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Missed transplanting remains a significant challenge in the application of tobacco

seedling transplanters due to the specific agronomic requirements for successful

transplanting. Currently, the detection of missed transplanting rate in large-scale

field tests primarily relies on manual seedling counting, a process that is notably

inefficient. Traditional online detection methods, including photoelectric sensors

and machine vision, suffer from problems such as complex structures and high

costs. They require sensor deployment on the machine itself, making it difficult to

fully meet the actual detection needs of transplanters during the R&D and testing

phase. To address these limitations, this paper proposes an automated evaluation

method for detecting missed transplanting rates using UAV (unmanned aerial

vehicle) imagery. The method integrates an improved YOLOv5s model,

DeepSORT, and line-crossing counting approach. First, a second-order channel

attention (SOCA) attention mechanism was incorporated into the YOLOv5s model

to improve its ability to extract features for small targets. Additionally, the Spatial

Pyramid Pooling Fast (SPPF) was replaced by the Simplified Spatial Pyramid Pooling-

Fast (SimSPPF) to enhance the model’s ability to extract multi-scale features for

targets such as seedling-planted holes. The DeepSORT algorithm, combined with

line-crossing counting principle, was then employed for visual tracking and

dynamic counting of seedling-planted and missed-planting holes, enabling

accurate evaluation of the missed transplanting rate. Test results showed that, in

terms of target detection, the Precision and mAP of the improved YOLOv5s model

increased by 3.9% and 5.3%, respectively, compared to the original YOLOv5s. In

target tracking, the combination of the improved YOLOv5s andDeepSORT reduced

the missed detection rate Mm and false detection rate Mf by 2.5% and 6.1%,
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respectively. Field experiments achieved an accuracy of 90.28% for the missed

transplanting rate and a 10× higher detection efficiency compared to manual

inspection. This method offers a novel automated solution for the rapid detection

of missed transplanting rates in large-scale transplanting operations and provides

valuable technical insights for evaluating the performance of other

seedling transplanters.
KEYWORDS

missed transplanting rate, UAV imagery, deep learning, seedling detection,
target counting
1 Introduction

Tobacco is a significant special economic crop, serving as a

major source of national fiscal revenue and playing a vital role in the

global agricultural economy. The hilly and mountainous regions of

Southwest China are the primary tobacco-growing areas,

contributing approximately 62.53% of the nation’s total tobacco

production (Tong et al., 2020). These regions, characterized by

complex terrain and poor soil quality, limit the economic viability of

traditional grain crops. In contrast, tobacco, as a high-value crop,

enhances land-use efficiency and economic returns, providing a

crucial means for local farmers to increase income and achieve

prosperity (Li et al., 2023a). Reducing production costs and labor

input, thereby lowering expenses and boosting efficiency, is essential

for increasing farmers’ income and advancing industrial upgrades

(Tarolli and Straffelini, 2020).

Hilly and mountainous areas currently face delayed development

in agricultural mechanization, with tobacco production still heavily

reliant on traditional manual labor. This dependence makes it a typical

labor-intensive industry characterized by high production intensity

and low efficiency. Labor shortages and rising labor costs are further

rendering the traditional production model inadequate to meet the

demands of modern agricultural development (Tarolli and Straffelini,

2020). Consequently, promoting mechanization in tobacco fields has

become an inevitable trend in advancing modern tobacco agriculture.

However, in hilly and mountainous regions, steep slopes and

fragmented arable land present substantial challenges. The existing

level of mechanization equipment remains inadequate to meet the

specific demands of the tobacco industry in these areas (Wu et al.,

2022). Therefore, accelerating improvements in mechanization and

promoting the adoption of relevant technologies are crucial for

enhancing tobacco production in these regions.

Currently, tobacco production remains highly reliant on

traditional manual labor, characterized by high labor intensity

and low efficiency. In the full mechanization of tobacco

production, the mechanization rate of soil tillage and preparation

is relatively high, while the “planting” and “harvesting” stages are

still quite underdeveloped. Taking the “planting” stage as an

example, tobacco cultivation involves specific agronomic
02
requirements. For instance, the well-cellar transplanting

technology demands that the machine not only achieves high-

speed cellar digging but also maintains a high degree of

coordination with the seedling feeding device (Li et al., 2023; Lin

et al., 2023). This poses significant challenges to tobacco seedling

transplanters at the current stage, which is why domestic tobacco

seedling transplanters are still in the research, development, and

testing phase. The rapid evaluation of key performance indicators of

tobacco seedling transplanters during research and testing can

accelerate the identification and optimization of machine-related

issues, improve testing efficiency, ensure transplanting quality, and

promote standardized detection (Xu et al., 2022).

Traditional methods for evaluating transplanter operation

success rate primarily rely on manual counting, which suffers

from low efficiency and high labor intensity (Lin et al., 2023b).

For large-scale operations, evaluations often involve either rough

qualitative assessments based on casual observation or random

sampling, making it challenging to accurately quantify the key

performance indicators of seedling transplanters during extensive

transplanting tests. Researchers have extensively studied online

detection methods for operation performance, employing

technologies such as photoelectric sensors and cameras. (Jin et al.,

2018) developed an intelligent transplanting system using

photoelectric sensors to bypass empty soil bases in potted chili

seedlings, enabling automatic recognition of seedlings under indoor

transplanting conditions. (Jiang et al., 2022) proposed a real-time

detection method for missed transplanting based on video image

stitching, achieving 92.32% recognition accuracy in monitoring

missed transplanting of rapeseed blanket-type seedlings during

field operations. However, the effectiveness of these online

detection methods is often influenced by the agricultural

background. Additionally, the high cost of these sensors makes

them unsuitable for seedling transplanters still in the R&D stage,

where structural designs are not yet finalized (Wu et al., 2025).

Therefore, to address these limitations, an operation performance

evaluation method independent of the transplanter’s design is

needed to better meet the practical requirements of current

machine testing. An automatic transplanting detection system,

which combines UAV images and machine vision technology,
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offers an effective solution to this challenge (Ji et al., 2020; Huang

et al., 2024).

The key to evaluating the operational performance of

transplanters lies in the accurate detection of various target states

of seedlings after transplanting. Currently, the integration of drones

and machine vision has been widely adopted for crop seedling

monitoring. Early machine vision-based object detection algorithms

typically rely on shallow features such as crop color, shape, and

texture, employing morphological operations for image

segmentation to identify target regions. (Zhao et al., 2017)

performed target recognition and segmentation of rapeseed plants

based on the color vegetation index and Otsu threshold algorithm

and estimated the number of rapeseed plants through remote

sensing image features. but remote sensing images are greatly

affected by weather conditions. (Xie et al., 2016) utilized support

vector machines (SVM) to identify and count tobacco plants from

drone-acquired images in the Lab color space, achieving a 96.1%

accuracy rate. However, these methods are susceptible to factors

such as terrain and illumination. Moreover, they require manual

input of features and adjustment of feature thresholds, making it

difficult to ensure the recognition performance in complex

environments (Huang et al., 2024).

With the continuous advancement of deep learning technology

and improvements in computer hardware performance, deep

learning-based crop counting methods are gradually replacing

traditional machine vision techniques. These methods have been

successfully applied to the detection of crop targets such as wheat

spikes (Bao et al., 2023), tobacco (Rao et al., 2023), and strawberries

(Li et al., 2023c), achieving the desired detection accuracy. (Barreto

et al., 2021) utilized Fully Convolutional Networks (FCNs) to

segment seedling phenotypes, enabling fully automated plant

counting in sugar beet, corn, and strawberry fields. Similarly,

(Machefer et al., 2020) applied the Mask R-CNN network to count

two low-density crops, potatoes and lettuce. For object detection-

based methods, (Bao et al., 2023) developed a wheat ear detection

model using TPH-YOLO (YOLO with transformer prediction heads)

to count wheat ears from drone-acquired images, achieving an

accuracy of 87.2%. Despite the widespread application of static

image-based counting methods in agriculture, challenges persist.

Low-quality UAV images, along with stitching errors and overlaps

during the stitching process, significantly impact the accuracy of crop

target detection and counting (Cui et al., 2023).

The effectiveness of video stream-based crop counting methods

relies on accurately identifying and associating the same target

across multiple frames, with tracking algorithms being among the

most widely used approaches. In recent years, dynamic tracking

methods such as SORT (Bewley et al., 2016) and DeepSORT

(Veeramani et al., 2018) have been widely applied in various

agricultural domains. These methods integrate Kalman filters with

the Hungarian algorithm to perform multi-object tracking and

dynamic counting in diverse environments while maintaining

high counting accuracy. For instance, (Lin et al., 2022) integrated

the YOLOv5s object detection model with the DeepSORT tracking

algorithm to develop an efficient low-altitude real-time peanut
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counting model, achieving an accuracy of 98.08%. Similarly,

(Wang et al., 2021) employed the YOLOv3 network with Kalman

filters to create a maize seedling counting method, achieving an

accuracy exceeding 98%. Compared to static image-based crop

counting methods, video-based approaches offer significant

advantages in detection efficiency. However, the accuracy of

counting results heavily depends on the performance of both the

detection model and the tracking algorithm. Thus, developing

efficient detection models and tracking algorithms is crucial for

ensuring accurate crop counting in video streams (Cui et al., 2023).

Although deep learning-based object counting methods have

been widely applied, directly utilizing existing methods from the

literature to evaluate the performance of special crop seedling

transplanting operations presents several challenges. First, most

crop detection studies focus primarily on seedling counting and

rarely consider the identification of missed transplanting. Second,

the unique transplanting environment and agronomic characteristics

of tobacco seedlings, such as the Well-Type transplanting technique,

result in seedlings being entirely enclosed within transplanted holes

after planting. This leaves only limited pixel points visible in high-

altitude drone imagery, making it difficult for detection models to

differentiate between planted and missed seedlings. Additionally,

background variations, including bare soil, white plastic film, and

green weeds, significantly hampers model performance in real-

world applications.

To overcome the limitations of previous studies, this paper

proposes an automatic transplanting quality assessment system,

utilizing UAV imagery and an improved YOLOv5s model. The

detection process for the method proposed is as follows: First, a

large-scale high-altitude dataset of tobacco mechanized transplanting

operations is created using drone-acquired images. Then, a detection

network based on the improved YOLOv5s model is trained and

optimized to achieve the required accuracy. Building upon this

network, the DeepSORT tracking algorithm and line-crossing

counting method are integrated to develop an automated

performance evaluation model for tobacco seedling transplanters.

This model allows accurate detection of the missed transplanting rate,

an operational indicator of transplanters, during large-scale

transplanting operations.
2 Materials and methods

2.1 Overview of methods

Through field tests and investigations, we found that the missed

transplanting rate remains a critical factor limiting the widespread

adoption of tobacco seedling transplanters. Accordingly, this study

focuses on the precise detection of missed transplanting rates in

seedling transplanters. Specifically, missed planting in tobacco

transplanting is defined as locations where tobacco seedlings

should theoretically be planted but are actually not. Meanwhile,

the missed transplanting rate is defined as the ratio of the total

number of missed-planting holes to the total number of planted
frontiersin.org
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holes, calculated using Equation 1.

Missed   transplanting  Rate =
Tn

TN
� 100% (1)

Where Tn represents the total number of missed-planting holes,

and TN denotes the total number of planted holes measured by the

tobacco seedling transplanter. The total number of planted holes

includes both seedling-planted and missed-planting holes.

Therefore, the key to accurately determining the missed

transplanting rate lies in effectively distinguishing and identifying

seedling-planted holes from missed-planting holes.

This study aims to develop an automated detection system for

the missed transplanting rate of tobacco seedling transplanters

based on the improved YOLOv5s and DeepSORT algorithms.

Figure 1 illustrates the overall technical workflow of the proposed

method, with detailed descriptions of each step provided below.
2.2 Dataset construction

The data collection site is located in Qinglong Village, Shidi

Town, Yongshun County, Xiangxi Tujia and Miao Autonomous

Prefecture, Hunan Province, within a humid, mid-subtropical

mountainous climate zone. The site’s coordinates are 110°07′
56.15″E and 28°59′25.55″N, as shown in Figure 2a. The cultivated

tobacco variety in this area is “Yunyan 87.” The equipment and

methods used for collecting tobacco seedling images are illustrated

in Figure 2b. The drone model used for image and video data

collection was a DJI Mavic Air 2, equipped with a DJI FC3170

camera. Data collection took place on April 23, 2024, at 9:00 AM.

The drone ‘s flight trajectory is shown in Figure 2c. During image

collection, the drone flew at a speed of 1.5m/s at an altitude of 10–15

meters, manually hovering at fixed points to ensure the overlapping

area between images was less than 10%. For video data collection,

the drone flew at a speed of 1.0m/s while maintaining the same

altitude. After collection, the OpenCV library was used to extract
Frontiers in Plant Science 04
one frame every 50 frames from selected videos, resulting in a total

of 1,117 images and 20 transplanting video streams.

Due to factors such as gimbal camera settings and lighting

conditions, the collected image data exhibited issues including

underexposure, edge distortion, and low clarity. Manual cropping

was performed to remove distorted edge regions, and images that

did not meet the training requirements were discarded (Huang

et al., 2024). The final dataset includes 1,054 images of tobacco

seedlings for training the object detection model and 20 video

streams for validating the proposed missed planting detection

method. Examples of seedling-planted and missed-planting holes

are shown in Figure 2d. Using the LabelImg tool (Wu et al., 2023),

the images were annotated with two categories: “tobacco” for

seedling-planted holes and “missing” for missed-planting holes, as

shown in Figure 2e. The dataset contains 1,054 annotated images,

with 17,698 “tobacco” bounding boxes and 2,609 “missing”

bounding boxes.
2.3 Detection method based on improved
YOLOv5s model

Before tracking and counting the number of seedling-planted

and missed-planting holes, it is essential to accurately distinguish

and identify these two target categories. YOLOv5 is a widely

recognized object detection model, known for its stability and

rapid detection capabilities, with applications in various

agricultural fields (Ma et al., 2023; Zhang et al., 2024). The

YOLOv5s version offers fast detection speed, high accuracy, and

low memory usage, making it well-suited for deployment on mobile

devices (Guo et al., 2024). Therefore, this study selects the YOLOv5s

model as the base framework.

To enhance the feature extraction capability of the original

YOLOv5s model for targets such as seedling-planted holes and

missed-planting holes, the SOCA attention mechanism is

introduced into the model. As shown in Figure 3, SOCA (Chen

et al., 2020) employs covariance normalization to capture the
FIGURE 1

Technical solution for dynamic counting.
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correlation between channels. By adaptively realigning channel

direction features using second-order feature statistics, SOCA

improves the mapping of feature connections, enhances the

model’s attention to relevant areas, and provides more

discriminative representations. This ultimately boosts the

identification performance of the YOLOv5s model.

The core idea of the SOCA module is to capture the

relationships between channels by computing a covariance

matrix. Specifically, given an input feature map X ∈ RC�H�W ,

where C, H, W represent the number of channels, height, and

width, respectively, the first step is to calculate the mean-centered

feature map X̂ for each channel by subtracting the mean of that

channel. The calculation method is shown in Equation (2)

X̂ i = Xi −
1

HWoH
h=1oW

w=1Xi(h,w) (2)

Then, the covariance matrix S ∈ RC�C is computed. The

calculation method is shown in Equation (3)

Sij =
1

HWoH
h=1oW

w=1X̂ i(h,w)X̂ j(h,w) (3)

Next, feature normalization and attention weight calculation are

performed. The calculation method is shown in Equation (4)
Frontiers in Plant Science 05
Z = s (W2ReLUðSÞW1) (4)

Finally, the attention weights Z are used to reweight the input

feature map. The calculation method is shown in Equation (5)

X0 = Z · X (5)

In this context, X ∈ RC�H�W represents the input feature map;

X̂ is the mean-centered feature map; S ∈ RC�C is the covariance

matrix between channels; ReLUð · ) denotes the Rectified Linear

Unit activation function; W1 andW2 are learnable weight matrices;

s( · ) refers to the sigmoid activation function; Z is the attention

weight matrix; and X0 is the reweighted input feature map after

applying the attention weights.

In this way, the SOCA module enhances the model’s ability to

capture features, especially for small objects and complex

backgrounds, thus improving detection performance.

The Spatial Pyramid Pooling Fast (SPPF) in YOLOv5s uses

fixed layers and scales, which causes the loss of small target details

in the feature pyramid, adversely affecting small target perception

and leading to inaccurate localization and missed detections. The

Simplified Spatial Pyramid Pooling-Fast (SimSPPF) (Ye et al.,

2024), an efficient and low-cost improvement, performs multi-

scale feature extraction to effectively prevent the loss of local
FIGURE 2

Detailed information on image dataset acquisition. (a) Data collection location; (b) Data acquisition site; (c) UAV flight trajectory; (d) Data set
detection target indication; (e) Label production process.
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target information, thereby enhancing both feature extraction

efficiency and detection accuracy. The structure of SimSPPF is

shown in Figure 4. The SimSPPF module processes input feature X

through a sequential yet branched workflow. Initially, X enters the

ConvBNReLU module, where convolution, batch normalization,

and ReLU activation are integrated to extract preliminary features.

Post-ConvBNReLU, the feature stream splits: one branch directly

proceeds, while the other undergoes three successive MaxPool2d

operations. Each MaxPool2d step downsamples features spatially,

enabling capture of information at diverse scales. These multi - scale

features—comprising the direct branch and the three pooled

branches—then converge at the Concat module, which fuses them

via channel - wise concatenation. Finally, the fused features pass

through another ConvBNReLU for further integration and

nonlinear transformation, yielding the output “out”. Compared to

traditional SPPF, SimSPPF significantly improves localization

accuracy and detection reliability of small targets.

In summary, the improved YOLOv5s model enhances small

target detection accuracy by introducing the SOCA attention

mechanism and SimSPPF. The SOCA embedded in the final layer

of the feature extraction network, improves the recognition of key

features for seedling-planted and missed-planting holes, thereby

reducing false positives and false negatives in complex

environments. SimSPPF replaces the traditional SPPF, utilizing

multi-scale feature extraction to prevent information loss,

enhancing both detection efficiency and accuracy. The improved

YOLOv5s significantly improves target localization and detection

reliability, even in the presence of complex background

interference. The architecture of the improved YOLOv5s model is

shown in Figure 5.
2.4 Tracking of seedling-planted and
missed-planting holes based on DeepSORT
algorithm

To prevent duplicate counting issues during the dynamic

tracking of seedling-planted and missed-planting holes and to

improve counting accuracy, Multi-Object Tracking (MOT) (Wu
Frontiers in Plant Science 06
et al., 2023) technology is employed following target detection,

utilizing the DeepSORT algorithm. The primary task of this

algorithm is to detect objects in consecutive video frames and

assign a unique identifier to each object, ensuring consistency

across the video sequence. Building upon the SORT algorithm,

DeepSORT incorporates a Re-Identification (Re-ID) model to

address target identifier recognition challenges. The Re-ID model

determines the target’s unique identifier by calculating its similarity

across multiple frames and applies a cascade matching technique to

enhance feature matching, thereby improving the robustness of

DeepSORT’s object tracking. The processing flow of the DeepSORT

algorithm is shown in Figure 6.

The DeepSORT tracking process matches detection boxes from

the current frame with trackers from the previous frame based on

the prediction results from the Kalman filter. First, cascade feature

matching is performed between the detection boxes and confirmed

state trackers. Next, for the detection boxes, trackers, and

unconfirmed state trackers that were not successfully matched

during the cascade step, Intersection over Union (IoU) matching

is applied. Finally, the successfully matched trajectories are updated

using the Kalman filter, completing the tracking process (Huang

et al., 2023).
2.5 Statistics of seedling-planted and
missed-planting holes based on cross-line
counting.

To achieve the classified counting of seedling-planted holes (T1)

and missed-planting holes (T2), a line-crossing counting method is

embedded based on the DeepSORT algorithm, which pre-classifies

the two types of targets by assigning unique tracking IDs. The

virtual counting line is set at the optimal angle and distance. When a

target completely appears within the bounding box, a marker point

is placed at the midpoint of its lower bounding box (red for T1 and

blue for T2). When a marker point crosses the counting line for the

first time, the quantity of the corresponding category is incremented

respectively (T1 triggers the count of seedling-planted holes to

increase by 1, and T2 triggers the count of missed-planting holes to
FIGURE 3

Structure of the SOCA module.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1659559
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Su et al. 10.3389/fpls.2025.1659559
increase by 1). Moreover, the tracking ID is used to avoid repeated

counting of the same target. Finally, the cumulative quantities of the

two types of targets are presented in a visual form. Figure 7

illustrates the counting principle for one of the target categories.
2.6 Model training and evaluation

2.6.1 Training environment and parameters
Model training and testing were conducted on a Windows 11

system. The hardware configuration included an Intel® Core™ i9-

13900K CPU running at 4.90 GHz, 32 GB of 3200 MHz memory,

and an NVIDIA GeForce RTX 4080 GPU with 16 GB of VRAM.
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The official open-source YOLOv5s code from Ultralytics was

adopted as the baseline for engineering improvements.

The experiment utilized Stochastic Gradient Descent (SGD) as

the optimizer to improve the neural network’s performance and

accelerate the fitting process. Optimal hyperparameters were

determined using the grid search algorithm, including an initial

learning rate of 0.01 and a weight decay coefficient of 0.0005. The

training strategy incorporated a momentum-based gradient descent

algorithm with a momentum value of 0.937, and the number of

epochs was set to 300. Input images were uniformly resized to

640×640 pixels, and the batch size was set to 32. A cosine annealing

algorithm was used to adjust the learning rate dynamically. The pre-

trained YOLOv5s.pt file, trained on the large-scale COCO2017

dataset, was used as initialization weights.
FIGURE 4

Structure of the SimSPPF module.
FIGURE 5

Improved YOLOv5s model network architecture.
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2.6.2 Evaluation metrics
This paper evaluates the model from two perspectives: model

complexity and recognition performance. The performance metrics

include Precision, Recall, mean average precision (mAP), inference

time, and model size. Recall refers to the proportion of correctly

identified positive samples in all actual positive samples. mAP

synthesizes the average precision (AP) of each category. AP

reflects the balance between Precision and Recall under different

IoU thresholds. The higher the value, the better the performance of

the model. Among these metrics, Precision, Recall, and mAP serve

as comprehensive indicators of the model’s recognition

performance, with higher values denoting better performance.

Inference time and model size evaluate the model’s efficiency,

with lower values indicating greater efficiency. As this study

focuses on the model’s ability to distinguish and recognize targets

as well as its complexity, other evaluation metrics of the YOLOv5s

model are not considered. The calculation of Precision, Recall, AP

and mAP refers to Equations (6–9).

P =
TP

TP + FP
� 100% (6)

R =
TP

TP + FN
� 100% (7)

AP =
Z 1

0
P(R)dR (8)

mAP = o
n
i=1APi
n

� 100% (9)

In the formula, TP represents the number of correctly detected

objects, FP represents the number of incorrectly detected objects,

FN represents the number of objects missed by the algorithm, and n

represents the number of detection categories. In this study, n = 2.
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The performance of the tracking method is evaluated using the

metrics missed detection Rate Mm, false detection rate Mf, multi-

object tracking Accuracy (MOTA), and Frames Per Second (FPS). A

higher MOTA value signifies better tracking performance. FPS is a

key indicator of the model’s processing speed and real-time

performance, with higher values reflecting faster data processing.

Conversely, lower Mm and Mf values reflect improved tracking

performance. The calculation of these metrics refers to Equations

(10–12).

Mm =
FN

FN + TP
� 100% (10)

Mf =
FP

FP + TN
� 100% (11)

MOTA = 1 −otNMm + NMf + IDS

otGTt
(12)

In the formula, TN represents the number of correctly detected

objects of the other class; NMm denotes the number of missed

detections at time t, NMf represents the number of false detections

at time t, IDS indicates the number of ID switches, and GTt

represents the number of ground truth objects at time t.

In the field operation experiment for detecting and evaluating

the missed transplanting rate, the detection accuracy, denoted as Dt,

is used as the evaluation metric. The specific calculation method

refers to Equation (13).

Dt =
Rmodel

Rtruth
� 100% (13)

Where Rmodel represents the missed transplanting rate value of

the seedling transplanter based on the model’s counting results, and

Rtruth represents the missed transplanting rate value of the seedling

transplanter based on the manual counting results.
FIGURE 6

Dynamic tracking architecture of the DeepSORT algorithm.
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3 Results and discussions

3.1 Model evaluation test

3.1.1 Comparison of YOLO series models
To select a better base model, the performance of various YOLO

models was evaluated on the same self-constructed dataset (as

described in Section 2.2), with each model trained for 120 epochs,

as shown in Table 1. The YOLOv5s model outperformed other

mainstream models in the YOLO series across precision, recall,

mean average precision (mAP), model size, and inference time,

achieving 75.1%, 75.4%, 75.8%, 14.1MB, and 0.0168s, respectively.

Its performance is comparable to that of the YOLOv11s model.

However, considering the need for lightweight deployment on edge

devices in subsequent models, YOLOv5s was ultimately chosen as

the base model.
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The test results from the test set are illustrated with two selected

images. In the first column, a red box is used to mark the actual

seedling-planted holes, with the remaining unmarked areas

representing missed-planting holes. As shown in Figure 8, the

YOLOv5s model’s detection results closely match the ground

truth annotations, effectively distinguishing between seedling-

planted holes and missed-planting holes. However, in certain

challenging scenarios with complex backgrounds or very small

seedlings, the model misclassified the two states. The overall

Precision was 75.1%, with a Recall of 75.4%, indicating potential

for further improvement.

3.1.2 Model ablation experiments and analysis
To enhance the model’s ability to focus on features associated

with seedling-planted and missed-planting holes, the SOCA

attention mechanism was integrated into the feature network,
TABLE 1 Performance comparison of YOLO series models in the same dataset.

Model Precision/% Recall/% mAP/% Model size/MB Running time/s

YOLOv3-tiny 71.2 70.5 71.5 58.2 0.0579

YOLOv4-tiny 72.2 72.1 72.8 22.6 0.0297

YOLOv5s 75.1 75.4 75.8 14.1 0.0168

YOLOv7-X 71.4 72.1 71.5 72.0 0.0612

YOLOv8s 72.6 72.2 72.9 42.7 0.0510

YOLOv11s 74.9 75.1 75.2 19.6 0.0178
FIGURE 7

Schematic diagram of line crossing counting principle.
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improving recognition accuracy in complex scenarios. Additionally,

to strengthen the model’s ability to capture color features, the

SimSPPF module was incorporated to expand the feature

extraction network, replacing the original SPPF. Ablation

experiments were conducted to assess each improvement strategy

individually, and the results are shown in Table 2.

The results of the ablation experiment demonstrate that

integrating the SOCA attention mechanism and replacing the

SPPF module with SimSPPF in YOLOv5s yielded the most

significant improvements in detection performance. Precision and

mAP reached 79.0% and 81.1%, respectively representing increases

of 3.9% and 5.3% compared to the original YOLOv5s. These

improvements highlight that the enhanced accuracy of the

modified YOLOv5s model is due to the combined effects of the

SOCA attention mechanism and the SimSPPF module, which

together enhance the model’s ability to discriminate target

features and improve recognition in UAV imagery. Despite a
Frontiers in Plant Science 10
slight increase in model size (0.1 MB), the runtime remained at

0.0172 seconds, meeting the performance requirements for

agricultural applications.

Figure 9 illustrates the improvements in detection performance

before and after modifications to the YOLOv5s model. As shown in

Figure 9, the improved YOLOv5s model outperforms the original

model in randomly selected scenes, exhibiting a notable increase in

precision. Furthermore, the improved model excels in minimizing

false detections, effectively distinguishing between seedling-planted

holes and missed-planting holes, even in challenging scenarios.

3.1.3 Performance evaluation of the improved
YOLOv5s model

To further evaluate the recognition capability of the improved

YOLOv5s model, frames were extracted from the video stream at

intervals of 50 frames using the OpenCV library, resulting in a test

set of 50 static images. The evaluation results are presented in
TABLE 2 Results of ablation experiments based on different improvement strategies.

Model Precision/% Recall/% mAP/% Model size/MB Running time/s

YOLOv5s 75.1 75.4 75.8 14.1 0.0168

YOLOv5s+SOCA 77.2 77.8 77.4 14.2 0.0172

YOLOv5s+SimSPPF 76.5 76.6 76.2 14.1 0.0169

YOLOv5s+SOCA+
SimSPPF (Ours)

79.0 79.6 81.1 14.2 0.0172
FIGURE 8

Performance of the original YOLOv5s in more complex scenarios. (A) Visualization of conventional scene error detection and missed detection; (B)
More complex scene misdetection and missed detection visualization.
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Table 3. The test set included a total of 2,140 seedling-planted holes

and 602 missed-planting holes. The proposed model successfully

detected 1,996 seedling-planted holes and 563 missed-planting

holes. Precision and Recall for seedling-planted holes were 92.9%

and 85.9%, respectively, while for missed-planting holes, they were

91.4% and 84.6%. These results further demonstrate the model’s

robust generalization ability and reliability.

Despite improvements, false detections still occur, as shown in

Figure 10. This is primarily due to two factors: first, extreme lighting

conditions and reflections from the film surface in high-altitude

images contribute to false positives; second, the variation in seedling

quality, with some weak seedlings being transplanted. In high-

altitude UAV imagery, the pixel points of the seedlings are

extremely limited, and few features can be extracted, making it

difficult to distinguish between seedling-planted holes and missed-

planting holes, thus leading to false detections.
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3.2 Comparison of tracking algorithm
performance

To evaluate the performance of the improved YOLOv5s model

combined with the DeepSORT tracking algorithm for tracking and

counting transplanted tobacco seedlings, a comparative experiment

was conducted. The experiment compared the counting results of

the original YOLOv5s model with those of the enhanced version,

which included DeepSORT, using UAV-captured videos of

transplanted tobacco seedlings. The results of this experiment are

presented in Table 4.

As shown in Table 4, integrating the improved YOLOv5s model

with the DeepSORT tracking algorithm significantly enhances

tracking and counting performance. The missed detection rate

Mm and false detection rates Mf during target tracking were 4.1%

and 9.1%, respectively, reflecting reductions of 2.5% and 6.1%
FIGURE 9

Performance improvement details of YOLOv5s before and after enhancement in some complex scenarios.
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compared to the original YOLOv5s, with the FPS of 19.9. However,

the MOTA evaluation results indicate that neither DeepSORT nor

other advanced tracking algorithms can fully resolve the issue of

identifier switching. Due to the small size of tobacco seedling

targets, distinguishing between seedling-planted and missed-

planting holes remains challenging, leading to multiple identifiers

being assigned to the same target across frames, which results in

duplicate counting. Therefore, using either the maximum identifier

count or the total number of identifiers as the final count is

inaccurate. To improve accuracy, this study proposes a method

for automatically counting seedling-planted and missed-planting
Frontiers in Plant Science 12
holes. In this method, the count is incremented by one each time the

lower edge of the detection box for a seedling-planted or missed-

planting hole crosses a virtual counting line. The cumulative totals

for both types of holes are displayed in real-time on the video, as

shown in Figure 11.

From Figure 11., it can be seen that the tracking and counting of

the seedling-planted and missed-planting holes respectively, the

detection of the two types of targets in the same frame does not

appear wrong detection and missed detection, and the target

counting results shown in the upper left corner are consistent

with the actual results.
TABLE 3 Evaluation results of the improved YOLOv5s on the test set.

Class Ground truth Proposed method TP FP FN Precision/% Recall/%

tobacco 2140 1996 1839 141 301 92.9 85.9

missing 602 563 509 48 93 91.4 84.6
FIGURE 10

Examples scenarios of misdiagnosis and omission.
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3.3 Detection and counting system
platform

To efficiently and accurately assess the number of seedling-

planted and missed-planting holes in tobacco mechanized

transplanting operations, this study implements an improved

YOLOv5s model, DeepSORT, and crossing-line counting

algorithms on a PC platform. A performance metric detection

system for the missed transplanting rate of tobacco seedling

transplanters is developed based on the PyQT5 framework, with

the PC user interface designed using QT tools, as shown in

Figure 12. Upon initiating the detection process, users can upload

a video via the interface. The system automatically loads the video

and applies the optimized deep learning model for analysis. Trained

on large-scale data, the model efficiently and accurately identifies

the number of seedling-planted and missed-planting holes,

enabling the calculation of the missed transplanting rate. During

detection, the system dynamically displays visualized results of the

video processing. Once detection is complete, the interface presents

statistical data on seedling-planted and missed-planting holes, along

with the missed transplanting rate, offering an intuitive

representation of the seedling transplanter’s performance.

Furthermore, the generated video and related data are

automatically stored in the backend database for future querying,

statistics, and analysis.
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3.4 Qualitative analysis of missed
transplanting rate detection

To validate the feasibility of the counting method, a mechanized

tobacco transplanting operation test was conducted in June 2024 in

Yongshun County, Xiangxi Tujia and Miao Autonomous

Prefecture, Hunan Province, using a self-propelled seedling

transplanter. The test site and the equipment used are shown in

Figure 13. Following the transplanting, 20 dynamic video segments

captured by drones were evaluated. First, three skilled operators

independently counted the number of the objects in the 20 video

segments. The average value of the counts obtained by the three

operators was taken as the actual number of seedling-planted and

missed-planting holes in the aerial videos. During counting, the

operators played the field videos frame by frame, recording the

number of seedling-planted and missed-planting holes in the first

frame along with the start time. Subsequently, they recorded the

number of newly appearing seedling-planted and missed-planting

holes in each subsequent frame until the end of the video. This

process yielded the total number of seedling-planted and missed-

planting holes in the video, as well as the time taken for manual

counting. Next, the proposed model was used to determine the

number of seedling-planted and missed-planting holes in the videos

and the time consumed by the algorithm for counting. The results

were compared with the manual counts to test the detection
FIGURE 11

Visualization results of the tracking and counting process.
TABLE 4 Performance comparison of DeepSORT combined with YOLOv5 before and after improvement.

Models Mm/% Mf/% MOTA/% FPS/(f·s−1)

YOLOv5s+DeepSORT 6.6% 15.2% 74.1% 15.9

Improved YOLOv5s
+DeepSORT

4.1% 9.1% 78.5% 19.9
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accuracy and efficiency of the missed transplanting rate. The results

are shown in Figure 14.

As shown in Figure 14, using the algorithmic model to analyze

the 20 videos collected from the test area, the average detection

accuracy Dt of the missed transplanting rate was 90.28%, and the

detection efficiency of the model was 10 times that of manual

counting. These results demonstrate that the proposed method for

detecting the missed transplanting rate significantly improves the

efficiency of evaluating the missed transplanting rate following the

operation of the tobacco seedling transplanter.
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4 Discussions

The method proposed in this paper still faces several issues that

deserve discussion in practical applications. First, the flight altitude

and shooting angle of the drone during data collection can affect the

application performance of the method. To balance the efficiency

and accuracy of missed transplanting detection, the drone’s camera

should be perpendicular to the ground, with a shooting angle of

-90°, and a flight altitude of 15–20 meters. The optimal field of view

occurs when 6–8 rows of tobacco seedlings are visible in the drone’s
FIGURE 12

Performance index detection system for missed transplanting rate.
FIGURE 13

Field test site and the equipment used.
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video imagery, which ensures high applicability of the proposed

method. Secondly, under specific agronomic requirements such as

film-covered well-shaped transplanting and actual background

interference, while focusing on the recognition accuracy during

target identification, attention should also be given to reducing false

positives. The improved YOLOv5s model proposed in this paper

effectively reduces the probability of false positives and can better

distinguish between seedling-planted holes and missed-planting

holes. It also shows significant improvements in both Precision

and mAP. Additionally, for large-scale transplanting operations by

tobacco seedling transplanter, where missed planting detection is

required, the detection efficiency of the proposed method is 10

times that of manual counting, meeting the requirement for rapid

detection and practical application. However, the method still has

certain limitations. So far, the training set used represents the field

conditions of tobacco transplanting with film-covered soil in

specific regions, and the dataset covers a relatively limited range

of scenarios. Therefore, the performance of the trained model may

decrease when applied to transplanting scenes outside of these

conditions. Adapting the model to meet the needs of different

tobacco transplanting scenarios will be a key focus of our future

research. Meanwhile, this study uses drones as data collection

devices, and the proposed method is not well-suited for areas

with restrictions on drone flights. Furthermore, to improve the

real-time nature and convenience of the detection process, the

algorithm could be deployed on the drone’s edge platform, and a

smartphone interface could be developed for real-time image

transmission and display, enabling real-time detection and

providing system-level technical support for tobacco seedling

transplanter operation performance monitoring.
5 Conclusions

This study proposes an intelligent evaluation method for the missed

transplanting rate of tobacco seedling transplanters, based on drone

video imagery and an algorithm framework incorporating the improved

YOLOv5s, DeepSORT, and line-crossing counting methods. This
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approach enhances the YOLOv5s model by adding a SOCA attention

mechanism and replacing the original SPPF structure with the SimSPPF

structure, which improves the model’s feature extraction capability. The

method also combines the DeepSORT algorithm and line-crossing

counting principle to recognize and dynamically count seedling-

planted and missed-planting holes, thereby calculating the missed

transplanting rate. The results show that, in terms of detection

performance, the improved YOLOv5s model outperforms the original

YOLOv5 by 3.9% in Precision and 5.3% in mAP. In tracking accuracy,

combining the improved YOLOv5s withDeepSORT reduces themissed

detection rate Mm and false detection rate Mf by 2.5% and 6.1%,

respectively, compared to the original YOLOv5s model. Testing the

proposed method on an independent dataset, the detection Precision

and Recall for seedling-planted holes (tobacco) were 92.9% and 85.9%,

respectively, while for missed-planting holes (missing), the Precision

and Recall were 91.4% and 84.6%, respectively. Furthermore, when the

proposed method was applied to assess 20 drone dynamic video images

captured in field experiments of tobacco seedling transplanters, the

average missed transplanting rate detection accuracy Dt was 90.28%,

and the detection efficiency was 10 times that of manual counting.

Therefore, this method significantly improves the efficiency of missed

transplanting rate detection for tobacco seedling transplanters,

providing a technical reference for the evaluation of seedling

transplanter performance in large-scale transplanting operations.
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