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Arundo smaragdina (Poaceae):
a novel species revealed by
integrative taxonomy and its
implications for the
phylogeny of the genus
Fupeng Liu, Boyu Li, Qingmeng He, Aixuan Zhao, Ben Xi
and Xiaotong Shen*

The Energy Plant Research and Development Center, Wuhan Rundo Biotechnology LLC.,
Wuhan, China
Introduction: Arundo species have long served as vital raw materials for human

livelihoods, yet their phylogenetic relationships remained poorly resolved until

recent decades.

Methods: This study identifies a novel species, Arundo smaragdina, through

integrative analyses of morphology, multiple nucleotide polymorphism (MNP)

markers, and chloroplast genome data, and elucidates its phylogenetic

placement within the genus.

Results: A. smaragdina is characterized by 72 chromosomes (2n=72), solid and limited

rhizomes, erect and branched culms, glabrous nodes, and inflorescences emerging in

early September. Mature inflorescences contain 2–5 florets per spikelet, with lemma

hairs perpendicularly inserted at the basal region, and the pollen germination rate

averages 12.7%. Within the genus, A. formosana is confirmed as the basal species.

A. donax (a species potentially of Asian origin) differs from A. smaragdina in having

spreading rhizomes and lemma hairs obliquely distributed on the lower quarter,

although both species share morphological convergence and similar yields. While

A. smaragdina is distinct from the Mediterranean A. plinii complex (including A. plinii,

A. donaciformis, and A. micrantha), which possesses hollow rhizomes and 1(2) florets

per spikelet, it shares similar pollen germination rates and chromosome numbers with

some clones of A. plinii, and exhibits parallels with A. micrantha in yield, chromosome

count, and branched culm architecture. At the molecular level, MNPmarkers confirm

the genomic distinctiveness of A. smaragdina from A. donax, while chloroplast

phylogeny reveals its intermediate phylogenetic position between A. donax and the

A. plinii complex. Molecular dating estimates divergence times of approximately

2.29 million years ago (Mya) from A. plinii and ~2.9 Mya from A. donax.

Discussion: The congruent morphological and molecular evidence suggests that

A. smaragdina may have played a pivotal role in the evolution of Arundo species.
KEYWORDS

Arundo smaragdina, morphological differentiation, MNP markers, chloroplast genome,
transcriptome data
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1 Introduction

Species identification plays a crucial role in biological research,

biodiversity conservation, and species utilization (Wagensommer,

2023; Perrino et al., 2024). Traditional morphological identification

methods, still largely used (Di Pietro et al., 2016; Masoumi et al.,

2025), while foundational, present limitations as they require

extensive taxonomic expertise, access to holotype specimens, and

continuous updates to taxonomic keys (Balakrishnan, 2005). With

the development of DNA sequencing techniques, DNA markers

and chloroplast genome sequencing have been recognized as

powerful tools for species discrimination and discovery (Hebert

et al., 2003; Antil et al., 2023; Dobrogojski et al., 2020).

Chloroplast genomes, which are maternally inherited in most

plants, serve as another valuable tool for species identification,

phylogenetics, and evolution studies (Ahmad et al., 2023;

Dobrogojski et al., 2020). Chloroplast DNA typically constitutes

5-10% of total cellular DNA extracts (Ahmed, 2015) and has been

shown to be fully transcribed (Shi et al., 2016). Multiple tools are

currently available for chloroplast genome assembly (Freudenthal

et al., 2020), and some studies have successfully reconstructed near-

complete chloroplast genomes directly from leaf transcriptome data

(Osuna-Mascaró et al., 2018; Senthilkumar et al., 2021). These

advancements could significantly improve the resolution of

phylogenetic analyses.

Arundo belongs to the subfamily Arundinoideae (Teisher et al.,

2017). Molecular dating analyses suggest that Arundo formosana

Hack. is the basal species within the genus (Jike et al., 2020). A

recent study by Luo et al. (2024) proposes that A. formosana may

have diverged from the other Arundo species, and A. donax L. cv.

Lvzhou No. 1, collected from Fujian Province, China, may represent

an ecotype with a different genetic origin from the other A. donax

varieties. Notably, genetic evidence demonstrates that A. donax

likely originated in Asia and subsequently dispersed globally via

human migration (Mariani et al., 2010; Hardion et al., 2014;

Canavan et al., 2017). In the Chinese mainland, we inferred the

existence of three groups (common, emerald and versicolor) of A.

donax (Ren et al., 2023a, 2024). But cytogenetic analyses revealed

118 chromosomes in the common group and the versicolor group,

whereas the emerald group possesses 72 chromosomes. Whole-

genome sequencing estimated a divergence time of 25.03 million

years (MYA) between clones 0004 (the common group) and 0408

(the emerald group), and multiple nucleotide polymorphism

(MNP) markers detected over 90% polymorphic loci (the

percentage of different loci) between the two groups (Ren et al.,

2023a, 2023b). These findings suggest that the emerald group likely

represents a distinct species within Arundo, rather than belonging

to A. donax.

However, while these preliminary findings from our group

suggested the emerald group was a distinct taxonomic entity, a

formal taxonomic treatment integrating comprehensive data was

lacking. This study was therefore designed to address this

knowledge gap by aiming to: 1) Conduct comparative

morphological analyses and MNP marker assessments to

characterize the emerald and common groups. 2) Further validate
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from transcriptome data, and verify the currently known

chloroplast genomes within the genus Arundo. 3) Confirm that

the emerald group (e.g., clone 0408) represents a novel species

within the genus Arundo based on chloroplast genome data, and

dist inguish i ts morphological differences from other

Arundo species.
2 Materials and methods

2.1 Morphological and cytological trait
survey and analysis

A total of 118 Arundo clones collected from the Chinese

mainland, comprising 49 emerald group clones and 69 common

group clones, were subjected to morphological analyses.

Morphological analysis was divided into two parts: field

observation and laboratory analysis.

Field studies were conducted at the Yueyang Experimental

Station (113.01, 29.47; WGS84), Hunan Province, China. Clones

were planted in April 2020 in 94 m² plots (1.4 × 1.4 m spacing), with

2 m buffer zones between plots. During autumn 2023, morphometric

assessments were performed. For each clone, 11 traits were quantified

in 10 randomly selected individuals. These traits were selected from a

prior investigation (data not shown) of 31 traits across 9 clones due to

their suitability for large-scale field measurement and their observed

variation between the two groups. The selected traits including: culm

height (CH), number of culm internodes per culm (NOCIPC),

middle ten culm internodes length (excluding inflorescence)

(MTCIL), basal culm stem internode diameter (BCSID), basal culm

internode wall thickness (BCIWT), leaf length of the sixth leaf from

top (LLOTSLFT), leaf width of the sixth leaf from top (LWOTSLFT),

aspect ratio of leaf (AROL), inflorescence width (IW), inflorescence

length (excluding peduncle) (ILEP), aspect ratio of inflorescence

(AROI). PCA (using ade4) and box-and-whisker plots (generated

via ggplot2) were applied to analyze morphological traits and detect

potential clusters among clones.

Laboratory analyses were conducted for the inflorescence

structure, rhizome growth patterns, and chromosome number of

the common and emerald groups. Pollen viability in the common

and emerald groups was assessed via I2-KI staining: normal, fertile

pollen grains exhibited dark blue staining, whereas abnormal pollen

grains remained unstained. Following the method of Hardion et al.

(2015), we additionally performed pollen germination experiments.
2.2 MNP marker analysis

Leaf samples were collected from 118 clones, and genotyped

using 1,100 MNP markers developed by Ren et al. (2023a).

Following the method of Liu J. et al. (2024), markers with 100%

amplification success across all clones were selected. Amplified

sequences of clones by same maker were aligned using MAFFT

v7.526 (Katoh and Standley, 2013) with default parameters.
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Concatenated sequences, generated by Concatenator v0.3.1 (Vences

et al., 2022), served as input for phylogenetic reconstruction in IQ-

TREE v2.4.0 (Minh et al., 2020). The best-fit model (GTR +F+R4)

was determined by IQ-TREE according to the Bayesian Information

Criterion (BIC), and 1,000 ultrafast bootstrap replicates were

performed to assess node support. The final tree was visualized

using iTOL (Letunic and Bork, 2024). Subsequently, genetic

similarity (GS) among clones from the two groups was assessed

using the formula proposed by Liu J. et al. (2024), and visualized as

heatmaps via ggplot2.
2.3 Chloroplast genome assembly and
comparative analysis

For chloroplast genome assembly, transcriptome data from

BioProject PRJEB36611 (Jike et al., 2020) were used to assemble

near-complete chloroplast genomes for five Arundo species

(Arundo plinii Turra; Arundo donaciformis (Loisel.) Hardion,

Verlaque & B. Vila; Arundo micrantha Lam.; Arundo formosana

Hack.; Arundo donax L.) and three outgroup species (Molinia

caerulea L.; Hakonechloa macra Makino; Phragmites australis

(Cav.) Trin. ex Steud). Whole-genome sequencing and

transcriptome data for clones 0004 and 0408, obtained from our

previous studies (Ren et al., 2023b, 2024), were utilized to assemble

complete and near-complete chloroplast genomes for these two

clones. BioProject PRJNA974205 (Luo et al., 2024) provided data

for the reassembly of the complete chloroplast genome of A. donax

cv. Lvzhou No.1.

Additionally, complete chloroplast genomes of three Arundo

species—A. formosana (NC_054211.1, MZ620725.1), A. plinii

(NC_034652.1), and A. donax (NC_037077.1)—along with three

outgroup species (M. caerulea NC_033980.1, H. macra

NC_025235.1, P. australis NC_022958.1) from subfamily

Arundinoideae (Poaceae), were retrieved from NCBI GenBank to

infer interspecific evolutionary relationships. The boundary of A.

formosana (NC_054211.1) follows the description by Feng et al. (2021).

Complete chloroplast genomes were assembled using

GetOrganelle v1.7.7.0 (Jin et al., 2020) with default parameters.

Near-complete chloroplast genomes were assembled following the

methodology of Osuna-Mascaró et al. (2018), with A. donax

(NC_037077.1) as reference. The starting positions of the

assembled chloroplast genomes were standardized to align with

the reference genome of A. donax (NC_037077.1). Chloroplast

genome annotation was performed using CPGAVAS2 (Shi et al.,

2019), while tRNA detection employed tRNAscan-SE v1.21

(Schattner et al., 2005). The circular chloroplast genome map was

subsequently generated using CPGView (Liu et al., 2023).

Chloroplast genome comparisons were performed using mVISTA

(LAGAN algorithm mode) with A. donax (NC_037077.1) as the

reference genome (Frazer et al., 2004). Sequence similarity between

A. donax and other Arundo species with complete chloroplast

genomes was further assessed via Circoletto (Darzentas, 2010)

under an E-value threshold of 1×10⁻10. Genome junction sites

were visualized using CPJSdraw (Li et al., 2023).
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2.4 Phylogenetic analysis and divergence
time estimation

All assembled chloroplast genomes were analyzed to resolve the

evolutionary relationships within Arundo. Sequences were aligned

with MAFFT v7.526 (Katoh and Standley, 2013), trimmed using

TrimAL v1.4 (Capella-Gutiérrez et al., 2009), and used to

reconstruct a maximum-likelihood tree in IQ-TREE v2.4.0 (Minh

et al., 2020), with the best-fit model (GTR+F+I+G4) determined by

IQ-TREE according to the BIC and 1,000 ultrafast bootstrap

replicates performed to assess node support. The final tree was

visualized using iTOL (Letunic and Bork, 2024).

Divergence time estimation included four complete Arundo

chloroplast genomes (A. plinii, clone 0004, clone 0408 and A.

donax) with P. australis as the outgroup. We employed the

Phragmites-Arundo divergence time of 29.0 Mya (95% CI: 19.6-

38.3) proposed by Christin et al. (2013), which was validated by

Hardion et al. (2015) in A. formosana ecotypes. This molecular

dating exhibited temporal concordance with the orogenesis of the

center mountain range (~2 Ma). The divergence time estimates

were performed using the MCMCTree v4.9e program (Yang, 2007).
3 Results

3.1 Morphological and cytological
differentiation across clones

Field observations comparing the emerald and common groups

identified significant divergence in morphological and phenological

traits. The emerald group exhibited a conspicuously brighter green

leaf coloration, which emerged as the most diagnostic feature

enabling effortless visual distinction between the two groups in

field conditions. In terms of flowering period, the common group

initiated flowering approximately one and a half months earlier

than the emerald group (Figure 1A). The inflorescence of the

emerald group was shorter than that of the common group

(Figure 1B; Supplementary Table S1), but both had branched

culms (Figure 1C). A distinct contrast was observed in rhizome

growth patterns (Figure 1F). Unlike the common group whose

rhizomes grew upwards in a spreading pattern, the emerald group

displayed limited rhizome growth without upward tendencies,

though both groups had solid (non-hollow) rhizomes (Figure 1G).

Laboratory observations focused on reproductive structures

provided additional insights into the divergence between the two

groups. Both groups bore 2–5 florets per spikelet. However,

significant differences were noted in the lemma hair distribution

and orientation. The lemma hair of the emerald group was

primarily distributed in the middle to lower regions of the lemma

and exhibited a non-erect orientation, in contrast to the common

group (Figure 1E). No discernible differences were observed in the

glumes between the two groups (Figure 1D).

In terms of chromosome number, the emerald group had a lower

chromosome count (2n = 72) compared to the common group (2n =

108; Figure 1H). Pollen viability assays further differentiated the two
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groups. Clones of the common group predominantly produced small,

irregularly shaped pollen grains. In contrast, the emerald group

clones (e.g., clone 0408) exhibited partial pollen staining and higher

pollen germination (approximately 12.7%; Figures 1I, J).

To further investigate the differences between the two groups,

PCA was performed on 11 morphological traits, revealing that the

118 clones were grouped into two phenotypically divergent groups

(Supplementary Figure S1; Supplementary Table S2). Box-and-

whisker plots analysis of traits further revealed significant

distribution variations among the two groups, with substantial
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overlapping observed in most traits (Supplementary Figure S2). In

terms of culm height, the common group was higher than the

emerald group, which was consistent with the finding that the

length of the middle ten internodes in the common group was

greater than that in the emerald group. Interestingly, the emerald

group had a larger number of internodes compared to the common

group. Notably, no obvious differences were found in the basal stem

thickness between the two groups.

Differences in flowering periods, lemma hair distributions, and

pollen viability suggest potential reproductive isolation between the
FIGURE 1

Comparison morphological and cytological traits between the common and the emerald group. (A) Plants after 2 years (photographed in mid-
September 2024): Common (left), emerald group (right). (B) Fully emerged inflorescence: Common (left two), emerald group (right). (C) Branched
culms: Common (left), emerald group (right). (D) Glumes (top: lower glumes [exterior and interior], bottom: upper glumes [exterior and interior]):
Common (left), emerald group (right). (E) Inflorescence structures (from left to right: secondary branch, spikelet, expanded spikelet, glumes, three
florets): Common (left), emerald group (right). (F) Rhizomes after 1 year: Common (left), emerald group (right). (G) Rhizome cross-sections:
Common (left), emerald group (right). (H) Chromosomes (100×): Common (left), emerald group (right). (I) Pollen germination of the emerald group.
(J) Pollen staining of the emerald group. (K) Glabrous node (top three: common group, bottom three: emerald group).
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two groups. The PCA of 11 traits and significant rhizome

morphological divergence indicate adaptation to distinct

environmental conditions. These results clearly distinguish the

emerald group from the common group.
3.2 Phylogenomic relationships via MNP
markers

To further confirm that the emerald group does not belong to

the common group at the genomic level, MNP markers were

employed to genotype the two groups. The number of shared

MNP markers among different clones ranged from 495 to 947

(Supplementary Table S3). A total of 304 sharedMNPmarkers were

used to classified 118 clones into two distinct groups: Clade I

consisted exclusively of clones from the common group, whereas

Clade II was composed solely of emerald group clones (Figure 2).

These results indicate that the emerald group is genomically distinct

from the common group at the genome level.

Based on genetic similarity, the emerald group was also be

distinguished from the common group. The genetic similarity

between the common group and the emerald group was only

6.05%-10.32%, demonstrating a profound genomic divergence

consistent with species-level separation (Figure 3). Within-group

genetic similarity was markedly higher in the common group

(96.2%-100%; Supplementary Figure S3) than in the emerald group

(58.9%-100%; Supplementary Figure S4), indicating that the emerald
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group possesses a more diverse gene pool. This pattern aligns with

morphological observations, where the common group exhibited

significantly lower pollen viability compared to the emerald group

(Figure 1I). These findings collectively demonstrate that the emerald

group represents a genomically distinct entity from the common

group (A. donax). This genomic differentiation aligns with

morphological and cytological observations, suggesting the emerald

group represents a novel taxon in the Chinese mainland.
3.3 Chloroplast genome assembly

To further confirm that the emerald group does not belong to A.

donax or the other four species within the genus Arundo, further

research was conducted at the chloroplast genome level. Based on NGS

sequencing data, the complete chloroplast genomes of clones 0408 and

0004 were successfully assembled. Additionally, the complete

chloroplast genome of A. donax cv. Lvzhou No. 1 was also

successfully reassembled from its raw data. Assembly of

transcriptome data yielded 12 near-complete chloroplast genomes. All

assembled chloroplast genomes are listed in Supplementary Table S4.

The complete chloroplast genome of clone 0408 (137,185 bp)

exhibited a typical quadripartite angiosperm structure, comprising

large single-copy (LSC: 82,092 bp), small single-copy (SSC: 12,613

bp), and inverted repeat (IR: 21,240 bp) regions (Supplementary

Figure S5). The complete chloroplast genome of clone

0004 was identical to that of A. donax cv. Lvzhou No. 1 as
FIGURE 2

Clustering dendrogram based on MNP markers for 118 clones. Yellow and green represent the common group and the emerald group, respectively.
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reassembled (Supplementary Figure S6). Published A. formosana

genomes (MZ620725.1, NC_054211.1) are completely identical

(Supplementary Table S5).
3.4 Chloroplast genome comparison

Compared with the complete chloroplast genomes of clones

0004 and 0408, the near-complete chloroplast genomes exhibited

significantly shorter lengths across four regions. Notably, all nine

near-complete chloroplast genomes of Arundo species shared

identical low-similarity and missing regions, including extensive

sequence deletions near 84–87 k bp, 92–93 and 132–134 k bp

(Supplementary File S1). Furthermore, sequencing strategy

significantly influenced genome assembly quality. For example,

the near-complete chloroplast genome assembled from BioProject

PRJEB36611 exhibited deletions in the 46–48 and 64–65 k bp

regions, whereas clones 0004 and 0408 displayed no such gaps,

highlighting the impact of sequencing methodology on sequence

integrity and confirming the feasibility of assembling a complete

chloroplast genome from transcriptome data.
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UsingA. donax (NC_037077.1) as the reference, a comprehensive

genomic variation analysis of the complete chloroplast genomes

across Arundo species was performed (Figure 4). Results revealed

that all analyzed genomes, except A. formosana, exhibited high

similarity to A. donax. The inclusion of chloroplast genomes

assembled from transcriptome data in the comparative analysis

similarly yielded consistent results (Supplementary File S1), further

confirming that the emerald group (e.g., clone 0408) belongs to the

genus Arundo and demonstrating the reliability of chloroplast

genomes assembled from transcriptome data.

Notably, in contrast to the reference genome A. formosana

(NC_054211.1), the near-complete chloroplast genome of A.

formosana assembled from transcriptome data showed higher

overall similarity to A. donax (Supplementary File S1).

Furthermore, collinearity analysis (Supplementary Figure S7)

revealed that the reference genome A. formosana (NC_054211.1)

exhibited lower similarity to A. donax than P. australis or M.

caerulea, with most regions showing less than 25% collinearity.

The reference genome A. formosana (NC_054211.1) may warrant

further investigation. In contrast, A. plinii showed the best

collinearity with A. donax, followed by clone 0408, indicating that
FIGURE 3

Heatmap of genetic similarity between two groups. The common and emerald groups are color-coded in black and green, respectively, on the left
side. The genetic similarity values are provided in the top-right corner.
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clone 0408 differed from both A. plinii and A. donax at the

chloroplast genome level.

Inverted repeat (IR) boundary analysis revealed that A. plinii,

clones 0004 and 0408 within the genus Arundo shared identical IR

boundaries and lengths. In contrast, the Italian A. donax

(NC_037077.1) exhibited an IR contraction compared to clone

0004, a Chinese A. donax clone (Figure 5; Supplementary Table

S6). The observed IR contraction in the Italian A. donax could

reflect an evolutionary change following geographic isolation,

though its functional significance requires further study.

The high similarity at the chloroplast genome level further

confirmed that the emerald group belongs to the genus Arundo.

However, collinearity analysis revealed significant differences in the

chloroplast genomes between the emerald group (e.g., clone 0408)

and other Arundo species, providing further evidence that it is likely

a new species within the genus.
3.5 Phylogenetic resolution of Arundo

To determine the phylogenetic relationships between the

emerald group and other species within the genus Arundo, a
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chloroplast genome-based phylogenetic tree was constructed. In

the maximum likelihood (ML) phylogenetic tree (Figure 6;

Supplementary Figure S8), the near-complete chloroplast

genomes, with the exception of A. formosana, clustered with their

corresponding complete reference genomes, confirming the

reliability of transcriptome-derived chloroplast data.

Clone 0408 did not cluster with any recognized Arundo species,

forming an independent lineage that robustly supports its designation

as a novel species. Clone 0004, whose chloroplast genome sequence is

identical to that of A. donax cv. Lvzhou No.1, formed a clade with A.

donax (NC_037077.1). A notable discrepancy was observed in the

phylogenetic placement of A. formosana. While the near-complete

chloroplast genome was clustered within the genus Arundo as

expected, the published reference chloroplast genome of A.

formosana (NC_054211.1) formed a distinct clade with P. australis

(NC_022958.1) and other outgroup species (Figure 6; Supplementary

Figure S8). This anomalous phylogenetic placement, inconsistent

with the transcriptome-based assembly, reinforces the concern

raised in section 3.4 that the reference genome of A. formosana

(NC_054211.1) may warrant further investigation.

Chloroplast genome divergence provides further validation that the

emerald group (e.g., clone 0408) represents a novel species. Divergence
FIGURE 4

Sequence variation plots among the Arundo chloroplast genomes. Annotated genes are displayed on the top. The vertical scale represents the
percentage within 50–100% homogeneity. The color legend is summarized in the lower left-hand corner.
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from other species in nuclear and chloroplast genomes, morphological

traits, and cytological features indicates adaptive modifications during

its historical evolutionary process. We propose the name Arundo

smaragdina for this species, reflecting its distinctive leaf pigmentation.
3.6 Divergence time analysis

Integration of the A. smaragdina chloroplast genome with

published Arundo genomes and the outgroup P. australis revealed

key divergence events within the genus (Figure 7). Phylogenetic

analysis indicated that A. smaragdina and A. plinii diverged 2.29

million years ago (Mya), with this lineage splitting from A. donax

2.9 Mya. Within A. donax, the Italian clone (NC_037077.1) and

clone 0004 diverged more recently, approximately 0.17 Mya.

This temporal evidence, consistent with the morphological,

cytological, and genomic divergences documented in previous

sections, offers robust and multi-layered confirmation of

A. smaragdina as a distinct species within the genus Arundo.
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4 Discussion

4.1 MNP markers support genomic
divergence between A. smaragdina and A.
donax

Previous studies have employed various molecular markers and

partial chloroplast genes to explore intraspecific diversity within A.

donax, but these approaches demonstrated limited discriminatory

power for distinguishing A. donax clones (Bucci et al., 2013; Pilu

et al., 2013; Touchell et al., 2016; Liu et al., 2019; Tarin et al., 2013). To

address this, we developed 1,100 MNP markers, which mapped

uniformly across the A. donax reference genome (Ren et al., 2023a,

2024; Supplementary Figure S9). MNP marker technology has

emerged as a powerful tool for variety identification, demonstrating

success across diverse species including Oryza sativa L.,

Dendranthema morifolium (Ramat.) Tzvelev, Lentinula edodes

(Berk.) Pegler, and Vitis vinifera L (Fang et al., 2021; Ling et al.,

2023; Liu J. et al., 2024; Liu Y. et al., 2024). Phylogenetic clustering of
FIGURE 5

Comparison of inverted repeat (IR) region boundaries in chloroplast genomes.
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A. smaragdina and A. donax into distinct groups underscores their

divergence at the genomic level (Figure 2).

The significantly lower genetic similarity among different clones

of A. smaragdina, compared to the high clonal uniformity within

A. donax (Supplementary Figures S3, S4; Supplementary Table S3),

suggests a history of sexual reproduction and the maintenance of a

more diverse gene pool, which is consistent with the extensive

phenotypic variation (e.g., in leaf morphology, tiller number, and

flowering time) observed in A. smaragdina in the field. However,
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A. donax exhibits relatively limited phenotypic variation in the field.

The most common phenomenon is that some individuals of the

common group transform into the versicolor groups due to somatic

mutations resulting foliar variegation (Antal et al., 2018; Guarino

et al., 2019; Danelli et al., 2020; Ren et al., 2023b). SRAP and TE-

based molecular markers failed to detect genetic differentiation

between these morphotypes (Ahmad et al., 2008). Comprehensive

differences in genetic (MNP markers), cytological (chromosome

number), reproductive (pollen germination rate), and ecological
FIGURE 6

Phylogenetic relationships of Arundo species inferred from chloroplast genomes. “*” indicates a nearly complete chloroplast genome assembled
from transcriptome data.
FIGURE 7

Chronogram of the genus Arundo.
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(ecotype diversity) traits demonstrate potential early reproductive

isolation mechanisms, indicating that A. smaragdina and A. donax

split into distinct species early in their evolutionary history.
4.2 Morphological and cytological
evidence for A. smaragdina as a new
species

The genus Arundo exhibits substantial morphological plasticity

(Ngernsaengsaruay et al., 2023; Cantaluppi et al., 2015). In this

genus, A. smaragdina exhibits distinct morphological differences

compared to the other five species.

Compared to other Arundo species, A. formosana exhibits a

prostrate growth habit, ~1 m height, and is endemic as a pioneer

grass in estuarine environments (Hardion et al., 2017a). Its

restricted distribution further underscores its taxonomic

uniqueness within the genus (Liu and Sylvia, 2006; Lee et al., 2022).

TheA. plinii complex (A. plinii,A. donaciformis, andA.micrantha)

represents a circum-Mediterranean taxon, distinguished fromA. donax

and A. smaragdina by its spikelet structure, which bears 1(2) florets

compared to 3–5 florets in the latter two (Figure 1E; Danin, 2004;

Hardion et al., 2012a). Additionally, the A. plinii complex exhibits

thinner rhizomes characterized by a parenchymous cross-section

with a central lumen (Danin and Naenny, 2008), contrasting

sharply with the solid, lumenless rhizomes of A. donax and

A. smaragdina (Figure 1G).

Among the complex members, A. micrantha is further

differentiated by a larger culm diameter exceeding 5 mm under

the panicle (vs. <4 mm in A. plinii and A. donaciformis; Danin,

2004; Hardion et al., 2012a); and greater similarity to A. smaragdina

(4.7-12.9 mm) and A. donax (9.3-18.2 mm). Intriguingly,

A. smaragdina shares rhizome growth patterns with A. micrantha

(Figure 1F; Danin, 2004). However, the inflorescence architecture of

A. micrantha more closely resembles that of A. donax, differ

significantly from A. smaragdina (Figure 1B; Hardion et al.,

2012b; Tomàs et al., 2019; Ferrer-Gallego and Hardion, 2025).

The branched culms of A. micrantha distinguish it very well from

A. plinii (Danin, 2004); however, A. smaragdina and A. donax also

have branched culms (Figure 1C).

A. donaciformis exhibits pubescent nodes and hairy upper

glumes, while A. micrantha and A. plinii s.str. are marked by

glabrous nodes and glabrous upper glumes, respectively (Hardion

et al., 2012a). Moreover, A. donax and A. smaragdina are glabrous

at the nodes, lower glumes, and upper glumes (Figures 1D, K).

Additionally, in A. smaragdina, hairs are primarily distributed in

the middle to lower regions of lemma and exhibit a non-erect

orientation similar to A. donaciformis, whereas in A. donax, hairs

are notably longer and closely appressed to the lemma surface

(Figure 1E; Hardion et al., 2012a).

Regarding Italy and Asian A. donax (e.g., clone 0004), the two

exhibit no significant morphological differences in traits such as the

lemma and root system (Figure 1; Danin, 2004; Hardion et al.,

2012a), indicating the reliability of morphological identification for

species differentiation. Furthermore, both this study and the
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research by Hardion et al. (2012a) demonstrate that PCA and

box-and-whisker plots analysis are also important tools for

species discrimination within the genus.

Pollen germination and chromosome number also provide

valuable insights for species identification. Germination rates of

A. smaragdina align closely with those of A. plinii and

A. donaciformis within the genus (Figure 1I; Supplementary Table

S7; Hardion et al., 2015). However, unlike A. donax populations in

the Middle East that exhibit seed set (Danin, 2004; Hardion et al.,

2014), no seeds were observed in A. smaragdina or A. donax in the

Chinese mainland under ex situ conditions. This sterility in

A. smaragdina may mirror the reproductive behavior of A. plinii,

which produces seeds exclusively in its native habitat (Hardion

et al., 2015). Cytogenetic analyses further differentiate

A. smaragdina: its karyotype (2n=72) contrasts with A. donax

(2n=108) and A. donaciformis (2n=108), while aligning with

A. micrantha (2n=70-72) and some cytotypes of A. plinii (2n=72,

74, 76, 108, 114; Hardion et al., 2015).

Collectively, A. smaragdina is morphologically distinct from all

known Arundo species. However, its morphological convergence

with A. donax—including shared traits such as plant height and

perennial habit—likely resulted in its historical misclassification as a

non-distinct taxon within the genus.
4.3 Chloroplast genome support A.
smaragdina as a new species

Species-specific clustering validated the utility of transcriptome-

derived chloroplast genomes, as these genomes consistently

grouped with their complete genome counterparts, consistent

with previous studies (Figure 6; Supplementary Figure S8; Osuna-

Mascaró et al., 2018; Senthilkumar et al., 2021). In contrast to

studies using partial chloroplast genes for interspecific comparisons,

nearly complete chloroplast genomes provide more comprehensive

genetic information, particularly when species divergence times are

short. For example, Jike et al. (2020) analyzed Arundo species using

five intergenic regions, yielding results slightly divergent from

nuclear genome-based studies (specifically the phylogenetic

relationships among three species in the A. plinii complex). In

contrast, our findings based on nearly complete chloroplast

genomes showed strong consistency with nuclear genome

analyses (Figure 6, Supplementary Figure S8; Jike et al., 2020).

Furthermore, the near-complete chloroplast genome of

A. smaragdina clustered with its complete genome, supporting its

novel species status.

A comparative analysis of the chloroplast genome between

A. smaragdina and other Arundo species revealed high sequence

similarity between A. smaragdina and other species, whereas

notable differences were observed in the IR regions:

A. smaragdina exhibited greater similarity to the IR regions of

A. plinii and the Chinese mainland A. donax, while the IR region of

Italian A. donax was contracted. These results imply that

A. smaragdina contributed to the evolutionary radiation of

Arundo species.
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4.4 Interspecific relationships within genus
Arundo

Phylogenetic topology aligned with prior studies, positioning A.

formosana as the basal taxon within the genus Arundo (Figure 6;

Supplementary Figure S8; Jike et al., 2020). Interestingly, the

published A. formosana (NC_054211.1) chloroplast genome did not

cluster with the near-complete chloroplast genome, but instead

grouped with P. australis and other outgroup species, a finding

consistent with other phylogenetic studies that also reported its

clustering with species such as Crinipes abyssinicus Hochst. and

Crinipes longifolius C.E.Hubb., outside the core Arundo lineage

(Supplementary Figure S8; Luo et al., 2024). The genomic

comparisons (Supplementary File S1) also consistently demonstrate

significant differences between the A. formosana reference genome

(NC_054211.1) and A. donax (NC_037077.1). Furthermore,

similarity analysis (Supplementary Figure S7) indicates that their

degree of similarity is even lower than that between A. donax and

either P. australis or M. caerulea. These data strongly suggest a

fundamental issue with the taxonomic identity of the source

material used for its assembly. Notably, this published genome was

reportedly sampled from Yunnan Province (Feng et al., 2021).

Meanwhile, two A. formosana specimens from Sichuan Province

are archived at the Chengdu Institute of Biology, Chinese Academy

of Sciences (https://www.cvh.ac.cn/spms/detail.php?id=d7e77a3a),

underscoring the need to validate distribute localities for A.

formosana (Liu and Sylvia, 2006; Lee et al., 2022). For A. donax,

integrating the reassembled chloroplast genomes of A. donax cv.

Lvzhou No.1 with the datasets used by Luo et al. (2024) revealed

that it clustered with other A. donax chloroplast genomes,

contradicting Luo et al.’s hypothesis that “A. donax cv. Lvzhou

No.1 (OQ993163.1) may represent a variety with a different genetic

origin from the other A. donax” (Supplementary File S2;

Supplementary Figure S8; Luo et al., 2024). Crucially, clone 0004

exhibited distinct morphological traits (e.g., sprawling growth habit,

taller culms) despite chloroplast genome identity with A. donax cv.

Lvzhou No.1 (Ren et al., 2023b; Luo et al., 2024). Molecular clock

analyses reveal synchronized divergence events between East Asian

and Mediterranean lineages: P. australis populations in China’s

Hexi Corridor diverged from European counterparts 0.186 Mya

(Qiu and Cui, 2021), contemporaneous with the ~0.17 Mya split

between A. donax lineages (Figure 7). This temporal synchronicity

reinforces hypotheses of human-mediated dispersal facilitating

Mediterranean A. donax expansion (Hardion et al., 2017b).

For the A. plinii complex, divergence time estimation indicates

that A. smaragdina and A. plinii diverged approximately 2.29 MYA

(Figure 7). This period, characterized by initial cooling and mild

rainfall reduction followed by the consolidation of an arid

Mediterranean climate, temporally coincides with both the

divergence of A. plinii complex taxa and analogous speciation

patterns observed in Avena species (Liu et al. , 2017).

Furthermore, the divergence among the three species within the

A. plinii complex requires further clarification. Neither nuclear

genome nor chloroplast genome analyses have clustered A. plinii
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BO and A. plinii RO into a single clade (Figure 6; Jike et al., 2020),

likely attributable to both the slower evolutionary rate of the

chloroplast genome and the limited nuclear gene dataset analyzed

(comprising only 144 genes).

Regarding A. micrantha within this complex, Jike et al. (2020)

proposed that it likely originated from hybridization between A. plinii

and a low-ploidy fertile Asian A. donax. The identification of

A. smaragdina provides evidence supporting an alternative

hypothesis: A. micrantha more likely originated from hybridization

between A. plinii and A. smaragdina. The supporting evidence is

as follows (Supplementary Table S7): (1) Morphologically,

A. smaragdina shares similarities with A. micrantha in rhizome

growth patterns, exhibiting limited growth, which contrasts with

the spreading growth habit observed in A. donax. Furthermore, the

culm diameter under the panicle of A. micrantha (>5mm) is partially

similar to that ofA. smaragdina (4.7-12.9 mm), exceeding 5mm. This

characteristic also helps distinguish A. micrantha from A. plinii (< 4

mm) and A. donaciformis (< 4 mm). (2) The nearly identical pollen

germination rates between A. smaragdina (12.7%) and A. plinii

(7.8%-8%) suggest reproductive compatibility, which is a

prerequisite for successful hybridization. In contrast, the pollen

germination rate for A. donax is 0%. (3) Cytological analysis

reveals that the chromosome numbers of both A. smaragdina and

A. micrantha are approximately 72. This number falls within the

range (72-114) reported for some A. plinii accessions, indicating a

shared cytological background that could facilitate hybridization. (4)

Phylogenetic reconstruction based on chloroplast genomes indicates

a closer genetic relationship among A. micrantha, A. plinii, and

A. smaragdina than with A. donax.

In conclusion, integrative analyses of morphological traits,

chromosome numbers, MNP markers, and chloroplast genomes

provide compelling evidence that A. smaragdina represents a

distinct species within Arundo, diverging from A. donax and

other species. At the nuclear genome level, A. smaragdina

exhibits genetic divergence from A. donax based on MNP

analysis, whereas at the chloroplast genome level, it shares

structural similarities with the Chinese mainland A. donax and

A. plinii. Morphologically, A. smaragdina combines high-yield

characteristics of A. donax and A. micrantha with pollen

germination traits similar to A. plinii. Collectively, these findings

demonstrate that A. smaragdina occupies a pivotal evolutionary

role within the genus Arundo. The discovery of this species provides

a critical missing link for elucidating both the evolutionary history

and biogeographic dispersal of the genus, thereby establishing a

robust foundation for future initiatives in breeding programs,

conservation strategies, and sustainable utilization of its members.
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