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Introduction: Sapota (Manilkara zapota L.) is a major tropical fruit crop prone to
damage by bud borer (Anarsia achrasella), seed borer (Trymalitis margarias), and
fruit rot caused by Phytophthora species. Climatic variability strongly influences
these biotic stresses, yet long-term temporal patterns remain poorly quantified.
Methods: A decade-long dataset (2014-2022) from 21 major sapota-growing
districts of Maharashtra, India, was analyzed to study pest and disease dynamics.
Statistical and machine learning approaches, including ARIMA, SARIMA, and VAR
time-series models, along with Random Forest feature importance analysis, were
applied to quantify climatic influences and forecast severity trends. Correlation
analyses were used to assess weather—pest/disease associations.

Results: Trend analysis revealed fluctuating bud and seed borer damage, while
Phytophthora disease severity remained relatively stable. Bud borer incidence was
positively correlated with rainfall (r = 0.69), seed borer with maximum temperature (r
= 0.47), and Phytophthora with minimum temperature (r = 0.64). The ARIMA model
provided accurate forecasts for bud borer (MSE = 8.03) and Phytophthora (MSE =
0.20), while the VAR model performed best for seed borer (MSE = 17.96). Random
Forest analysis identified minimum temperature as the most critical driver of bud
borer and Phytophthora severity, whereas relative humidity was most influential for
seed borer.

Discussion: The integration of statistical and machine learning models provides
robust insights into sapota pest and disease epidemiology under climatic
variability. These findings highlight the importance of temperature, humidity,
and rainfall in shaping pest—pathogen interactions and provide predictive tools to
design timely, targeted, and climate-resilient management strategies for
sapota cultivation.
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sapota, pest damage, phytophthora disease, climatic factors, ARIMA, SARIMA, VAR,
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1 Introduction

Sapota (Manilkara zapota L.) is a prominent tropical fruit crop
belonging to the Sapotaceae family is widely cultivated in various
tropical and subtropical regions globally, including India, Mexico,
Philippines and other Southeast Asian countries. India ranks
among the top global producers of sapota, with approximately
170,000 hectares under cultivation and an annual production of 1.3
million tonnes (ICAR, 2021). Sapota offers various nutritional
benefits being rich in vitamins, minerals, dietary fiber and
possesses pharmacological properties including antioxidant and
anti-inflammatory effects (Kaur et al., 2020). However, the
productivity remains sub-optimal due to recurring pest and
disease outbreaks.

The cultivation of sapota is highly susceptible to a range of pests
and diseases which can significantly impact yield and quality.
Numerous pests including the Sapota bud borer (Anarsia
achrasella Bradley), Mealybug (Planococcus citri Risso), Leaf
webber (Nephopteryx eugraphella Ragonot), Scale insects
(Pulvinaria psidii Maskell) and Thrips (Scirtothrips dorsalis
Hood) are known to cause substantial economic losses (Mani and
Jayanthi, 2022; Sathish et al., 2014). These pests not only reduce
fruit quality and marketability but also lead to significant declines in
production due to their direct damage and indirect effects on plant
health. Among the most damaging are the sapota bud borer, Sapota
seed borer and disease caused by Phytophthora species. Yield losses
due to sapota bud borer have been estimated at 30-40%, particularly
during peak flowering and fruit setting periods (Mani and Jayanthi,
2022). Seed borer can cause 20-25% fruit loss, rendering the fruits
unmarketable (Bisane, 2016), while Phytophthora fruit rot leads to
10-20% loss under favorable climatic conditions, with even higher
losses (>50%) reported during years with heavy monsoon rains and
poor drainage (Malshe and Shinde, 2016). These biotic stresses
contribute to substantial economic losses annually, adversely
affecting farmer income and supply chains.

The sapota bud borer is a notorious insect pest that primarily
targets young shoots and flower buds, leading to considerable yield
losses (Mani and Jayanthi, 2022). The larvae bore into the buds,
causing wilting, drying and eventual dropping of the affected plant
parts thereby directly impacting fruit setting and overall
productivity which is a significant threat to fruit development and
marketability whereas the sapota seed borer primarily targets the
developing seeds within the sapota fruit, leading to considerable
yield losses and rendering affected fruits unmarketable (Mani and
Jayanthi, 2022). The larvae bore into the fruit and feed on the seeds,
causing internal damage that can lead to premature fruit drop,
rotting and reduced fruit quality. This direct damage to the fruit’s
core significantly impacts overall productivity and the economic
viability of sapota cultivation.

Concurrently, Phytophthora species pose a severe threat to
sapota cultivation, causing various symptoms such as root rot,
collar rot, and fruit rot (Joshi et al., 2014; Somwanshi et al.,
2021). These pathogens are particularly destructive in hot and
humid tropical environments where sapota is extensively
cultivated. Phytophthora infections typically manifest as water-
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soaked lesions on the affected tissues, leading to rapid decay and
plant mortality in severe cases. Phytophthora can lead to fruit rot,
especially on fruits in the lower canopy. Its incidence is highly
dependent on environmental conditions with heavy rain during the
monsoon season and poor drainage exacerbating disease severity.
This pathogen thrives in conditions of elevated temperatures and
high humidity, particularly when water directly contacts the fruit
(Liu et al., 2018; Joshi et al., 2014). The persistent and rapid spread
of Phytophthora diseases, thriving under favorable weather
conditions, has made them a significant challenge and threat to
sapota growers (Joshi et al., 2014).

High humidity and extended periods of rainfall create ideal
conditions for the proliferation and spread of Phytophthora
especially during and after monsoon seasons similarly, minimum
temperature and low rainfall, relative humidity can favor the life
cycle and population dynamics of the sapota bud borer (Gajera
et al., 2023) likewise low rainfall, high relative humidity and bright
sunshine hours lead to higher infestations of sapota seed borer
(Bisane and Naik, 2021). These shifts in temperature and other
atmospheric conditions can markedly alter the prevalence of pest
status. This is attributed to their direct bearing on the viability,
propagation and spread of insect pests and pathogens alike. Hence,
a holistic grasp of the complex interplay and the intricate
connections among climatic elements, pest ethology and disease
progression becomes paramount significance for establishing
focused and efficacious management protocols in sapota
cultivation (Iglesias and Rosenzweig, 2007; Estay et al., 2014).

Though previous research consistently shows that global
climate change exacerbates the risk of increased pest incidence in
agricultural regions (Elad and Pertot, 2014.) and describe the
influence of weather parameters on population of sapota bud
borer, seed borer and Phytophthora disease, studies on long-term
seasonal trends of how these pattern change over time are to be
emphasized upon which the overall pattern of pest migration
strategy and sudden pest outbreaks can be predicted (Thumar
Rasiklal et al., 2015). Using time series models ARIMA
(Autoregressive Integrated Moving Average) and SARIMA
(Seasonal Autoregressive Integrated Moving Average) can give us
a much better scope to understand these patterns with minute
detailing, as they can capture both quick changes and long-term
seasonal trends in assessing the severity of pests and diseases (Box
et al., 2015; Loona et al., 2025; Patil et al., 2025; Singh et al., 2025).

Accurate forecasting of pest and disease dynamics also holds
immense practical relevance by facilitating time-sensitive and need-
based insecticide and fungicide applications (Loona et al., 2025). By
anticipating the peak periods of bud borer and seed borer
infestation, or the onset of Phytophthora outbreaks, farmers can
align chemical interventions more precisely with pest and pathogen
activity windows. This minimizes the risk of premature or delayed
sprays, both of which reduce efficacy and increase costs. Early
warnings derived from ARIMA and SARIMA models can help
optimize the timing and frequency of pesticide applications,
enhancing control efficiency while reducing unnecessary chemical
use (Loona et al., 2025; Patil et al., 2025; Singh et al., 2025). Such
targeted application not only mitigates yield losses and economic
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damage but also reduces environmental contamination and
pesticide residues in agriculture (Amoghavarsha et al, 2021).
Integrating predictive modeling into pest management schedules
thus serves as a crucial tool for advancing sustainable sapota
cultivation under increasingly variable climatic conditions.

Present study directly addresses key research gaps by
investigating the severity of both sapota bud borer seed borer and
Phytophthora across various agro-climatic regions. We aim to
develop and validate ARIMA and SARIMA forecasting models to
accurately predict the incidence and provide precise forewarnings,
enabling farmers to implement timely and effective management
strategies. Furthermore, our research will emphasize the critical
need to integrate climatic data into agricultural planning, boosting
sapota cultivation’s resilience against the increasing variability in
weather patterns caused by climate change. Ultimately, the findings
from this study are expected to empower farmers and policymakers
to propose targeted pest and disease management strategies.

2 Materials and methods
2.1 Study area and data collection

The study was conducted to analyze pest damage and disease
severity in sapota (Manilkara zapota (L.) P. Royen) cultivation
across 21 major sapota-producing districts of Maharashtra, India,
from January 2014 to December 2022. These districts—covering the
Vidarbha, Marathwada, and Western Maharashtra agro-climatic
zones—include Jalna, Wardha, Amravati, Nanded, Aurangabad,
Akola, Chandrapur, Jalgaon, Buldana, Yavatmal, Ahmadnagar,
Dhule, Nagpur, Nandurbar, Nashik, Parbhani, Beed, Gadchiroli,
Hingoli, Washim, and Chhatrapati Sambhajinagar.

Guidelines for scouting of pests in sapota include selection of
orchards and trees, wherein randomly one village may be covered in
the morning and another in the evening. In each orchard, 4 trees
were observed by selecting one tree from each direction (E, S, W
and N). Orchards having at least one acre area and assigned and
villages at 10 Km distance are preferred, however, adjoining village
was also considered if it has at least 50 ha area. The names of village
and number of growers were noted for fixed plots only.

Method of observations of Insects: Sapota bud borer: The
number of buds infested due to the pest and total number of
buds on ten shoot in each direction i.e. E, S, W and N of the tree
were recorded weekly and four trees in each of the selected orchard
were observed for noting the pest population, and further
identification was made based on the symptoms of damage made
by the pest, in this manner total number of shoots observed per
orchard were 160. Per cent bud damage was thus calculated. Sapota
seed borer: The total number of harvested fruits on the daily basis
from the orchard and from the total harvested fruits were record the
number of fruits damaged due to the seed borer were also
documented. Addition of the data for all the five days and
recording it into the data sheet on was carried out on Saturday.
Also two light traps per ha are installed in the selected orchards and
weekly count of the seed borer trapped in each trap was taken.
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Phytophthora disease: 10 shoots in each direction of the tree were

observed for the disease incience. Grading the disease intensity on

each shoot was done the scale of 0-4 as follow [see 01.png]
Rating Scale:

0 = No. incidence.

1 =1 - 20% incidence

2 =21 - 40% incidence
3 =41 - 60% incidence
4 =61 -100% incidence

Percent disease incidence will be calculated by following formula.

Each orchard acted as a replication, with monthly data averaged
across five trees per site, resulting in robust biological replication and
within-location consistency. Standard pest and disease assessment
protocols were followed across all years and districts. To ensure
uniformity, field staff underwent annual training, and standardized
proforma were used. Geo-referencing was done for each orchard, and
efforts were made to conduct assessments at consistent time windows
each month, minimizing observational bias.

Meteorological data, including daily maximum and minimum
temperature, relative humidity, and rainfall, were obtained from
India Meteorological Department (IMD) stations located nearest to
each sampling district. These data were aggregated into monthly
means to align with the pest and disease observations.

2.2 Correlation analysis

Correlation analysis was conducted to explore the relationship
between pest damage, disease severity, and weather variables. The
Pearson correlation coefficient was used to determine the strength
and direction of the relationship between each pest or disease
variable and weather parameters, such as maximum temperature,
minimum temperature, relative humidity, and rainfall.

2.3 Time series analysis

To forecast future trends in pest damage and disease severity,
three different time series models were employed: ARIMA (Auto
Regressive Integrated Moving Average), SARIMA (Seasonal Auto
Regressive Integrated Moving Average), and VAR (Vector
Autoregressive). To examine the temporal stability of the residuals
and detect any potential structural breaks in the time series data, the
CUSUM (Cumulative Sum) test was performed on the residuals of
each forecast model. The residuals were plotted against critical bounds
to assess the constancy of parameters over time.

2.3.1 ARIMA model

The ARIMA (1, 1, and 1) model was applied to the time series
data for Bud Borer Damage, Seed Borer Damage, and Phytophthora
Disease to analyze their temporal dynamics. The model parameters
were chosen based on the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) values to ensure a reasonable
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fit. Stationarity of each time series was assessed using the
Augmented Dickey-Fuller (ADF) test. The Bud Borer and Seed
Borer series were found to be stationary (p < 0.05), while the
Phytophthora disease series was non-stationary (p > 0.05) and was
differenced once to achieve stationarity before modeling.

2.3.2 SARIMA model

The Seasonal AutoRegressive Integrated Moving Average
(SARIMA) model was applied to account for both non-seasonal and
seasonal components of the time series data. The parameters were set
to (1, 1, 1) for the non-seasonal part and (1, 1, 1, 12) for the seasonal
component, reflecting a yearly seasonality pattern. This configuration
was chosen to capture periodic spikes in damage levels and assess the
seasonal effects on pest damage and disease severity.

The SARIMA model was fitted to monthly data from 2014 to
2022, yielding 120 observations per variable. Model selection was
based on the lowest Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) values. Model performance
and residual independence were assessed through diagnostic
checks, including ACF/PACF plots, the Ljung-Box Q-test, and
Jarque-Bera test for normality of residuals.

2.3.3 VAR model

The VAR model was used to analyze the dynamic
interrelationships among Bud Borer Damage, Phytophthora
Disease Severity, and Seed Borer Damage over the study period.
This multivariate approach used for understanding the shared
influences and possible co-movements between pest damage and
disease severity, enhancing the prediction of future trends.

2.4 Machine learning analysis

A Random Forest analysis was conducted to identify the most
significant weather variables influencing pest damage and disease
severity. The Random Forest model was trained using weather data
as input features and pest damage or disease severity as the target
variable. The model’s feature importance scores indicated that
temperature variables, particularly minimum temperature, were
the most critical factors affecting bud borer and Phytophthora
disease severity. Relative humidity and rainfall had varying
impacts, with relative humidity being more significant for seed
borer damage (Sapota pest and diseases).

2.5 Statistical software and tools

The data analysis for this study was performed using both R and
Python. The R software (version 4.2.2) was utilized with the random
Forest package (version 4.7-1) for conducting the Random Forest
analysis, and the forecast package (version 8.16) for implementing
various time series models. Python (version 3.10) was employed for
more extensive data manipulation and modelling tasks, using the stats
models library (version 0.13.5) to fit ARIMA, SARIMA, and VAR
models and evaluate their performance. Machine learning algorithms
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and model evaluation, was conducted using the scikit-learn library
(version 1.3.0. Data visualization was conducted with the Matplotlib
library (version 3.7.1) and enhanced using the Seaborn library (version
0.12.2). Additionally, the Pandas library (version 1.5.3) and NumPy
library (version 1.23.5) used for numerical computations.

3 Results

3.1 Trend analysis of pest and diseases of
sapota

The trend analysis of pest damage and disease in sapota from
2014 to 2022 reveals varying patterns for each type of damage. The
bud borer damage shows noticeable fluctuations over the 10-year
period, with several years marked by significant peaks and troughs,
indicating that the extent of damage caused by the bud borer has
not followed a consistent upward or downward trend (Figure 1).
Instead, there are periods of increased damage followed by
reductions, suggesting that this pest’s impact may be influenced
by varying external factors, such as environmental conditions or
pest management practices.

Similarly, the seed borer damage also demonstrates variability,
though the fluctuations appear more erratic. The extent of damage
caused by the seed borer fluctuates significantly across different
years, with both sharp increase and decline as observed. This
suggests that the seed borer’s prevalence and the resultant
damage are likely subject to complex, possibly unpredictable
factors that could include climatic variations, pest control
measures, or other ecological dynamics.

In contrast, the Phytophthora disease damage trend is
comparatively more stable, with smaller variations over the years.
Although there are some fluctuations, the changes in the extent of
damage are less pronounced than those seen for the pest damages.
This relative stability might imply that while Phytophthora disease
is consistently present, its severity does not fluctuate as widely from
year to year, potentially due to more stable environmental
conditions that favor or limit the disease’s progression, or more
consistent management practices that keep the disease in check.

To further assess seasonal trends, monthly average Percent
Disease Index (PDI) values from 2014 to 2022 were calculated
and visualized for bud borer, seed borer, and Phytophthora disease
(Figure 2). The analysis revealed that bud borer damage consistently
peaked between May and August, aligning with the onset of the pre-
monsoon and monsoon seasons, which are known to influence
insect phenology and host plant susceptibility. In contrast, seed
borer damage was highest from November to February,
corresponding to cooler and drier months, which favor its life
cycle and fruit infestation behavior. Phytophthora disease severity
showed relatively less fluctuation across months, but exhibited a
mild increase from July to September, coinciding with periods of
elevated humidity and moderate temperatures that facilitate the
pathogen’s sporulation and infection.

Overall, the trends indicate that both pest damage and
disease severity are subject to fluctuations over time, likely
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of these trends.

Trend of Pest Damage and Disease Over the Years
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FIGURE 1

The chart shows the trends in pest damage (bud borer and seed borer) and disease (Phytophthora) over the years from 2014 to 2022.

influenced by a combination of climatic, ecological, and 3.2 Correlation ana[ysis

management factors. Further analysis, particularly in relation
to weather variables, could help elucidate the underlying causes

Emm Bud Borer
mm Seed Borer
sl mmm Phytophthora

Mean Percent Disease Index (PDI, %)

Jan Apr May Jun Jul Aug Sep
Months

FIGURE 2

The correlation analysis between weather variables and pest
damage and disease severity in sapota cultivation reveals several key

Monthly average percent disease index (PDI) of bud borer, seed borer, and phytophthora in sapota cultivation based on 8-year data (2014-2022).

The figure illustrates seasonal peaks and periods of reduced severity, supporting strategic forecasting and pest/disease management.
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relationships. For Bud Borer Damage, there is a moderate negative
-0.42), which is
significant suggesting that higher maximum temperatures may be

correlation with maximum temperature (r =

associated with reduced damage. In contrast, the correlation with
minimum temperature is weakly positive (r = 0.11), indicating a
slight increase in bud borer damage with higher minimum
temperatures (Figure 3). Relative humidity shows a moderate
negative correlation (r = -0.41), implying that increased humidity
may help reduce damage. However, rainfall exhibits a strong
positive correlation (r = 0.69) with bud borer damage, suggesting
that increased rainfall is associated with higher levels of damage.
For Seed Borer Damage, the correlation with maximum
temperature is moderately positive (r = 0.47), indicating that
higher maximum temperatures may lead to increased damage.
Conversely, minimum temperature has a moderate negative
correlation (r = -0.45) with seed borer damage, suggesting that
higher minimum temperatures might reduce the damage. Relative
humidity shows a weak positive correlation (r = 0.24), indicating
only a mild association with seed borer damage. Rainfall, on the
other hand, has a weak negative correlation (r = -0.09), suggesting
that increased rainfall is slightly associated with reduced damage.
Regarding Phytophthora Disease Severity, there is a moderate
-0.42),
suggesting that higher maximum temperatures may reduce

negative correlation with maximum temperature (r =

disease severity. In contrast, there is a strong positive correlation
0.64), indicating that higher
minimum temperatures are associated with increased disease

with minimum temperature (r =

severity. Relative humidity shows a moderate negative correlation
(r = -0.55), implying that higher humidity may help reduce disease

10.3389/fpls.2025.1659709

-0.002) with
Phytophthora disease severity, indicating no significant

severity. Rainfall has a near-zero correlation (r =

relationship between rainfall and the disease.

These results highlight the complex and varied interactions
between weather variables and pest and disease dynamics in sapota
cultivation, suggesting that both temperature and humidity play
important roles in influencing these outcomes.

3.3 Auto regressive integrated moving
average

The ARIMA (Auto Regressive Integrated Moving Average)
models were applied to the time series data for Bud Borer, Seed
Borer, and Phytophthora disease to analyze their temporal dynamics
and make forecasts (Figure 4).

The ARIMA (1, 1, and 1) model was used for Bud Borer
damage, incorporating one autoregressive term (AR), one
differencing term (I), and one moving average term (MA). The
model captures a strong negative autoregressive effect, indicating
that the current level of damage is inversely related to the previous
month’s value. However, the moving average component (MA) has
a high standard error, suggesting uncertainty in the estimate. The
AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion) values were moderate, suggesting a
reasonable fit, but the model faced convergence issues due to the
limited number of observations. The predictions from the model
show a continuation of the trend and fluctuations observed in the
historical data.

Correlation Matrix of Weather and Biotic Variables
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FIGURE 3

The heatmap visualizes the correlation matrix between weather variables (maximum temperature, minimum temperature, relative humidity, and

rainfall) and pest/disease data (Bud Borer Damage, Seed Borer Damage, and Phytophthora Disease Severity).
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FIGURE 4

ARIMA predictions for bud borer, seed borer, and phytophthora disease in sapota, based on averaged monthly observed data from 2014 to 2022.

The ARIMA (1, 1, and 1) model for Seed Borer damage reveals a
weak positive autoregressive component, suggesting that past values
have a minor positive influence on the current damage level. The
moving average component is nearly -1, indicating a strong negative
influence from past forecast errors, though the high standard error
again makes this estimate less reliable. The residual diagnostics,
including the Ljung-Box test (p-value 0.65) and Jarque-Bera test (p-
value 0.19), indicate no significant autocorrelation in the residuals
and approximate normality, respectively. However, the model fit, as
reflected by the AIC (63.377) and BIC (64.571), is moderate,
suggesting that while the model captures some patterns, there are
likely other factors influencing the damage that are not captured by
the model.

For Phytophthora disease, the ARIMA (1, 1, and 1) model also
suggests a weak positive autoregressive effect, implying that past
values slightly affect current damage levels. The moving average
component is again close to -1, but with a high standard error,
indicating unreliability in this coefficient. The model fit indicators
(AIC: 17.459, BIC: 18.653) suggest a reasonable fit to the data, though
the model may be too simplistic given the potential complexity of the
data. Residual diagnostics (Ljung-Box p-value 0.65 and Jarque-Bera
p-value 0.19) show no significant autocorrelation and that the
residuals are approximately normally distributed.

3.4 Seasonal auto regressive integrated
moving average

The SARIMA (Seasonal Auto Regressive Integrated Moving
Average) model was applied to the time series data of Bud Borer
Damage, Seed Borer Damage, and Phytophthora Disease to forecast
their future trends (Figure 5).

For Bud Borer Damage, SARIMA model was specified with
parameters (1, 1, 1) for the non-seasonal part and (1, 1, 1, 12) for the
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seasonal component, suggesting a yearly seasonality (12-month period).
The forecast for Bud Borer damage shows a continuation of the
fluctuating trend observed in the historical data. The model captures
some of the seasonality and periodic spikes in damage levels, suggesting
that the bud borer damage is influenced by seasonal factors.

The SARIMA model for Seed Borer Damage uses the same
parameters as for Bud Borer (1, 1, 1) (1, 1, 1, 12). This choice
captures both the non-seasonal and seasonal components of the
damage time series. The forecast for Seed Borer damage also shows
a continuation of the observed fluctuations. The model suggests
periodic variations in damage levels, with some months showing
predicted increases or decreases, potentially indicating underlying
seasonal effects. The SARIMA model for Phytophthora Disease also
employs the (1, 1, 1) (1, 1, 1, 12) parameters, aligning with the
assumption of an annual seasonality pattern. The forecast for
Phytophthora disease severity shows a relatively stable trend with
smaller variations over time. This result aligns with the earlier trend
analysis, which indicated that Phytophthora disease damage does
not fluctuate as widely as pest damage.

The diagnostic tests performed on the SARIMA model residuals
for Bud Borer, Seed Borer, and Phytophthora disease severity
confirmed the adequacy of the fitted models. The Ljung-Box Q-
test was applied at lag 5 to detect any significant autocorrelation in
the residuals (Table 1). The p-values for Bud Borer (0.569), Seed
Borer (0.224), and Phytophthora (0.524) were all well above the 0.05
threshold, indicating that the residuals do not exhibit significant
autocorrelation and can be considered white noise. This implies that
the models have effectively captured the temporal structure in the
respective time series.

In addition, the Jarque-Bera test was conducted to assess the
normality of residuals (Table 1). For Bud Borer and Seed Borer, the
test statistics were low (0.59 and 0.26, respectively) with high p-
values (0.744 and 0.877), suggesting that the residuals follow a
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FIGURE 5

SARIMA forecasts for pest and disease damage in sapota cultivation: The figure presents the observed and forecasted values of (a) Bud Borer
Damage, (b) Phytophthora Disease Severity, and (c) Seed Borer Damage in sapota over time using SARIMA models. The solid lines represent the
observed data, while the dashed lines show the forecasted trends for the next 12 months.

normal distribution. Phytophthora residuals showed a slightly
higher test statistic (3.88) with a p-value of 0.143, which is still
above the 0.05 threshold, indicating that the assumption of
normality is reasonably satisfied. These results collectively validate
that the SARIMA models are statistically sound for forecasting
purposes, with no significant issues related to residual
autocorrelation or non-normality.

The autocorrelation (ACF) and partial autocorrelation (PACF)
plots of the residuals from the SARIMA models provide important
diagnostic insights into the adequacy of the fitted time series models
for Bud Borer, Seed Borer, and Phytophthora disease severity in
sapota cultivation (Figure 6).

For all three residual series, the ACF plots show no significant
autocorrelation beyond the confidence bounds, indicating that the
residuals do not exhibit strong patterns of serial dependence. This
suggests that the SARIMA models have effectively captured the
temporal structure and trends in the original datasets. Similarly, the
PACEF plots for each target confirm the absence of significant partial
autocorrelations, reinforcing the view that the models have
accounted for most of the time-dependent structure, and there is
minimal unexplained autocorrelation remaining.

TABLE 1 Diagnostic test results for the SARIMA residuals of Bud Borer,
Seed Borer, and Phytophthora models.

Ljung-Box Q Jarque- Jarque-Bera
Model
(p-value) Bera Stat p-value
Bud Borer 0.57 0.59 0.744
Seed Borer 0.22 0.26 0.877
Phytophthora 0.52 3.88 0.143
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Together, the lack of significant spikes in both ACF and PACF
plots supports the conclusion that the residuals resemble white noise-
a key requirement for reliable and valid time series modeling. These
findings validate the statistical soundness of the SARIMA models
used in this study and confirm that the forecasted outputs are based
on well-specified temporal dynamics. Thus, the diagnostic checks
strengthen the interpretability and forecasting reliability of the
SARIMA results for each of the target pest and disease time series.

3.5 Vector autoregressive model

The Vector Autoregressive (VAR) model was applied to the
complete dataset from 2014 to 2022 to analyze and forecast the future
trends of Bud Borer Damage, Phytophthora Disease Severity, and
Seed Borer Damage in sapota cultivation (Figure 7). The model
utilizes the historical data to capture the dynamic interrelationships
among these variables, providing a multivariate perspective on their
potential future behavior.

For Bud Borer Damage, the VAR model forecast indicates
continued fluctuations over the next 12 months, reflecting the
variability observed in the past decade. The model suggests that
the damage levels will likely continue to exhibit similar patterns,
possibly influenced by internal dynamics and interdependencies
with other factors such as weather conditions or pest
management practices.

The forecast for Phytophthora Disease Severity reveals a
relatively stable trend, consistent with the historical data from
2014 to 2022. This result aligns with previous observations that
Phytophthora disease severity does not fluctuate as widely as pest
damage, potentially due to more consistent environmental
conditions or management practices that keep the disease in check.
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FIGURE 6

Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of residuals from SARIMA models fitted to Bud Borer, Seed Borer,
and Phytophthora disease severity time series in sapota cultivation (2014-2022). The absence of significant autocorrelation in the residuals suggests
that the SARIMA models adequately captured the underlying structure of the time series.

In the case of Seed Borer Damage, the VAR model projects
ongoing variability, capturing the fluctuating patterns seen in the
observed data. The forecast suggests that seed borer damage levels
will continue to change over time, reflecting the influence of
multiple interacting factors. The multivariate approach of the
VAR model helps in understanding the shared influences and
possible co-movements between pest damage and disease severity,
offering valuable insights into their dynamics.

Overall, the VAR model leverages the entire dataset from 2014
to 2022 to provide a comprehensive understanding of the
interactions between different types of damage and disease
severity, enhancing the ability to predict future trends based on
their historical interdependencies.

3.6 Comparison of ARIMA, SARIMA and
VAR model accuracy

The comparison of model accuracy using Mean Squared Error
(MSE) indicates that the ARIMA model generally provides the most
accurate forecasts for Bud Borer Damage and Phytophthora Disease
Severity, with MSE values of 8.03 and 0.20, respectively (Table 2).
This suggests that ARIMA effectively captures the trends and
variability in these two datasets. The SARIMA model also
performs well for these variables, with MSE values of 8.43 for
Bud Borer Damage and 0.21 for Phytophthora Disease Severity,
although it is slightly less accurate than ARIMA. In contrast, the
VAR model shows the highest MSE for Bud Borer Damage (18.82)
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and Phytophthora Disease Severity (0.38), indicating that it is the
least accurate for these two variables.

For Seed Borer Damage, the VAR model outperforms the other
models, achieving the lowest MSE of 17.96. This suggests that VAR
is particularly effective at capturing the dynamics and interactions
influencing Seed Borer Damage. The ARIMA model follows with an
MSE of 20.08, indicating reasonable accuracy, while the SARIMA
model has the highest MSE of 55.04, making it the least effective for
this variable.

To study the structural break or instability of data, combined
CUSUM (Cumulative Sum) analysis of standardized residuals for Bud
Borer, Seed Borer, and Phytophthora disease severity over the 8-year
period (2014-2022) was conducted, which revealed that the residuals
for all three variables remained within the established control limits (+
0.5) (Figure 8). This outcome indicates the absence of structural breaks
or parameter instability in the fitted time-series models. Specifically,
while minor fluctuations were observed in the residual paths for Bud
Borer and Seed Borer, these variations remained statistically
insignificant and did not breach the control boundaries. Similarly,
the residuals for Phytophthora disease severity exhibited a stable
pattern throughout the study period, suggesting that the underlying
seasonal and trend structures were well captured.

Overall, the results suggest that the ARIMA model provides the
most accurate forecasts for Bud Borer Damage and Phytophthora
Disease Severity, while the VAR model is better suited for predicting
Seed Borer Damage. The SARIMA model, while effective for Bud
Borer and Phytophthora, is less accurate for Seed Borer Damage
compared to ARIMA and VAR.
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FIGURE 7

Vector autoregressive (VAR) model forecasts for pest and disease damage in sapota cultivation (2014-2022). The figure illustrates the observed and
forecasted values for Bud Borer Damage, Phytophthora Disease Severity, and Seed Borer Damage from 2014 to 2022 using averaged monthly data.
The solid lines represent the historical observed data, while the dashed lines indicate the model's forecasted trends.

3.7 Random forest analysis

The Random Forest analysis reveals distinct patterns in how
meteorological variables influence pest damage and disease severity
in sapota cultivation over a 8-year period (2014-2022) (Figure 9).

For bud borer damage, minimum temperature (Min T)
emerged as the most influential variable, accounting for
approximately 48% of the total importance. This indicates that
cooler night-time conditions strongly favor pest activity. Maximum
temperature (Max T) followed with around 32%, suggesting that
warm daytime conditions also contribute. Relative humidity (RH)
and rainfall had relatively lower influences, contributing 12% and
8%, respectively, indicating a lesser role in bud borer prediction.

In the case of seed borer damage, RH played the most dominant
role with a 38% contribution, indicating the pest’s sensitivity to
atmospheric moisture. This was followed by Min T (26%), rainfall
(21%), and Max T (15%), highlighting that seed borer damage is
favored under drier yet cooler conditions, but less driven by
extreme heat.

For Phytophthora disease severity, Min T again ranked highest,
contributing 46%, reinforcing the pathogen’s preference for cooler
environments. RH was the next most important variable (27%),

TABLE 2 Model accuracy comparison for forecasting pest and disease in
sapota cultivation.

LG BorZE?VISE Phyt?/il)shéhora Bor’S:ref(\j/lSE

ARIMA ‘ 8.03 020 ‘ 20.07

SARIMA ‘ 8.43 021 ‘ 55.04
VAR ‘ 18.82 038 ‘ 17.96
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aligning with the well-established role of humidity in promoting
sporulation and infection. Max T accounted for 15%, while rainfall
had the least contribution at 12%, possibly due to buffered
microclimatic effects in orchard systems.

4 Discussion

The present study offers a comprehensive spatio-temporal
analysis of three major biotic constraints in sapota cultivation—
bud borer, seed borer, and Phytophthora disease—over an 8-year
period (2014-2022), integrating time-series models (ARIMA,
SARIMA, VAR), correlation analysis, and machine learning
(Random Forest). The results highlight the differential response of
these pests and pathogens to key climatic variables, especially
temperature, relative humidity, and rainfall, offering critical
insights for predictive pest management under changing
climate regimes.

The trend analysis showed that bud borer and seed borer
damage exhibited considerable inter-annual fluctuations,
indicating sensitivity to varying environmental and management
conditions. In contrast, Phytophthora disease severity remained
relatively stable over time, possibly due to its consistent ecological
niche in sapota orchards and the effect of static cultural practices.
This aligns with observations by Balanagouda et al. (2021), who
noted that Phytophthora-induced diseases in perennials often
persist at background levels, with surges driven by specific
conducive microclimates rather than broad seasonal shifts.

Correlation analysis further revealed species-specific climatic
associations. Bud borer damage showed a strong positive
correlation with rainfall and a moderate negative correlation with
maximum temperature, suggesting its population thrives under
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Combined CUSUM (cumulative sum) plots of standardized residuals for Bud Borer, Seed Borer, and Phytophthora disease severity in sapota
cultivation from 2014 to 2022. The residuals for all three variables remain within control limits (+ 0.5), indicating no structural breaks or instability

over the 8-year period.

moist but not excessively hot conditions. These findings are
consistent with Gajera et al. (2023), who reported positive
associations between bud borer incidence and both temperature
and evaporation, but a negative relationship with evening relative
humidity. Seed borer, on the other hand, showed a positive
correlation with maximum temperature and a negative
correlation with minimum temperature, implying its preference
for warm, dry environments. The weak correlation of Phytophthora
severity with rainfall but strong positive correlation with minimum

100

Normalized Importance (%)

Bud Borer

Phytophthora
Target

FIGURE 9

Normalized relative importance of meteorological variables in forecasting Bud Borer, Seed Borer, and Phytophthora disease severity in sapota

cultivation based on 8-year averaged data (2014-2022).
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temperature suggests that nighttime warmth enhances infection
cycles more than total precipitation—an insight supported by
Balanagouda et al. (2021), who demonstrated peak Phytophthora
sporulation at 18°C, with a sharp decline at 28°C.

The Random Forest-based analysis revealed that sapota pests
and diseases respond distinctly to weather variability, with
minimum temperature and relative humidity emerging as the
most influential climatic drivers across the three target organisms:
bud borer, seed borer, and Phytophthora disease. For bud borer,

Weather Variable
= Max T
= MinT
I RH
3 Rainfall

Seed Borer
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minimum temperature (Min T) accounted for the largest share of
prediction importance (~48%), indicating that lower night
temperatures create favorable conditions for pest development.
This observation aligns with the findings of Bisane and Naik
(2021), who reported that reduced night temperatures increase
bud borer activity in sapota. Similarly, Nyamukondiwa et al.
(2013) emphasized the role of thermal regimes in modulating
insect reproductive rates, with lower thresholds enhancing pest
survival. Maximum temperature (Max T) contributed around 32%,
reflecting its role in influencing larval activity during daylight hours.
In contrast, relative humidity (RH) and rainfall had minor roles
(~12% and 8%, respectively), possibly due to the relatively sheltered
oviposition behavior of bud borers, which reduces direct exposure
to ambient humidity.

In the case of seed borer, the analysis showed that RH (38%) was
the most critical factor, suggesting strong dependence of pest
development on moisture regimes. This is corroborated by Bisane
(2016), who found that seed borer incidence was significantly higher
under low RH conditions (<50%) and minimal precipitation. Min T
(26%) followed as an important predictor, as cooler conditions can
prolong larval development stages, increasing host exposure. The
notable role of rainfall (21%) further supports this, as fluctuations in
moisture can affect egg viability and fruit rot, indirectly impacting
larval survival. Max T, with the lowest importance (~15%), suggests
that this pest is relatively less responsive to daytime heat.

Phytophthora disease severity was also found to be primarily
driven by Min T (46%), reinforcing the pathogen’s preference for
cool, moist conditions for sporulation and infection, as highlighted
by Balanagouda et al. (2021). RH (27%) was the second-most
important factor, consistent with studies by Erwin and Ribeiro
(1996), who demonstrated that high ambient humidity facilitates
the survival of sporangia and infection success. Interestingly,
although rainfall (12%) has historically been linked with
Phytophthora outbreaks, its lower importance in this model may
reflect the buffering effects of soil drainage and canopy microclimate
in orchard systems, as noted by Ristaino and Gumpertz (2000). The
moderate influence of Max T (15%) suggests that while warm
conditions may inhibit disease spread, their impact is secondary
to cooler night-time temperatures. Collectively, these findings
highlight that temperature—especially night-time minimum
temperatures—is a consistent driver of both pest and disease
dynamics in sapota systems. Humidity-related variables, while
crucial, exhibit more target-specific roles—being highly influential
for seed borer and moderately for Phytophthora. These insights are
vital for developing climate-smart advisory systems, enabling
region- and season-specific predictions that support integrated
pest and disease management (IPDM) in perennial fruit orchards.

Time-series modeling further validated these observations. The
ARIMA model performed best for bud borer (MSE = 8.03) and
Phytophthora (MSE = 0.20), indicating that these variables exhibit
relatively stable temporal structures that can be captured through
linear autoregressive processes. However, SARIMA improved
forecasts slightly by capturing seasonal effects, confirming earlier
findings from Loona et al. (2025) and Patil et al. (2025). The VAR
model, which captures inter-variable dependencies, outperformed
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other models in forecasting seed borer (MSE = 17.96), suggesting
that its damage pattern is likely shaped by joint ecological or pest-
pest interactions. This is consistent with reports from Bana et al.
(2024), who used SARIMA models to capture co-occurring pest
fluctuations in mango.

Collectively, the modeling framework applied in this study
underscores the need for customized forecasting approaches for
each pest/pathogen based on their ecological behavior and climate
responsiveness. No single model universally fits all pests: univariate
ARIMA/SARIMA models suit pests with consistent seasonal
patterns, while RF and VAR models capture more complex,
multivariate and nonlinear dependencies.

From a disease management perspective, these findings have
direct practical implications. Forecast models emphasizing minimum
temperature and RH can be embedded into early warning systems or
mobile-based advisories for sapota growers, allowing timely
application of biocontrol agents or insecticides. Moreover, the
demonstrated influence of nocturnal temperatures highlights the
potential impact of climate change, particularly nighttime warming
trends, on pest/pathogen emergence in perennial horticulture
(Balanagouda et al., 2021; Pautasso et al., 2012).

In addition to the ARIMA, SARIMA, and VAR models employed
in this study, alternative time-series forecasting methods more
suitable for small datasets deserve consideration. For instance,
Exponential Smoothing (ETS) models, such as Holt-Winters, are
widely regarded for their simplicity and effectiveness in short-term
forecasting, especially when seasonal patterns are present but the
number of observations is limited. Similarly, Bayesian Structural
Time Series (BSTS) models offer a probabilistic framework that can
incorporate prior information, provide uncertainty estimates, and
perform well with small or irregular datasets. These methods may
ofter complementary insights or enhanced robustness under data-
constrained conditions. While the primary objective of this study was
to assess classical and multivariate time series models for pest and
disease forecasting using a 8-year monthly dataset, future work may
benefit from comparing the performance of ETS or BSTS models to
enhance prediction accuracy and operational decision-making in
cases where data scarcity is a constraint.

5 Conclusion

This study comprehensively analyzed the temporal dynamics of
sapota pest damage and Phytophthora disease from 2014 to 2022,
emphasizing the significant influence of climatic factors. Trend
analysis revealed fluctuating patterns in bud and seed borer damage,
likely due to varying climatic conditions and pest management, while
Phytophthora disease severity remained relatively stable. Correlation
analysis highlighted complex interactions, with notable positive
correlations between rainfall with bud borer, Phytophthora damage
with minimum temperature. The application of time series models
demonstrated their varying effectiveness, with the ARIMA model
providing the most accurate forecasts for bud borer damage and
Phytophthora severity, while the VAR model excelled in forecasting
seed borer damage. Random Forest analysis further underscored the
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critical role of minimum temperature as the most influential factor for
bud borer damage and Phytophthora severity, whereas relative
humidity was most significant for seed borer damage.

These findings collectively emphasize the crucial role of climatic
factors, particularly temperature and humidity, in shaping pest and
disease outcomes in sapota cultivation. The insights gained from
this study are invaluable for developing targeted and effective pest
and disease management strategies that account for the dynamic
effects of weather variables. By integrating climatic data into
agricultural planning, sapota cultivation can enhance its resilience
against increasing weather variability, ultimately leading to more
sustainable and profitable production while reducing the
indiscriminate use of pesticides and fungicides.
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