
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiao Ming Zhang,
Yunnan Agricultural University, China

REVIEWED BY

Balaji Bn,
National Bureau of Agricultural Insects
Resources, India
Ivan Malashin,
Bauman Moscow State Technical University,
Russia

*CORRESPONDENCE

Meenakshi Malik

minaxi.2007@gmail.com

Niranjan Singh

attri.ns@gmail.com

Amoghavarsha Chittaragi

amoghchittaragi@gmail.com

RECEIVED 07 July 2025

ACCEPTED 14 August 2025
PUBLISHED 23 September 2025

CITATION

Malik M, Singh N, Chittaragi A, D R, Patil B and
Manisha BL (2025) Temporal dynamics of
sapota pest damage and Phytophthora
disease: insights from time series and
machine learning models.
Front. Plant Sci. 16:1659709.
doi: 10.3389/fpls.2025.1659709

COPYRIGHT

© 2025 Malik, Singh, Chittaragi, D, Patil and
Manisha. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 23 September 2025

DOI 10.3389/fpls.2025.1659709
Temporal dynamics of sapota
pest damage and Phytophthora
disease: insights from time series
and machine learning models
Meenakshi Malik1*, Niranjan Singh2*,
Amoghavarsha Chittaragi3*, Raghavendra D4,
Balanagouda Patil5 and Bachu Lakshmi Manisha4

1Agricultural Statistics, Indian Council of Agricultural Research (ICAR)-National Research Institute for
Integrated Pest Management, New Delhi, India, 2Computer Applications, ICAR-National Research
Institute for Integrated Pest Management, New Delhi, India, 3ICAR-KVK, Chintamani, University of
Agricultural Sciences, GKVK, Bangalore, India, 4Entomology, ICAR-National Research Institute for
Integrated Pest Management, New Delhi, India, 5Plant Pathology, Keladi Shivappa Nayaka University of
Agricultural and Horticultural Sciences, Iruvakki, Sagar, India
Introduction: Sapota (Manilkara zapota L.) is a major tropical fruit crop prone to

damage by bud borer (Anarsia achrasella), seed borer (Trymalitis margarias), and

fruit rot caused by Phytophthora species. Climatic variability strongly influences

these biotic stresses, yet long-term temporal patterns remain poorly quantified.

Methods: A decade-long dataset (2014–2022) from 21 major sapota-growing

districts of Maharashtra, India, was analyzed to study pest and disease dynamics.

Statistical and machine learning approaches, including ARIMA, SARIMA, and VAR

time-series models, along with Random Forest feature importance analysis, were

applied to quantify climatic influences and forecast severity trends. Correlation

analyses were used to assess weather–pest/disease associations.

Results: Trend analysis revealed fluctuating bud and seed borer damage, while

Phytophthora disease severity remained relatively stable. Bud borer incidence was

positively correlated with rainfall (r = 0.69), seed borer withmaximum temperature (r

= 0.47), and Phytophthorawith minimum temperature (r = 0.64). The ARIMA model

provided accurate forecasts for bud borer (MSE = 8.03) and Phytophthora (MSE =

0.20), while the VAR model performed best for seed borer (MSE = 17.96). Random

Forest analysis identified minimum temperature as the most critical driver of bud

borer and Phytophthora severity, whereas relative humidity was most influential for

seed borer.

Discussion: The integration of statistical and machine learning models provides

robust insights into sapota pest and disease epidemiology under climatic

variability. These findings highlight the importance of temperature, humidity,

and rainfall in shaping pest–pathogen interactions and provide predictive tools to

design timely, targeted, and climate-resilient management strategies for

sapota cultivation.
KEYWORDS

sapota, pest damage, phytophthora disease, climatic factors, ARIMA, SARIMA, VAR,
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1 Introduction

Sapota (Manilkara zapota L.) is a prominent tropical fruit crop

belonging to the Sapotaceae family is widely cultivated in various

tropical and subtropical regions globally, including India, Mexico,

Philippines and other Southeast Asian countries. India ranks

among the top global producers of sapota, with approximately

170,000 hectares under cultivation and an annual production of 1.3

million tonnes (ICAR, 2021). Sapota offers various nutritional

benefits being rich in vitamins, minerals, dietary fiber and

possesses pharmacological properties including antioxidant and

anti-inflammatory effects (Kaur et al., 2020). However, the

productivity remains sub-optimal due to recurring pest and

disease outbreaks.

The cultivation of sapota is highly susceptible to a range of pests

and diseases which can significantly impact yield and quality.

Numerous pests including the Sapota bud borer (Anarsia

achrasella Bradley), Mealybug (Planococcus citri Risso), Leaf

webber (Nephopteryx eugraphella Ragonot), Scale insects

(Pulvinaria psidii Maskell) and Thrips (Scirtothrips dorsalis

Hood) are known to cause substantial economic losses (Mani and

Jayanthi, 2022; Sathish et al., 2014). These pests not only reduce

fruit quality and marketability but also lead to significant declines in

production due to their direct damage and indirect effects on plant

health. Among the most damaging are the sapota bud borer, Sapota

seed borer and disease caused by Phytophthora species. Yield losses

due to sapota bud borer have been estimated at 30–40%, particularly

during peak flowering and fruit setting periods (Mani and Jayanthi,

2022). Seed borer can cause 20–25% fruit loss, rendering the fruits

unmarketable (Bisane, 2016), while Phytophthora fruit rot leads to

10–20% loss under favorable climatic conditions, with even higher

losses (>50%) reported during years with heavy monsoon rains and

poor drainage (Malshe and Shinde, 2016). These biotic stresses

contribute to substantial economic losses annually, adversely

affecting farmer income and supply chains.

The sapota bud borer is a notorious insect pest that primarily

targets young shoots and flower buds, leading to considerable yield

losses (Mani and Jayanthi, 2022). The larvae bore into the buds,

causing wilting, drying and eventual dropping of the affected plant

parts thereby directly impacting fruit setting and overall

productivity which is a significant threat to fruit development and

marketability whereas the sapota seed borer primarily targets the

developing seeds within the sapota fruit, leading to considerable

yield losses and rendering affected fruits unmarketable (Mani and

Jayanthi, 2022). The larvae bore into the fruit and feed on the seeds,

causing internal damage that can lead to premature fruit drop,

rotting and reduced fruit quality. This direct damage to the fruit’s

core significantly impacts overall productivity and the economic

viability of sapota cultivation.

Concurrently, Phytophthora species pose a severe threat to

sapota cultivation, causing various symptoms such as root rot,

collar rot, and fruit rot (Joshi et al., 2014; Somwanshi et al.,

2021). These pathogens are particularly destructive in hot and

humid tropical environments where sapota is extensively

cultivated. Phytophthora infections typically manifest as water-
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soaked lesions on the affected tissues, leading to rapid decay and

plant mortality in severe cases. Phytophthora can lead to fruit rot,

especially on fruits in the lower canopy. Its incidence is highly

dependent on environmental conditions with heavy rain during the

monsoon season and poor drainage exacerbating disease severity.

This pathogen thrives in conditions of elevated temperatures and

high humidity, particularly when water directly contacts the fruit

(Liu et al., 2018; Joshi et al., 2014). The persistent and rapid spread

of Phytophthora diseases, thriving under favorable weather

conditions, has made them a significant challenge and threat to

sapota growers (Joshi et al., 2014).

High humidity and extended periods of rainfall create ideal

conditions for the proliferation and spread of Phytophthora

especially during and after monsoon seasons similarly, minimum

temperature and low rainfall, relative humidity can favor the life

cycle and population dynamics of the sapota bud borer (Gajera

et al., 2023) likewise low rainfall, high relative humidity and bright

sunshine hours lead to higher infestations of sapota seed borer

(Bisane and Naik, 2021). These shifts in temperature and other

atmospheric conditions can markedly alter the prevalence of pest

status. This is attributed to their direct bearing on the viability,

propagation and spread of insect pests and pathogens alike. Hence,

a holistic grasp of the complex interplay and the intricate

connections among climatic elements, pest ethology and disease

progression becomes paramount significance for establishing

focused and efficacious management protocols in sapota

cultivation (Iglesias and Rosenzweig, 2007; Estay et al., 2014).

Though previous research consistently shows that global

climate change exacerbates the risk of increased pest incidence in

agricultural regions (Elad and Pertot, 2014.) and describe the

influence of weather parameters on population of sapota bud

borer, seed borer and Phytophthora disease, studies on long-term

seasonal trends of how these pattern change over time are to be

emphasized upon which the overall pattern of pest migration

strategy and sudden pest outbreaks can be predicted (Thumar

Rasiklal et al., 2015). Using time series models ARIMA

(Autoregressive Integrated Moving Average) and SARIMA

(Seasonal Autoregressive Integrated Moving Average) can give us

a much better scope to understand these patterns with minute

detailing, as they can capture both quick changes and long-term

seasonal trends in assessing the severity of pests and diseases (Box

et al., 2015; Loona et al., 2025; Patil et al., 2025; Singh et al., 2025).

Accurate forecasting of pest and disease dynamics also holds

immense practical relevance by facilitating time-sensitive and need-

based insecticide and fungicide applications (Loona et al., 2025). By

anticipating the peak periods of bud borer and seed borer

infestation, or the onset of Phytophthora outbreaks, farmers can

align chemical interventions more precisely with pest and pathogen

activity windows. This minimizes the risk of premature or delayed

sprays, both of which reduce efficacy and increase costs. Early

warnings derived from ARIMA and SARIMA models can help

optimize the timing and frequency of pesticide applications,

enhancing control efficiency while reducing unnecessary chemical

use (Loona et al., 2025; Patil et al., 2025; Singh et al., 2025). Such

targeted application not only mitigates yield losses and economic
frontiersin.org

https://doi.org/10.3389/fpls.2025.1659709
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Malik et al. 10.3389/fpls.2025.1659709
damage but also reduces environmental contamination and

pesticide residues in agriculture (Amoghavarsha et al., 2021).

Integrating predictive modeling into pest management schedules

thus serves as a crucial tool for advancing sustainable sapota

cultivation under increasingly variable climatic conditions.

Present study directly addresses key research gaps by

investigating the severity of both sapota bud borer seed borer and

Phytophthora across various agro-climatic regions. We aim to

develop and validate ARIMA and SARIMA forecasting models to

accurately predict the incidence and provide precise forewarnings,

enabling farmers to implement timely and effective management

strategies. Furthermore, our research will emphasize the critical

need to integrate climatic data into agricultural planning, boosting

sapota cultivation’s resilience against the increasing variability in

weather patterns caused by climate change. Ultimately, the findings

from this study are expected to empower farmers and policymakers

to propose targeted pest and disease management strategies.
2 Materials and methods

2.1 Study area and data collection

The study was conducted to analyze pest damage and disease

severity in sapota (Manilkara zapota (L.) P. Royen) cultivation

across 21 major sapota-producing districts of Maharashtra, India,

from January 2014 to December 2022. These districts—covering the

Vidarbha, Marathwada, and Western Maharashtra agro-climatic

zones—include Jalna, Wardha, Amravati, Nanded, Aurangabad,

Akola, Chandrapur, Jalgaon, Buldana, Yavatmal, Ahmadnagar,

Dhule, Nagpur, Nandurbar, Nashik, Parbhani, Beed, Gadchiroli,

Hingoli, Washim, and Chhatrapati Sambhajinagar.

Guidelines for scouting of pests in sapota include selection of

orchards and trees, wherein randomly one village may be covered in

the morning and another in the evening. In each orchard, 4 trees

were observed by selecting one tree from each direction (E, S, W

and N). Orchards having at least one acre area and assigned and

villages at 10 Km distance are preferred, however, adjoining village

was also considered if it has at least 50 ha area. The names of village

and number of growers were noted for fixed plots only.

Method of observations of Insects: Sapota bud borer: The

number of buds infested due to the pest and total number of

buds on ten shoot in each direction i.e. E, S, W and N of the tree

were recorded weekly and four trees in each of the selected orchard

were observed for noting the pest population, and further

identification was made based on the symptoms of damage made

by the pest, in this manner total number of shoots observed per

orchard were 160. Per cent bud damage was thus calculated. Sapota

seed borer: The total number of harvested fruits on the daily basis

from the orchard and from the total harvested fruits were record the

number of fruits damaged due to the seed borer were also

documented. Addition of the data for all the five days and

recording it into the data sheet on was carried out on Saturday.

Also two light traps per ha are installed in the selected orchards and

weekly count of the seed borer trapped in each trap was taken.
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Phytophthora disease: 10 shoots in each direction of the tree were

observed for the disease incience. Grading the disease intensity on

each shoot was done the scale of 0-4 as follow [see 01.png]
Rating Scale:

0 = No. incidence.

1 =1 - 20% incidence

2 = 21 - 40% incidence

3 = 41 - 60% incidence

4 = 61 -100% incidence
Percent disease incidence will be calculated by following formula.

Each orchard acted as a replication, with monthly data averaged

across five trees per site, resulting in robust biological replication and

within-location consistency. Standard pest and disease assessment

protocols were followed across all years and districts. To ensure

uniformity, field staff underwent annual training, and standardized

proforma were used. Geo-referencing was done for each orchard, and

efforts were made to conduct assessments at consistent time windows

each month, minimizing observational bias.

Meteorological data, including daily maximum and minimum

temperature, relative humidity, and rainfall, were obtained from

India Meteorological Department (IMD) stations located nearest to

each sampling district. These data were aggregated into monthly

means to align with the pest and disease observations.
2.2 Correlation analysis

Correlation analysis was conducted to explore the relationship

between pest damage, disease severity, and weather variables. The

Pearson correlation coefficient was used to determine the strength

and direction of the relationship between each pest or disease

variable and weather parameters, such as maximum temperature,

minimum temperature, relative humidity, and rainfall.
2.3 Time series analysis

To forecast future trends in pest damage and disease severity,

three different time series models were employed: ARIMA (Auto

Regressive Integrated Moving Average), SARIMA (Seasonal Auto

Regressive Integrated Moving Average), and VAR (Vector

Autoregressive). To examine the temporal stability of the residuals

and detect any potential structural breaks in the time series data, the

CUSUM (Cumulative Sum) test was performed on the residuals of

each forecast model. The residuals were plotted against critical bounds

to assess the constancy of parameters over time.

2.3.1 ARIMA model
The ARIMA (1, 1, and 1) model was applied to the time series

data for Bud Borer Damage, Seed Borer Damage, and Phytophthora

Disease to analyze their temporal dynamics. The model parameters

were chosen based on the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) values to ensure a reasonable
frontiersin.org
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fit. Stationarity of each time series was assessed using the

Augmented Dickey-Fuller (ADF) test. The Bud Borer and Seed

Borer series were found to be stationary (p < 0.05), while the

Phytophthora disease series was non-stationary (p > 0.05) and was

differenced once to achieve stationarity before modeling.

2.3.2 SARIMA model
The Seasonal AutoRegressive Integrated Moving Average

(SARIMA) model was applied to account for both non-seasonal and

seasonal components of the time series data. The parameters were set

to (1, 1, 1) for the non-seasonal part and (1, 1, 1, 12) for the seasonal

component, reflecting a yearly seasonality pattern. This configuration

was chosen to capture periodic spikes in damage levels and assess the

seasonal effects on pest damage and disease severity.

The SARIMA model was fitted to monthly data from 2014 to

2022, yielding 120 observations per variable. Model selection was

based on the lowest Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) values. Model performance

and residual independence were assessed through diagnostic

checks, including ACF/PACF plots, the Ljung–Box Q-test, and

Jarque–Bera test for normality of residuals.

2.3.3 VAR model
The VAR model was used to analyze the dynamic

interrelationships among Bud Borer Damage, Phytophthora

Disease Severity, and Seed Borer Damage over the study period.

This multivariate approach used for understanding the shared

influences and possible co-movements between pest damage and

disease severity, enhancing the prediction of future trends.
2.4 Machine learning analysis

A Random Forest analysis was conducted to identify the most

significant weather variables influencing pest damage and disease

severity. The Random Forest model was trained using weather data

as input features and pest damage or disease severity as the target

variable. The model’s feature importance scores indicated that

temperature variables, particularly minimum temperature, were

the most critical factors affecting bud borer and Phytophthora

disease severity. Relative humidity and rainfall had varying

impacts, with relative humidity being more significant for seed

borer damage (Sapota pest and diseases).
2.5 Statistical software and tools

The data analysis for this study was performed using both R and

Python. The R software (version 4.2.2) was utilized with the random

Forest package (version 4.7-1) for conducting the Random Forest

analysis, and the forecast package (version 8.16) for implementing

various time series models. Python (version 3.10) was employed for

more extensive data manipulation and modelling tasks, using the stats

models library (version 0.13.5) to fit ARIMA, SARIMA, and VAR

models and evaluate their performance. Machine learning algorithms
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and model evaluation, was conducted using the scikit-learn library

(version 1.3.0. Data visualization was conducted with the Matplotlib

library (version 3.7.1) and enhanced using the Seaborn library (version

0.12.2). Additionally, the Pandas library (version 1.5.3) and NumPy

library (version 1.23.5) used for numerical computations.
3 Results

3.1 Trend analysis of pest and diseases of
sapota

The trend analysis of pest damage and disease in sapota from

2014 to 2022 reveals varying patterns for each type of damage. The

bud borer damage shows noticeable fluctuations over the 10-year

period, with several years marked by significant peaks and troughs,

indicating that the extent of damage caused by the bud borer has

not followed a consistent upward or downward trend (Figure 1).

Instead, there are periods of increased damage followed by

reductions, suggesting that this pest’s impact may be influenced

by varying external factors, such as environmental conditions or

pest management practices.

Similarly, the seed borer damage also demonstrates variability,

though the fluctuations appear more erratic. The extent of damage

caused by the seed borer fluctuates significantly across different

years, with both sharp increase and decline as observed. This

suggests that the seed borer’s prevalence and the resultant

damage are likely subject to complex, possibly unpredictable

factors that could include climatic variations, pest control

measures, or other ecological dynamics.

In contrast, the Phytophthora disease damage trend is

comparatively more stable, with smaller variations over the years.

Although there are some fluctuations, the changes in the extent of

damage are less pronounced than those seen for the pest damages.

This relative stability might imply that while Phytophthora disease

is consistently present, its severity does not fluctuate as widely from

year to year, potentially due to more stable environmental

conditions that favor or limit the disease’s progression, or more

consistent management practices that keep the disease in check.

To further assess seasonal trends, monthly average Percent

Disease Index (PDI) values from 2014 to 2022 were calculated

and visualized for bud borer, seed borer, and Phytophthora disease

(Figure 2). The analysis revealed that bud borer damage consistently

peaked between May and August, aligning with the onset of the pre-

monsoon and monsoon seasons, which are known to influence

insect phenology and host plant susceptibility. In contrast, seed

borer damage was highest from November to February,

corresponding to cooler and drier months, which favor its life

cycle and fruit infestation behavior. Phytophthora disease severity

showed relatively less fluctuation across months, but exhibited a

mild increase from July to September, coinciding with periods of

elevated humidity and moderate temperatures that facilitate the

pathogen’s sporulation and infection.

Overall, the trends indicate that both pest damage and

disease severity are subject to fluctuations over time, likely
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influenced by a combination of climatic, ecological, and

management factors. Further analysis, particularly in relation

to weather variables, could help elucidate the underlying causes

of these trends.
Frontiers in Plant Science 05
3.2 Correlation analysis

The correlation analysis between weather variables and pest

damage and disease severity in sapota cultivation reveals several key
FIGURE 2

Monthly average percent disease index (PDI) of bud borer, seed borer, and phytophthora in sapota cultivation based on 8-year data (2014–2022).
The figure illustrates seasonal peaks and periods of reduced severity, supporting strategic forecasting and pest/disease management.
FIGURE 1

The chart shows the trends in pest damage (bud borer and seed borer) and disease (Phytophthora) over the years from 2014 to 2022.
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relationships. For Bud Borer Damage, there is a moderate negative

correlation with maximum temperature (r = -0.42), which is

significant suggesting that higher maximum temperatures may be

associated with reduced damage. In contrast, the correlation with

minimum temperature is weakly positive (r = 0.11), indicating a

slight increase in bud borer damage with higher minimum

temperatures (Figure 3). Relative humidity shows a moderate

negative correlation (r = -0.41), implying that increased humidity

may help reduce damage. However, rainfall exhibits a strong

positive correlation (r = 0.69) with bud borer damage, suggesting

that increased rainfall is associated with higher levels of damage.

For Seed Borer Damage, the correlation with maximum

temperature is moderately positive (r = 0.47), indicating that

higher maximum temperatures may lead to increased damage.

Conversely, minimum temperature has a moderate negative

correlation (r = -0.45) with seed borer damage, suggesting that

higher minimum temperatures might reduce the damage. Relative

humidity shows a weak positive correlation (r = 0.24), indicating

only a mild association with seed borer damage. Rainfall, on the

other hand, has a weak negative correlation (r = -0.09), suggesting

that increased rainfall is slightly associated with reduced damage.

Regarding Phytophthora Disease Severity, there is a moderate

negative correlation with maximum temperature (r = -0.42),

suggesting that higher maximum temperatures may reduce

disease severity. In contrast, there is a strong positive correlation

with minimum temperature (r = 0.64), indicating that higher

minimum temperatures are associated with increased disease

severity. Relative humidity shows a moderate negative correlation

(r = -0.55), implying that higher humidity may help reduce disease
Frontiers in Plant Science 06
severity. Rainfall has a near-zero correlation (r = -0.002) with

Phytophthora disease severity, indicating no significant

relationship between rainfall and the disease.

These results highlight the complex and varied interactions

between weather variables and pest and disease dynamics in sapota

cultivation, suggesting that both temperature and humidity play

important roles in influencing these outcomes.
3.3 Auto regressive integrated moving
average

The ARIMA (Auto Regressive Integrated Moving Average)

models were applied to the time series data for Bud Borer, Seed

Borer, and Phytophthora disease to analyze their temporal dynamics

and make forecasts (Figure 4).

The ARIMA (1, 1, and 1) model was used for Bud Borer

damage, incorporating one autoregressive term (AR), one

differencing term (I), and one moving average term (MA). The

model captures a strong negative autoregressive effect, indicating

that the current level of damage is inversely related to the previous

month’s value. However, the moving average component (MA) has

a high standard error, suggesting uncertainty in the estimate. The

AIC (Akaike Information Criterion) and BIC (Bayesian

Information Criterion) values were moderate, suggesting a

reasonable fit, but the model faced convergence issues due to the

limited number of observations. The predictions from the model

show a continuation of the trend and fluctuations observed in the

historical data.
FIGURE 3

The heatmap visualizes the correlation matrix between weather variables (maximum temperature, minimum temperature, relative humidity, and
rainfall) and pest/disease data (Bud Borer Damage, Seed Borer Damage, and Phytophthora Disease Severity).
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The ARIMA (1, 1, and 1) model for Seed Borer damage reveals a

weak positive autoregressive component, suggesting that past values

have a minor positive influence on the current damage level. The

moving average component is nearly -1, indicating a strong negative

influence from past forecast errors, though the high standard error

again makes this estimate less reliable. The residual diagnostics,

including the Ljung-Box test (p-value 0.65) and Jarque-Bera test (p-

value 0.19), indicate no significant autocorrelation in the residuals

and approximate normality, respectively. However, the model fit, as

reflected by the AIC (63.377) and BIC (64.571), is moderate,

suggesting that while the model captures some patterns, there are

likely other factors influencing the damage that are not captured by

the model.

For Phytophthora disease, the ARIMA (1, 1, and 1) model also

suggests a weak positive autoregressive effect, implying that past

values slightly affect current damage levels. The moving average

component is again close to -1, but with a high standard error,

indicating unreliability in this coefficient. The model fit indicators

(AIC: 17.459, BIC: 18.653) suggest a reasonable fit to the data, though

the model may be too simplistic given the potential complexity of the

data. Residual diagnostics (Ljung-Box p-value 0.65 and Jarque-Bera

p-value 0.19) show no significant autocorrelation and that the

residuals are approximately normally distributed.

3.4 Seasonal auto regressive integrated
moving average

The SARIMA (Seasonal Auto Regressive Integrated Moving

Average) model was applied to the time series data of Bud Borer

Damage, Seed Borer Damage, and Phytophthora Disease to forecast

their future trends (Figure 5).

For Bud Borer Damage, SARIMA model was specified with

parameters (1, 1, 1) for the non-seasonal part and (1, 1, 1, 12) for the
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seasonal component, suggesting a yearly seasonality (12-month period).

The forecast for Bud Borer damage shows a continuation of the

fluctuating trend observed in the historical data. The model captures

some of the seasonality and periodic spikes in damage levels, suggesting

that the bud borer damage is influenced by seasonal factors.

The SARIMA model for Seed Borer Damage uses the same

parameters as for Bud Borer (1, 1, 1) (1, 1, 1, 12). This choice

captures both the non-seasonal and seasonal components of the

damage time series. The forecast for Seed Borer damage also shows

a continuation of the observed fluctuations. The model suggests

periodic variations in damage levels, with some months showing

predicted increases or decreases, potentially indicating underlying

seasonal effects. The SARIMA model for Phytophthora Disease also

employs the (1, 1, 1) (1, 1, 1, 12) parameters, aligning with the

assumption of an annual seasonality pattern. The forecast for

Phytophthora disease severity shows a relatively stable trend with

smaller variations over time. This result aligns with the earlier trend

analysis, which indicated that Phytophthora disease damage does

not fluctuate as widely as pest damage.

The diagnostic tests performed on the SARIMAmodel residuals

for Bud Borer, Seed Borer, and Phytophthora disease severity

confirmed the adequacy of the fitted models. The Ljung–Box Q-

test was applied at lag 5 to detect any significant autocorrelation in

the residuals (Table 1). The p-values for Bud Borer (0.569), Seed

Borer (0.224), and Phytophthora (0.524) were all well above the 0.05

threshold, indicating that the residuals do not exhibit significant

autocorrelation and can be considered white noise. This implies that

the models have effectively captured the temporal structure in the

respective time series.

In addition, the Jarque–Bera test was conducted to assess the

normality of residuals (Table 1). For Bud Borer and Seed Borer, the

test statistics were low (0.59 and 0.26, respectively) with high p-

values (0.744 and 0.877), suggesting that the residuals follow a
FIGURE 4

ARIMA predictions for bud borer, seed borer, and phytophthora disease in sapota, based on averaged monthly observed data from 2014 to 2022.
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normal distribution. Phytophthora residuals showed a slightly

higher test statistic (3.88) with a p-value of 0.143, which is still

above the 0.05 threshold, indicating that the assumption of

normality is reasonably satisfied. These results collectively validate

that the SARIMA models are statistically sound for forecasting

purposes, with no significant issues related to residual

autocorrelation or non-normality.

The autocorrelation (ACF) and partial autocorrelation (PACF)

plots of the residuals from the SARIMA models provide important

diagnostic insights into the adequacy of the fitted time series models

for Bud Borer, Seed Borer, and Phytophthora disease severity in

sapota cultivation (Figure 6).

For all three residual series, the ACF plots show no significant

autocorrelation beyond the confidence bounds, indicating that the

residuals do not exhibit strong patterns of serial dependence. This

suggests that the SARIMA models have effectively captured the

temporal structure and trends in the original datasets. Similarly, the

PACF plots for each target confirm the absence of significant partial

autocorrelations, reinforcing the view that the models have

accounted for most of the time-dependent structure, and there is

minimal unexplained autocorrelation remaining.
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Together, the lack of significant spikes in both ACF and PACF

plots supports the conclusion that the residuals resemble white noise-

a key requirement for reliable and valid time series modeling. These

findings validate the statistical soundness of the SARIMA models

used in this study and confirm that the forecasted outputs are based

on well-specified temporal dynamics. Thus, the diagnostic checks

strengthen the interpretability and forecasting reliability of the

SARIMA results for each of the target pest and disease time series.
3.5 Vector autoregressive model

The Vector Autoregressive (VAR) model was applied to the

complete dataset from 2014 to 2022 to analyze and forecast the future

trends of Bud Borer Damage, Phytophthora Disease Severity, and

Seed Borer Damage in sapota cultivation (Figure 7). The model

utilizes the historical data to capture the dynamic interrelationships

among these variables, providing a multivariate perspective on their

potential future behavior.

For Bud Borer Damage, the VAR model forecast indicates

continued fluctuations over the next 12 months, reflecting the

variability observed in the past decade. The model suggests that

the damage levels will likely continue to exhibit similar patterns,

possibly influenced by internal dynamics and interdependencies

with other factors such as weather conditions or pest

management practices.

The forecast for Phytophthora Disease Severity reveals a

relatively stable trend, consistent with the historical data from

2014 to 2022. This result aligns with previous observations that

Phytophthora disease severity does not fluctuate as widely as pest

damage, potentially due to more consistent environmental

conditions or management practices that keep the disease in check.
FIGURE 5

SARIMA forecasts for pest and disease damage in sapota cultivation: The figure presents the observed and forecasted values of (a) Bud Borer
Damage, (b) Phytophthora Disease Severity, and (c) Seed Borer Damage in sapota over time using SARIMA models. The solid lines represent the
observed data, while the dashed lines show the forecasted trends for the next 12 months.
TABLE 1 Diagnostic test results for the SARIMA residuals of Bud Borer,
Seed Borer, and Phytophthora models.

Model
Ljung-Box Q
(p-value)

Jarque-
Bera Stat

Jarque-Bera
p-value

Bud Borer 0.57 0.59 0.744

Seed Borer 0.22 0.26 0.877

Phytophthora 0.52 3.88 0.143
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In the case of Seed Borer Damage, the VAR model projects

ongoing variability, capturing the fluctuating patterns seen in the

observed data. The forecast suggests that seed borer damage levels

will continue to change over time, reflecting the influence of

multiple interacting factors. The multivariate approach of the

VAR model helps in understanding the shared influences and

possible co-movements between pest damage and disease severity,

offering valuable insights into their dynamics.

Overall, the VAR model leverages the entire dataset from 2014

to 2022 to provide a comprehensive understanding of the

interactions between different types of damage and disease

severity, enhancing the ability to predict future trends based on

their historical interdependencies.
3.6 Comparison of ARIMA, SARIMA and
VAR model accuracy

The comparison of model accuracy using Mean Squared Error

(MSE) indicates that the ARIMAmodel generally provides the most

accurate forecasts for Bud Borer Damage and Phytophthora Disease

Severity, with MSE values of 8.03 and 0.20, respectively (Table 2).

This suggests that ARIMA effectively captures the trends and

variability in these two datasets. The SARIMA model also

performs well for these variables, with MSE values of 8.43 for

Bud Borer Damage and 0.21 for Phytophthora Disease Severity,

although it is slightly less accurate than ARIMA. In contrast, the

VAR model shows the highest MSE for Bud Borer Damage (18.82)
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and Phytophthora Disease Severity (0.38), indicating that it is the

least accurate for these two variables.

For Seed Borer Damage, the VAR model outperforms the other

models, achieving the lowest MSE of 17.96. This suggests that VAR

is particularly effective at capturing the dynamics and interactions

influencing Seed Borer Damage. The ARIMAmodel follows with an

MSE of 20.08, indicating reasonable accuracy, while the SARIMA

model has the highest MSE of 55.04, making it the least effective for

this variable.

To study the structural break or instability of data, combined

CUSUM (Cumulative Sum) analysis of standardized residuals for Bud

Borer, Seed Borer, and Phytophthora disease severity over the 8-year

period (2014–2022) was conducted, which revealed that the residuals

for all three variables remained within the established control limits (±

0.5) (Figure 8). This outcome indicates the absence of structural breaks

or parameter instability in the fitted time-series models. Specifically,

while minor fluctuations were observed in the residual paths for Bud

Borer and Seed Borer, these variations remained statistically

insignificant and did not breach the control boundaries. Similarly,

the residuals for Phytophthora disease severity exhibited a stable

pattern throughout the study period, suggesting that the underlying

seasonal and trend structures were well captured.

Overall, the results suggest that the ARIMA model provides the

most accurate forecasts for Bud Borer Damage and Phytophthora

Disease Severity, while the VARmodel is better suited for predicting

Seed Borer Damage. The SARIMA model, while effective for Bud

Borer and Phytophthora, is less accurate for Seed Borer Damage

compared to ARIMA and VAR.
FIGURE 6

Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of residuals from SARIMA models fitted to Bud Borer, Seed Borer,
and Phytophthora disease severity time series in sapota cultivation (2014–2022). The absence of significant autocorrelation in the residuals suggests
that the SARIMA models adequately captured the underlying structure of the time series.
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3.7 Random forest analysis

The Random Forest analysis reveals distinct patterns in how

meteorological variables influence pest damage and disease severity

in sapota cultivation over a 8-year period (2014–2022) (Figure 9).

For bud borer damage, minimum temperature (Min T)

emerged as the most influential variable, accounting for

approximately 48% of the total importance. This indicates that

cooler night-time conditions strongly favor pest activity. Maximum

temperature (Max T) followed with around 32%, suggesting that

warm daytime conditions also contribute. Relative humidity (RH)

and rainfall had relatively lower influences, contributing 12% and

8%, respectively, indicating a lesser role in bud borer prediction.

In the case of seed borer damage, RH played the most dominant

role with a 38% contribution, indicating the pest’s sensitivity to

atmospheric moisture. This was followed by Min T (26%), rainfall

(21%), and Max T (15%), highlighting that seed borer damage is

favored under drier yet cooler conditions, but less driven by

extreme heat.

For Phytophthora disease severity, Min T again ranked highest,

contributing 46%, reinforcing the pathogen’s preference for cooler

environments. RH was the next most important variable (27%),
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aligning with the well-established role of humidity in promoting

sporulation and infection. Max T accounted for 15%, while rainfall

had the least contribution at 12%, possibly due to buffered

microclimatic effects in orchard systems.
4 Discussion

The present study offers a comprehensive spatio-temporal

analysis of three major biotic constraints in sapota cultivation—

bud borer, seed borer, and Phytophthora disease—over an 8-year

period (2014–2022), integrating time-series models (ARIMA,

SARIMA, VAR), correlation analysis, and machine learning

(Random Forest). The results highlight the differential response of

these pests and pathogens to key climatic variables, especially

temperature, relative humidity, and rainfall, offering critical

insights for predictive pest management under changing

climate regimes.

The trend analysis showed that bud borer and seed borer

damage exhibited considerable inter-annual fluctuations,

indicating sensitivity to varying environmental and management

conditions. In contrast, Phytophthora disease severity remained

relatively stable over time, possibly due to its consistent ecological

niche in sapota orchards and the effect of static cultural practices.

This aligns with observations by Balanagouda et al. (2021), who

noted that Phytophthora-induced diseases in perennials often

persist at background levels, with surges driven by specific

conducive microclimates rather than broad seasonal shifts.

Correlation analysis further revealed species-specific climatic

associations. Bud borer damage showed a strong positive

correlation with rainfall and a moderate negative correlation with

maximum temperature, suggesting its population thrives under
TABLE 2 Model accuracy comparison for forecasting pest and disease in
sapota cultivation.

Model
Bud

Borer MSE
Phytophthora

MSE
Seed

Borer MSE

ARIMA 8.03 0.20 20.07

SARIMA 8.43 0.21 55.04

VAR 18.82 0.38 17.96
FIGURE 7

Vector autoregressive (VAR) model forecasts for pest and disease damage in sapota cultivation (2014-2022). The figure illustrates the observed and
forecasted values for Bud Borer Damage, Phytophthora Disease Severity, and Seed Borer Damage from 2014 to 2022 using averaged monthly data.
The solid lines represent the historical observed data, while the dashed lines indicate the model’s forecasted trends.
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moist but not excessively hot conditions. These findings are

consistent with Gajera et al. (2023), who reported positive

associations between bud borer incidence and both temperature

and evaporation, but a negative relationship with evening relative

humidity. Seed borer, on the other hand, showed a positive

correlation with maximum temperature and a negative

correlation with minimum temperature, implying its preference

for warm, dry environments. The weak correlation of Phytophthora

severity with rainfall but strong positive correlation with minimum
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temperature suggests that nighttime warmth enhances infection

cycles more than total precipitation—an insight supported by

Balanagouda et al. (2021), who demonstrated peak Phytophthora

sporulation at 18°C, with a sharp decline at 28°C.

The Random Forest-based analysis revealed that sapota pests

and diseases respond distinctly to weather variability, with

minimum temperature and relative humidity emerging as the

most influential climatic drivers across the three target organisms:

bud borer, seed borer, and Phytophthora disease. For bud borer,
FIGURE 8

Combined CUSUM (cumulative sum) plots of standardized residuals for Bud Borer, Seed Borer, and Phytophthora disease severity in sapota
cultivation from 2014 to 2022. The residuals for all three variables remain within control limits (± 0.5), indicating no structural breaks or instability
over the 8-year period.
FIGURE 9

Normalized relative importance of meteorological variables in forecasting Bud Borer, Seed Borer, and Phytophthora disease severity in sapota
cultivation based on 8-year averaged data (2014–2022).
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minimum temperature (Min T) accounted for the largest share of

prediction importance (~48%), indicating that lower night

temperatures create favorable conditions for pest development.

This observation aligns with the findings of Bisane and Naik

(2021), who reported that reduced night temperatures increase

bud borer activity in sapota. Similarly, Nyamukondiwa et al.

(2013) emphasized the role of thermal regimes in modulating

insect reproductive rates, with lower thresholds enhancing pest

survival. Maximum temperature (Max T) contributed around 32%,

reflecting its role in influencing larval activity during daylight hours.

In contrast, relative humidity (RH) and rainfall had minor roles

(~12% and 8%, respectively), possibly due to the relatively sheltered

oviposition behavior of bud borers, which reduces direct exposure

to ambient humidity.

In the case of seed borer, the analysis showed that RH (38%) was

the most critical factor, suggesting strong dependence of pest

development on moisture regimes. This is corroborated by Bisane

(2016), who found that seed borer incidence was significantly higher

under low RH conditions (<50%) and minimal precipitation. Min T

(26%) followed as an important predictor, as cooler conditions can

prolong larval development stages, increasing host exposure. The

notable role of rainfall (21%) further supports this, as fluctuations in

moisture can affect egg viability and fruit rot, indirectly impacting

larval survival. Max T, with the lowest importance (~15%), suggests

that this pest is relatively less responsive to daytime heat.

Phytophthora disease severity was also found to be primarily

driven by Min T (46%), reinforcing the pathogen’s preference for

cool, moist conditions for sporulation and infection, as highlighted

by Balanagouda et al. (2021). RH (27%) was the second-most

important factor, consistent with studies by Erwin and Ribeiro

(1996), who demonstrated that high ambient humidity facilitates

the survival of sporangia and infection success. Interestingly,

although rainfall (12%) has historically been linked with

Phytophthora outbreaks, its lower importance in this model may

reflect the buffering effects of soil drainage and canopy microclimate

in orchard systems, as noted by Ristaino and Gumpertz (2000). The

moderate influence of Max T (15%) suggests that while warm

conditions may inhibit disease spread, their impact is secondary

to cooler night-time temperatures. Collectively, these findings

highlight that temperature—especially night-time minimum

temperatures—is a consistent driver of both pest and disease

dynamics in sapota systems. Humidity-related variables, while

crucial, exhibit more target-specific roles—being highly influential

for seed borer and moderately for Phytophthora. These insights are

vital for developing climate-smart advisory systems, enabling

region- and season-specific predictions that support integrated

pest and disease management (IPDM) in perennial fruit orchards.

Time-series modeling further validated these observations. The

ARIMA model performed best for bud borer (MSE = 8.03) and

Phytophthora (MSE = 0.20), indicating that these variables exhibit

relatively stable temporal structures that can be captured through

linear autoregressive processes. However, SARIMA improved

forecasts slightly by capturing seasonal effects, confirming earlier

findings from Loona et al. (2025) and Patil et al. (2025). The VAR

model, which captures inter-variable dependencies, outperformed
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other models in forecasting seed borer (MSE = 17.96), suggesting

that its damage pattern is likely shaped by joint ecological or pest-

pest interactions. This is consistent with reports from Bana et al.

(2024), who used SARIMA models to capture co-occurring pest

fluctuations in mango.

Collectively, the modeling framework applied in this study

underscores the need for customized forecasting approaches for

each pest/pathogen based on their ecological behavior and climate

responsiveness. No single model universally fits all pests: univariate

ARIMA/SARIMA models suit pests with consistent seasonal

patterns, while RF and VAR models capture more complex,

multivariate and nonlinear dependencies.

From a disease management perspective, these findings have

direct practical implications. Forecast models emphasizing minimum

temperature and RH can be embedded into early warning systems or

mobile-based advisories for sapota growers, allowing timely

application of biocontrol agents or insecticides. Moreover, the

demonstrated influence of nocturnal temperatures highlights the

potential impact of climate change, particularly nighttime warming

trends, on pest/pathogen emergence in perennial horticulture

(Balanagouda et al., 2021; Pautasso et al., 2012).

In addition to the ARIMA, SARIMA, and VARmodels employed

in this study, alternative time-series forecasting methods more

suitable for small datasets deserve consideration. For instance,

Exponential Smoothing (ETS) models, such as Holt-Winters, are

widely regarded for their simplicity and effectiveness in short-term

forecasting, especially when seasonal patterns are present but the

number of observations is limited. Similarly, Bayesian Structural

Time Series (BSTS) models offer a probabilistic framework that can

incorporate prior information, provide uncertainty estimates, and

perform well with small or irregular datasets. These methods may

offer complementary insights or enhanced robustness under data-

constrained conditions. While the primary objective of this study was

to assess classical and multivariate time series models for pest and

disease forecasting using a 8-year monthly dataset, future work may

benefit from comparing the performance of ETS or BSTS models to

enhance prediction accuracy and operational decision-making in

cases where data scarcity is a constraint.
5 Conclusion

This study comprehensively analyzed the temporal dynamics of

sapota pest damage and Phytophthora disease from 2014 to 2022,

emphasizing the significant influence of climatic factors. Trend

analysis revealed fluctuating patterns in bud and seed borer damage,

likely due to varying climatic conditions and pest management, while

Phytophthora disease severity remained relatively stable. Correlation

analysis highlighted complex interactions, with notable positive

correlations between rainfall with bud borer, Phytophthora damage

with minimum temperature. The application of time series models

demonstrated their varying effectiveness, with the ARIMA model

providing the most accurate forecasts for bud borer damage and

Phytophthora severity, while the VAR model excelled in forecasting

seed borer damage. Random Forest analysis further underscored the
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critical role of minimum temperature as the most influential factor for

bud borer damage and Phytophthora severity, whereas relative

humidity was most significant for seed borer damage.

These findings collectively emphasize the crucial role of climatic

factors, particularly temperature and humidity, in shaping pest and

disease outcomes in sapota cultivation. The insights gained from

this study are invaluable for developing targeted and effective pest

and disease management strategies that account for the dynamic

effects of weather variables. By integrating climatic data into

agricultural planning, sapota cultivation can enhance its resilience

against increasing weather variability, ultimately leading to more

sustainable and profitable production while reducing the

indiscriminate use of pesticides and fungicides.
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