

mean relative errors of 6.9% and 10.12%, respectively.
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Statistical tests and effect size analyses further confirmed

their high sensitivity to drought stress, demonstrating not

only the feasibility and practicality of using these traits for

water stress monitoring, but also providing a solid data

foundation for subsequent classification models.

3. The phenotypic feature constructed by the weighted

combination of plant height and petiole effectively

distinguished different water stress conditions. The

Random Forest model achieved the best classification

performance with an accuracy of up to 98%. This method

provides reliable data support for intelligent identification

of crop water stress and smart irrigation.
To conclude, the proposed approach in this study is not only

suitable for simultaneous extraction of multiple phenotypic traits but

also provides a reliable solution for high-throughput phenotyping of

large-scale tomato planting, with promising prospects for widespread

application in smart irrigation. Future research can further enhance the

model’s generalization ability by incorporating image data from

multiple regions and cultivars for training, thereby improving its

adaptability to diverse planting environments and plant characteristics.
FIGURE 12

Classification accuracy and feature importance analysis under varying feature weight combinations (A) Comparison of classification model accuracy
under different weighted combinations of petiole number and plant height; (B) Feature importance analysis per classification model.
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