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Arundo smaragdina (Poaceae):
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Integrative taxonomy and its
implications for the
phylogeny of the genus
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and Xiaotong Shen*

The Energy Plant Research and Development Center, Wuhan Rundo Biotechnology LLC.,
Wuhan, China

Introduction: Arundo species have long served as vital raw materials for human
livelihoods, yet their phylogenetic relationships remained poorly resolved until
recent decades.

Methods: This study identifies a novel species, Arundo smaragdina, through
integrative analyses of morphology, multiple nucleotide polymorphism (MNP)
markers, and chloroplast genome data, and elucidates its phylogenetic
placement within the genus.

Results: A. smaragdina is characterized by 72 chromosomes (2n=72), solid and limited
rhizomes, erect and branched culms, glabrous nodes, and inflorescences emerging in
early September. Mature inflorescences contain 2-5 florets per spikelet, with lemma
hairs perpendicularly inserted at the basal region, and the pollen germination rate
averages 12.7%. Within the genus, A. formosana is confirmed as the basal species.
A. donax (a species potentially of Asian origin) differs from A. smaragdina in having
spreading rhizomes and lemma hairs obliquely distributed on the lower quarter,
although both species share morphological convergence and similar yields. While
A. smaragdina is distinct from the Mediterranean A. plinii complex (including A. plinii,
A. donaciformis, and A. micrantha), which possesses hollow rhizomes and 1(2) florets
per spikelet, it shares similar pollen germination rates and chromosome numbers with
some clones of A. plinii, and exhibits parallels with A. micrantha in yield, chromosome
count, and branched culm architecture. At the molecular level, MNP markers confirm
the genomic distinctiveness of A. smaragdina from A. donax, while chloroplast
phylogeny reveals its intermediate phylogenetic position between A. donax and the
A. plinii complex. Molecular dating estimates divergence times of approximately
2.29 million years ago (Mya) from A. plinii and ~2.9 Mya from A. donax.

Discussion: The congruent morphological and molecular evidence suggests that
A. smaragdina may have played a pivotal role in the evolution of Arundo species.

Arundo smaragdina, morphological differentiation, MNP markers, chloroplast genome,
transcriptome data

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1660442/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1660442/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1660442/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1660442/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1660442/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1660442&domain=pdf&date_stamp=2025-11-17
mailto:WRBT_DR@163.com
https://doi.org/10.3389/fpls.2025.1660442
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1660442
https://www.frontiersin.org/journals/plant-science

Liu et al.

1 Introduction

Species identification plays a crucial role in biological research,
biodiversity conservation, and species utilization (Wagensommer,
2023; Perrino et al., 2024). Traditional morphological identification
methods, still largely used (Di Pietro et al.,, 2016; Masoumi et al.,
2025), while foundational, present limitations as they require
extensive taxonomic expertise, access to holotype specimens, and
continuous updates to taxonomic keys (Balakrishnan, 2005). With
the development of DNA sequencing techniques, DNA markers
and chloroplast genome sequencing have been recognized as
powerful tools for species discrimination and discovery (Hebert
et al., 2003; Antil et al., 2023; Dobrogojski et al., 2020).

Chloroplast genomes, which are maternally inherited in most
plants, serve as another valuable tool for species identification,
phylogenetics, and evolution studies (Ahmad et al., 2023;
Dobrogojski et al., 2020). Chloroplast DNA typically constitutes
5-10% of total cellular DNA extracts (Ahmed, 2015) and has been
shown to be fully transcribed (Shi et al., 2016). Multiple tools are
currently available for chloroplast genome assembly (Freudenthal
etal, 2020), and some studies have successfully reconstructed near-
complete chloroplast genomes directly from leaf transcriptome data
(Osuna-Mascaro et al.,, 2018; Senthilkumar et al., 2021). These
advancements could significantly improve the resolution of
phylogenetic analyses.

Arundo belongs to the subfamily Arundinoideae (Teisher et al.,
2017). Molecular dating analyses suggest that Arundo formosana
Hack. is the basal species within the genus (Jike et al., 2020). A
recent study by Luo et al. (2024) proposes that A. formosana may
have diverged from the other Arundo species, and A. donax L. cv.
Lvzhou No. 1, collected from Fujian Province, China, may represent
an ecotype with a different genetic origin from the other A. donax
varieties. Notably, genetic evidence demonstrates that A. donax
likely originated in Asia and subsequently dispersed globally via
human migration (Mariani et al., 2010; Hardion et al, 2014;
Canavan et al.,, 2017). In the Chinese mainland, we inferred the
existence of three groups (common, emerald and versicolor) of A.
donax (Ren et al., 2023a, 2024). But cytogenetic analyses revealed
118 chromosomes in the common group and the versicolor group,
whereas the emerald group possesses 72 chromosomes. Whole-
genome sequencing estimated a divergence time of 25.03 million
years (MYA) between clones 0004 (the common group) and 0408
(the emerald group), and multiple nucleotide polymorphism
(MNP) markers detected over 90% polymorphic loci (the
percentage of different loci) between the two groups (Ren et al,
2023a, 2023b). These findings suggest that the emerald group likely
represents a distinct species within Arundo, rather than belonging
to A. donax.

However, while these preliminary findings from our group
suggested the emerald group was a distinct taxonomic entity, a
formal taxonomic treatment integrating comprehensive data was
lacking. This study was therefore designed to address this
knowledge gap by aiming to: 1) Conduct comparative
morphological analyses and MNP marker assessments to
characterize the emerald and common groups. 2) Further validate
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the reliability of the near-complete chloroplast genome assembled
from transcriptome data, and verify the currently known
chloroplast genomes within the genus Arundo. 3) Confirm that
the emerald group (e.g., clone 0408) represents a novel species
within the genus Arundo based on chloroplast genome data, and
distinguish its morphological differences from other
Arundo species.

2 Materials and methods

2.1 Morphological and cytological trait
survey and analysis

A total of 118 Arundo clones collected from the Chinese
mainland, comprising 49 emerald group clones and 69 common
group clones, were subjected to morphological analyses.
Morphological analysis was divided into two parts: field
observation and laboratory analysis.

Field studies were conducted at the Yueyang Experimental
Station (113.01, 29.47; WGS84), Hunan Province, China. Clones
were planted in April 2020 in 94 m? plots (1.4 x 1.4 m spacing), with
2 m buffer zones between plots. During autumn 2023, morphometric
assessments were performed. For each clone, 11 traits were quantified
in 10 randomly selected individuals. These traits were selected from a
prior investigation (data not shown) of 31 traits across 9 clones due to
their suitability for large-scale field measurement and their observed
variation between the two groups. The selected traits including: culm
height (CH), number of culm internodes per culm (NOCIPC),
middle ten culm internodes length (excluding inflorescence)
(MTCIL), basal culm stem internode diameter (BCSID), basal culm
internode wall thickness (BCIWT), leaf length of the sixth leaf from
top (LLOTSLFT), leaf width of the sixth leaf from top (LWOTSLFT),
aspect ratio of leaf (AROL), inflorescence width (IW), inflorescence
length (excluding peduncle) (ILEP), aspect ratio of inflorescence
(AROI). PCA (using ade4) and box-and-whisker plots (generated
via ggplot2) were applied to analyze morphological traits and detect
potential clusters among clones.

Laboratory analyses were conducted for the inflorescence
structure, rhizome growth patterns, and chromosome number of
the common and emerald groups. Pollen viability in the common
and emerald groups was assessed via I,-KI staining: normal, fertile
pollen grains exhibited dark blue staining, whereas abnormal pollen
grains remained unstained. Following the method of Hardion et al.
(2015), we additionally performed pollen germination experiments.

2.2 MNP marker analysis

Leaf samples were collected from 118 clones, and genotyped
using 1,100 MNP markers developed by Ren et al. (2023a).
Following the method of Liu J. et al. (2024), markers with 100%
amplification success across all clones were selected. Amplified
sequences of clones by same maker were aligned using MAFFT
v7.526 (Katoh and Standley, 2013) with default parameters.
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Concatenated sequences, generated by Concatenator v0.3.1 (Vences
et al,, 2022), served as input for phylogenetic reconstruction in IQ-
TREE v2.4.0 (Minh et al., 2020). The best-fit model (GTR +F+R4)
was determined by IQ-TREE according to the Bayesian Information
Criterion (BIC), and 1,000 ultrafast bootstrap replicates were
performed to assess node support. The final tree was visualized
using iTOL (Letunic and Bork, 2024). Subsequently, genetic
similarity (GS) among clones from the two groups was assessed
using the formula proposed by Liu J. et al. (2024), and visualized as
heatmaps via ggplot2.

2.3 Chloroplast genome assembly and
comparative analysis

For chloroplast genome assembly, transcriptome data from
BioProject PRJEB36611 (Jike et al., 2020) were used to assemble
near-complete chloroplast genomes for five Arundo species
(Arundo plinii Turra; Arundo donaciformis (Loisel.) Hardion,
Verlaque & B. Vila; Arundo micrantha Lam.; Arundo formosana
Hack; Arundo donax L.) and three outgroup species (Molinia
caerulea L.; Hakonechloa macra Makino; Phragmites australis
(Cav.) Trin. ex Steud). Whole-genome sequencing and
transcriptome data for clones 0004 and 0408, obtained from our
previous studies (Ren et al., 2023b, 2024), were utilized to assemble
complete and near-complete chloroplast genomes for these two
clones. BioProject PRINA974205 (Luo et al., 2024) provided data
for the reassembly of the complete chloroplast genome of A. donax
cv. Lvzhou No.1.

Additionally, complete chloroplast genomes of three Arundo
species—A. formosana (NC_054211.1, MZ620725.1), A. plinii
(NC_034652.1), and A. donax (NC_037077.1)—along with three
outgroup species (M. caerulea NC_033980.1, H. macra
NC_025235.1, P. australis NC_022958.1) from subfamily
Arundinoideae (Poaceae), were retrieved from NCBI GenBank to
infer interspecific evolutionary relationships. The boundary of A.
formosana (NC_054211.1) follows the description by Feng et al. (2021).

Complete chloroplast genomes were assembled using
GetOrganelle v1.7.7.0 (Jin et al, 2020) with default parameters.
Near-complete chloroplast genomes were assembled following the
methodology of Osuna-Mascaro et al. (2018), with A. donax
(NC_037077.1) as reference. The starting positions of the
assembled chloroplast genomes were standardized to align with
the reference genome of A. donax (NC_037077.1). Chloroplast
genome annotation was performed using CPGAVAS2 (Shi et al,
2019), while tRNA detection employed tRNAscan-SE v1.21
(Schattner et al., 2005). The circular chloroplast genome map was
subsequently generated using CPGView (Liu et al., 2023).
Chloroplast genome comparisons were performed using mVISTA
(LAGAN algorithm mode) with A. donax (NC_037077.1) as the
reference genome (Frazer et al., 2004). Sequence similarity between
A. donax and other Arundo species with complete chloroplast
genomes was further assessed via Circoletto (Darzentas, 2010)
under an E-value threshold of 1x107'°. Genome junction sites
were visualized using CPJSdraw (Li et al., 2023).
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2.4 Phylogenetic analysis and divergence
time estimation

All assembled chloroplast genomes were analyzed to resolve the
evolutionary relationships within Arundo. Sequences were aligned
with MAFFT v7.526 (Katoh and Standley, 2013), trimmed using
TrimAL v1.4 (Capella-Gutiérrez et al., 2009), and used to
reconstruct a maximum-likelihood tree in IQ-TREE v2.4.0 (Minh
et al,, 2020), with the best-fit model (GTR+F+I1+G4) determined by
IQ-TREE according to the BIC and 1,000 ultrafast bootstrap
replicates performed to assess node support. The final tree was
visualized using iTOL (Letunic and Bork, 2024).

Divergence time estimation included four complete Arundo
chloroplast genomes (A. plinii, clone 0004, clone 0408 and A.
donax) with P. australis as the outgroup. We employed the
Phragmites-Arundo divergence time of 29.0 Mya (95% CI: 19.6-
38.3) proposed by Christin et al. (2013), which was validated by
Hardion et al. (2015) in A. formosana ecotypes. This molecular
dating exhibited temporal concordance with the orogenesis of the
center mountain range (~2 Ma). The divergence time estimates
were performed using the MCMCTree v4.9¢ program (Yang, 2007).

3 Results

3.1 Morphological and cytological
differentiation across clones

Field observations comparing the emerald and common groups
identified significant divergence in morphological and phenological
traits. The emerald group exhibited a conspicuously brighter green
leaf coloration, which emerged as the most diagnostic feature
enabling effortless visual distinction between the two groups in
field conditions. In terms of flowering period, the common group
initiated flowering approximately one and a half months earlier
than the emerald group (Figure 1A). The inflorescence of the
emerald group was shorter than that of the common group
(Figure 1B; Supplementary Table S1), but both had branched
culms (Figure 1C). A distinct contrast was observed in rhizome
growth patterns (Figure 1F). Unlike the common group whose
rhizomes grew upwards in a spreading pattern, the emerald group
displayed limited rhizome growth without upward tendencies,
though both groups had solid (non-hollow) rhizomes (Figure 1G).

Laboratory observations focused on reproductive structures
provided additional insights into the divergence between the two
groups. Both groups bore 2-5 florets per spikelet. However,
significant differences were noted in the lemma hair distribution
and orientation. The lemma hair of the emerald group was
primarily distributed in the middle to lower regions of the lemma
and exhibited a non-erect orientation, in contrast to the common
group (Figure 1E). No discernible differences were observed in the
glumes between the two groups (Figure 1D).

In terms of chromosome number, the emerald group had a lower
chromosome count (2n = 72) compared to the common group (2n =
108; Figure 1H). Pollen viability assays further differentiated the two
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FIGURE 1

10.3389/fpls.2025.1660442

(K)

Comparison morphological and cytological traits between the common and the emerald group. (A) Plants after 2 years (photographed in mid-
September 2024): Common (left), emerald group (right). (B) Fully emerged inflorescence: Common (left two), emerald group (right). (C) Branched
culms: Common (left), emerald group (right). (D) Glumes (top: lower glumes [exterior and interior], bottom: upper glumes [exterior and interior]):
Common (left), emerald group (right). (E) Inflorescence structures (from left to right: secondary branch, spikelet, expanded spikelet, glumes, three
florets): Common (left), emerald group (right). (F) Rhizomes after 1 year: Common (left), emerald group (right). (G) Rhizome cross-sections:
Common (left), emerald group (right). (H) Chromosomes (100x): Common (left), emerald group (right). (1) Pollen germination of the emerald group.
(J) Pollen staining of the emerald group. (K) Glabrous node (top three: common group, bottom three: emerald group)

groups. Clones of the common group predominantly produced small,
irregularly shaped pollen grains. In contrast, the emerald group
clones (e.g., clone 0408) exhibited partial pollen staining and higher
pollen germination (approximately 12.7%; Figures 11, J).

To further investigate the differences between the two groups,
PCA was performed on 11 morphological traits, revealing that the
118 clones were grouped into two phenotypically divergent groups
(Supplementary Figure S1; Supplementary Table S2). Box-and-
whisker plots analysis of traits further revealed significant
distribution variations among the two groups, with substantial
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overlapping observed in most traits (Supplementary Figure S2). In
terms of culm height, the common group was higher than the
emerald group, which was consistent with the finding that the
length of the middle ten internodes in the common group was
greater than that in the emerald group. Interestingly, the emerald
group had a larger number of internodes compared to the common
group. Notably, no obvious differences were found in the basal stem
thickness between the two groups.

Differences in flowering periods, lemma hair distributions, and
pollen viability suggest potential reproductive isolation between the

frontiersin.org


https://doi.org/10.3389/fpls.2025.1660442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

two groups. The PCA of 11 traits and significant rhizome
morphological divergence indicate adaptation to distinct
environmental conditions. These results clearly distinguish the
emerald group from the common group.

3.2 Phylogenomic relationships via MNP
markers

To further confirm that the emerald group does not belong to
the common group at the genomic level, MNP markers were
employed to genotype the two groups. The number of shared
MNP markers among different clones ranged from 495 to 947
(Supplementary Table S3). A total of 304 shared MNP markers were
used to classified 118 clones into two distinct groups: Clade I
consisted exclusively of clones from the common group, whereas
Clade II was composed solely of emerald group clones (Figure 2).
These results indicate that the emerald group is genomically distinct
from the common group at the genome level.

Based on genetic similarity, the emerald group was also be
distinguished from the common group. The genetic similarity
between the common group and the emerald group was only
6.05%-10.32%, demonstrating a profound genomic divergence
consistent with species-level separation (Figure 3). Within-group
genetic similarity was markedly higher in the common group
(96.2%-100%; Supplementary Figure S3) than in the emerald group
(58.9%-100%; Supplementary Figure 54), indicating that the emerald
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group possesses a more diverse gene pool. This pattern aligns with
morphological observations, where the common group exhibited
significantly lower pollen viability compared to the emerald group
(Figure 11). These findings collectively demonstrate that the emerald
group represents a genomically distinct entity from the common
group (A. donax). This genomic differentiation aligns with
morphological and cytological observations, suggesting the emerald
group represents a novel taxon in the Chinese mainland.

3.3 Chloroplast genome assembly

To further confirm that the emerald group does not belong to A.
donax or the other four species within the genus Arundo, further
research was conducted at the chloroplast genome level. Based on NGS
sequencing data, the complete chloroplast genomes of clones 0408 and
0004 were successfully assembled. Additionally, the complete
chloroplast genome of A. donax cv. Lvzhou No. 1 was also
successfully reassembled from its raw data. Assembly of
transcriptome data yielded 12 near-complete chloroplast genomes. All
assembled chloroplast genomes are listed in Supplementary Table S4.

The complete chloroplast genome of clone 0408 (137,185 bp)
exhibited a typical quadripartite angiosperm structure, comprising
large single-copy (LSC: 82,092 bp), small single-copy (SSC: 12,613
bp), and inverted repeat (IR: 21,240 bp) regions (Supplementary
Figure S5). The complete chloroplast genome of clone
0004 was identical to that of A. donax cv. Lvzhou No. 1 as

Ad0059
Ad0078
Ad0018

Clustering dendrogram based on MNP markers for 118 clones. Yellow and green represent the common group and the emerald group, respectively.
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Heatmap of genetic similarity between two groups. The common and emerald groups are color-coded in black and green, respectively, on the left

side. The genetic similarity values are provided in the top-right corner

reassembled ( ). Published A. formosana
genomes (MZ620725.1, NC_054211.1) are completely identical

( ).

3.4 Chloroplast genome comparison

Compared with the complete chloroplast genomes of clones
0004 and 0408, the near-complete chloroplast genomes exhibited
significantly shorter lengths across four regions. Notably, all nine
near-complete chloroplast genomes of Arundo species shared
identical low-similarity and missing regions, including extensive
sequence deletions near 84-87 k bp, 92-93 and 132-134 k bp
( ). Furthermore, sequencing strategy
significantly influenced genome assembly quality. For example,
the near-complete chloroplast genome assembled from BioProject
PRJEB36611 exhibited deletions in the 46-48 and 64-65 k bp
regions, whereas clones 0004 and 0408 displayed no such gaps,
highlighting the impact of sequencing methodology on sequence
integrity and confirming the feasibility of assembling a complete
chloroplast genome from transcriptome data.

Frontiers in

Using A. donax (NC_037077.1) as the reference, a comprehensive
genomic variation analysis of the complete chloroplast genomes
). Results revealed
that all analyzed genomes, except A. formosana, exhibited high

across Arundo species was performed (

similarity to A. donax. The inclusion of chloroplast genomes
assembled from transcriptome data in the comparative analysis
), further
confirming that the emerald group (e.g., clone 0408) belongs to the

similarly yielded consistent results (

genus Arundo and demonstrating the reliability of chloroplast
genomes assembled from transcriptome data.

Notably, in contrast to the reference genome A. formosana
(NC_054211.1), the near-complete chloroplast genome of A.
formosana assembled from transcriptome data showed higher
overall similarity to A. donax ( ).
Furthermore, collinearity analysis ( )
revealed that the reference genome A. formosana (NC_054211.1)
exhibited lower similarity to A. donax than P. australis or M.
caerulea, with most regions showing less than 25% collinearity.
The reference genome A. formosana (NC_054211.1) may warrant
further investigation. In contrast, A. plinii showed the best
collinearity with A. donax, followed by clone 0408, indicating that


https://doi.org/10.3389/fpls.2025.1660442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al. 10.3389/fpls.2025.1660442
matK psbC psbZ tmfM-CAU trY-GUA
(kU0 Eimé
psbA  trK-UUU  rps16 tmQ-UUGtrnS-GCU trnS-UGA trnT-GGU trnD-GUC petN
— 3 < » tJ J 4 é
trnG-UCC trnS-CGAtrnE-UUC psbM trnC-GCA
18k 21k 21k 27% 33k
tmT-UGU ndhC tpB psbF trmW-CCA petG,
atpF  atpA rps14 psaB ycf3 th—G(EA trnF-GAA ndhK tmV-UAC aptE rbelL ps}al cemA psbJ psbE J.:sa'J rpl33 rpl20
-« <= = ) <agem = -
trnR-UC! rps4 (rnL—UA/& ndhJ trnM-CAU cf4 petA  psbL pe!tth-UGG rps1
c%niogg())(A 36k 30k a2k 45k 48k 1k sak 57k 60k 63k 66k
A. plinii ycf68 orf4! orf63
clone 0408 ps12 psbB psbN petB petD  rps1infArpl14 ps3 rps19 rpl2trnM-CAU tmL-CAA ndhB  rps7 orf58  rm16 trnA-UGC  rrn23  rrn5S trnR»AEG
A. formosana — = = \/ E—» —»—p—.g X
clp pOA rpl36 rps8  rpl16  rpl22tmH-GUG rpl23 orf251 rps12 tmV-GAC  trnT-CGU m4. trnN-GUU
TR 111
T Ty
TR TN
- contg TR TITEN] o
gene 100%
exon 1
" TR TITI] o0
| CRIS\IA 69k 72k 75k 78k 81k 84k 87k 90k 93k 96k 99k 102k
m orf188 m4.58 orf56 orf42 ycf68 2
rps15 ndhF rpI32 ccsA ndhD  ndhE ndhl ndhA  ndhH orf63!mR-XC m23 tmA-UGC 16  orf58 rps12 ndhB tmL-CAA trnM-CAU ps19
> <<<-<-<—4—<<a< > =D m— <= ) > é»
trnL-UAG psaC _ndhG rps15 tmN-GUU rrn5S tnl-GAU  trV- orf251rpl23 trnH-GUG
100%
—
100%
T
100%
—
100!
—— i
] I 50%
105k 108k 111k 114k 117k 120k 123k 126k 129k 132k 135k
FIGURE 4

Sequence variation plots among the Arundo chloroplast genomes. Annotated genes are displayed on the top. The vertical scale represents the
percentage within 50-100% homogeneity. The color legend is summarized in the lower left-hand corner.

clone 0408 differed from both A. plinii and A. donax at the
chloroplast genome level.

Inverted repeat (IR) boundary analysis revealed that A. plinii,
clones 0004 and 0408 within the genus Arundo shared identical IR
boundaries and lengths. In contrast, the Italian A. donax
(NC_037077.1) exhibited an IR contraction compared to clone
0004, a Chinese A. donax clone (Figure 5; Supplementary Table
S6). The observed IR contraction in the Italian A. donax could
reflect an evolutionary change following geographic isolation,
though its functional significance requires further study.

The high similarity at the chloroplast genome level further
confirmed that the emerald group belongs to the genus Arundo.
However, collinearity analysis revealed significant differences in the
chloroplast genomes between the emerald group (e.g., clone 0408)
and other Arundo species, providing further evidence that it is likely
a new species within the genus.

3.5 Phylogenetic resolution of Arundo

To determine the phylogenetic relationships between the
emerald group and other species within the genus Arundo, a
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chloroplast genome-based phylogenetic tree was constructed. In
the maximum likelihood (ML) phylogenetic tree (Figure 6;
Supplementary Figure S8), the near-complete chloroplast
genomes, with the exception of A. formosana, clustered with their
corresponding complete reference genomes, confirming the
reliability of transcriptome-derived chloroplast data.

Clone 0408 did not cluster with any recognized Arundo species,
forming an independent lineage that robustly supports its designation
as a novel species. Clone 0004, whose chloroplast genome sequence is
identical to that of A. donax cv. Lvzhou No.1, formed a clade with A.
donax (NC_037077.1). A notable discrepancy was observed in the
phylogenetic placement of A. formosana. While the near-complete
chloroplast genome was clustered within the genus Arundo as
expected, the published reference chloroplast genome of A.
formosana (NC_054211.1) formed a distinct clade with P. australis
(NC_022958.1) and other outgroup species (Figure 6; Supplementary
Figure S8). This anomalous phylogenetic placement, inconsistent
with the transcriptome-based assembly, reinforces the concern
raised in section 3.4 that the reference genome of A. formosana
(NC_054211.1) may warrant further investigation.

Chloroplast genome divergence provides further validation that the
emerald group (e.g., clone 0408) represents a novel species. Divergence
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Comparison of inverted repeat (IR) region boundaries in chloroplast genomes.

from other species in nuclear and chloroplast genomes, morphological
traits, and cytological features indicates adaptive modifications during
its historical evolutionary process. We propose the name Arundo
smaragdina for this species, reflecting its distinctive leaf pigmentation.

3.6 Divergence time analysis

Integration of the A. smaragdina chloroplast genome with
published Arundo genomes and the outgroup P. australis revealed
key divergence events within the genus (Figure 7). Phylogenetic
analysis indicated that A. smaragdina and A. plinii diverged 2.29
million years ago (Mya), with this lineage splitting from A. donax
2.9 Mya. Within A. donax, the Italian clone (NC_037077.1) and
clone 0004 diverged more recently, approximately 0.17 Mya.

This temporal evidence, consistent with the morphological,
cytological, and genomic divergences documented in previous
sections, offers robust and multi-layered confirmation of
A. smaragdina as a distinct species within the genus Arundo.
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4 Discussion

4.1 MNP markers support genomic
divergence between A. smaragdina and A.
donax

Previous studies have employed various molecular markers and
partial chloroplast genes to explore intraspecific diversity within A.
donax, but these approaches demonstrated limited discriminatory
power for distinguishing A. donax clones (Bucci et al., 2013; Pilu
et al., 2013; Touchell et al., 2016; Liu et al., 2019; Tarin et al., 2013). To
address this, we developed 1,100 MNP markers, which mapped
uniformly across the A. donax reference genome (Ren et al., 20234,
2024; Supplementary Figure 59). MNP marker technology has
emerged as a powerful tool for variety identification, demonstrating
success across diverse species including Oryza sativa L.,
Dendranthema morifolium (Ramat.) Tzvelev, Lentinula edodes
(Berk.) Pegler, and Vitis vinifera L (Fang et al., 2021; Ling et al,
2023; Liu J. et al,, 2024; Liu Y. et al., 2024). Phylogenetic clustering of
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A. smaragdina and A. donax into distinct groups underscores their
divergence at the genomic level (Figure 2).

The significantly lower genetic similarity among different clones
of A. smaragdina, compared to the high clonal uniformity within
A. donax (Supplementary Figures S3, S4; Supplementary Table S3),
suggests a history of sexual reproduction and the maintenance of a
more diverse gene pool, which is consistent with the extensive
phenotypic variation (e.g., in leaf morphology, tiller number, and
flowering time) observed in A. smaragdina in the field. However,

A. donax exhibits relatively limited phenotypic variation in the field.
The most common phenomenon is that some individuals of the
common group transform into the versicolor groups due to somatic
mutations resulting foliar variegation (Antal et al., 2018; Guarino
et al.,, 2019; Danelli et al., 2020; Ren et al., 2023b). SRAP and TE-
based molecular markers failed to detect genetic differentiation
between these morphotypes (Ahmad et al., 2008). Comprehensive
differences in genetic (MNP markers), cytological (chromosome
number), reproductive (pollen germination rate), and ecological

A. plinii (NC_034652.1)

— 2.2887

A. smaragdina

- 27.3567

2.9322

clone 0004

0.1686

A. donax (NC_037077.1)

30

FIGURE 7
Chronogram of the genus Arundo.
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(ecotype diversity) traits demonstrate potential early reproductive
isolation mechanisms, indicating that A. smaragdina and A. donax
split into distinct species early in their evolutionary history.

4.2 Morphological and cytological
evidence for A. smaragdina as a new
species

The genus Arundo exhibits substantial morphological plasticity
(Ngernsaengsaruay et al., 2023; Cantaluppi et al., 2015). In this
genus, A. smaragdina exhibits distinct morphological differences
compared to the other five species.

Compared to other Arundo species, A. formosana exhibits a
prostrate growth habit, ~1 m height, and is endemic as a pioneer
grass in estuarine environments (Hardion et al, 2017a). Its
restricted distribution further underscores its taxonomic
uniqueness within the genus (Liu and Sylvia, 2006; Lee et al., 2022).

The A. plinii complex (A. plinii, A. donaciformis, and A. micrantha)
represents a circum-Mediterranean taxon, distinguished from A. donax
and A. smaragdina by its spikelet structure, which bears 1(2) florets
compared to 3-5 florets in the latter two (Figure 1E; Danin, 2004;
Hardion et al, 2012a). Additionally, the A. plinii complex exhibits
thinner rhizomes characterized by a parenchymous cross-section
with a central lumen (Danin and Naenny, 2008), contrasting
sharply with the solid, lumenless rhizomes of A. donax and
A. smaragdina (Figure 1G).

Among the complex members, A. micrantha is further
differentiated by a larger culm diameter exceeding 5 mm under
the panicle (vs. <4 mm in A. plinii and A. donaciformis; Danin,
2004; Hardion et al., 2012a); and greater similarity to A. smaragdina
(4.7-12.9 mm) and A. donax (9.3-18.2 mm). Intriguingly,
A. smaragdina shares rhizome growth patterns with A. micrantha
(Figure 1F; Danin, 2004). However, the inflorescence architecture of
A. micrantha more closely resembles that of A. donax, differ
significantly from A. smaragdina (Figure 1B; Hardion et al,
2012b; Tomas et al., 2019; Ferrer-Gallego and Hardion, 2025).
The branched culms of A. micrantha distinguish it very well from
A. plinii (Danin, 2004); however, A. smaragdina and A. donax also
have branched culms (Figure 1C).

A. donaciformis exhibits pubescent nodes and hairy upper
glumes, while A. micrantha and A. plinii s.str. are marked by
glabrous nodes and glabrous upper glumes, respectively (Hardion
et al., 2012a). Moreover, A. donax and A. smaragdina are glabrous
at the nodes, lower glumes, and upper glumes (Figures 1D, K).
Additionally, in A. smaragdina, hairs are primarily distributed in
the middle to lower regions of lemma and exhibit a non-erect
orientation similar to A. donaciformis, whereas in A. donax, hairs
are notably longer and closely appressed to the lemma surface
(Figure 1E; Hardion et al., 2012a).

Regarding Italy and Asian A. donax (e.g., clone 0004), the two
exhibit no significant morphological differences in traits such as the
lemma and root system (Figure 1; Danin, 2004; Hardion et al,
2012a), indicating the reliability of morphological identification for
species differentiation. Furthermore, both this study and the
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research by Hardion et al. (2012a) demonstrate that PCA and
box-and-whisker plots analysis are also important tools for
species discrimination within the genus.

Pollen germination and chromosome number also provide
valuable insights for species identification. Germination rates of
A. smaragdina align closely with those of A. plinii and
A. donaciformis within the genus (Figure 1I; Supplementary Table
S7; Hardion et al,, 2015). However, unlike A. donax populations in
the Middle East that exhibit seed set (Danin, 2004; Hardion et al.,
2014), no seeds were observed in A. smaragdina or A. donax in the
Chinese mainland under ex situ conditions. This sterility in
A. smaragdina may mirror the reproductive behavior of A. plinii,
which produces seeds exclusively in its native habitat (Hardion
et al.,, 2015). Cytogenetic analyses further differentiate
A. smaragdina: its karyotype (2n=72) contrasts with A. donax
(2n=108) and A. donaciformis (2n=108), while aligning with
A. micrantha (2n=70-72) and some cytotypes of A. plinii (2n=72,
74, 76, 108, 114; Hardion et al., 2015).

Collectively, A. smaragdina is morphologically distinct from all
known Arundo species. However, its morphological convergence
with A. donax—including shared traits such as plant height and
perennial habit—likely resulted in its historical misclassification as a
non-distinct taxon within the genus.

4.3 Chloroplast genome support A.
smaragdina as a new species

Species-specific clustering validated the utility of transcriptome-
derived chloroplast genomes, as these genomes consistently
grouped with their complete genome counterparts, consistent
with previous studies (Figure 6; Supplementary Figure S8; Osuna-
Mascaro et al., 2018; Senthilkumar et al., 2021). In contrast to
studies using partial chloroplast genes for interspecific comparisons,
nearly complete chloroplast genomes provide more comprehensive
genetic information, particularly when species divergence times are
short. For example, Jike et al. (2020) analyzed Arundo species using
five intergenic regions, yielding results slightly divergent from
nuclear genome-based studies (specifically the phylogenetic
relationships among three species in the A. plinii complex). In
contrast, our findings based on nearly complete chloroplast
genomes showed strong consistency with nuclear genome
analyses (Figure 6, Supplementary Figure S8; Jike et al., 2020).
Furthermore, the near-complete chloroplast genome of
A. smaragdina clustered with its complete genome, supporting its
novel species status.

A comparative analysis of the chloroplast genome between
A. smaragdina and other Arundo species revealed high sequence
similarity between A. smaragdina and other species, whereas
notable differences were observed in the IR regions:
A. smaragdina exhibited greater similarity to the IR regions of
A. plinii and the Chinese mainland A. donax, while the IR region of
Italian A. donax was contracted. These results imply that
A. smaragdina contributed to the evolutionary radiation of
Arundo species.
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4.4 Interspecific relationships within genus
Arundo

Phylogenetic topology aligned with prior studies, positioning A.
formosana as the basal taxon within the genus Arundo (Figure 6;
Supplementary Figure S8; Jike et al., 2020). Interestingly, the
published A. formosana (NC_054211.1) chloroplast genome did not
cluster with the near-complete chloroplast genome, but instead
grouped with P. australis and other outgroup species, a finding
consistent with other phylogenetic studies that also reported its
clustering with species such as Crinipes abyssinicus Hochst. and
Crinipes longifolius C.E.Hubb., outside the core Arundo lineage
(Supplementary Figure S8; Luo et al., 2024). The genomic
comparisons (Supplementary File S1) also consistently demonstrate
significant differences between the A. formosana reference genome
(NC_054211.1) and A. donax (NC_037077.1). Furthermore,
similarity analysis (Supplementary Figure S7) indicates that their
degree of similarity is even lower than that between A. donax and
either P. australis or M. caerulea. These data strongly suggest a
fundamental issue with the taxonomic identity of the source
material used for its assembly. Notably, this published genome was
reportedly sampled from Yunnan Province (Feng et al, 2021).
Meanwhile, two A. formosana specimens from Sichuan Province
are archived at the Chengdu Institute of Biology, Chinese Academy
of Sciences (https://www.cvh.ac.cn/spms/detail php?id=d7e77a3a),
underscoring the need to validate distribute localities for A.
formosana (Liu and Sylvia, 2006; Lee et al., 2022). For A. donax,
integrating the reassembled chloroplast genomes of A. donax cv.
Lvzhou No.1 with the datasets used by Luo et al. (2024) revealed
that it clustered with other A. donax chloroplast genomes,
contradicting Luo et al.’s hypothesis that “A. donax cv. Lvzhou
No.1 (0Q993163.1) may represent a variety with a different genetic
origin from the other A. donax” (Supplementary File S2;
Supplementary Figure S8; Luo et al., 2024). Crucially, clone 0004
exhibited distinct morphological traits (e.g., sprawling growth habit,
taller culms) despite chloroplast genome identity with A. donax cv.
Lvzhou No.1 (Ren et al., 2023b; Luo et al., 2024). Molecular clock
analyses reveal synchronized divergence events between East Asian
and Mediterranean lineages: P. australis populations in China’s
Hexi Corridor diverged from European counterparts 0.186 Mya
(Qiu and Cui, 2021), contemporaneous with the ~0.17 Mya split
between A. donax lineages (Figure 7). This temporal synchronicity
reinforces hypotheses of human-mediated dispersal facilitating
Mediterranean A. donax expansion (Hardion et al., 2017b).

For the A. plinii complex, divergence time estimation indicates
that A. smaragdina and A. plinii diverged approximately 2.29 MYA
(Figure 7). This period, characterized by initial cooling and mild
rainfall reduction followed by the consolidation of an arid
Mediterranean climate, temporally coincides with both the
divergence of A. plinii complex taxa and analogous speciation
patterns observed in Avena species (Liu et al., 2017).
Furthermore, the divergence among the three species within the
A. plinii complex requires further clarification. Neither nuclear
genome nor chloroplast genome analyses have clustered A. plinii
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BO and A. plinii RO into a single clade (Figure 6; Jike et al., 2020),
likely attributable to both the slower evolutionary rate of the
chloroplast genome and the limited nuclear gene dataset analyzed
(comprising only 144 genes).

Regarding A. micrantha within this complex, Jike et al. (2020)
proposed that it likely originated from hybridization between A. plinii
and a low-ploidy fertile Asian A. donax. The identification of
A. smaragdina provides evidence supporting an alternative
hypothesis: A. micrantha more likely originated from hybridization
between A. plinii and A. smaragdina. The supporting evidence is
as follows (Supplementary Table S7): (1) Morphologically,
A. smaragdina shares similarities with A. micrantha in rhizome
growth patterns, exhibiting limited growth, which contrasts with
the spreading growth habit observed in A. donax. Furthermore, the
culm diameter under the panicle of A. micrantha (>5mm) is partially
similar to that of A. smaragdina (4.7-12.9 mm), exceeding 5 mm. This
characteristic also helps distinguish A. micrantha from A. plinii (< 4
mm) and A. donaciformis (< 4 mm). (2) The nearly identical pollen
germination rates between A. smaragdina (12.7%) and A. plinii
(7.8%-8%) suggest reproductive compatibility, which is a
prerequisite for successful hybridization. In contrast, the pollen
germination rate for A. donax is 0%. (3) Cytological analysis
reveals that the chromosome numbers of both A. smaragdina and
A. micrantha are approximately 72. This number falls within the
range (72-114) reported for some A. plinii accessions, indicating a
shared cytological background that could facilitate hybridization. (4)
Phylogenetic reconstruction based on chloroplast genomes indicates
a closer genetic relationship among A. micrantha, A. plinii, and
A. smaragdina than with A. donax.

In conclusion, integrative analyses of morphological traits,
chromosome numbers, MNP markers, and chloroplast genomes
provide compelling evidence that A. smaragdina represents a
distinct species within Arundo, diverging from A. donax and
other species. At the nuclear genome level, A. smaragdina
exhibits genetic divergence from A. donax based on MNP
analysis, whereas at the chloroplast genome level, it shares
structural similarities with the Chinese mainland A. donax and
A. plinii. Morphologically, A. smaragdina combines high-yield
characteristics of A. donax and A. micrantha with pollen
germination traits similar to A. plinii. Collectively, these findings
demonstrate that A. smaragdina occupies a pivotal evolutionary
role within the genus Arundo. The discovery of this species provides
a critical missing link for elucidating both the evolutionary history
and biogeographic dispersal of the genus, thereby establishing a
robust foundation for future initiatives in breeding programs,
conservation strategies, and sustainable utilization of its members.
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