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Missed transplanting remains a significant challenge in the application of tobacco
seedling transplanters due to the specific agronomic requirements for successful
transplanting. Currently, the detection of missed transplanting rate in large-scale
field tests primarily relies on manual seedling counting, a process that is notably
inefficient. Traditional online detection methods, including photoelectric sensors
and machine vision, suffer from problems such as complex structures and high
costs. They require sensor deployment on the machine itself, making it difficult to
fully meet the actual detection needs of transplanters during the R&D and testing
phase. To address these limitations, this paper proposes an automated evaluation
method for detecting missed transplanting rates using UAV (unmanned aerial
vehicle) imagery. The method integrates an improved YOLOv5s model,
DeepSORT, and line-crossing counting approach. First, a second-order channel
attention (SOCA) attention mechanism was incorporated into the YOLOv5s model
to improve its ability to extract features for small targets. Additionally, the Spatial
Pyramid Pooling Fast (SPPF) was replaced by the Simplified Spatial Pyramid Pooling-
Fast (SImSPPF) to enhance the model's ability to extract multi-scale features for
targets such as seedling-planted holes. The DeepSORT algorithm, combined with
line-crossing counting principle, was then employed for visual tracking and
dynamic counting of seedling-planted and missed-planting holes, enabling
accurate evaluation of the missed transplanting rate. Test results showed that, in
terms of target detection, the Precision and mAP of the improved YOLOv5s model
increased by 3.9% and 5.3%, respectively, compared to the original YOLOV5s. In
target tracking, the combination of the improved YOLOv5s and DeepSORT reduced
the missed detection rate M,, and false detection rate M; by 2.5% and 6.1%,

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1659559/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1659559/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1659559/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1659559/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1659559/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1659559&domain=pdf&date_stamp=2025-09-24
mailto:gaol@cau.edu.cn
mailto:tchendu@cau.edu.cn
https://doi.org/10.3389/fpls.2025.1659559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1659559
https://www.frontiersin.org/journals/plant-science

Su et al.

10.3389/fpls.2025.1659559

respectively. Field experiments achieved an accuracy of 90.28% for the missed
transplanting rate and a 10X higher detection efficiency compared to manual
inspection. This method offers a novel automated solution for the rapid detection
of missed transplanting rates in large-scale transplanting operations and provides
valuable technical insights for evaluating the performance of other
seedling transplanters.

missed transplanting rate, UAV imagery, deep learning, seedling detection,

target counting

1 Introduction

Tobacco is a significant special economic crop, serving as a
major source of national fiscal revenue and playing a vital role in the
global agricultural economy. The hilly and mountainous regions of
Southwest China are the primary tobacco-growing areas,
contributing approximately 62.53% of the nation’s total tobacco
production (Tong et al,, 2020). These regions, characterized by
complex terrain and poor soil quality, limit the economic viability of
traditional grain crops. In contrast, tobacco, as a high-value crop,
enhances land-use efficiency and economic returns, providing a
crucial means for local farmers to increase income and achieve
prosperity (Li et al., 2023a). Reducing production costs and labor
input, thereby lowering expenses and boosting efficiency, is essential
for increasing farmers’ income and advancing industrial upgrades
(Tarolli and Straffelini, 2020).

Hilly and mountainous areas currently face delayed development
in agricultural mechanization, with tobacco production still heavily
reliant on traditional manual labor. This dependence makes it a typical
labor-intensive industry characterized by high production intensity
and low efficiency. Labor shortages and rising labor costs are further
rendering the traditional production model inadequate to meet the
demands of modern agricultural development (Tarolli and Straffelini,
2020). Consequently, promoting mechanization in tobacco fields has
become an inevitable trend in advancing modern tobacco agriculture.
However, in hilly and mountainous regions, steep slopes and
fragmented arable land present substantial challenges. The existing
level of mechanization equipment remains inadequate to meet the
specific demands of the tobacco industry in these areas (Wu et al,
2022). Therefore, accelerating improvements in mechanization and
promoting the adoption of relevant technologies are crucial for
enhancing tobacco production in these regions.

Currently, tobacco production remains highly reliant on
traditional manual labor, characterized by high labor intensity
and low efficiency. In the full mechanization of tobacco
production, the mechanization rate of soil tillage and preparation
is relatively high, while the “planting” and “harvesting” stages are
still quite underdeveloped. Taking the “planting” stage as an
example, tobacco cultivation involves specific agronomic
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requirements. For instance, the well-cellar transplanting
technology demands that the machine not only achieves high-
speed cellar digging but also maintains a high degree of
coordination with the seedling feeding device (Li et al., 2023; Lin
et al, 2023). This poses significant challenges to tobacco seedling
transplanters at the current stage, which is why domestic tobacco
seedling transplanters are still in the research, development, and
testing phase. The rapid evaluation of key performance indicators of
tobacco seedling transplanters during research and testing can
accelerate the identification and optimization of machine-related
issues, improve testing efficiency, ensure transplanting quality, and
promote standardized detection (Xu et al., 2022).

Traditional methods for evaluating transplanter operation
success rate primarily rely on manual counting, which suffers
from low efficiency and high labor intensity (Lin et al, 2023b).
For large-scale operations, evaluations often involve either rough
qualitative assessments based on casual observation or random
sampling, making it challenging to accurately quantify the key
performance indicators of seedling transplanters during extensive
transplanting tests. Researchers have extensively studied online
detection methods for operation performance, employing
technologies such as photoelectric sensors and cameras. (Jin et al,
2018) developed an intelligent transplanting system using
photoelectric sensors to bypass empty soil bases in potted chili
seedlings, enabling automatic recognition of seedlings under indoor
transplanting conditions. (Jiang et al., 2022) proposed a real-time
detection method for missed transplanting based on video image
stitching, achieving 92.32% recognition accuracy in monitoring
missed transplanting of rapeseed blanket-type seedlings during
field operations. However, the effectiveness of these online
detection methods is often influenced by the agricultural
background. Additionally, the high cost of these sensors makes
them unsuitable for seedling transplanters still in the R&D stage,
where structural designs are not yet finalized (Wu et al.,, 2025).
Therefore, to address these limitations, an operation performance
evaluation method independent of the transplanter’s design is
needed to better meet the practical requirements of current
machine testing. An automatic transplanting detection system,
which combines UAV images and machine vision technology,
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offers an effective solution to this challenge (Ji et al., 2020; Huang
et al., 2024).

The key to evaluating the operational performance of
transplanters lies in the accurate detection of various target states
of seedlings after transplanting. Currently, the integration of drones
and machine vision has been widely adopted for crop seedling
monitoring. Early machine vision-based object detection algorithms
typically rely on shallow features such as crop color, shape, and
texture, employing morphological operations for image
segmentation to identify target regions. (Zhao et al., 2017)
performed target recognition and segmentation of rapeseed plants
based on the color vegetation index and Otsu threshold algorithm
and estimated the number of rapeseed plants through remote
sensing image features. but remote sensing images are greatly
affected by weather conditions. (Xie et al., 2016) utilized support
vector machines (SVM) to identify and count tobacco plants from
drone-acquired images in the Lab color space, achieving a 96.1%
accuracy rate. However, these methods are susceptible to factors
such as terrain and illumination. Moreover, they require manual
input of features and adjustment of feature thresholds, making it
difficult to ensure the recognition performance in complex
environments (Huang et al., 2024).

With the continuous advancement of deep learning technology
and improvements in computer hardware performance, deep
learning-based crop counting methods are gradually replacing
traditional machine vision techniques. These methods have been
successfully applied to the detection of crop targets such as wheat
spikes (Bao et al., 2023), tobacco (Rao et al., 2023), and strawberries
(Li et al,, 2023c), achieving the desired detection accuracy. (Barreto
et al, 2021) utilized Fully Convolutional Networks (FCNs) to
segment seedling phenotypes, enabling fully automated plant
counting in sugar beet, corn, and strawberry fields. Similarly,
(Machefer et al., 2020) applied the Mask R-CNN network to count
two low-density crops, potatoes and lettuce. For object detection-
based methods, (Bao et al., 2023) developed a wheat ear detection
model using TPH-YOLO (YOLO with transformer prediction heads)
to count wheat ears from drone-acquired images, achieving an
accuracy of 87.2%. Despite the widespread application of static
image-based counting methods in agriculture, challenges persist.
Low-quality UAV images, along with stitching errors and overlaps
during the stitching process, significantly impact the accuracy of crop
target detection and counting (Cui et al., 2023).

The effectiveness of video stream-based crop counting methods
relies on accurately identifying and associating the same target
across multiple frames, with tracking algorithms being among the
most widely used approaches. In recent years, dynamic tracking
methods such as SORT (Bewley et al, 2016) and DeepSORT
(Veeramani et al, 2018) have been widely applied in various
agricultural domains. These methods integrate Kalman filters with
the Hungarian algorithm to perform multi-object tracking and
dynamic counting in diverse environments while maintaining
high counting accuracy. For instance, (Lin et al., 2022) integrated
the YOLOV5s object detection model with the DeepSORT tracking
algorithm to develop an efficient low-altitude real-time peanut
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counting model, achieving an accuracy of 98.08%. Similarly,
(Wang et al,, 2021) employed the YOLOvV3 network with Kalman
filters to create a maize seedling counting method, achieving an
accuracy exceeding 98%. Compared to static image-based crop
counting methods, video-based approaches offer significant
advantages in detection efficiency. However, the accuracy of
counting results heavily depends on the performance of both the
detection model and the tracking algorithm. Thus, developing
efficient detection models and tracking algorithms is crucial for
ensuring accurate crop counting in video streams (Cui et al., 2023).

Although deep learning-based object counting methods have
been widely applied, directly utilizing existing methods from the
literature to evaluate the performance of special crop seedling
transplanting operations presents several challenges. First, most
crop detection studies focus primarily on seedling counting and
rarely consider the identification of missed transplanting. Second,
the unique transplanting environment and agronomic characteristics
of tobacco seedlings, such as the Well-Type transplanting technique,
result in seedlings being entirely enclosed within transplanted holes
after planting. This leaves only limited pixel points visible in high-
altitude drone imagery, making it difficult for detection models to
differentiate between planted and missed seedlings. Additionally,
background variations, including bare soil, white plastic film, and
green weeds, significantly hampers model performance in real-
world applications.

To overcome the limitations of previous studies, this paper
proposes an automatic transplanting quality assessment system,
utilizing UAV imagery and an improved YOLOv5s model. The
detection process for the method proposed is as follows: First, a
large-scale high-altitude dataset of tobacco mechanized transplanting
operations is created using drone-acquired images. Then, a detection
network based on the improved YOLOv5s model is trained and
optimized to achieve the required accuracy. Building upon this
network, the DeepSORT tracking algorithm and line-crossing
counting method are integrated to develop an automated
performance evaluation model for tobacco seedling transplanters.
This model allows accurate detection of the missed transplanting rate,
an operational indicator of transplanters, during large-scale
transplanting operations.

2 Materials and methods
2.1 Overview of methods

Through field tests and investigations, we found that the missed
transplanting rate remains a critical factor limiting the widespread
adoption of tobacco seedling transplanters. Accordingly, this study
focuses on the precise detection of missed transplanting rates in
seedling transplanters. Specifically, missed planting in tobacco
transplanting is defined as locations where tobacco seedlings
should theoretically be planted but are actually not. Meanwhile,
the missed transplanting rate is defined as the ratio of the total
number of missed-planting holes to the total number of planted
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holes, calculated using Equation 1.

) ) T,
Missed transplanting Rate = T % 100 %
N

1)

Where T, represents the total number of missed-planting holes,
and Ty denotes the total number of planted holes measured by the
tobacco seedling transplanter. The total number of planted holes
includes both seedling-planted and missed-planting holes.
Therefore, the key to accurately determining the missed
transplanting rate lies in effectively distinguishing and identifying
seedling-planted holes from missed-planting holes.

This study aims to develop an automated detection system for
the missed transplanting rate of tobacco seedling transplanters
based on the improved YOLOv5s and DeepSORT algorithms.
Figure 1 illustrates the overall technical workflow of the proposed
method, with detailed descriptions of each step provided below.

2.2 Dataset construction

The data collection site is located in Qinglong Village, Shidi
Town, Yongshun County, Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province, within a humid, mid-subtropical
mountainous climate zone. The site’s coordinates are 110°07’
56.15"E and 28°59'25.55"N, as shown in Figure 2a. The cultivated
tobacco variety in this area is “Yunyan 87.” The equipment and
methods used for collecting tobacco seedling images are illustrated
in Figure 2b. The drone model used for image and video data
collection was a DJI Mavic Air 2, equipped with a DJI FC3170
camera. Data collection took place on April 23, 2024, at 9:00 AM.
The drone ‘s flight trajectory is shown in Figure 2¢. During image
collection, the drone flew at a speed of 1.5m/s at an altitude of 10-15
meters, manually hovering at fixed points to ensure the overlapping
area between images was less than 10%. For video data collection,
the drone flew at a speed of 1.0m/s while maintaining the same
altitude. After collection, the OpenCV library was used to extract

Transplanting
area

Tobacco
row

Seedling //
transplanter
/ .

FIGURE 1
Technical solution for dynamic counting.
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one frame every 50 frames from selected videos, resulting in a total
of 1,117 images and 20 transplanting video streams.

Due to factors such as gimbal camera settings and lighting
conditions, the collected image data exhibited issues including
underexposure, edge distortion, and low clarity. Manual cropping
was performed to remove distorted edge regions, and images that
did not meet the training requirements were discarded (Huang
et al., 2024). The final dataset includes 1,054 images of tobacco
seedlings for training the object detection model and 20 video
streams for validating the proposed missed planting detection
method. Examples of seedling-planted and missed-planting holes
are shown in Figure 2d. Using the Labellmg tool (Wu et al.,, 2023),
the images were annotated with two categories: “tobacco” for
seedling-planted holes and “missing” for missed-planting holes, as
shown in Figure 2e. The dataset contains 1,054 annotated images,
with 17,698 “tobacco” bounding boxes and 2,609 “missing”
bounding boxes.

2.3 Detection method based on improved
YOLOv5s model

Before tracking and counting the number of seedling-planted
and missed-planting holes, it is essential to accurately distinguish
and identify these two target categories. YOLOVS5 is a widely
recognized object detection model, known for its stability and
rapid detection capabilities, with applications in various
agricultural fields (Ma et al, 2023; Zhang et al, 2024). The
YOLOV5s version offers fast detection speed, high accuracy, and
low memory usage, making it well-suited for deployment on mobile
devices (Guo et al., 2024). Therefore, this study selects the YOLOv5s
model as the base framework.

To enhance the feature extraction capability of the original
YOLOv5s model for targets such as seedling-planted holes and
missed-planting holes, the SOCA attention mechanism is
introduced into the model. As shown in Figure 3, SOCA (Chen
et al., 2020) employs covariance normalization to capture the
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Taken at Shidi Town, Yongshun County
® E110°07'56.15", N28°59'25.55"

o

FIGURE 2

I:—(tobacco) (missing) |
:I = ~'\( 3 |

Original image
30 X ¥ »

Detailed information on image dataset acquisition. (a) Data collection location; (b) Data acquisition site; (c) UAV flight trajectory; (d) Data set

detection target indication; (e) Label production process.

correlation between channels. By adaptively realigning channel
direction features using second-order feature statistics, SOCA
improves the mapping of feature connections, enhances the
model’s attention to relevant areas, and provides more
discriminative representations. This ultimately boosts the
identification performance of the YOLOv5s model.

The core idea of the SOCA module is to capture the
relationships between channels by computing a covariance
matrix. Specifically, given an input feature map X & R*H*W,
where C, H, W represent the number of channels, height, and
width, respectively, the first step is to calculate the mean-centered
feature map X for each channel by subtracting the mean of that
channel. The calculation method is shown in Equation (2)

~ 1
X = X = g i S il w) @)

RC><C

Then, the covariance matrix S € is computed. The

calculation method is shown in Equation (3)

5, = ﬁz;’zllexi(h, WX, (h, w) 3)

Next, feature normalization and attention weight calculation are
performed. The calculation method is shown in Equation (4)
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7 = 6(W,ReLU(S)W;) (4)

Finally, the attention weights Z are used to reweight the input
feature map. The calculation method is shown in Equation (5)

X =z-X (5)

In this context, X & RH*W represents the input feature map;

R%*C is the covariance

X is the mean-centered feature map; S €
matrix between channels; ReLU( -) denotes the Rectified Linear
Unit activation function; W, and W, are learnable weight matrices;
o( - ) refers to the sigmoid activation function; Z is the attention
weight matrix; and X’ is the reweighted input feature map after
applying the attention weights.

In this way, the SOCA module enhances the model’s ability to
capture features, especially for small objects and complex
backgrounds, thus improving detection performance.

The Spatial Pyramid Pooling Fast (SPPF) in YOLOV5s uses
fixed layers and scales, which causes the loss of small target details
in the feature pyramid, adversely affecting small target perception
and leading to inaccurate localization and missed detections. The
Simplified Spatial Pyramid Pooling-Fast (SimSPPF) (Ye et al,
2024), an efficient and low-cost improvement, performs multi-
scale feature extraction to effectively prevent the loss of local
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FIGURE 3
Structure of the SOCA module.

target information, thereby enhancing both feature extraction
efficiency and detection accuracy. The structure of SimSPPF is
shown in Figure 4. The SimSPPF module processes input feature X
through a sequential yet branched workflow. Initially, X enters the
ConvBNReLU module, where convolution, batch normalization,
and ReLU activation are integrated to extract preliminary features.
Post-ConvBNReLU, the feature stream splits: one branch directly
proceeds, while the other undergoes three successive MaxPool2d
operations. Each MaxPool2d step downsamples features spatially,
enabling capture of information at diverse scales. These multi - scale
features—comprising the direct branch and the three pooled
branches—then converge at the Concat module, which fuses them
via channel - wise concatenation. Finally, the fused features pass
through another ConvBNReLU for further integration and
nonlinear transformation, yielding the output “out”. Compared to
traditional SPPF, SimSPPF significantly improves localization
accuracy and detection reliability of small targets.

In summary, the improved YOLOv5s model enhances small
target detection accuracy by introducing the SOCA attention
mechanism and SimSPPF. The SOCA embedded in the final layer
of the feature extraction network, improves the recognition of key
features for seedling-planted and missed-planting holes, thereby
reducing false positives and false negatives in complex
environments. SImSPPF replaces the traditional SPPF, utilizing
multi-scale feature extraction to prevent information loss,
enhancing both detection efficiency and accuracy. The improved
YOLOV5s significantly improves target localization and detection
reliability, even in the presence of complex background
interference. The architecture of the improved YOLOv5s model is

shown in Figure 5.

2.4 Tracking of seedling-planted and
missed-planting holes based on DeepSORT
algorithm

To prevent duplicate counting issues during the dynamic

tracking of seedling-planted and missed-planting holes and to
improve counting accuracy, Multi-Object Tracking (MOT) (Wu

Frontiers in Plant Science

Eq. (5): Attention
reweighting

et al., 2023) technology is employed following target detection,
utilizing the DeepSORT algorithm. The primary task of this
algorithm is to detect objects in consecutive video frames and
assign a unique identifier to each object, ensuring consistency
across the video sequence. Building upon the SORT algorithm,
DeepSORT incorporates a Re-Identification (Re-ID) model to
address target identifier recognition challenges. The Re-ID model
determines the target’s unique identifier by calculating its similarity
across multiple frames and applies a cascade matching technique to
enhance feature matching, thereby improving the robustness of
DeepSORT’s object tracking. The processing flow of the DeepSORT
algorithm is shown in Figure 6.

The DeepSORT tracking process matches detection boxes from
the current frame with trackers from the previous frame based on
the prediction results from the Kalman filter. First, cascade feature
matching is performed between the detection boxes and confirmed
state trackers. Next, for the detection boxes, trackers, and
unconfirmed state trackers that were not successfully matched
during the cascade step, Intersection over Union (IoU) matching
is applied. Finally, the successfully matched trajectories are updated
using the Kalman filter, completing the tracking process (Huang
et al., 2023).

2.5 Statistics of seedling-planted and
missed-planting holes based on cross-line
counting.

To achieve the classified counting of seedling-planted holes (T1)
and missed-planting holes (T2), a line-crossing counting method is
embedded based on the DeepSORT algorithm, which pre-classifies
the two types of targets by assigning unique tracking IDs. The
virtual counting line is set at the optimal angle and distance. When a
target completely appears within the bounding box, a marker point
is placed at the midpoint of its lower bounding box (red for T1 and
blue for T2). When a marker point crosses the counting line for the
first time, the quantity of the corresponding category is incremented
respectively (T1 triggers the count of seedling-planted holes to
increase by 1, and T2 triggers the count of missed-planting holes to
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SimSPPF

ConvBNReLU

MaxPool2d

N

MaxPool2d

-

MaxPool2d

Concat ConvBNReLU

FIGURE 4
Structure of the SiImSPPF module.

increase by 1). Moreover, the tracking ID is used to avoid repeated
counting of the same target. Finally, the cumulative quantities of the
two types of targets are presented in a visual form. Figure 7
illustrates the counting principle for one of the target categories.

2.6 Model training and evaluation

2.6.1 Training environment and parameters

Model training and testing were conducted on a Windows 11
system. The hardware configuration included an Intel® Core ™ i9-
13900K CPU running at 4.90 GHz, 32 GB of 3200 MHz memory,
and an NVIDIA GeForce RTX 4080 GPU with 16 GB of VRAM.

The official open-source YOLOvV5s code from Ultralytics was
adopted as the baseline for engineering improvements.

The experiment utilized Stochastic Gradient Descent (SGD) as
the optimizer to improve the neural network’s performance and
accelerate the fitting process. Optimal hyperparameters were
determined using the grid search algorithm, including an initial
learning rate of 0.01 and a weight decay coefficient of 0.0005. The
training strategy incorporated a momentum-based gradient descent
algorithm with a momentum value of 0.937, and the number of
epochs was set to 300. Input images were uniformly resized to
640x640 pixels, and the batch size was set to 32. A cosine annealing
algorithm was used to adjust the learning rate dynamically. The pre-
trained YOLOV5s.pt file, trained on the large-scale COCO2017
dataset, was used as initialization weights.

Improved

HxWxC _ Improvement 1

SOCA module

[
|
|
YOLOv5s model |
|
|

OO \] i

| |

(B R |
|_640x640x3
L

Input

|

——N |

I D |

Hoce H Wo ]—P[ Wu X :
|

|

Backbone o Neck _ Prediction
IFR_GB_Ir;aEes_I CBS [ Conv N -S'LU rl;n;);o_v_er_n;;t_ _________________________
i . § Conv
[ & ' B - I
i ! MaxPool > MaxPool

SimSPPF module

FIGURE 5
Improved YOLOvV5s model network architecture.
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FIGURE 6
Dynamic tracking architecture of the DeepSORT algorithm.

2.6.2 Evaluation metrics

This paper evaluates the model from two perspectives: model
complexity and recognition performance. The performance metrics
include Precision, Recall, mean average precision (mAP), inference
time, and model size. Recall refers to the proportion of correctly
identified positive samples in all actual positive samples. mAP
synthesizes the average precision (AP) of each category. AP
reflects the balance between Precision and Recall under different
ToU thresholds. The higher the value, the better the performance of
the model. Among these metrics, Precision, Recall, and mAP serve
as comprehensive indicators of the model’s recognition
performance, with higher values denoting better performance.
Inference time and model size evaluate the model’s efficiency,
with lower values indicating greater efficiency. As this study
focuses on the model’s ability to distinguish and recognize targets
as well as its complexity, other evaluation metrics of the YOLOV5s
model are not considered. The calculation of Precision, Recall, AP
and mAP refers to Equations (6-9).

PP 100% (6)
TP+ FP ’
R=—2 | 100% (7)
“TP+FN ’
1
AP = / P(R)dR (8)
0
" AP,
mAP = 2% x 100 % (9)

In the formula, TP represents the number of correctly detected
objects, FP represents the number of incorrectly detected objects,
FN represents the number of objects missed by the algorithm, and »n
represents the number of detection categories. In this study, n = 2.
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The performance of the tracking method is evaluated using the
metrics missed detection Rate M,,, false detection rate Mg multi-
object tracking Accuracy (MOTA), and Frames Per Second (FPS). A
higher MOTA value signifies better tracking performance. FPS is a
key indicator of the model’s processing speed and real-time
performance, with higher values reflecting faster data processing.
Conversely, lower M,, and M, values reflect improved tracking
performance. The calculation of these metrics refers to Equations
(10-12).

EN
FP o
MfZiFP-FTN x 100 % (11)
> NM,, + NM; + IDS
MOTA =1 - (12)

EtGTt

In the formula, TN represents the number of correctly detected
objects of the other class; NM,, denotes the number of missed
detections at time t, NM; represents the number of false detections
at time t, IDS indicates the number of ID switches, and GTt
represents the number of ground truth objects at time .

In the field operation experiment for detecting and evaluating
the missed transplanting rate, the detection accuracy, denoted as D,,
is used as the evaluation metric. The specific calculation method
refers to Equation (13).

Rmodel

D, = x 100 % (13)

truth
Where R,,04e represents the missed transplanting rate value of
the seedling transplanter based on the model’s counting results, and
Rirumn represents the missed transplanting rate value of the seedling
transplanter based on the manual counting results.
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FIGURE 7
Schematic diagram of line crossing counting principle.

T1 T2

3 Results and discussions
3.1 Model evaluation test

3.1.1 Comparison of YOLO series models

To select a better base model, the performance of various YOLO
models was evaluated on the same self-constructed dataset (as
described in Section 2.2), with each model trained for 120 epochs,
as shown in Table 1. The YOLOv5s model outperformed other
mainstream models in the YOLO series across precision, recall,
mean average precision (mAP), model size, and inference time,
achieving 75.1%, 75.4%, 75.8%, 14.1MB, and 0.0168s, respectively.
Its performance is comparable to that of the YOLOv11ls model.
However, considering the need for lightweight deployment on edge
devices in subsequent models, YOLOv5s was ultimately chosen as
the base model.

4________________

—1-= 1 Hw—|-

T3

The test results from the test set are illustrated with two selected
images. In the first column, a red box is used to mark the actual
seedling-planted holes, with the remaining unmarked areas
representing missed-planting holes. As shown in Figure 8, the
YOLOv5s model’s detection results closely match the ground
truth annotations, effectively distinguishing between seedling-
planted holes and missed-planting holes. However, in certain
challenging scenarios with complex backgrounds or very small
seedlings, the model misclassified the two states. The overall
Precision was 75.1%, with a Recall of 75.4%, indicating potential
for further improvement.

3.1.2 Model ablation experiments and analysis

To enhance the model’s ability to focus on features associated
with seedling-planted and missed-planting holes, the SOCA
attention mechanism was integrated into the feature network,

TABLE 1 Performance comparison of YOLO series models in the same dataset.

Model Precision/% Recall/% mAP/% Model size/MB Running time/s
YOLOV3-tiny 712 70.5 715 58.2 0.0579
YOLOv4-tiny 722 72.1 72.8 226 0.0297

YOLOVSs 75.1 75.4 75.8 14.1 0.0168

YOLOV7-X 714 72.1 715 72.0 0.0612

YOLOvSs 72.6 72.2 72.9 42.7 0.0510

YOLOv11s 749 75.1 75.2 19.6 00178
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improving recognition accuracy in complex scenarios. Additionally,
to strengthen the model’s ability to capture color features, the
SimSPPF module was incorporated to expand the feature
extraction network, replacing the original SPPF. Ablation
experiments were conducted to assess each improvement strategy
individually, and the results are shown in Table 2.

The results of the ablation experiment demonstrate that
integrating the SOCA attention mechanism and replacing the
SPPF module with SimSPPF in YOLOv5s yielded the most
significant improvements in detection performance. Precision and
mAP reached 79.0% and 81.1%, respectively representing increases
of 3.9% and 5.3% compared to the original YOLOv5s. These
improvements highlight that the enhanced accuracy of the
modified YOLOv5s model is due to the combined effects of the
SOCA attention mechanism and the SimSPPF module, which
together enhance the model’s ability to discriminate target
features and improve recognition in UAV imagery. Despite a

10.3389/fpls.2025.1659559

slight increase in model size (0.1 MB), the runtime remained at
0.0172 seconds, meeting the performance requirements for
agricultural applications.

Figure 9 illustrates the improvements in detection performance
before and after modifications to the YOLOv5s model. As shown in
Figure 9, the improved YOLOv5s model outperforms the original
model in randomly selected scenes, exhibiting a notable increase in
precision. Furthermore, the improved model excels in minimizing
false detections, effectively distinguishing between seedling-planted
holes and missed-planting holes, even in challenging scenarios.

3.1.3 Performance evaluation of the improved
YOLOv5s model

To further evaluate the recognition capability of the improved
YOLOvV5s model, frames were extracted from the video stream at
intervals of 50 frames using the OpenCV library, resulting in a test
set of 50 static images. The evaluation results are presented in

TABLE 2 Results of ablation experiments based on different improvement strategies.

Precision/% Recall/%
YOLOV5s 75.1 75.4
YOLOV5s+SOCA 77.2 77.8
YOLOV5s+SimSPPF 76.5 76.6
YOLOV5s+SOCA+ . 96
SimSPPF (Ours)

mAP/% Model size/MB Running time/s
75.8 14.1 0.0168
77.4 142 0.0172
76.2 14.1 0.0169
81.1 142 0.0172
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Performance of the original YOLOV5s in more complex scenarios. (A) Visualization of conventional scene error detection and missed detection; (B)

More complex scene misdetection and missed detection visualization.

Frontiers in Plant Science

10

frontiersin.org


https://doi.org/10.3389/fpls.2025.1659559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Su et al.

10.3389/fpls.2025.1659559

Precision Improvement
-

FIGURE 9

Performance improvement details of YOLOV5s before and after enhancement in some complex scenarios.

Table 3. The test set included a total of 2,140 seedling-planted holes
and 602 missed-planting holes. The proposed model successfully
detected 1,996 seedling-planted holes and 563 missed-planting
holes. Precision and Recall for seedling-planted holes were 92.9%
and 85.9%, respectively, while for missed-planting holes, they were
91.4% and 84.6%. These results further demonstrate the model’s
robust generalization ability and reliability.

Despite improvements, false detections still occur, as shown in
Figure 10. This is primarily due to two factors: first, extreme lighting
conditions and reflections from the film surface in high-altitude
images contribute to false positives; second, the variation in seedling
quality, with some weak seedlings being transplanted. In high-
altitude UAV imagery, the pixel points of the seedlings are
extremely limited, and few features can be extracted, making it
difficult to distinguish between seedling-planted holes and missed-
planting holes, thus leading to false detections.
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3.2 Comparison of tracking algorithm
performance

To evaluate the performance of the improved YOLOv5s model
combined with the DeepSORT tracking algorithm for tracking and
counting transplanted tobacco seedlings, a comparative experiment
was conducted. The experiment compared the counting results of
the original YOLOv5s model with those of the enhanced version,
which included DeepSORT, using UAV-captured videos of
transplanted tobacco seedlings. The results of this experiment are
presented in Table 4.

As shown in Table 4, integrating the improved YOLOv5s model
with the DeepSORT tracking algorithm significantly enhances
tracking and counting performance. The missed detection rate
M, and false detection rates My during target tracking were 4.1%
and 9.1%, respectively, reflecting reductions of 2.5% and 6.1%
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TABLE 3 Evaluation results of the improved YOLOVS5s on the test set.

10.3389/fpls.2025.1659559

Class Ground truth Proposed method TP FP FN Precision/% Recall/%
tobacco 2140 ‘ 1996 1839 ‘ 141 301 ‘ 92.9 85.9
missing 602 ‘ 563 509 ‘ 48 93 ‘ 91.4 84.6

compared to the original YOLOV5s, with the FPS of 19.9. However,
the MOTA evaluation results indicate that neither DeepSORT nor
other advanced tracking algorithms can fully resolve the issue of
identifier switching. Due to the small size of tobacco seedling
targets, distinguishing between seedling-planted and missed-
planting holes remains challenging, leading to multiple identifiers
being assigned to the same target across frames, which results in
duplicate counting. Therefore, using either the maximum identifier
count or the total number of identifiers as the final count is
inaccurate. To improve accuracy, this study proposes a method
for automatically counting seedling-planted and missed-planting
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holes. In this method, the count is incremented by one each time the
lower edge of the detection box for a seedling-planted or missed-
planting hole crosses a virtual counting line. The cumulative totals
for both types of holes are displayed in real-time on the video, as
shown in Figure 11.

From Figure 11., it can be seen that the tracking and counting of
the seedling-planted and missed-planting holes respectively, the
detection of the two types of targets in the same frame does not
appear wrong detection and missed detection, and the target
counting results shown in the upper left corner are consistent
with the actual results.
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TABLE 4 Performance comparison of DeepSORT combined with YOLOV5 before and after improvement.

Models M,,./% MH% MOTA/% FPS/(f-s™%)
YOLOV5s+DeepSORT 6.6% 15.2% 74.1% 15.9
Improved YOLOV5s 1% 0.1% 78.5% 19.9
+DeepSORT S S = ’

3.3 Detection and counting system
platform

To efficiently and accurately assess the number of seedling-
planted and missed-planting holes in tobacco mechanized
transplanting operations, this study implements an improved
YOLOv5s model, DeepSORT, and crossing-line counting
algorithms on a PC platform. A performance metric detection
system for the missed transplanting rate of tobacco seedling
transplanters is developed based on the PyQT5 framework, with
the PC user interface designed using QT tools, as shown in
Figure 12. Upon initiating the detection process, users can upload
a video via the interface. The system automatically loads the video
and applies the optimized deep learning model for analysis. Trained
on large-scale data, the model efficiently and accurately identifies
the number of seedling-planted and missed-planting holes,
enabling the calculation of the missed transplanting rate. During
detection, the system dynamically displays visualized results of the
video processing. Once detection is complete, the interface presents
statistical data on seedling-planted and missed-planting holes, along
with the missed transplanting rate, offering an intuitive
representation of the seedling transplanter’s performance.
Furthermore, the generated video and related data are
automatically stored in the backend database for future querying,
statistics, and analysis.

3.4 Qualitative analysis of missed
transplanting rate detection

To validate the feasibility of the counting method, a mechanized
tobacco transplanting operation test was conducted in June 2024 in
Yongshun County, Xiangxi Tujia and Miao Autonomous
Prefecture, Hunan Province, using a self-propelled seedling
transplanter. The test site and the equipment used are shown in
Figure 13. Following the transplanting, 20 dynamic video segments
captured by drones were evaluated. First, three skilled operators
independently counted the number of the objects in the 20 video
segments. The average value of the counts obtained by the three
operators was taken as the actual number of seedling-planted and
missed-planting holes in the aerial videos. During counting, the
operators played the field videos frame by frame, recording the
number of seedling-planted and missed-planting holes in the first
frame along with the start time. Subsequently, they recorded the
number of newly appearing seedling-planted and missed-planting
holes in each subsequent frame until the end of the video. This
process yielded the total number of seedling-planted and missed-
planting holes in the video, as well as the time taken for manual
counting. Next, the proposed model was used to determine the
number of seedling-planted and missed-planting holes in the videos
and the time consumed by the algorithm for counting. The results
were compared with the manual counts to test the detection

FIGURE 11
Visualization results of the tracking and counting process.
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Performance index detection system for missed transplanting rate.

accuracy and efficiency of the missed transplanting rate. The results
are shown in Figure 14.

As shown in Figure 14, using the algorithmic model to analyze
the 20 videos collected from the test area, the average detection
accuracy D, of the missed transplanting rate was 90.28%, and the
detection efficiency of the model was 10 times that of manual
counting. These results demonstrate that the proposed method for
detecting the missed transplanting rate significantly improves the
efficiency of evaluating the missed transplanting rate following the
operation of the tobacco seedling transplanter.

FIGURE 13
Field test site and the equipment used.
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4 Discussions

The method proposed in this paper still faces several issues that
deserve discussion in practical applications. First, the flight altitude
and shooting angle of the drone during data collection can affect the
application performance of the method. To balance the efficiency
and accuracy of missed transplanting detection, the drone’s camera
should be perpendicular to the ground, with a shooting angle of
-90°, and a flight altitude of 15-20 meters. The optimal field of view
occurs when 6-8 rows of tobacco seedlings are visible in the drone’s
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video imagery, which ensures high applicability of the proposed
method. Secondly, under specific agronomic requirements such as
film-covered well-shaped transplanting and actual background
interference, while focusing on the recognition accuracy during
target identification, attention should also be given to reducing false
positives. The improved YOLOv5s model proposed in this paper
effectively reduces the probability of false positives and can better
distinguish between seedling-planted holes and missed-planting
holes. It also shows significant improvements in both Precision
and mAP. Additionally, for large-scale transplanting operations by
tobacco seedling transplanter, where missed planting detection is
required, the detection efficiency of the proposed method is 10
times that of manual counting, meeting the requirement for rapid
detection and practical application. However, the method still has
certain limitations. So far, the training set used represents the field
conditions of tobacco transplanting with film-covered soil in
specific regions, and the dataset covers a relatively limited range
of scenarios. Therefore, the performance of the trained model may
decrease when applied to transplanting scenes outside of these
conditions. Adapting the model to meet the needs of different
tobacco transplanting scenarios will be a key focus of our future
research. Meanwhile, this study uses drones as data collection
devices, and the proposed method is not well-suited for areas
with restrictions on drone flights. Furthermore, to improve the
real-time nature and convenience of the detection process, the
algorithm could be deployed on the drone’s edge platform, and a
smartphone interface could be developed for real-time image
transmission and display, enabling real-time detection and
providing system-level technical support for tobacco seedling
transplanter operation performance monitoring.

5 Conclusions

This study proposes an intelligent evaluation method for the missed
transplanting rate of tobacco seedling transplanters, based on drone
video imagery and an algorithm framework incorporating the improved
YOLOvV5s, DeepSORT, and line-crossing counting methods. This
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approach enhances the YOLOv5s model by adding a SOCA attention
mechanism and replacing the original SPPF structure with the SinSPPF
structure, which improves the model’s feature extraction capability. The
method also combines the DeepSORT algorithm and line-crossing
counting principle to recognize and dynamically count seedling-
planted and missed-planting holes, thereby calculating the missed
transplanting rate. The results show that, in terms of detection
performance, the improved YOLOv5s model outperforms the original
YOLOVS5 by 3.9% in Precision and 5.3% in mAP. In tracking accuracy,
combining the improved YOLOv5s with DeepSORT reduces the missed
detection rate M,, and false detection rate My by 2.5% and 6.1%,
respectively, compared to the original YOLOv5s model. Testing the
proposed method on an independent dataset, the detection Precision
and Recall for seedling-planted holes (tobacco) were 92.9% and 85.9%,
respectively, while for missed-planting holes (missing), the Precision
and Recall were 91.4% and 84.6%, respectively. Furthermore, when the
proposed method was applied to assess 20 drone dynamic video images
captured in field experiments of tobacco seedling transplanters, the
average missed transplanting rate detection accuracy Dt was 90.28%,
and the detection efficiency was 10 times that of manual counting.
Therefore, this method significantly improves the efficiency of missed
transplanting rate detection for tobacco seedling transplanters,
providing a technical reference for the evaluation of seedling
transplanter performance in large-scale transplanting operations.
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