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Introduction: Both Paeoniae Radix Alba (RAP) and Paeoniae Radix Rubra (RRP)
are important botanical drugs used in Asian countries. Although they are both
derived from the roots of Paeonia lactiflora Pall., they exhibit distinct
pharmacological properties due to differences in germplasm and processing
methods. Due to overwhelming market demand, the cultivated varieties have
become the primary source to compensate for insufficient wild resources, which
have led to decreased medicinal quality. This study aimed to address this quality
decline and put forward a hypothesis that exogenous nitric oxide (NO) induces
the reactive oxygen species (ROS)-mediated enhancement of secondary
metabolism in fresh roots of P. lactiflora, thereby improving medicinal quality.
Methods: Fresh roots of P. lactiflora germplasm for Paeoniae Radix Rubra
production (RRP-germplasm) and for Paeoniae Radix Alba production (RAP-
germplasm) were treated with sodium nitroprusside (SNP) at concentrations of
0.0, 0.1, 0.5, or 2.5 mmol/L to induce ROS bursts.

Results: In the fresh roots of RRP-germplasm treated with 0.5 mmol/L SNP, the
secondary metabolites paeoniflorin, albiflorin, oxypaeoniflorin, gallic acid,
catechin, and paeonol were elevated by 19.1%, 205.4%, 115.4%, 19.9%, 201.0%,
and 585.2%, respectively, and in the fresh roots of RAP-germplasm treated with
2.5 mmol/L SNP, the major secondary metabolites paeoniflorin, albiflorin,
oxypaeoniflorin, gallic acid, catechin, and benzoic acid showed increases of
25.4%, 70.4%, 95.1%, 6.7%, 86.5%, and 33.6%, respectively. Moreover,
experiments involving combined treatment with SNP and ROS scavengers
demonstrated that ROS act as the key mediator linking exogenous NO to the
secondary metabolism of P. lactiflora: scavenging ROS significantly attenuated
the SNP-induced accumulation of target secondary metabolites.
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Discussion: Combined with the above findings of SNP promoting secondary
metabolite synthesis, this study confirms that exogenous NO can improve the
quality of cultivated RAP and RRP via ROS-mediated secondary metabolism, and
clarifies the NO-ROS-secondary metabolism regulatory axis, offering insights for
other medicinal plants’ quality improvement.

KEYWORDS

Paeoniae Radix Rubra, Paeoniae Radix Alba, nitric oxide, reactive oxygen species,
secondary metabolites, quality of medicinal herbs

1 Introduction

Paeoniae Radix Rubra is primarily produced in Inner Mongolia
and Hebei provinces in Northeast China, while Paeoniae Radix Alba is
mainly produced in Zhejiang and Anhui provinces in China (Ma et al,,
2024a). As bulk medicinal materials commonly used in Asian
countries, these two herbs share the same botanical origin and
medicinal part, and the Chinese Pharmacopoeia editions consistently
classify the dried root of P. lactiflora as “Paeoniae Radix Rubra” and the
dried root that goes through parboiling and removing its outer skin as
“Paeoniae Radix Alba” (Pharmacopoeia Commission of the People’s
Republic of China, 2020). In fact, Paeoniae Radix Rubra is derived from
wild germplasm of P. lactiflora, whereas Paconiae Radix Alba originates
from the cultivated variety P. lactiflora ‘Baishao’ (Yao et al., 2020). The
bioactive compounds, such as paeoniflorin, albiflorin, catechin, and
paeonol, vary greatly between them (Fan et al,, 2014; Liu et al, 2015).
Paeoniae Radix Rubra contains higher levels of paeoniflorin, catechin,
and paeonol, and its effects are mainly achieved by inhibiting the release
of inflammatory factors such as tumor necrosis factor-a and
interleukin-6, as well as scavenging ROS and other oxidative stress
products, thereby exhibiting notable microcirculation-improving,
analgesic, anti-inflammatory, antibacterial, and antiviral effects, and it
is commonly used for treating hemorheological abnormalities,
inflammatory conditions, and infection-related diseases. Paeoniae
Radix Alba is richer in albiflorin, and its effects are mainly achieved
by regulating the activity of T lymphocytes and B lymphocytes to
enhance immune function, while promoting the expression of anti-
apoptotic proteins in hepatocytes and inhibiting hepatocyte necrosis,
thereby excelling in hematopoietic promotion, immune enhancement,
hepatoprotection, and antitumor effects, and it is more suitable for
patients with chronic anemia, immunodeficiency, hepatic disorders,
and cancer (Zhang et al, 2013). A large demand for both Paeoniae
Radix Rubra and Paeoniae Radix Alba makes the cultivated ones the
predominant commercial source. However, the cultivated materials
exhibit inferior quality; How to improve the quality of cultivated
products has become crucial for enhancing clinical efficacy.

Notably, the medicinal components of traditional Chinese herbs
are typically secondary metabolites, and environmental stress serves
as a fundamental trigger for their biosynthesis of secondary
metabolites in plants. Moderate environmental stressors can
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effectively promote the biosynthesis of secondary metabolites
(Alami et al., 2024). Therefore, strategic application of
environmental stress may rapidly improve the quality of herbal
medicinal materials.

ROS are inevitable products of metabolic processes in living
organisms. At appropriate concentrations, ROS are indispensable
for the formation of disulfide bonds (-S-S-) in proteins (Tu and
Weissman, 2004; Malhotra and Kaufman, 2007), contributing to the
formation of the unique structures of enzymes and other functional
proteins and regulating plant growth and development (Buchanan
and Luan, 2005; Akter et al., 2015). Under normal physiological
conditions, ROS are maintained at a relatively stable level. However,
when plants are exposed to environmental stresses such as drought,
waterlogging, salinity, heat shock, chilling injury, or UV radiation,
disturbed metabolic activity leads to excessive production of ROS in
chloroplasts, mitochondria, peroxisomes, and other organelles.
During photosynthesis in chloroplasts, photosystem I generates
increased superoxide anion (O,") through the Mehler reaction by
transferring more electrons to O, (Asada, 2006; Khorobrylkh et al.,
2020). In mitochondria, electron leakage from complexes I and IIT
of the electron transport chain during oxidative phosphorylation for
Adenosine Triphosphate (ATP) production partially reduces O, to
O, (Hansen et al,, 2006). Additionally, the photorespiration
process involves glycolate oxidase catalyzing the oxidation of
glycolate to glyoxylate, accompanied by the production of ROS
such as H,O, (Miller et al., 2010). ROS include O,", H,0,, -OH,
10,, etc (Droge, 2002). It has been proven that ROS accumulation is
an inevitable consequence of environmental stress, with a 10-fold
increase in H,O, and a 3-fold increase in O, under adverse
conditions (Shen et al,, 2020). The excessive generation of -OH
and O, with high activity can readily trigger cascading oxidative
damage, subsequently alter adjacent molecular structures,
compromise biomembrane stability, cause DNA damage, break
peptide chains, and induce protein cross-linking, disrupt
metabolic pathways, and program cell death (Grimm et al., 2012;
Van Ruyskensvelde et al., 2018; Xie et al., 2019). The immobility of
plants inevitably leads to elevated ROS levels when exposed to
environmental stress. Given the potent protein-damaging effects of
ROS, which often overwhelm antioxidant enzymes under severe
stress, the fundamental reason why plants can survive is that they

frontiersin.org


https://doi.org/10.3389/fpls.2025.1660058
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

have evolved secondary metabolism and utilize secondary
metabolites, usually the active components of herbal medicine, to
scavenge excess ROS. Therefore, the outbreak of ROS caused by
environmental stress is a basic factor that enhances secondary
metabolism and improves the quality of medicinal materials.

NO, a reactive nitrogen species (RNS), can induce the
production of ROS such as O, through redox cycles and
modulation of RNS-ROS interactions (Heinrich et al., 2013; Del
Rio L, 2015), trigger physiological responses in plants under stress,
and enhance the quality of medicinal materials. In contrast to the
negatively charged O, ", NO is an electrically neutral small molecule
with both lipophilic and hydrophilic properties, and can freely
traverse cell membranes and distribute widely in the cellular
environment. Additionally, NO contains unpaired electrons,
allowing it to react with O, to form peroxynitrite, a less toxic
compound that mitigates stress-induced damage in plants. These
properties underscore the critical role of NO in plant growth,
development, and environmental adaptation (Delledonne et al,
1998a). It has been demonstrated that exogenous NO stress can
increase the biosynthesis of secondary metabolites in plants (Song
et al,, 2023; Zhang et al,, 2025). SNP, a commonly used exogenous
NO donor, contains a labile Fe-NO bond in its molecule, enabling
the rapid release of a large amount of NO.

Against this background, to investigate the biological mechanisms
of SNP in enhancing the quality of Radix Paeoniae Rubra and Radix
Paeoniae Alba, this study treated isolated fresh roots of P. lactiflora with
SNP solutions of different concentrations, and its research contents
include: (1) investigating the effect of exogenous NO on O, and H,0,
to verify whether ROS are products of NO-induced stress; (2)
examining the effect of exogenous NO on MDA to verify whether
NO can induce the physiological effects of environmental stress; (3)
exploring the effect of exogenous NO on antioxidant enzymes to
investigate the patterns and the limitations of these enzymes in
scavenging ROS; (4) assessing the effect of exogenous NO on
secondary metabolism to verify whether NO can regulate metabolic
pathways and enhance secondary metabolism; and (5) evaluating the
effect of ROS scavengers on the reversal of NO-induced effects to
confirm whether ROS act as the key mediators linking exogenous NO
to the secondary metabolism of P. lactiflora. This study centers on
medicinal material quality, using fresh medicinal parts to clarify the
association between environmental stress and secondary metabolism,
elucidate the formation mechanism of the quality of medicinal
materials, and explore new approaches to improving quality.

2 Materials and instruments

2.1 Materials

The experimental materials were obtained from four-year-old
cultivated RRP-germplasm and RAP-germplasm of P. lactiflora,
grown at the medicinal herbs production base in the Greater
Khingan Mountains region of Heilongjiang Province, China.
The fresh roots were harvested on October 5, 2024, with more than
10 intact plants of each variety selected as research subjects, totaling
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15 kg of fresh roots, authenticated by Professor Xiang-cai Meng,
Heilongjiang University of Chinese Medicine.

2.2 Reagents

Protein quantification (TP) assay kit, H,O, assay kit, MDA
assay kit, superoxide dismutase (SOD) assay kit, catalase (CAT)
assay kit, peroxidase (POD) assay kit, and phenylalanine ammonia-
lyase (PAL) assay kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China, batch numbers: 20241231, 20250103, 20250106,
20241226, 20250104, 20241231, and 20241106, respectively);
plant 1,3-bisphosphoglycerate (1,3-DPG) enzyme-linked
immunosorbent assay (ELISA) kit and plant 3-Hydroxy-3-
Methylglutaryl-CoA reductase (HMGR) ELISA kit (Jiangsu
Jingmei Biotechnology Co., Ltd., Nanjing, China, batch numbers:
20250228 and 20250409, respectively); O, level detection kit
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, China,
batch number: 2501001001); methanol (analytical grade, Tianjin
Fuyu Fine Chemical Co., Ltd., Tianjin, China, batch number:
20240509); phosphoric acid (analytical grade, Tianjin Hengxing
Chemical Reagent Manufacturing Co., Ltd., Tianjin, China, batch
number: 20240406); acetonitrile (HPLC grade, Beijing Dikma
Technologies Inc., Beijing, China, batch number: 20240318);
sodium nitroprusside (Zhengzhou Pini Chemical Reagent Factory,
Zhengzhou, China, batch number: 20240521); glacial acetic acid
(analytical grade, Tianjin Tianli Chemical Reagent Co., Ltd.,
Tianjin, China, batch number: 20231108); paeoniflorin, albiflorin,
oxypaeoniflorin, gallic acid, catechin, paeonol, benzoic acid, and
benzoylpaeoniflorin (Chengdu Alfa Biotechnology Co., Ltd,,
Chengdu, China, batch numbers: AFCE0452, MRDE0804,
AFCC0904, AFDG1553, AFBF2708, AFBG1209, AFCJ1302, and
AFCC0952, respectively; purity >98.0%); physiological saline
(Harbin Sanlian Pharmaceutical Co., Ltd., Harbin, China, batch
number: 20241102); phosphate buffer (pH 7.2, Shanghai Aladdin
Biochemical Technology Co., Ltd., Shanghai, China, batch number:
20241219); o-tocopherol (Shanghai Aladdin Biochemical
Technology Co., Ltd., Shanghai, China, batch number: 20250904);
and N-acetyl-L-cysteine (Guangzhou Chemical Reagent Factory,
Guangzhou, China, batch number: 20250820).

3 Methods
3.1 Sample handling

3.1.1 Treatment of fresh roots of P. lactiflora with
different SNP concentrations

Fresh, intact roots of RRP-germplasm and RAP-germplasm
were divided into four groups according to diameter (within +0.5
cm ranges), length (within +5 cm ranges), and weight (within +50 g
ranges). An appropriate amount of fresh samples were selected,
surface soil was cleaned off, and the samples were uniformly sprayed
with SNP solutions at concentrations of 0.0 (CK), 0.1, 0.5, and 2.5
mmol/L, respectively. Spraying was performed every 8 hours until

frontiersin.org


https://doi.org/10.3389/fpls.2025.1660058
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

the surfaces of fresh roots reached water saturation, and the entire
process was conducted in the dark for 3 days. The samples were
collected on the 0™, 1%, 2", and 3¢ days, with a sampling interval of
24 h. The sampling methods were as follows: (1) Each sample was
derived from at least 5 plants. Using an AG135 analytical balance
(0.1 mg precision; METTLER, Switzerland), precisely 50 aliquots of
0.3 g each were weighed and stored at -80°C in a freezer. These
aliquots were used for the determination of O,”, H,O,, MDA, and
1,3-DPG contents, as well as the activities of SOD, CAT, POD, PAL,
and HMGR. During the determination process, absorbance values
were read using a Thermo microplate reader (Thermo Inc., USA) to
calculate the content of each index. (2) Fresh roots (>200 g per
group) were used: for RRP-germplasm, after removing root tips,
root bases, and fine roots, the roots were sun-dried; for RAP-
germplasm, after the same pretreatment, the roots were boiled in
water, peeled, and then sun-dried. The dried roots were pulverized
and passed through a No. 3 sieve, and these powdered samples were
used for the determination of the contents of paeoniflorin,
albiflorin, oxypaeoniflorin, gallic acid, catechin, paeonol, benzoic
acid, and benzoylpaeoniflorin. Quantitative analysis was performed
using a Model 1200 HPLC (Agilent Technologies Inc., USA). All
samples were processed in triplicate.

3.1.2 Combined treatment of fresh roots of RRP-
germplasm with SNP and ROS scavengers

Additional fresh roots of RRP-germplasm meeting the same
selection criteria as Section 2.1.1 were divided into four groups:
water control group (CK), SNP treatment group, SNP +o-
tocopherol (a-Toc) group, and SNP + N-acetylcysteine (NAC)
group. The CK group was sprayed with distilled water; the SNP
treatment group was sprayed with 0.5 mmol/L SNP solution; and
the combined groups were first sprayed with 0.5 mmol/L SNP
solution, followed by 0.1 mmol/L o-Toc or 1.0 mmol/L NAC
solution (2-hour interval between sprays). For all groups, spraying
was performed every 8 hours until the solution was about to drip,
with the entire process conducted in the dark for 3 days. Samples
were collected on Days 0, 1, 2, and 3 (24-hour intervals), following
the sampling protocol in Section 2.1.1 with modifications as follows:
(1) Each sample was derived from at least 5 plants. 30 aliquots of 0.3
g each were precisely weighed and stored at -80°C. These aliquots
were used only for determining O,", H,O,, and MDA contents. (2)
Fresh roots (>200 g per group) were processed by removing root
tips, root bases, and fine roots, then sun-drying, pulverizing, and
passing through a No. 3 sieve. These powdered samples were used
for determining paeoniflorin and 7 other components. The
instruments used in this experiment were the same as those in
Section 2.1.1. All samples were processed in triplicate.

3.2 Determination of ROS level
The levels of O,-” and H,0O, are determined using O,-~ detection

kits and H,O, assay kits (Zhang et al., 2025), with the results
expressed in mol/g and mmol/g, respectively.
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3.3 Determination of MDA level

The MDA content in fresh roots is quantified using an MDA
assay kit with a thiobarbituric acid (TBA) method (Zhang et al.,
2025), and the results are reported in nmol/g.

3.4 Measurement of antioxidant enzyme
activities

The activities of SOD, POD, and CAT in fresh roots are assessed
using their respective assay kits (Zhang et al., 2025), with all results
expressed in U/g.

3.5 Determination of 1,3-DPG level

The 1,3-DPG content in fresh roots is measured using a plant-
specific 1,3-DPG ELISA kit (Song et al., 2023), and the results are
presented in pmol/L.

3.6 Measurement of PAL and HMGR
activities

The activities of PAL and HMGR in fresh roots are evaluated
using their respective assay kits (Shen et al., 2020; Song et al., 2023),
with the results reported in U/g and ug/L, respectively.

3.7 Determination of secondary metabolite
level

3.7.1 Preparation of reference standard solutions

An appropriate amount of paeoniflorin, albiflorin,
oxypaeoniflorin, gallic acid, catechin, paeonol, benzoic acid, and
benzoylpaeoniflorin was accurately weighed and placed in a
volumetric flask. The mixture was dissolved in 50% methanol to
prepare a mixed reference standard solution containing the eight
components. The final concentrations of these eight components in
the solution were 1.058, 1.047, 0.687, 0.560, 0.550, 0.488, 0.753, and
0.525 g/L, respectively.

3.7.2 Preparation of the test solution

0.20 g of the medicinal powder was accurately weighed and
transferred into a stoppered conical flask. 20.0 mL of 50% methanol
solution was precisely added, the flask was stoppered tightly, and
subsequently weighed. The mixture was allowed to soak for 4 hours,
followed by ultrasonication (200 W power, 40 kHz frequency)
carried out for 30 minutes. After cooling, the flask was reweighed,
and the lost mass was replenished with 50% methanol. The solution
was centrifuged at 4000 r/min for 5 minutes, the supernatant was
collected, and filtered through a 0.22 um microporous membrane to
obtain the final test solution.
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3.7.3 Chromatographic conditions

The separation is performed on a Diamonsil C;g column (250
mm x 4.6 mm, 5 llm) using a mobile phase consisting of acetonitrile
(A) and a pH 2.7 phosphoric acid aqueous solution (B) under
gradient elution as follows: 0~20 min, 5% A to 15% A; 20~40 min,
15% A to 20% A; 40~50 min, 20% A; 50~80 min, 20% A to 40% A;
80~90 min, 40% A to 5% A; 90~100 min, 5% A. The column
temperature is maintained at 25°C, with an injection volume of 10
puL and a flow rate of 1 mL/min. Detection is carried out at a
wavelength of 230 nm (Supplementary Figure 1).

3.7.4 Methodological investigation
3.7.4.1 Linear relationship

The prepared mixed reference solution as described in Section
2.7.1 was serially diluted with 50% methanol to prepare a series of
concentrations. Under the aforementioned chromatographic
conditions, the solutions were injected, and the peak areas of
paeoniflorin, albiflorin, oxypaeoniflorin, gallic acid, catechin,
paeonol, benzoic acid, and benzoylpaeoniflorin were recorded.
Regression analysis was performed using the mass concentration
as the abscissa (X) and the peak area as the ordinate (Y). The
regression equations, coefficients of determination (R?), and linear
ranges for the eight components were calculated, demonstrating
good linearity within the specified ranges (Supplementary Table 1).

3.7.4.2 Precision

The same sample solution was analyzed under the
aforementioned chromatographic conditions with six replicate
injections to determine intra-day precision, followed by analyzing
it over three consecutive days to assess inter-day precision. The
relative standard deviations (RSD) of intra-day and inter-day
precision for the eight components were 1.80%, 1.19%, 0.49%,
0.72%, 1.08%, 1.42%, 0.84%, and 1.53%; and 1.41%, 1.10%, 0.69%,
0.56%, 0.97%, 0.76%, 0.53%, and 0.79%, respectively, demonstrating
excellent precision.

3.7.4.3 Stability

The same sample solution was analyzed at 0,2, 4, 8,12,and 24 h
under the aforementioned chromatographic conditions. The RSD
values of the eight components were 1.24%, 0.94%, 0.81%, 0.82%,
1.32%, 1.08%, 0.81%, and 1.09%, respectively, demonstrating that
the sample solution remained stable within 24 h.

3.7.4.4 Reproducibility

Six sample solutions were prepared from the same test material
and analyzed under the aforementioned chromatographic
conditions. The RSD values for the eight components were
determined to be 1.13%, 0.54%, 0.61%, 0.79%, 1.02%, 0.59%,
1.07%, and 0.95%, respectively, demonstrating excellent
repeatability of the analytical method.

3.7.4.5 Spike recovery test
Six portions of Paeoniae Radix Rubra powder were accurately
weighed, and appropriate amounts of the corresponding reference
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standards of known concentration were added to each portion to
prepare six test solutions. The samples were then analyzed under
the established chromatographic conditions. The recovery rates of
the eight components were determined to be 100.2%, 99.5%, 99.1%,
99.9%, 99.4%, 98.8%, 100.3%, and 98.2%, with corresponding RSD
values of 1.08%, 1.38%, 1.22%, 1.56%, 0.91%, 0.85%, 1.26%, and
1.30%, respectively, demonstrating satisfactory recovery and
accuracy with the proposed method.

3.7.5 Data processing methods

The data were processed using Microsoft Office Excel 2021
(Microsoft Corporation, USA), and graphs were generated with
Prism 8 (GraphPad Software, USA). All data are presented as mean
+ standard deviation (Mean + S.D.). Statistical analyses were
performed using independent samples t-tests in IBM SPSS 28.0
(IBM Corporation, USA). A statistically significant difference was
defined as *P< 0.05 or **P< 0.01.

4 Results
4.1 ROS level in fresh roots of P. lactiflora

4.1.1 ROS level in fresh roots of RRP-germplasm

Compared with day 0, the O, level in the water (CK) group
showed no significant change trend, while all SNP-treated groups
exhibited an initial increase followed by a decrease. The O, level in
the 0.1, 0.5, and 2.5 mmol/L SNP groups all peaked on day 1,
showing an increase of 61.5%, 130.8%, and 182.7% respectively,
with the 2.5 mmol/L SNP group showing the most pronounced
elevation (Figure 1A). Similarly, compared with day 0, the H,O,
level in the water group showed no significant change trend, while
all SNP-treated groups exhibited an initial increase followed by a
decrease. The H,O, level in the 0.1, 0.5, and 2.5 mmol/L SNP
groups peaked on days 2, 1, and 2, respectively, showing increases of
58.7%, 121.7%, and 93.5%, with the 0.5 mmol/L group showing the
most pronounced elevation (Figure 1B). The ROS levels in all SNP-
treated groups were significantly higher than those in the CK group,
indicating that SNP could induce ROS production.

4.1.2 ROS level in fresh roots of RAP-germplasm
Compared with day 0, the 0.1 mmol/L SNP group showed no
significant change in O, level, while the other groups exhibited an
initial increase followed by a decrease. The O, level in the 0.0, 0.5,
and 2.5 mmol/L SNP groups peaked on days 2, 1, and 1,
respectively, with an increase of 145.5%, 122.7%, and 177.3%,
respectively, and the 2.5 mmol/L SNP group showed the most
pronounced elevation (Figure la). Regarding H,O, levels,
compared to day 0, all SNP-treated groups showed an initial
increase followed by a decrease in H,O, levels, with the most
pronounced elevation observed in the 2.5 mmol/L SNP group.
The H,0, levels in the 0, 0.1, 0.5, and 2.5 mmol/L SNP groups
peaked on days 1, 2, 1, and 2, respectively, exhibiting an increase of
135.8%, 90.6%, 154.7%, and 205.7% (Figure 1b). These results
indicate that the ROS levels in all groups generally displayed an
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initial rise followed by a decline, and the increases were positively
correlated with SNP concentration.

4.2 MDA level in fresh roots of P. lactiflora

4.2.1 MDA level in fresh roots of RRP-germplasm

Compared with day 0, the MDA contents in the water (CK)
group showed a slight increasing trend, while all SNP-treated
groups exhibited greater increases than those in the CK group.
The most pronounced elevation was observed in the 2.5 mmol/L
SNP group. The MDA contents in the 0.1, 0.5, and 2.5 mmol/L SNP
groups peaked on days 2, 2, and 3 of treatment, respectively, with
increases of 100.1%, 147.8%, and 173.9% (Figure 2A). In all SNP-
treated groups, the MDA levels were significantly higher than those
in the CK group, indicating that SNP caused substantial
cellular damage.

4.2.2 MDA level in fresh roots of RAP-germplasm

Compared with day 0, the MDA contents in the water and 0.1
mmol/L SNP groups showed minor fluctuations, while the other
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two groups exhibited an upward trend, with the most significant
increase observed in the 2.5 mmol/L SNP group. The MDA
contents in the 0.5 and 2.5 mmol/L SNP groups peaked on days 2
and 3 of treatment, respectively, showing increases of 140.4% and
157.4% compared to day 0 (Figure 2a).

4.3 Antioxidant enzyme activities in fresh
roots of P. lactiflora

4.3.1 Antioxidant enzyme activities in fresh roots
of RRP-germplasm

Compared with day 0, the SOD activities in the water (0 mmol/
L SNP/CK) group showed no significant change trend. The 0.1
mmol/L SNP group exhibited a gradual increasing trend, while the
other two groups had an initial increase followed by a decrease. The
SOD activities in the 0.1, 0.5, and 2.5 mmol/L SNP groups reached
their peaks on days 3, 1, and 1 of treatment, respectively, showing
increases of 36.3%, 55.9%, and 36.7%, with the 0.5 mmol/L SNP
group showing the most pronounced elevation (Figure 3A).
Similarly, compared with day 0, the CAT activities in the water
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group showed no significant change trend, while all other SNP
groups exhibited an initial increase followed by a decrease. Among
them, the 0.5 mmol/L SNP group demonstrated the most
pronounced elevation. The CAT activities in the 0.1, 0.5, and 2.5
mmol/L SNP groups peaked on days 2, 1, and 1, respectively,
showing increases of 45.8%, 111.7%, and 81.1% (Figure 3B).
Likewise, compared with day 0, the POD activities in the water
group showed no significant change trend, while all other SNP-
treated groups exhibited an initial increase followed by a decrease.
The POD activities in the 0.1, 0.5, and 2.5 mmol/L SNP groups
peaked on day 2, increasing by 57.6%, 89.6%, and 65.6%,
respectively, with the 0.5 mmol/L SNP group showing the most
pronounced rise (Figure 3C). It is not difficult to find that from days
1 to 3, the antioxidant enzyme activities in all SNP-treated groups
were higher than those in the CK group, while the CK group
showed almost no change, indicating that antioxidant enzymes play
a crucial role in the early stages of SNP treatment.

4.3.2 Antioxidant enzyme activities in fresh roots
of RAP-germplasm

Compared with day 0, the SOD activities in all groups showed
an initial increase followed by a decline. The SOD activities in the
water, 0.1, 0.5, and 2.5 mmol/L SNP groups reached peaks on days
1, 2, 1, and 1 of treatment, respectively, with increases of 92.3%,
111.0%, 139.2%, and 163.0%, with the most pronounced increase
observed in the 2.5 mmol/L SNP group (Figure 3a). Regarding
CAT activities, compared with day 0, the CAT activities in the
water and 0.1 mmol/L SNP groups showed minor fluctuations,
while the other two SNP groups exhibited an initial increase
followed by a decline. The CAT activities in the 0.5 and 2.5
mmol/L SNP groups peaked on days 1 and 2 of treatment,
respectively, showing increases of 70.3% and 91.6%, with the 2.5
mmol/L SNP group showing the most pronounced elevation
(Figure 3b). As for POD activities, compared with day 0, the
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POD activities in all treatment groups generally showed an initial
decrease followed by an increase and subsequent decline. All
groups peaked on day 2, showing increases of 49.3%, 38.5%,
64.0%, and 87.1%, respectively, with the 2.5 mmol/L SNP group
showing the most significant increase (Figure 3c).

4.4 PAL and HMGR activities in fresh roots
of P. lactiflora

4.4.1 PAL and HMGR activities in fresh roots of
RRP-germplasm

Compared with day 0, the PAL activities in the water and 0.1
mmol/L SNP groups showed no significant changes, while the other
two groups exhibited an initial increase followed by a decrease. The
0.5 mmol/L SNP group had the most pronounced enhancement in
PAL activities, reaching its peak on day 1 with a 34.1% increase. The
2.5 mmol/L SNP group peaked on day 2 of treatment, showing a
26.0% elevation (Figure 4A). For HMGR activities, compared with
day 0, the HMGR activities in the water and 0.1 mmol/L SNP
groups showed minor fluctuations, while the other two groups
exhibited an initial increase followed by a decrease. The 0.5 mmol/L
SNP group had the most significant enhancement in
HMGR activities. Both the 0.5 and 2.5 mmol/L SNP groups
reached peaks on day 2, with increases of 61.2% and 35.3%,
respectively (Figure 4B).

4.4.2 PAL and HMGR activities in fresh roots of
RAP-germplasm

Compared with day 0, the PAL activities in all groups showed
an initial increase followed by a gradual decline. All groups reached
their peaks on days 3, 2, 1, and 1, respectively, showing increases of
34.5%, 20.5%, 33.2%, and 45.8%, with the 2.5 mmol/L SNP group
showing the most pronounced enhancement (Figure 4a). Regarding
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HMGR activities, compared with day 0, the HMGR activities in all 4 5 | evel of secondary metabolites in fresh
groups initially increased and subsequently decreased. All groups  roots of P. lactiflora

peaked on days 2, 1, 2, and 1, respectively, with increases of 52.4%,

39.8%, 47.3%, and 69.6%, with the 2.5 mmol/L SNP group showing ~ 4.5.1 Level of secondary metabolites in fresh

the most significant increase (Figure 4b). These results indicate that ~ roots of RRP-germplasm

the application of an appropriate concentration of exogenous NO Compared with day 0, the paeoniflorin in the water group
contributes to the increase in the activities of PAL and HMGR. showed a gradual decreasing trend, while the 2.5 mmol/L SNP
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group exhibited no significant changes, the remaining two groups
exhibited an initial increase followed by a decrease, with the 0.5
mmol/L SNP group displaying the most pronounced elevation.
Both the 0.1 and 0.5 mmol/L SNP groups reached their peaks on
day 1, showing increases of 8.8% and 19.1%, respectively
(Figure 5A). Regarding oxypaeoniflorin, compared with day 0, the
oxypaeoniflorin in the water group showed a gradual decreasing
trend, while all SNP-treated groups exhibited an initial increase
followed by a decrease. The 0.1, 0.5, and 2.5 mmol/L SNP groups
reached their peaks on days 1, 1, and 2 of treatment, respectively,
showing increases of 40.2%, 115.4%, and 69.0%, the 0.5 mmol/L
SNP group with the most significant elevation (Figure 5B). For
albiflorin, compared with day 0, the albiflorin in the 2.5 mmol/L
SNP group showed a gradual decreasing trend, while the other three
groups exhibited an initial increase followed by a decrease. The 0.0,
0.1, and 0.5 mmol/L SNP groups reached their peaks on days 2, 1,
and 1 of treatment, respectively, with increases of 114.3%, 85.0%,
and 205.4%, the 0.5 mmol/L SNP group with the most significant
increase (Figure 5C). As for catechin, compared with day 0, the
catechin in the water and 0.1 mmol/L SNP groups showed no
significant changes, while the other two groups exhibited an initial

Frontiers in Plant Science

increase followed by a decreasing trend. Both the 0.5 and 2.5 mmol/
L SNP groups reached their peaks on day 1, showing increases of
201.0% and 122.7%, respectively, the 0.5 mmol/L SNP group with
the most pronounced elevation (Figure 5D). In terms of gallic acid,
compared with day 0, the gallic acid in the water and 0.1 mmol/L
SNP groups showed no significant changes, while the other two
groups exhibited an initial increase followed by a decreasing trend.
The 0.5 and 2.5 mmol/L SNP groups reached their peaks on days 1
and 2 of treatment, respectively, showing increases of 19.9% and
30.9%, respectively, the 2.5 mmol/L SNP group with the most
pronounced increase (Figure 5E). Benzoic acid showed a different
pattern; compared with day 0, the benzoic acid in the water group
showed a gradual decreasing trend. The 0.5 mmol/L SNP group
exhibited no significant changes, while the other two groups
exhibited an initial increase followed by a decrease. Both the 0.1
and 2.5 mmol/L SNP groups reached their peaks on day 1, showing
increases of 22.3% and 50.4%, respectively, the 2.5 mmol/L SNP
group displaying the most pronounced increase (Figure 5F).
However, benzoylpaeoniflorin differed from the above substances
in its trend; compared with day 0, the benzoylpaeoniflorin in the 2.5
mmol/L SNP group showed an initial decrease followed by an
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upward trend, returning to the baseline level on day 3 of treatment,
while the other three groups exhibited a continuous downward
trend throughout the experimental period (Figure 5G). Finally, for
paeonol, compared with day 0, the paeonol in the water group
showed a gradual decreasing trend, while all SNP-treated groups
exhibited an initial increase followed by a decrease. The 0.1, 0.5, and
2.5 mmol/L SNP groups all reached peaks on day 1 of treatment,
showing increases of 138.3%, 585.2%, and 228.1%, respectively, the
0.5 mmol/L SNP group with the most significant elevation
(Figure 5H). These results indicate that spraying 0.5 mmol/L SNP
solution has a relatively good effect on increasing the secondary
metabolites in the fresh roots of RRP-germplasm.

4.5.2 Level of secondary metabolites in fresh
roots of RAP-germplasm

Compared with day 0, the paeoniflorin in the water group
showed a gradual decreasing trend, while the other three groups
exhibited an initial increase followed by a decrease. The 0.1, 0.5, and
2.5 mmol/L SNP groups reached their peaks on days 2, 1, and 1,
respectively, with increases of 15.0%, 18.6%, and 25.4%,
respectively, the 2.5 mmol/L SNP group with the most significant
elevation (Figure 5a). Regarding oxypaeoniflorin, compared with
day 0, the 0.1 mmol/L SNP group showed no significant change in
oxypaeoniflorin contents, while the 0.5 mmol/L SNP group
exhibited a gradual increasing trend, the remaining two groups
exhibiting an initial increase followed by a decrease. The 0, 0.5, and
2.5 mmol/L groups reached their peaks on days 2, 3, and 1 of
treatment, respectively, showing increases of 156.4%, 126.7%, and
95.1%, respectively, the water group showing the most pronounced
elevation (Figure 5b). For albiflorin, compared with day 0, the
albiflorin in the 0.1 mmol/L SNP group showed a gradual
decreasing trend, while the other three groups exhibited an initial
increase followed by a decrease. The 0.0, 0.5, and 2.5 mmol/L SNP
groups reached their peaks on days 2, 1, and 1 of treatment,
respectively, with increases of 52.4%, 19.9%, and 70.4%,
respectively, the 2.5 mmol/L SNP group with the most significant
increase (Figure 5¢). As for catechin, compared with day 0, the
catechin in the 0.1 and 0.5 mmol/L SNP groups showed no
significant change trend, while the remaining two groups
exhibited an initial increase followed by a decrease. Both the 0.0
and 2.5 mmol/L SNP groups reached their peaks on day 1, showing
increases of 47.4% and 86.5%, respectively, the 2.5 mmol/L SNP
group with the most pronounced elevation (Figure 5d). In terms of
gallic acid, compared with day 0, only the 2.5 mmol/L SNP group
exhibited an initial increase followed by a decrease in gallic acid
level, reaching its peak on day 1 of treatment with a 6.7% increase
compared to day 0. The other three groups generally showed a
downward trend (Figure 5¢). For benzoic acid, compared with day
0, the 0.1 mmol/L SNP group showed no significant change in
benzoic acid contents, while the other three groups exhibited an
initial increase followed by a decreasing trend. The peaks for the 0,
0.5, and 2.5 mmol/L SNP groups were all observed on day 1 of
treatment, showing increases of 44.7%, 11.6%, and 33.6%,
respectively, the water group with the most pronounced elevation
(Figure 5f). Finally, for benzoylpaeoniflorin, compared with day 0,
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the level of benzoylpaeoniflorin in all groups showed no significant
change trend, with relatively minor fluctuations overall (Figure 5g).
These results indicate that spraying 2.5 mmol/L SNP solution has a
relatively good effect on increasing the secondary metabolites in the
fresh roots of RAP-germplasm.

4.6 1,3-DPG level in fresh roots of P.
lactiflora

4.6.1 1,3-DPG level in fresh roots of RRP-
germplasm

Compared with day 0, the 1,3-DPG contents in the water group
showed no significant change trend, while all other groups exhibited
an initial increase followed by a decrease. The 0.5 mmol/L SNP
group demonstrated the most pronounced increase, reaching its
peak on day 1 with a 128.8% elevation. In contrast, both the 0.1 and
2.5 mmol/L SNP groups peaked on day 2, showing increases of
43.4% and 93.7%, respectively (Figure 6A).

4.6.2 1,3-DPG level in fresh roots of RAP-
germplasm

Compared with day 0, the 0.1 mmol/L SNP group showed no
significant changes in 1,3-DPG contents, while the other groups
exhibited a trend of initial increase followed by a decrease. The 0.0,
0.5, and 2.5 mmol/L SNP groups reached peaks on day 1 of treatment,
with increases of 68.3%, 79.6%, and 109.1%, respectively, the 2.5 mmol/L
SNP group with the most pronounced elevation (Figure 6a).

4.7 Effect of SNP and ROS scavengers on
ROS and MDA

When RRP-germplasm fresh roots were treated with 0.5 mmol/
L SNP alone, the levels of O, H,O,, and MDA were significantly
higher than those in the control group, indicating that SNP
successfully induced ROS outburst in fresh roots. However, after
the subsequent application of 0.1 mmol/L a-Toc and 1.0 mmol/L
NAC following SNP treatment, the levels of O,-, H,O,, and MDA
in fresh roots were significantly decreased compared with those in
the 0.5 mmol/L SNP alone group, closer to the levels in the control
group. These results demonstrated that o-Toc and NAC could
effectively scavenge the ROS induced by SNP in RRP-germplasm
fresh roots.

4.8 Dependence of SNP-induced
secondary metabolism on ROS

When RRP-germplasm fresh roots were treated with 0.5 mmol/
L SNP alone, the levels of paeoniflorin, albiflorin, oxypaeoniflorin,
gallic acid, catechin, and paeonol were significantly higher than
those in the control group, indicating that SNP could effectively
induce secondary metabolism in fresh roots. When 0.1 mmol/L o-
Toc and 1.0 mmol/L NAC were subsequently applied after SNP
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treatment, the levels of these secondary metabolites were
significantly lower than those in the 0.5 mmol/L SNP alone
group, closer to the levels in the control group, indicating that the
inductive effect of SNP on the secondary metabolism of RRP-
germplasm depended on ROS accumulation.

5 Discussion

When plants are subjected to environmental stress, their cells
maintain ROS homeostasis through multidimensional mechanisms,
including enzymatic activity regulation, enhanced secondary
metabolism, and osmotic balance adjustment. As scavengers of ROS
and cytoprotective agents, secondary metabolites serve as core
defensive compounds in plants, and become the active
pharmaceutical ingredients of medicinal herbs. The formation of the
quality of herbal medicines is essentially the process of biosynthesis of
secondary metabolites triggered by environmental stress signals, more
accurately, it is a process of plant adaptation to ecological stress.
Therefore, the content of pharmacologically active ingredients can be
improved by constructing the physiological state of plants under
adverse conditions.

5.1 Effect of SNP on ROS and MDA levels

The impact of different stresses on ROS in plants varies
depending on the stress type and plant species, but they all lead to
a significant increase in ROS levels. For instance, under salt stress, the
H,0, level in Cucumis sativus L. roots increases by approximately
30.0% after 1 hour of treatment (Kabata et al., 2022). Low-
temperature treatment increases H,O, levels in strawberry leaves
(Fragaria x ananassa Duch.) by nearly 2-fold (Ya et al, 2011). High-
temperature stress causes the O, levels in wheat (Triticum aestivum
L.) to rise by 50.0% (Pradhan and Prasad, 2015). NO can impair
complexes IIT and IV in the mitochondrial electron transport chain,
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thereby exacerbating electron leakage and promoting the generation
of O,-". In addition, NO can directly activate the plasma membrane
nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)
oxidase or via the calcium-protein kinase-mediated signaling
cascade, thereby inducing the production of ROS (Delledonne
et al., 1998b; Corpas et al., 2011; Yun et al., 2011). High
concentrations of ROS can initiate free radical chain reactions in
membrane lipid peroxidation, damaging the ultrastructure of plant
cells and inducing membrane denaturation, which leads to reduced
selective permeability, disruption of cellular compartmentalization,
and an imbalance in material exchange between the cell and its
environment, ultimately leading to cellular dysfunction (Pratt et al,
2011). As a key toxic byproduct of membrane lipid peroxidation,
MDA can further induce protein cross-linking and DNA damage, so
it has become a critical indicator for assessing oxidative cellular
damage and stress resistance (Peng et al., 2022). Figure 1 shows that
SNP rapidly increased O, levels in P. lactiflora fresh roots, followed
by a swift rise in H,O, level; subsequently, MDA contents in all
groups showed significant elevation (Figure 2), indicating that
exogenous NO can induce a rapid short-term increase in ROS, and
cause damage to plant cells. SNP can replicate the physiological state
of plants under stress conditions.

5.2 Effects of SNP on antioxidant enzyme
activities

The ROS scavenging system in plants consists of enzymatic and
non-enzymatic components, and they dynamically complement
each other to form a precisely regulated antioxidant network
(Ahmad et al, 2010; Wang et al., 2024). O, is the earliest ROS
generated and readily induces the Fenton reaction to produce -OH,
a kind of ROS with the highest toxicity, and causes severe cellular
damage (Phua et al,, 2021). SOD, as the only enzyme capable of
specifically catalyzing O,-, forms the first line of antioxidant
defense (Case, 2017). Taking Cu-Zn SOD as an example, when
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0, levels rise, Cu®" is reduced to Cu", catalyzing the
disproportionation of two O, into H,0, and O,. This substrate-
inducible characteristic ensures that SOD activity exhibits a positive
correlation with O,-” within physiological ranges. Since its catalytic
efficiency directly determines the subsequent cascade reactions of
CAT and POD, SOD plays a central role in ROS metabolism (Sheng
et al,, 2014). H,0, can readily penetrate biological membranes and
react with cytoplasmic components, oxidizing thiol groups and
metal cofactors, thereby inactivating proteins and enzymes while
impairing NADPH oxidase. This process exacerbates the collapse of
the antioxidant system (Kunkemoeller and Kyriakides, 2017). CAT,
a tetrameric enzyme containing iron porphyrin as its prosthetic
group (Baker et al., 2023), decomposes H,O, into H,O and O, via a
disproportionation reaction. It requires the successive collisions of
two H,0O, at the active site to initiate the reaction, making CAT the
most specialized and direct enzyme for H,O, clearance (Yang and
Poovaiah, 2002). Unlike CAT, POD is a heme-rich oxidoreductase.
Its heme group can undergo a cyclic transition between the oxidized
(Fe**) and reduced (Fe*") states, enabling it to withstand intense
oxidative stress from ROS (Bauer and Bauer, 2002). Furthermore,
the hydrophobic cavity within its tertiary structure shields the active
site from radical attacks (Gray and Winkler, 2021). Therefore, even
when ROS concentrations increase, POD still maintains excellent
stability (Amin et al, 2024). Under stress conditions, certain
secondary metabolites—such as phenolic compounds (catechin,
paeonol, and baicalein)—can serve as substrates to supply
electrons and facilitate the continuous reduction of H,O, by POD
(Niu and Liao, 2016).

SNP increased ROS levels, and modulated protein disulfide
bonds, and enhanced antioxidant enzyme activity (Figures 1, 3). In
both types of fresh P. lactiflora roots, SOD activities significantly
increased within 0~1 day after SNP exposure (Figure 3), promoting
O, reduction in all groups by days 2~3 (Figure 1). CAT and POD
showed synergistic and complementary effects in the clearance of
H,0,. When the activity of one enzyme decreased, the activity of
another enzyme increased correspondingly. In the fresh roots of the
RRP-germplasm, CAT and POD activities peaked at days 1 and 2,
respectively, after SNP treatment, whereas in the RAP-germplasm,
CAT activity peaked during days 1~2, and POD activity reached a
peak on day 2. The synergistic action of both enzymes effectively
reduced H,O, levels (Figure 1). Notably, POD maintained
persistently high activity during the late stress phase (days 2~3)
in all treated groups, indicating that POD plays a critical role in
H,O, clearance (Figure 3), leading to a reduction in ROS levels in
the fresh roots of the two P. lactiflora germplasms. However, as the
stress intensity increased or the duration of stress was extended, the
activities of various antioxidant enzymes declined rapidly within
2~3 days of treatment (Figure 3). This phenomenon may be
attributed to the high ROS, which oxidize amino acid residues in
enzyme proteins, such as cysteine, methionine, and tyrosine, disrupt
the homeostasis of disulfide bonds (-S-S-) or induce peptide chain
cross-linking, and further cause the dissociation of metal cofactors
—including Cu®" in Cu/Zn-SOD and Fe** in CAT—from the active
center. These changes collectively destroy the spatial conformation
of antioxidant enzymes such as SOD, CAT, and POD, thereby
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inactivating their catalytic functions (Karamat et al., 2024). Figure 2
shows that MDA contents remained consistently elevated,
suggesting that the decline in antioxidant enzyme activity may
indeed be caused by ROS. These observations collectively suggest
that antioxidant enzymes may not be the primary means of ROS
clearance under severe stress conditions, implying potential
contributions from secondary metabolites.

5.3 SNP modulates secondary metabolites
in P. lactiflora

Unlike animals, plants cannot escape adverse conditions, which
inevitably leads to the overproduction of ROS (Ali et al., 2023). In
response, plants have evolved a unique strategy to cope with stress,
involving activating gene expression, regulating the activity of
antioxidant enzymes, and reconstructing primary and secondary
metabolic pathways. When the ROS generated exceed the
scavenging capacity of the antioxidant enzyme system, plants
enhance their secondary metabolites to protect plant tissues from
oxidative stress (Miller et al., 2010). The main secondary
metabolites of P. lactiflora include monoterpenes and phenolic
compounds, such as paeoniflorin, albiflorin, oxypaeoniflorin,
gallic acid, catechin, paeonol, and benzoylpaeoniflorin. Among
them, catechin, gallic acid, and paeonol belong to different
subclasses of phenolic compounds, all containing phenolic
hydroxyl groups, with the ability to scavenge H,0,, inhibit
NADPH oxidase (Ma et al., 2024b), chelate transition metal ions
such as Fe*" and Cu’", block the Fenton reaction, and suppress the
generation of ROS (Kubo et al, 2010), thereby reducing the
oxidative damage caused by ROS to DNA and proteins, and
protecting the enzyme system from damage (Fraga et al, 2019).
The monoterpene compound paeoniflorin possesses electrophilicity
due to its conjugated benzene ring system and 3-D-glucopyranosyl
group, and can directly capture and neutralize free radicals
(Nakayama and Uno, 2024; Zhao et al, 2024). As an isomer of
paeoniflorin, albiflorin contains an ester glycoside group that
confers strong electron-donating capacity, and it can not only
directly eliminate ROS, but also maintain the function of
mitochondrial membrane potential and electron transport chain,
so as to reduce the production of ROS caused by electron leakage
(Suh et al., 2013). Because the synthesis of secondary metabolites
consumes substantial amounts of NADPH and ATP, the
continuous production of secondary metabolites in plants under
suitable conditions will significantly inhibit their growth and
development. Only under stress can the plants’ defense response
be activated and energy resources reallocated for the production of
defensive compounds (Pant et al., 2021), resulting in secondary
metabolites being synthesized in large quantities (Ozyigit et al,
2023). When plants are subjected to environmental stresses such as
pathogen infection, ultraviolet radiation, or mechanical damage,
ROS activate the phenylpropanoid pathway and enhance the
activity of PAL (Moghaddam et al.,, 2019; Wang et al., 2019), a
key rate-limiting enzyme for flavonoid synthesis (MacDonald and
D’Cunha, 2007). For instance, under salt stress, the activation of
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PAL in Brassica oleracea L. stimulates the production of flavonoid
compounds such as rutin and quercetin (Yang et al., 2018). HMGR
is a rate-limiting enzyme involved in the synthesis of the
monoterpenoid skeleton in the mevalonate pathway (Zheng et al,
2022). It can also be regulated by ROS and enhance the biosynthesis
of paeoniflorin, albiflorin, benzoylpaeoniflorin, and oxypaeoniflorin
in P. lactiflora (Xu et al, 2023). Under drought stress, the
tanshinone and cryptotanshinone in Salvia miltiorrhiza Bunge
increase remarkably (Yang et al., 2018); the atractylodin,
atractylon, and atractylenolide II are substantially elevated in
Atractylodes chinensis (DC.) Koidz (Zhao et al., 2023). The
secondary metabolites of medicinal plants are usually medicinal
components. Figures 7, 8 show that the inductive effect of SNP on
the secondary metabolism of RRP-germplasm depended on the
ROS accumulation it induced, and this inductive effect was
significantly attenuated when antioxidants scavenged ROS, which
confirmed that increased ROS under stress conditions was the
fundamental cause of enhanced secondary metabolism.

Figure 4 shows that the SNP enhanced the activities of PAL and
HMGR, resulting in increased flavonoids and monoterpenoids in all
treatment groups (Figure 5). During SNP treatment, the
intracellular ROS levels exhibited a trend consistent with PAL
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and HMGR activities, both of which increased first and then
decreased. Catechin, paeoniflorin, albiflorin, and oxypaeoniflorin
in the 0.5 mmol/L SNP group of RRP-germplasm and the 2.5
mmol/L SNP group of RAP-germplasm increased by 201.0%,
19.1%, 205.4%, 115.4% and 86.5%, 25.4%, 70.4%, 95.1%,
respectively, on the first day of treatment (Figure 5), which
indicates the difference in the responses of different germplasms
of the same species to SNP. In RRP-germplasm, the 2.5 mmol/L
SNP group showed poor enhancement effects, maybe due to the
higher ROS damaging PAL and HMGR (Figure 4), while the 0.0 and
0.1 mmol/L SNP groups had lower ROS, insufficient to fully activate
the self-defense system (Figures 3, 4), and limited secondary
metabolite synthesis. In RAP-germplasm, however, the 2.5 mmol/
L SNP group exhibited the highest activity of PAL and HMGR, with
the overall secondary metabolites significantly exceeding those of
the 0.1 and 0.5 mmol/L SNP groups, suggesting that RAP-
germplasm possesses stronger stress tolerance compared to RRP-
germplasm. Figure 5 shows that excess H,O as a form of adversity
stress can also enhance ROS accumulation in RAP-germplasm and
increase some secondary metabolites, but has a very limited effect
on the improvement of major active ingredients such as
paeoniflorin and albiflorin, the effect of which is much lower than
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that of the 2.5 mmol/L SNP group (P < 0.01).During the treatment

Phenylalanine and isopentenyl pyrophosphate are both

of P. lactiflora fresh roots, with the enhancement of the synthesis of  intermediates linking primary and secondary metabolism, and the

related antioxidants, especially secondary metabolites, ROS  enhanced activities of PAL and HMGR (Figure 4) will lead to more

decreased rapidly (Figures 1, 3-5), indicating that secondary  primary metabolites being used for the biosynthesis of secondary

metabolites play an important role in adapting to severe stress. metabolites. 1,3-DPG is a metabolic intermediate in glycolysis, and
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the increase in its content reflects an enhancement of glycolytic flux
(Munoz-Bertomeu et al., 2010). This study used isolated roots of P.
lactiflora, with no material originating from photosynthesis; thus,
the increased 1,3-DPG must have derived from the breakdown of
sugars. The increased paeoniflorin, albiflorin, catechin, and other
components were synthesized from non-pharmaceutical
carbohydrates; thus, the quality of the drug improved significantly.

5.4 Effects of SNP on quality and specific
compound accumulation in P. lactiflora

A plant species with a wide distribution can form multiple ecotypes
due to diverse ecological conditions, generating different germplasms
which exhibit significantly varied responses to specific environmental
stresses, including drought, saline-alkaline stress, high-temperature
stress, and biotic stresses. After long-term natural selection and
artificial selection, the same plant species has formed unique
physiological and biochemical adaptation mechanisms, and its
secondary metabolism has changed (Jiang et al., 2025). In this study,
the RRP-germplasm treated with 0.5 mmol/L SNP increased
paconiflorin, catechin, and paeonol contents by 19.1%, 201.0%, and
585.2%, respectively; the RAP-germplasm treated with 2.5 mmol/L SNP
markedly increased albiflorin and oxypaeoniflorin contents by 70.4%
and 95.1%, respectively. This study showed that SNP had different effects
on different germplasms of the same species, but both germplasms could
significantly improve the quality of medicinal materials.

6 Conclusion

The active components of medicinal plants are generally secondary
metabolites of plants, and the quality formation mechanism of
medicinal plants is essentially the adaptation mechanism of plants to
ecological stress. This study successfully simulated the physiological
state of plants under ecological stress conditions by using exogenous
NO. In fresh roots of P. lactiflora, the ROS content increased, and the
antioxidant enzyme activities as well as the content of secondary
metabolites increased significantly; these two factors acted
synergistically to scavenge excess ROS and reduce the damage caused
by ROS to the plant. However, with the increase in stress intensity,
antioxidant enzyme activities decreased, while the activities of key
secondary metabolism enzymes increased, which promoted the
biosynthesis of specific medicinal components, thereby improving the
quality of cultivated P. lactiflora. Specifically, in the fresh roots of RRP-
germplasm treated with 0.5 mmol/L SNP, the secondary metabolites
paeoniflorin, albiflorin, oxypaeoniflorin, gallic acid, catechin, and
paeonol were elevated by 19.1%, 205.4%, 115.4%, 19.9%, 201.0%, and
585.2%, respectively; in the fresh roots of RAP-germplasm treated with
2.5 mmol/L SNP, the major secondary metabolites paeoniflorin,
albiflorin, oxypaeoniflorin, gallic acid, catechin, and benzoic acid
showed increases of 25.4%, 70.4%, 95.1%, 6.7%, 86.5%, and 33.6%,
respectively. Notably, the magnitude of the increase in active ingredient
content observed in this study has rarely been reported in previous
research. Compared with field plant treatments that are difficult to
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precisely control, isolated fresh root tissue treatment has significant
advantages such as active metabolism, sensitive response, controllable
conditions, and prevention of irreversible damage to the plant. This in
vitro targeted induction model exhibits greater superiority and
feasibility in increasing the content of target components, providing
an innovative technical approach for the standardized and high-quality
production of P. lactiflora.
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