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Introduction: With the advancement of imaging technologies, the efficiency of
acquiring plant phenotypic information has significantly improved. The
integration of deep learning has further enhanced the automatic recognition of
plant structures and the accuracy of phenotypic parameter extraction. To enable
efficient monitoring of tomato water stress, this study developed a deep
learning-based framework for phenotypic trait extraction and parameter
computation, applied to tomato images collected under varying water
stress conditions.

Methods: Based on the You Only Look Once version 11 nano (YOLOv11n) object
detection model, adaptive kernel convolution (AKConv) was integrated into the
backbone’s C3 module with kernel size 2 convolution (C3k2), and a recalibration
feature pyramid detection head based on the P2 layer was designed.

Results and discussion: Results showed that the improved model achieved a
4.1% increase in recall, a 2.7% increase in mAP50, and a 5.4% increase in mAP50—
95 for tomato phenotype recognition. Using the bounding box information
extracted by the model, key phenotype parameters were further calculated
through geometric analysis. The average relative error for plant height was
6.9%, and the error in petiole count was 10.12%, indicating good applicability
and accuracy for non-destructive crop phenotype analysis. Based on these
extracted traits, multiple sets of weighted combinations were constructed as
input features for classification. Seven classification algorithms—Logistic
Regression, Support Vector Machine, Random Forest, Decision Tree, K-Nearest
Neighbors, Naive Bayes, and Gradient Boosting—were used to differentiate
tomato plants under different water stress conditions. The results showed that
Random Forest consistently performed the best across all combinations, with the
highest classification accuracy reaching 98%. This integrated approach provides
a novel approach and technical support for the early identification of water stress
and the advancement of precision irrigation.
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GRAPHICAL ABSTRACT

1 Introduction

Smart irrigation systems have increasingly become a key
strategy for improving water use efficiency and enhancing crop
productivity. Currently, such systems primarily rely on the
integration of soil moisture, meteorological data, and intelligent
algorithms to dynamically respond to crop water demands (Mason
etal, 2019; Jimenez et al.,, 2020). However, such irrigation strategies
are limited under complex field conditions. For instance, soil-
moisture-based irrigation control is highly susceptible to
interference from factors such as salinity and root distribution,
thereby reflecting only localized water status rather than the plant’s
actual physiological water needs. Similarly, irrigation methods
based on evapotranspiration or historical weather data often fail
to accommodate the dynamic water requirements of crops at
different growth stages, potentially leading to over irrigation or
under irrigation (Jamroen et al., 2020; Touil et al, 2022).
Furthermore, these approaches tend to overlook phenotypic
changes in crops, making it difficult to accurately detect early
signs of stress and thereby compromising the timeliness and
precision of irrigation management.

Recently, with the significant progress of applying image
recognition technologies in agriculture, the potential for early
identification of crop water stress and monitoring of physiological
status proposes a new methodology and a novel perspective. Image

Abbreviations: AKConv, Adaptive Kernel Convolution; C3k2, C3 Module with
2x2 Convolution Kernel; P2, Second-level Feature Map in FPN; LWA, Local
Window Attention; BRA, Bi-level Routing Attention; FPN, Feature Pyramid
Network; GFLOPs, Giga Floating Point Operations per Second; mAP, Mean
Average Precision; C3, Cross Stage Partial Bottleneck with 3 Convolutions;
YOLOvl1n, You Only Look Once version 11 nano; LR, Logistic Regression;
SVM, Support Vector Machine; RF, Random ForestRandom Forest; DT, Decision
Tree; KNN, K-Nearest Neighbors; NB, Naive Bayes; GB, Gradient Boosting.
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recognition, as a non-contact, high-efficiency, and highly automated
monitoring method (Cen et al., 2020; Zhang et al., 2020), has
gradually become an important tool for acquiring phenotypic
data in agricultural research (Wang and Su, 2022; Kim, 2024).
Studies have shown that functional phenotyping methods from
complex system architectures, strong dephenotyping methods can
capture real-time physiological responses of plants under drought
conditions, enabling more accurate assessment of drought tolerance
(Hein et al., 2021; Mansoor and Chung, 2024). Meanwhile,
continuous advancements in field-based high-throughput
phenotyping platforms and multimodal imaging technologies
have enabled large-scale, multidimensional analyses of crop stress
responses under realistic agricultural environments (Langan et al.,
2022). These developments provide a solid technical foundation for
promoting the application of image-based technologies in
smart irrigation.

However, effectively applying image recognition in irrigation
management and crop water stress detection remains challenging,
especially under complex field conditions and suboptimal imaging
environments. On one hand, Phenotyping methods often rely on
3D reconstruction or manual measurements (Tong, 2022; Li, 2023).
which, although capable of extracting morphological traits to some
extent, suffependence on specialized hardware, cumbersome
processing workflows, and high deployment costs. On the other
hand, plants often exhibit complex structures and small-scale
targets under water stress conditions, which are easily affected by
variable lighting and background noise—reducing the precision and
stability of feature extraction. While technologies such as multi-view
stereo imaging and structured light laser scanning perform well in
generating point clouds and measuring panicle height, their high
sensitivity to lighting and plant motion, as well as their costly
equipment, limit their practical use in field environments
(Mohamed and Dudley, 2019). Moreover, most current plant
phenotyping studies remain confined to controlled environments,
and field-based phenotyping still faces significant challenges in
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image acquisition quality (Perez-Sanz et al., 2017) and real-time
data processing (Cao et al.,, 2021).

To address the aforementioned challenges, researchers have
increasingly shifted toward phenotyping approaches that integrate
image recognition and deep learning. For instance, Aich (Aich and
Stavness, 2017) proposed a deep neural network-based method for
leaf counting, enabling automatic identification and quantification
of plant leaves. Attri (Attri et al., 2023) integrated thermal imaging,
image processing, and deep learning to successfully detect drought
stress in maize, enabling efficient monitoring of crop water status.
Dong (Dong, 2024) utilized Micro-CT imaging combined with deep
learning to extract high-precision features of regenerated rice stems.
Zou (Zou, 2024) estimated tomato plant height and canopy
structure through image processing and 3D reconstruction,
effectively addressing the limitations of manual methods in
capturing spatial plant architecture. These studies highlight the
broad applicability of image recognition in quantifying structural
phenotypes in plants. On this basis, the integration of image
recognition and deep learning has further accelerated the
intelligent transformation of phenotypic analysis, making it
feasible to automatically identify structural traits of plants
(Kharraz and Szabo, 2023). For example, Li (Li et al, 2025)
developed the MARS-Phenobot system to achieve high-
throughput measurement of fruit-related traits such as blueberry
yield, maturity, and firmness, effectively reducing the reliance on
manual phenotyping. Similarly, Wang (Wang, 2021) constructed a
deep learning model based on VGG16-SSD to automatically
measure tomato plant height, addressing the low efficiency and
high error rates associated with traditional methods. These studies
provide reliable data for uncovering physiological responses and
structural changes during plant growth, promoting the
advancement of plant phenotyping analysis under stress conditions.

Among various deep learning models, the You Only Look Once
(YOLO) model has gained considerable attention in agricultural
contexts due to its excellent real-time performance and detection
accuracy. The model effectively identifies small objects and complex
plant structures while maintaining high inference speed, making it
particularly well-suited for scenarios with dense, overlapping plant
components. YOLO predicts both the spatial location and class of
targets in the form of bounding boxes—a fundamental approach
widely used in object detection tasks. It enables automated,
bounding-box-level detection and parameter extraction for
structural phenotypic traits such as leaves, petioles, and plant
height. For example, He (He, 2023) developed a soybean pod
detection and weight estimation system by integrating an improved
YOLOvV5 model and BP neural network, enhancing the efficiency of
trait data acquisition. Xiang (Xiang, 2022) applied YOLOX to achieve
automatic detection and counting of strawberries, improving the
automation and accuracy of fruit-level phenotyping. These studies
demonstrate that integrating deep learning models with phenotypic
trait extraction can not only reduce manual intervention but also
significantly enhance measurement efficiency and data consistency
(Dong et al., 2022).Therefore, YOLO-based structural trait detection
presents a promising path for efficiently identifying plant responses to
water stress.
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Under drought-induced water stress conditions, the rapid and
accurate extraction of plant phenotypic traits is crucial for the
implementation of smart irrigation strategies. However, research on
the structural phenotypic changes of tomato plants under varying
water stress conditions remains limited. Tomato plants present unique
challenges for phenotypic analysis due to their small target size,
compact structure, and significant morphological responses under
drought conditions. Therefore, there is still a lack of automated
methods that are both highly accurate and adaptable to field
environments for identifying the dynamic phenotypic responses of
tomato plants under drought stress. To address this gap, the study
aims to develop a high-performance object detection model based on
YOLOV11 for the automatic recognition and quantification of key
tomato phenotypic traits under multiple water stress conditions. This
approach is expected to provide technical support for drought
response analysis and smart irrigation management. The specific
objectives of this study are as follows: 1) To develop an improved
YOLOvI11n-based model for the automatic identification and precise
quantification of key structural traits in tomato plants, including plant
height, number of petioles, and number of leaves, with enhanced
detection capability for small objects and multi-scale features; 2) To
establish an efficient phenotypic parameter extraction framework
capable of synchronously extracting multiple traits, in order to
assess the impact of water stress on tomato phenotypes and ensure
both accuracy and practical applicability in parameter measurement.

2 Materials and methods
2.1 The potted experiment

The potted tomato experiment was conducted from October to
November 2024 at the Xinxiang Comprehensive Experimental Base of
the Chinese Academy of Agricultural Sciences (35°09'N, 113°47'E).
The cultivation environment was a greenhouse with potted plants,
ensuring no interference from climatic factors. An aluminum alloy
frame with dimensions of 120 cm in length, 60 cm in width, and
115 cm in height was set up. Three T8 LED tubes were placed on top
of the frame to provide artificial supplementary light (Figure 1). The
pots used in the experiment had a top diameter of 16 cm, a bottom
diameter of 14 cm, and a height of 10.5 cm.

The soil used in the experiment was collected from the 0-40 cm
plow layer of the open field. Prior to the experiment, ring knives were
inserted at depths of 0-10 cm and 20-30 c¢m in the soil surface to
measure the bulk density and field capacity. The measured field
capacity was 21.77% (mass water content), and the soil bulk density
was 1.35 g/cm®. The soil was exposed to sunlight for two days and
treated with wettable powder fungicide and carbendazim, for
sterilization. Afterwards, the soil was naturally air-dried with plant
residues and other impurities removed. Then, the soil was packed
into pots in batches. The tomato plants (Solanum lycopersicum L. cv.
‘Honghongdou’) were transplanted at the four-leaf stage.
Management was carried out according to the Organic Food
Tomato Facility Production Technical Specifications (Feng, 2021;
Lian and Le, 2023) combined with local farmer practices.
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FIGURE 1
Layout of the experimental setting.

The fertilization rates for N, P,Os, and K,O were 0.27 g/(kg dry soil),
0.11 g/(kg dry soil), and 0.27 g/(kg dry soil), respectively.

After transplanting the tomato seedlings, normal irrigation was
applied on October 6 to ensure their successful adaptation to the
environment. After a 16-day period of stable growth, different water
stress treatments were initiated on October 22. The stress treatment
was continuous and non-cyclical, lasting for 22 days until it ended on
November 13. The experimental design was based on the methodology
outlined in the literature (Zhuang, 2020) and combined with local
management practices. Three soil moisture gradients were established
for the experiment, named CK (90%-100% of field capacity), W1 (70%-
80% of field capacity), and W2 (50%-60% of field capacity). Soil water
content was measured using the oven-drying method, with samples
taken daily. When the soil moisture fell below the lower threshold,
irrigation was promptly applied to adjust the moisture back to the set
value, maintaining the soil moisture within the specified set range.
Tomato plants were manually measured once a week, including plant
height, number of petioles, and number of leaves.

2.2 Data collection and dataset
development

Phenotypic images of the tomato were captured using a
smartphone (iPhone 13, 12 MP camera with a dual-camera
system, including wide and ultra-wide lenses). The camera was
positioned at the same horizontal height as the potted plants, with a
horizontal distance of 60 cm during the capture periods. As shown
in Figure 2, the images were collected to capture the overall
characteristics of the tomato during the seedling and flowering-
fruit-setting stages, as well as the phenotypic information of the
plants. Based on actual conditions, images of the plants were
captured twice daily, at 9:00 AM and 6:00 PM, avoiding periods
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of strong direct sunlight and low light to ensure relatively stable
lighting conditions. The image capture used fixed parameters (such
as exposure time and white balance) that remained constant
throughout the entire collection process. To reduce interference, a
white background plate was used for photography.

To develop the dataset, the Labellmg annotation tool (version
1.8.6, YOLO format) was used for manual annotation of the tomato
plant phenotypic features. Three different water treatments were
applied: CK group (596 images), W1 group (512 images), and W2
group (515 images). The phenotypic features annotated included
leaf, height, and petiole. The label format used was “txt,” with label
files sharing the same name as the image files. Each file contained
five types of information: label_index, x, y, w, and h. The dataset
was split into training, validation, and test sets in a 7:2:1 ratio.

2.3 Model selection and improvement

To effectively extract phenotypic features of the plants, we
introduced a phenotypic detection framework based on the YOLO
model. The optimized C3k2 module is integrated into the backbone
network to enhance feature representation ability. An attention
mechanism is incorporated to improve the model’s ability to capture
both local and global information. Additionally, the recalibration FPN-
P2345 detection head was used to enhance the accuracy and structural
modeling ability for detecting small-scale targets, such as plant height,
leaves, and petioles (Figure 3). Building on this, a parameter calculation
method based on the structural relationships of detection boxes was
proposed. By incorporating a calibration board for scale conversion,
this method enables the automated, non-destructive extraction of plant
height, petiole count, and leaf count. This framework provides stable
and reliable technical support for monitoring crop responses due to
water stress and conducting quantitative analysis of plant phenotypes.
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FIGURE 2

Phenotypic characteristics of tomato under different water stress (A) Leaf images; (B) Petiole images; (C) Overall plant images.

2.3.1 Model selection

To determine the optimal model, we conducted a performance
comparison of five versions of YOLOv11 (YOLOv11n, YOLOvVl1s,
YOLOv11lm, YOLOv11l, YOLOv11x). Then, the YOLOvV11 series
model was selected as the foundational framework for the object
detection algorithm in this study. YOLOv11 integrates multi-scale
receptive fields, enhanced feature fusion structures, and an
improved decoding head, providing excellent recognition
capability and high detection accuracy. It is well-suited for
tomato phenotypic structure recognition tasks in complex
agricultural environments.

The model experiment applied the following environment:
Ultralytics version 8.3.9, Python version 3.11.7, PyTorch version
2.1.2, GPU information: NVIDIA GeForce RTX 2080 Ti (11 GB
VRAM). To save training time and computational resources, an
Early Stopping=30 mechanism was introduced, and in subsequent
model training, hyperparameters remained consistent, without
loading a pretrained model. The model’s hyperparameters are
shown in Table 1.

2.3.2 Model improvement

As shown in Figure 4, the number of “height” targets is
significantly higher than that of “leaf” and “petiole,” indicating a
pronounced class imbalance in the dataset, which may adversely
affect model training. phenotypic structures such as leaves, petioles,
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and overall plant height exhibit characteristics of numerous small
targets, relatively uniform spatial distribution, and a tendency to be
concentrated in the center of the image. Traditional detection
models often struggle with incomplete detection and high false
positive rates when extracting small and fine-grained structures.
Additionally, the target sizes are predominantly small, with a strong
positive correlation between width and height, suggesting structural
consistency across objects but also highlighting the high proportion
of small targets. To improve the model’s ability to perceive multi-
scale features of tomato plants, enhance detailed feature modeling,
and increase the accuracy of small target detection, attention
mechanisms and improved detection head structures were
introduced into the backbone of the YOLOv11n model.

2.3.2.1 Improved C3k2 module

In the backbone network, the C3k2 module is improved to the
C3k2_AKConv module (Figure 5). This improvement aims to
enhance the model’s ability to perceive small-scale and irregularly
shaped targets (Zhang et al, 2023). Unlike the fixed structure of
standard convolution, the convolution kernel of AKConv (Equation 1)
supports an arbitrary number and shape of sampling parameters,
allowing it to flexibly adapt to diverse target structures and scale
distributions. Overall, AKConv with its variable structure and adaptive
characteristics, provides more efficient feature extraction capability,
demonstrating superior detection performance, particularly in
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FIGURE 3

Structure of the improved YOLOv11 model.

recognizing small-target phenotypes of tomato.

n n
Y =0 Convig(X),s.t. Do =1
i=1 i=1

¢Y)

where, X represents the input features, Convki denotes the
convolution operation using a convolution kernel of size ki, o is the
learnable weight computed by the attention mechanism, and Y is
the final output feature after fusion.

2.3.2.2 Add attention mechanism

To enhance the model’s ability to model small targets and fine-
grained structures, two attention mechanisms were introduced in
the backbone network: Local Window Attention (LWA, Figure 6A)
mechanism (Liu et al., 2021)and BiLevel Routing Attention (BRA,
Figure 6B) mechanism (Zhu et al, 2023).These two attention
mechanisms enhance feature extraction capabilities through local

TABLE 1 Model hyperparameters.

Parameter Value

Epoch 2000
batch size 4
Imgsz 640
1r0 0.01
momentum 0.937
Irf 0.01
Optimizer SGD
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perception and cross-region modeling, respectively. They are
particularly suitable for detecting complex, small-scale targets,
such as leaves and petioles, in crop images.

LWA divides the input feature map into multiple non-
overlapping local windows and independently performs self-
attention calculations within each window. It significantly reduces
the overall computational complexity while enhancing the ability to
model local structures (Equation 2). By maintaining computational
efficiency, it improves the model’s detection performance for locally
dense areas and small-sized targets, making it particularly suitable
for extracting fine-grained phenotypic features such as leaves and
petioles in tomato plant images.

BRA is widely used in image recognition and object detection
tasks. The mechanism is based on a strategy of hierarchical region
partitioning and routing information modeling, effectively
integrating global modeling capabilities with the efficiency of local
representations, It is particularly well-suited for dense object
scenarios and small object detection tasks. The BRA attention
distribution (Equation 3) significantly improves small target
detection accuracy while maintaining model inference efficiency,
especially in plant images with blurred edges or densely overlapping
areas, demonstrating stronger discriminative ability.

T
Attn(Q, K, V) = Soft max(%)v 2)
T
Attn(Q, K, V) = %ﬂi-Soﬁmax( QK; )WV, (3)

Vd

Where Q, K, and V represent the query, key, and value vectors

i=1

within the i-th window, respectively, N denotes the number of
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FIGURE 4
Density map of phenotypic features.

attention heads or the number of groups, and the weight coefficient
of the i-th group. d is the dimension of each head, introduced to
prevent excessively large dot product results, which could lead to
vanishing gradients in the softmax function, thus serving a
normalization purpose.

2.3.2.3 Replace detection head

To enhance the model’s feature representation and localization
ability for small and weak-textured targets, such as the edges of
tomato leaves and the junctions of petioles, the original detection
head structure is replaced with Recalibration FPN-P2345
(Figure 5).This structure introduces a feature recalibration
mechanism (Lin et al., 2017) based on the traditional Feature
Pyramid Network (FPN) (Hu et al., 2020; Dong et al., 2021) and
extends the fusion scale to P2-P5 (Lin et al., 2017), enabling full
integration from shallow layer details to high-level semantic
features, which significantly improves the detection performance
of multi-scale targets. Unlike traditional detection heads that only
use P3-P5, P2-P5 incorporates the shallow high-resolution feature
P2 into the fusion path, allowing the network to maintain global
perception capability while enhancing its ability to model edge and
texture details for small-sized targets.

The structure mainly consists of the Recalibration module and
multi-scale fusion path (P2-P5). The Recalibration module assigns
significance weights to feature maps at each layer through a
lightweight attention mechanism, enhancing the response of key
regions and suppressing redundant background. The multi-scale
fusion path uses a bidirectional fusion strategy, combining bottom-
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up and top-down approaches, to effectively integrate semantic
features from different levels, improving feature consistency and
semantic expression capability. Overall, this detection head
structure effectively improves the model’s detection accuracy in
dense regions and fine-grained structures while maintaining
computational efficiency. It is particularly suitable for phenotypic
feature extraction tasks in crop images, which involve high diversity
and significant scale variation.

2.3.3 Performance evaluation metrics

To comprehensively evaluate the performance of each detection
model in the task of plant phenotypic feature extraction (Equations
4-8), the following evaluation metrics were adopted in this study:
Precision (P), Recall (R), Mean Average Precision (mAP), and Giga
Floating-point Operations Per Second (GFLOPs). R measures the
proportion of correctly identified positive samples to the total
number of actual positive samples. mAP reflects the accuracy and
stability of the model’s detection results. GFLOPs are used to
evaluate the computational complexity of the neural network.

p._TP @)
" TP+ FP
TP
R= o EN )
1
AP = / P(r)dr (6)
0
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Visualization of improved structure and key modules.
AP 1N Ap . reference to establish a conversion relationship between pixel values and
mAP = — i . . .
N g ! @ actual physical measurements, enabling accurate transformation of plant
height from image units to real-world units. Specifically, the detection
box of the calibration board is extracted from the image at first, and the
FLOPs = 2xC;xCpixK*xH, i x W (8) 8 ’

where, TP refers to the number of correct matches between
predicted boxes and ground truth boxes; FP is the number of
negative samples incorrectly predicted as positive by the model; FN
is the number of positive samples incorrectly predicted as negative. P
(R) represents the Precision-Recall curve.AP) denotes the Average
Precision for the k-th category, and N is the total number of categories.
C, and C,, represent the number of input and output channels,
respectively; K is the kernel size; Hy, and W, are the height and
width of the output feature map. The factor of 2 accounts for both
multiplication and addition operations in each convolution.

2.4 Phenotypic traits calculation

To quantify the impact of different water stress conditions on
tomato plant growth, an automated and non-destructive plant height
measurement method was proposed based on the improved object
detection model. This method estimates the pixel height by detecting the
upper and lower boundaries of the plant stem structure in the image.
Also, it uses a calibration board with known dimensions as a scale
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maximum relative height is selected. Combined with the actual height of
the image, the corresponding pixel height Hs is calculated. Based on this,
the number of pixels per centimeter can be determined (Equation 9).
Subsequently, the detection box of the plant stem is extracted, and its
relative height in pixels Hp is calculated. Finally, the actual plant height
(PH) is calculated by the following formula (Equation 10).

H;
1o ©)
HP
PH=-"* (10)
r

where, r represents the number of pixels corresponding to each
centimeter in the image, 1.0 cm is the actual height of the calibration
board, PH is the actual plant height, and Hp is the pixel value
corresponding to the relative height, in centimeters.

This method relies solely on the detection box position information
to perform scale conversion and plant height estimation, without
requiring manual intervention or additional equipment. It is suitable
for comparing and quantifying the vertical growth status of plants
under different water treatment conditions.
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(A) Structure diagram of LWA mechanism; (B) Structure diagram of BRA mechanism.

Further extraction and analysis of the tomato plant petiole and leaf
features under different water stress conditions were conducted. A
petiole-leaf association method based on geometric positional
relationships was proposed to automatically count the number of
leaves on each petiole and calculate the total number of leaves and
petioles. First, the categories of leaves and petioles are read from the
object detection labels. By extracting the center point coordinates (x, y)
and the width and height (w,h) of the detection box, spatial position
datasets for both leaves and petioles are constructed. By traversing
each petiole bounding box in the detection results, a corresponding 2D
rectangular region is constructed. Based on this, it is determined
whether a leaf belongs to the corresponding petiole or not. This
method can be used to analyze the developmental characteristics of
tomato plant organs under different water stress. It helps assess the
impact of water stress on leaf distribution and growth structure,
providing data support for the correlation modeling between
phenotypic parameters and environmental factors.

3 Results

3.1 The performance of improved model in
tomato phenotypic detection

The model training was conducted under a unified dataset and
training parameter setup, with the results shown in Table 2.
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YOLOv11x achieved higher recall and mAP50, but its
computational complexity reached 195.5 GFLOPs, resulting in
high demands on computational resources, slower inference speed
(Assuncdo et al., 2022), more energy consumption, and a relatively
large model size. These limitations restrict its performance in
practical agricultural environments, especially when deployed on
mobile or embedded devices (Ke et al., 2022; Liu et al,, 2023). In
contrast, the YOLOvlln model, with relatively high accuracy,
demonstrated the best overall performance, making it more
suitable for deployment on edge devices and for real-time
applications in the field.

To further evaluate the contribution of each improvement
module to the model’s performance, an ablation experiment was
conducted by sequentially introducing the AKConv convolution,
LWA, and BRA attention mechanisms, as well as the detection head
module. The experiment focused on key metrics such as detection
accuracy and computational complexity, aiming to clarify the
impact of each module on small target detection capabilities and
overall model efficiency. It provides a basis for optimizing and
selecting the final model structure. The results of the ablation
experiment are shown in Table 3.

Based on the ablation experiment results (Table 3), the
performance of each improvement module—AKConv convolution,
LWA, BRA attention mechanisms, and RecalibrationFPN-P2345
detection head—was evaluated independently and in combination.
Models 1-4 validate the effectiveness of each individual module.
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TABLE 2 Performance comparison of different YOLOv11 models.

10.3389/fpls.2025.1660593

Model Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs
YOLOvI1n 925 90.1 92.7 62.5 6.4 55
YOLOv1ls 93.0 93.0 94.6 66.7 21.6 19.2
YOLOvIIm 938 938 94.9 67.7 68.2 405
YOLOv111 94.4 932 94.7 67.0 87.3 512
YOLOv11x 93.8 94.0 95.1 68.6 1955 114.4

Model 4, which incorporates Recalibration FPN-P2345, performed the
best and achieved mAP50 and mAP50-95 values of 0.954 and 0.673,
respectively. This indicates that the structure significantly enhances
multi-scale feature fusion and small target detection. AKConv (Model
1), LWA (Model 2), and BRA (Model 3) all maintained a good balance
between precision and computational efficiency, improving mAP50
while keeping FLOPs relatively low.

In the comparison of combined modules, Models 5 and 6
achieved mAP50 values of 0.935 and 0.930, respectively, without
increasing computational complexity, demonstrating the synergistic
benefits of the attention mechanisms and dynamic convolution in
the feature extraction phase. Model 5 highlighted the collaborative
advantage of the two techniques in modeling local and adaptive
receptive fields, while Model 6 showed slightly lower performance,
suggesting some structural overlap between the two, limiting their
synergistic effect. On the other hand, combining the P2-P5
detection head with the attention mechanisms in Models 7 and 8
enhanced the depth of semantic fusion but led to a slight decrease in
precision. This decrease is likely to be due to information
redundancy or conflicts between the attention mechanisms and
the high-dimensional feature fusion paths, suggesting that further
structural adjustments are needed.

The results of Models 10 and 11 indicated that when all three
improved modules were integrated simultaneously, there may be some
redundancy or interference during the feature extraction and fusion
stages. In particular, the local attention mechanisms (LWA/BRA)

TABLE 3 Ablation experiment results.

combined with deep fusion paths could lead to repeated or conflicting
feature information, affecting the overall feature consistency and
causing a decrease in detection accuracy. Additionally, the FLOPs of
these models were significantly higher than the basic combined
schemes, reaching 14.7 and 15.0, respectively. It should be noted
that the performance improvement is not substantial while
computational resource consumption increases, and may even result
in performance degradation.

The model combining AKConv and the detection head module,
Model 9, achieved the highest values in both precision and recall
(Precision 0.932, Recall 0.942, mAP50 0.954, mAP50-95 0.679),
validating the strong coupling between AKConv’s feature extraction
advantages and the P2345 detection head’s multi-scale recalibration
structure. According to the comparative analysis of the ablation
study, each improved module demonstrated independent
performance gains. Moreover, Model 9, which combines AKConv
and the detection head module, achieved the best overall
performance. Comparing the precision, recall, and mAP50 curves
of Model 9 and YOLO11n over the entire training process, it fully
demonstrated that the improved Model 9 significantly enhanced the
extraction of tomato plant phenotype features (Figure 7).

The results of the normalized confusion matrix (Figure 8A)
indicate that the model exhibited strong classification performance
across most phenotypic categories, with particularly outstanding
performance on the height class, suggesting that this trait possesses
distinct structural features that make it easier for the model to

Model = AKConv LWA P2345 Precision/% Recall/% mAP50/% mAP50-95/% FLOPS
1 v — — — 91.7 91.0 93.2 64.7 6.4
2 — v — — 92.4 90.6 933 64.8 6.5
3 — — v — 923 90.9 93.1 64.7 6.7
4 — — - v 92.8 93.8 95.4 67.3 18.0
5 v v — — 92.5 91.3 93.5 64.7 6.4
6 v — v — 92.4 89.9 93.0 63.5 6.6
7 — v — v 85.2 85.2 86.2 49.4 15.0
8 — — v v 84.7 83.2 85.9 48.4 15.1
9 v — — v 93.2 94.2 95.4 67.9 17.7
10 v v - v 84.7 85.5 87.1 495 147
11 v — v v 85.3 83.6 86.0 495 15.0
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FIGURE 7
Comparison of the model accuracy.

distinguish. However, confusion was observed between the leaf and
petiole classes, likely due to morphological overlap or blurred
boundaries. The classification accuracy for the leaf class reached
89%, with 10% misclassified as background, possibly caused by edge
ambiguity or background interference. For the petiole class, the
accuracy was 98%, with misclassifications mainly to background
(5%) and leaf (1%). Two randomly selected samples (Figures 8B3-D)
further illustrate the model’s detection performance under different
water treatments. The model effectively captured changes in leaf
and petiole distribution, and the recognition results closely matched
the phenotypic differences caused by water stress, demonstrating
the model’s robustness and biological interpretability.

3.2 The performance of improved model in
tomato phenotypic traits calculation

3.2.1 Phenotypic traits calculation

To provide a more intuitive illustration of the model
performance, 10 representative samples were randomly selected
from the total of 86 and are presented in Table 4. Additionally, the
errors for all samples were visualized to comprehensively reflect the
model’s prediction performance across the entire dataset. In this
study, the improved YOLOv1l model was primarily used to
efficiently recognize and extract key plant information from
images. Based on this, geometric analysis of the detection boxes
was performed through post-processing, which was then used to
calculate the phenotypic parameters of the plants. The results
showed that the model measurements were in good agreement
with the manually measured values for plant height and petiole
count. The average relative error for plant height was 6.9%, and the

Frontiers in Plant Science

300 400 0 100 200 300 400 0 100 200 300 400

Epoch Epoch Epoch

average relative error for petiole count was 10.12%, both of which
fall within an acceptable range. This indicates that the phenotypic
analysis framework, combining deep learning object detection
and image computation methods, can achieve relatively
accurate crop phenotypic parameter extraction without relying on
manual intervention, demonstrating high feasibility and
practical applicability.

To comprehensively evaluate the prediction performance of each
treatment group for plant height and petiole count, four metrics—
coefficient of determination (R*), Pearson correlation coefficient (r),
root mean square error (RMSE), and mean absolute error (MAE)—
were calculated, and the corresponding visualizations are presented in
Figure 9. Under different water treatment conditions, the modeling
performance of tomato plants exhibited notable differences between
the two phenotypic traits: plant height and petiole count. Overall,
plant height—as a continuous variable—demonstrated high
prediction accuracy under well-watered conditions, with both the
coefficient of determination (R?) and the Pearson correlation
coefficient (r) reaching relatively high values, indicating strong
agreement between predicted and observed values. However, as
water stress intensified, the model’s performance deteriorated
significantly; in some treatment groups, R* values even turned
negative, and both RMSE and MAE increased markedly, reflecting
greater variability in plant height under stress conditions. In contrast,
petiole count, as a discrete structural trait, exhibited consistently
weaker predictive performance across all treatments, characterized
by low R? values, high RMSE and MAE, and unstable correlation—
some groups even showed negative correlations. This suggests that
petiole count is more susceptible to nonlinear influences, making it
difficult to model effectively using a unified approach. Therefore,
jointly modeling plant height and petiole count may offer a more
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Evaluation of plant trait recognition performance using confusion matrix and object detection (A) Confusion matrix and normalized confusion
matrix; (B) Original tomato plant image; (C) Detection box results for plant trait recognition; (D) Final prediction results for plant trait recognition.

comprehensive representation of plant responses to water stress and
improve the robustness and generalizability of phenotypic predictions.

Due to the large number of tomato plant leaves, as well as their
overlapping and complex shapes, manual counting faces significant
challenges. It is not only time-consuming and labor-intensive but
also prone to omissions or duplicate counts, which can affect the
accuracy of the results. Therefore, no manual measurements of leaf
count were conducted in this simulation, and only the model’s
predicted results were retained as a reference.

TABLE 4 Comparison of plant height measurement results.

3.2.2 Significance Analysis

To evaluate the effects of different water stress treatments on the
phenotypic traits of tomato plants, this study conducted a
systematic statistical analysis using plant height and petiole count
as core indicators. Given the assumptions of normality and
homogeneity of variances required by traditional one-way
ANOVA, preliminary tests were performed to examine the
distributional characteristics of the data. The Shapiro-Wilk test
indicated that most treatment groups did not significantly deviate

height/cm petiole/cm height_pre/cm petiole_pre/cm REh/%
2 20.0 7.0 20.6 7.0 3.1 0
3 27.5 10.0 28.0 8.0 1.9 20
4 23.0 7.0 23.1 6.0 0.6 14.3
5 27.0 11.0 289 11.0 7.3 0
6 35.0 10.0 34.1 10.0 2.7 0
7 30.0 10.0 29.9 8.0 0.6 20.0
8 38.0 10.0 38.4 9.0 1.1 10.0
9 24.0 7.0 23.1 6.0 39 14.3
10 28.5 9.0 26.4 8.0 7.6 11.1
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from normality for both plant height and petiole count, although
slight skewness was observed in certain groups. Further analysis
using Levene’s test revealed significant heterogeneity of variances in
plant height across treatment groups (p = 0.012), suggesting that the
assumptions of ANOVA were not fully satisfied with this dataset. In
response to these violations, a more robust non-parametric method
was employed for group comparisons. The Kruskal-Wallis H test
showed highly significant effects of water treatment on both plant
height (p =1.23x10®%) and petiole count (p = 4.40x107"%). To
simultaneously evaluate the response patterns of multiple traits, a
multivariate analysis of variance (MANOVA) was conducted,
revealing statistically significant differences among treatment
groups in the combined variables (plant height + petiole count),
as indicated by Wilks’ Lambda (p< 0.0001). To further identify the
sources of variation between groups, pairwise comparisons were
performed using the Mann-Whitney U test. The pairwise
comparison results were visualized using a heatmap (Figure 10),
where the color intensity reflects the magnitude of the p-values,
providing an intuitive depiction of the distribution of significant
differences. Overall, water stress treatments had a significant impact
on both plant height and petiole count, with distinct and systematic
response differences observed across multiple indicators among
treatment groups. The integration of non-parametric tests and
multivariate approaches not only enhanced the robustness of the
analysis but also improved the reliability of statistical inferences.
Cohen’s d effect size offers a more intuitive measure of the
strength of between-group differences and facilitates the
interpretation of trait “sensitivity” rankings under water stress. As
shown in Figure 11, both plant height and petiole count exhibited
high sensitivity to water treatment, with most pairwise comparisons
demonstrating strong effects (d>0.8). By quantifying the magnitude
of these differences, Cohen’s d provides a more substantive
interpretation of treatment effects, reinforcing the conclusion that
both traits respond strongly to drought stress. Moreover, it offers a
robust quantitative basis for trait sensitivity ranking and supports
future investigations into underlying physiological mechanisms.
In summary, p-value analysis provided statistical evidence of
significant differences, while Cohen’s d further quantified the
practical magnitude of these differences. The combination of both
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approaches indicated that plant height and petiole count are highly
sensitive phenotypic indicators in response to water stress. This
integrated analysis not only strengthens the robustness of the
statistical conclusions but also offers a quantitative foundation for
future investigations into stress response mechanisms and for the
screening of drought-resistant cultivars.

3.3 Classification of weighted phenotypic
traits under different water stress

This study collected phenotypic data of tomato plants subjected
to different water stress treatments, with a primary focus on two key
traits: plant height and petiole number. To more comprehensively
reflect the growth status of the plants, a composite feature was
constructed using a weighted linear combination of these two traits,
which served as the input for classification modeling. During the
model training phase, 80% of the samples were used for training
and 20% for testing. The input features were standardized to
eliminate the influence of differing feature scales on model
performance. To investigate the effect of different weighting
schemes on classification accuracy, five combinations of petiole
number and plant height weights were defined: 0.5-0.5, 0.6-0.4,
0.7-0.3, 0.8-0.2, and 0.9-0.1.

The input variables primarily consisted of structured phenotypic
features, with a limited number of traits and samples. Given that the
dataset size does not support the advantages of deep learning models,
traditional machine learning algorithms were employed to reduce the
risk of overfitting while offering greater model interpretability.
Accordingly, seven classical machine learning classifiers were
selected: Logistic Regression (LR) and Support Vector Machine
(SVM), which are effective in handling linear and high-dimensional
data; Random Forest (RF) and Gradient Boosting (GB), representing
ensemble learning methods; Decision Tree (DT) and K-Nearest
Neighbors (KNN), known for their robustness and interpretability
on small to medium-sized structured datasets; and Naive Bayes (NB),
which performs well when conditional independence between features
is approximately satisfied and provides a useful benchmark for
comparison. Each model was iteratively trained, and the
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Trait-wise predictive modeling evaluation: R?, RMSE, and MAE across Groups (A) Plant height prediction by treatment group; (B) Petiole number
prediction by treatment group; (C) Comprehensive evaluation metrics across treatment groups (R?, r, RMSE, MAE).

classification accuracy on the test set was evaluated and compared
(Table 5).The key hyperparameter settings for each model are
summarized in Table 6.

Figure 12A illustrates the classification accuracy trends of seven
mainstream models under different weighted combinations of
phenotypic features. It can be observed that tree-based models such
as Random Forest (RF), Decision Tree (DT), and Gradient Boosting
(GB) maintain consistently high accuracy across all combinations,
with values approaching saturation (>0.95), demonstrating strong
robustness to changes in feature proportions. In contrast, the
accuracy of Logistic Regression (LR) and Naive Bayes (NB) drops
sharply as the weight assigned to the petiole feature decreases,
indicating a stronger reliance on this feature during modeling. The
performance of the K-Nearest Neighbors (KNN) model fluctuates
moderately with feature weighting but remains relatively high overall,
suggesting moderate sensitivity. Figure 12B presents the feature
importance comparison across models based on the permutation
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importance method. Overall, tree-based models (DT, RF, GB)
exhibit a significantly greater reliance on the height feature than on
petiole. In contrast, LR and Support Vector Machine (SVM) show
more balanced importance between the two features. NB and KNN
models display relatively equal contributions from both features,
reflecting a more balanced sensitivity to the two inputs.
Figures 12A, B complement each other: the former reveals how
model performance responds to variations in feature weighting,
while the latter provides insight into the underlying feature
dependency structure that explains such performance changes.

4 Discussion

This study proposes a phenotypic analysis framework for tomato
plants that integrates deep learning-based recognition, phenotypic
parameter computation, and machine learning-based classification.
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The framework enables automatic identification, quantitative
calculation, and stress-level classification of phenotypic traits under
varying water stress conditions. By incorporating the AKConv
convolutional module and the Recalibration FPN-P2345 detection
head, the model’s perception and localization capabilities for key
phenotypic structures—such as plant height, leaves, and petioles—
were significantly enhanced. While maintaining low computational
complexity, the model also achieved notable improvements in
detection accuracy and robustness. Specifically, the optimized model
yielded an approximate improvement of 2.7% in mAP@0.5 and 5.4%
in mAP@0.5:0.95, demonstrating strong overall performance.
Experimental results confirm that the model can achieve automated
and non-destructive extraction and computation of tomato
phenotypic parameters under different water stress scenarios.
Compared with 3D imaging approaches (Tong, 2022; Li, 2023), the
proposed method is more lightweight and efficient, offering greater
practicality and deploy ability. This study provides a novel approach
for evaluating plant water status based on intrinsic phenotypic traits,
thereby expanding the application potential of lightweight deep
learning models in smart irrigation management.

This study focuses on structural trait changes occurring during
the crop growth period and explores their potential for water stress
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identification. Drought conditions often induce a series of
phenotypic adjustments, such as reduced plant height growth rate
and altered petiole posture (). The image recognition system
proposed in this study is capable of accurately capturing these
subtle yet critical changes. This finding expands the applicability of
image-based functional phenotyping methods in agricultural
practice. The model exhibited consistently high classification
performance across various phenotypic weight combinations,
further confirming the differential sensitivity of structural traits to
water stress and providing a basis for future development of
adaptive weighting strategies. Moreover, the study promotes a
deeper integration of structural phenotyping and classification
modeling, offering a framework for constructing more
interpretable diagnostic models by systematically analyzing the
contribution of individual traits. The proposed methodology also
shows strong potential for extension to other crops and stress types.

Overall, the system developed in this study demonstrates both
practical applicability and strong biological interpretability, enabling
water stress identification based on intrinsic plant features and making
it well-suited for smart irrigation management scenarios. Looking
ahead, this work lays the foundation for developing a closed-loop
smart agriculture system that integrates environmental sensing,

frontiersin.org


https://doi.org/10.3389/fpls.2025.1660593
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Yang et al.

10.3389/fpls.2025.1660593

TABLE 5 Comparison of classification models for various phenotypic feature weight combinations.

Models
SVM 0.82 0.65 0.65 0.63 0.52
RF 0.98 0.97 0.98 097 0.98
DT 0.98 0.96 097 0.96 0.97
KNN 0.98 0.91 093 0.90 0.98
NB 0.79 0.73 0.63 0.65 0.27
GB 0.97 0.96 0.98 0.96 0.97

phenotypic analysis, and intelligent decision-making. Future
experiments that incorporate real-time phenotypic monitoring may
enable a shift from reactive to predictive irrigation strategies, thereby
enhancing the proactivity and accuracy of agricultural management.

The model exhibited consistently high classification performance
across various phenotypic weight combinations, further confirming
the differential sensitivity of structural traits to water stress and
providing a basis for future development of adaptive weighting
strategies. Moreover, the study promotes a deeper integration of
structural phenotyping and classification modeling, offering a
framework for constructing more interpretable diagnostic models by
systematically analyzing the contribution of individual traits. The
proposed methodology also shows strong potential for extension to
other crops and stress types. Despite the promising outcomes, certain
limitations remain in this study. For instance, key physiological
indicators such as relative water content (RWC), leaf water
potential, and photosynthetic rate were not collected, resulting in a
lack of physiological validation for the model outputs. In addition, no
comparative experiments were conducted with traditional image
processing methods, making it difficult to systematically evaluate the
advantages of the proposed model. The experimental samples were
collected from a relatively limited range, and the classification of water
stress levels was relatively coarse, indicating that the model’s
robustness under complex field conditions requires further
improvement. Under challenging scenarios such as extreme lighting
or overlapping leaves, certain identification errors still occurred, and
the underlying mechanisms of these errors have not yet been

systematically analyzed. Moreover, the current dataset was primarily
collected from a single experimental site during a specific season,
resulting in insufficient data diversity and representativeness. This, to
some extent, limits the model’s generalizability across different tomato
varieties, growing regions, and lighting conditions. Future work may
incorporate multi-source data fusion, cross-regional transfer learning,
and edge computing technologies to further enhance the model’s
robustness and deployment efficiency across different crops,
environments, and application scenarios, ultimately supporting the
advancement of smart agriculture and the development of stress-
resilient breeding systems.

5 Conclusion

The accurate extraction of phenotypic parameters based on
image recognition and deep learning approach provides a reliable
technology for non-destructive, image-based crop water monitoring
in smart irrigation. This study validated the effectiveness of a deep
learning approach based on the YOLOv11n model for extracting
phenotypic traits of tomato plants under varying water stress
conditions. By establishing a precise object detection framework,
the method not only enables automatic and accurate identification
of key traits such as plant height, leaves, and petioles but also
facilitates the subsequent calculation of various phenotypic
parameters based on the detection results. In sum, the study
achieved the following three key conclusions:

TABLE 6 Main hyperparameter settings of different machine learning models.

Model name

Logistic Regression

Python class name

LogisticRegression()

Hyperparameter

penalty=12’, solver="bfgs’, max_iter=100

Support Vector Machine
Random Forest
Decision Tree

K-Nearest Neighbors

SVC(probability=True)
RandomForestClassifier()
DecisionTreeClassifier()

KNeighborsClassifier()

kernel="rbf, C = 1.0, gamma="scale’
n_estimators=100, max_depth=None, criterion="gini’
criterion="gini’, max_depth=None

n_neighbors=5, metric="minkowski’

Naive Bayes

GaussianNB()

Under the assumption of Gaussian distribution

Gradient Boosting
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GradientBoostingClassifier()

learning_rate=0.1, n_estimators=100, max_depth=3
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Comparison of Classification Model Accuracy under Different Weighted Combinations of Petiole Number and Plant Height
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FIGURE 12

Classification accuracy and feature importance analysis under varying feature weight combinations (A) Comparison of classification model accuracy
under different weighted combinations of petiole number and plant height; (B) Feature importance analysis per classification model.

1. By integrating the C3k2_AKConv module into the backbone
network, an adaptive convolution kernel fusion mechanism
was implemented to improve the detection of small-scale and
irregularly shaped targets. Additionally, a Recalibration
feature pyramid detection head based on the P2 layer
(RecalibrationFPN-P2345) was designed to expand feature
fusion scope and incorporate a recalibration mechanism,
enhancing multi-scale feature integration and small target
localization. The improved model demonstrated excellent
performance in tomato phenotypic detection, achieving an
mAP50 of 0.954 and an mAP50-95 of 0.679, indicating
strong generalization across varying scales and complex
backgrounds. Supporting simultaneous multi-object
recognition, the model efficiently extracts multiple
phenotypic parameters in a single pass, significantly
improving data collection efficiency and providing robust
support for high-throughput plant phenotyping.

. Plant height and petiole count, as key structural traits,
effectively reflect phenotypic changes induced by water
stress. The model performed low prediction errors, with
mean relative errors of 6.9% and 10.12%, respectively.
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Statistical tests and effect size analyses further confirmed
their high sensitivity to drought stress, demonstrating not
only the feasibility and practicality of using these traits for
water stress monitoring, but also providing a solid data
foundation for subsequent classification models.

. The phenotypic feature constructed by the weighted
combination of plant height and petiole effectively
distinguished different water stress conditions. The
Random Forest model achieved the best classification
performance with an accuracy of up to 98%. This method
provides reliable data support for intelligent identification
of crop water stress and smart irrigation.

To conclude, the proposed approach in this study is not only
suitable for simultaneous extraction of multiple phenotypic traits but
also provides a reliable solution for high-throughput phenotyping of
large-scale tomato planting, with promising prospects for widespread
application in smart irrigation. Future research can further enhance the
model’s generalization ability by incorporating image data from
multiple regions and cultivars for training, thereby improving its
adaptability to diverse planting environments and plant characteristics.
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